
Project in String Processing Algorithms

Spring 2013, period III

Juha Kärkkäinen

1



Who is this course for?

• Master’s level course in Computer Science, 2 cr

• Continuation of String Processing Algorithms course

• Requires some programming experience

• Subprogram of Algorithms and Machine Learning
– Together with String Processing Algorithms one of the three special

course combinations, one of which must be included in the Master’s
degree.

• Suitable addition to Master’s degree program for Bioinformatics,
particularly for those interested in biological sequence analysis

• Good fit for Subrogramme of Software systems

2



Course structure

• Three main tasks
1. Implementation of string processing algorithms
2. Experimental analysis and/or comparison of the algorithms
3. Presentation of the results as a poster

• Each task has about the same weight in grading

• Can be done in groups of at most three
– Each group member implements something

3



Algorithm implementation

• Each student in a group implements a significant part of the core
algorithms

– Separate grading for each student

• Can be based on existing implementations

• Any programming language, provided that:
– Compiles and runs on department computers
– Same within a group

• Important qualities:
– correct, well tested
– readable, well documented
– efficient, well tuned

• Degree of difficulty is taken into account

4



Algorithm implementation (continued)

Return to instructor:

• Implementation code

• Scripts for compiling and running tests

• Documentation
– description of what was done: existing code used, main design

decisions, tuning details etc.
– roles of group members
– guidance for understanding the code
– instructions for compiling and running
– format is free, even comments to code is OK

• By email in a single package (zip, tar.gz, or something like that)

5



Experiments

• The purpose of the experiments:
– Determine the performance of algorithms under different conditions
– Find best algorithms, variations or parameter settings

• Choice of test data is important
– Try to find best and worst cases for each algorithm.
– Compare theory and practice.
– Use generated, artificial data for fine control of parameters, real

world data for real world performance.
– Avoid too trivial experiments. For example, exact string matching

time is trivially linear in the length of the text.

• Mainly joint responsibility of a group, but each student should make
sure that her or his algorithms are well represented.

6



Poster

• Includes:
– Description of the problem
– Description of algorithms and implementations
– Experimental setting (repeatability)
– Experimental results and their interpretation

• Presented to an audience of other students and staff of the department
– Not all have taken the String Processing Algorithms course

(recently)

• Visual clarity is important
– Avoid too much detail, include only main points and results.

Additional details may be explained verbally.
– Use figures, graphs, colors, etc.

• See examples

7



Tentative schedule

15.1. Formation of groups, selection of topics

• Study the topic

22.1. Finalization of topic details

• Study implementation details

29.1. Additional details on implementations

• Implement

5.2. Initial design of experiments

• Implement, study experimenting

12.2. Implementations (nearly) finished, final design of experiments, initial
design of poster

14.2. Return of implementations

• Experimenting, poster making

19.2. Poster (nearly) finished

??.2. Poster presentation

8



Topic: Exact String Matching

• KMP, Shift-Or, Horspool, BNDM, BOM, ...

• ESMAJ: http://www-igm.univ-mlv.fr/~lecroq/string/

• B. Ďuriana, J. Holub, H. Peltola, and J. Tarhio: Improving practical
exact string matching. Information Processing Letters (IPL), 110(4):
148–152, 2010. http://dx.doi.org/10.1016/j.ipl.2009.11.010

9



Topic: Multiple Exact String Matching

• Aho-Corasick

• Multi-pattern versions of Shift-Or, Horspool, BOM, Karp-Rabin, ...

• L. Salmela, J. Tarhio, and J. Kytöjoki: Multipattern string matching
with q-grams. Journal of Experimental Algorithmics 11, Article 1.1
(February 2007). http://doi.acm.org/10.1145/1187436.1187438

10



Topic: Approximate String Matching

• Standard dynamic programming, Ukkonen’s cut-off heuristic, Myers’
bitparallel algorithm, filtering algorithms, ...

• G. Navarro: A guided tour to approximate string matching. ACM
Computing Surveys 33(1): 31–88, 2003.
http://doi.acm.org/10.1145/375360.375365

• L. Salmela and J. Tarhio: Approximate String Matching with Reduced
Alphabet. Workshop on Algorithms and Applications, LNCS 6060,
Springer 2010. http://dx.doi.org/10.1007/978-3-642-12476-1_15

11



Topic: String sorting

• String quicksort, string mergesort, MSD radix sort, ...

• R. Sinha and A. Wirth: Engineering burstsort: Toward fast in-place
string sorting. Journal of Experimental Algorithmics 15, Article 2.5
(March 2010). http://doi.acm.org/10.1145/1671973.1671978

• Cache misses are important

12



Other topics

• string search trees

• suffix array construction

• ...

• Topics from last year:
www.cs.helsinki.fi/u/vmakinen/strproject12/strproject12.pdf

• Own topic

13


