
Baeza-Yates–Perleberg Filtering Algorithm

A filtering algorithm for approximate string matching searches the text for
factors having some property that satisfies the following conditions:

1. Every approximate occurrence of the pattern has this property.

2. Strings having this property are reasonably rare.

3. Text factors having this property can be found quickly.

Each text factor with the property is a potential occurrence, which is then
verified for whether it is an actual approximate occurrence.

Filtering algorithms can achieve linear or even sublinear average case time
complexity.

145

The following lemma shows the property used by the Baeza-Yates–Perleberg
algorithm and proves that it satisfies the first condition.

Lemma 3.23: Let P1P2 . . . Pk+1 = P be a partitioning of the pattern P into
k + 1 nonempty factors. Any string S with ed(P, S) ≤ k contains Pi as a
factor for some i ∈ [1..k + 1].

Proof. Each single symbol edit operation can change at most one of the
pattern factors Pi. Thus any set of at most k edit operations leaves at least
one of the factors untouched. �

146

The algorithm has two phases:

Filtration: Search the text T for exact occurrences of the pattern factors Pi.
Using the Aho–Corasick algorithm this takes O(n) time for a constant
alphabet.

Verification: An area of length O(m) surrounding each potential occurrence
found in the filtration phase is searched using the standard dynamic
programming algorithm in O(m2) time.

The worst case time complexity is O(m2n), which can be reduced to O(mn)
by combining any overlapping areas to be searched.

147

Let us analyze the average case time complexity of the verification phase.

• The best pattern partitioning is as even as possible. Then each pattern
factor has length at least r = bm/(k + 1)c.

• The expected number of exact occurrences of a random string of
length r in a random text of length n is at most n/σr.

• The expected total verification time is at most

O
(
m2(k + 1)n

σr

)
≤ O

(
m3n

σr

)
.

This is O(n) if r ≥ 3 logσm.

• The condition r ≥ 3 logσm is satisfied when (k + 1) ≤ m/(3 logσm+ 1).

Theorem 3.24: The average case time complexity of the
Baeza-Yates–Perleberg algorithm is O(n) when k ≤ m/(3 logσm+ 1)− 1.

148

Many variations of the algorithm have been suggested:

• The filtration can be done with a different multiple exact string
matching algorithm:

– The first algorithm of this type by Wu and Manber used an
extension of the Shift-And algorithm.

– An extension of BDM achieves O(nk(logσm)/m) average case
search time. This is sublinear for small enough k.

– An extension of the Horspool algorithm is very fast in practice for
small k and large σ.

• Using a technique called hierarchical verification, the average
verification time for a single potential occurrence can be reduced to
O((m/k)2).

A filtering algorithm by Chang and Marr has average case time complexity
O(n(k + logσm)/m), which is optimal.

149

Summary: Approximate String Matching

We have seen two main types of algorithms for approximate string matching:

• Basic dynamic programming time complexity is O(mn). The time
complexity can be improved to O(kn) using diagonal monotonicity, and
to O(ndm/we) using bitparallelism.

• Filtering algorithms can improve average case time complexity and are
the fastest in practice when k is not too large.

Other algorithms worth mentioning are those based on automata:

• Algorithms based on bit-parallel simulation of non-deterministic
automata were mentioned briefly.

• A deterministic automaton can find occurrences in O(n) time, but the
size of the automaton can be exponential in m and too big to be
practical.

Similar techniques can be useful for other variants of edit distance but not
always straightforwardly.

150

4. Suffix Trees and Arrays

Let T = T [0..n) be the text. For i ∈ [0..n], let Ti denote the suffix T [i..n).
Furthermore, for any subset C ∈ [0..n], we write TC = {Ti | i ∈ C}. In
particular, T[0..n] is the set of all suffixes of T .

Suffix tree and suffix array are search data structures for the set T[0..n].

• Suffix tree is a compact trie for T[0..n].

• Suffix array is an ordered array for T[0..n].

They support fast exact string matching on T :

• A pattern P has an occurrence starting at position i if and only if P is a
prefix of Ti.

• Thus we can find all occurrences of P by a prefix search in T[0..n].

A data structure supporting fast string matching is called a text index.

There are numerous other applications too, as we will see later.

151

The set T[0..n] contains |T[0..n]| = n+ 1 strings of total length
||T[0..n]|| = Θ(n2). It is also possible that ΣLCP (T[0..n]) = Θ(n2), for example,
when T = an or T = XX for any string X.

• A basic trie has Θ(n2) nodes for most texts, which is too much. Even a
leaf path compacted trie can have Θ(n2) nodes, for example when
T = XX for a random string X.

• A compact trie with O(n) nodes and an ordered array with n+ 1 entries
have linear size.

• A compact ternary trie and a string binary search tree have O(n) nodes
too. However, the construction algorithms and some other algorithms
we will see are not straightforward to adapt for these data structures.

Even for a compact trie or an ordered array, we need a specialized
construction algorithm, because any general construction algorithm would
need Ω(ΣLCP (T[0..n])) time.

152

Suffix Tree

The suffix tree of a text T is the compact trie of the set T[0..n] of all suffixes
of T .

We assume that there is an extra character $ 6∈ Σ at the end of the text.
That is, T [n] = $ and Ti = T [i..n] for all i ∈ [0..n]. Then:

• No suffix is a prefix of another suffix, i.e., the set T[0..n] is prefix free.

• All nodes in the suffix tree representing a suffix are leaves.

This simplifies algorithms.

Example 4.1: T = banana$.

1
3

5

6

2

4

0

$

$

$

na$

na
$

na

na$

banana$

a

153

As with tries, there are many possibilities for implementing the child
operation. We again avoid this complication by assuming that σ is constant.
Then the size of the suffix tree is O(n):

• There are exactly n+ 1 leaves and at most n internal nodes.

• There are at most 2n edges. The edge labels are factors of the text
and can be represented by pointers to the text.

Given the suffix tree of T , all occurrences of P in T can be found in time
O(|P |+ occ), where occ is the number of occurrences.

154

Brute Force Construction

Let us now look at algorithms for constructing the suffix tree. We start with
a brute force algorithm with time complexity Θ(ΣLCP (T[0..n])). Later we
will modify this algorithm to obtain a linear time complexity.

The idea is to add suffixes to the trie one at a time starting from the
longest suffix. The insertion procedure is essentially the same as we saw in
Algorithm 1.2 (insertion into trie) except it has been modified to work on a
compact trie instead of a trie.

155

Let Su denote the string represented by a node u. The suffix tree
representation uses four functions:

child(u, c) is the child v of node u such that the label of the edge
(u, v) starts with the symbol c, and ⊥ if u has no such child.

parent(u) is the parent of u.

depth(u) is the length of Su.

start(u) is the starting position of some occurrence of Su in T .

Then

• Su = T [start(u) . . . start(u) + depth(u)).

• T [start(u) + depth(parent(u)) . . . start(u) + depth(u)) is the label of the
edge (parent(u), u).

156

A locus in the suffix tree is a pair (u, d) where
depth(parent(u)) < d ≤ depth(u). It represents

• the uncompact trie node that would be at depth d along the
edge (parent(u), u), and

• the corresponding string S(u,d) = T [start(u) . . . start(u) + d).

Every factor of T is a prefix of a suffix and thus has a locus along the path
from the root to the leaf representing that suffix.

During the construction, we need to create nodes at an existing locus in the
middle of an edge, splitting the edge into two edges:

CreateNode(u, d) // d < depth(u)
(1) i← start(u); p← parent(u)
(2) create new node v
(3) start(v)← i; depth(v)← d
(4) child(v, T [i+ d])← u; parent(u)← v
(5) child(p, T [i+ depth(p)])← v; parent(v)← p
(6) return v

157

Now we are ready to describe the construction algorithm.

Algorithm 4.2: Brute force suffix tree construction
Input: text T [0..n] (T [n] = $)
Output: suffix tree of T : root, child, parent, depth, start

(1) create new node root; depth(root)← 0
(2) u← root; d← 0 // (u, d) is the active locus
(3) for i← 0 to n do // insert suffix Ti
(4) while d = depth(u) and child(u, T [i+ d]) 6= ⊥ do
(5) u← child(u, T [i+ d]); d← d+ 1
(6) while d < depth(u) and T [start(u) + d] = T [i+ d] do d← d+ 1
(7) if d < depth(u) then // (u, d) is in the middle of an edge
(8) u← CreateNode(u, d)
(9) CreateLeaf(i, u)

(10) u← root; d← 0

CreateLeaf(i, u) // Create leaf representing suffix Ti
(1) create new leaf w
(2) start(w)← i; depth(w)← n− i+ 1
(3) child(u, T [i+ d])← w; parent(w)← u // Set u as parent
(4) return w

158

Suffix Links

The key to efficient suffix tree construction are suffix links:

slink(u) is the node v such that Sv is the longest proper suffix of
Su, i.e., if Su = T [i..j) then Sv = T [i+ 1..j).

Example 4.3: The suffix tree of T = banana$ with internal node suffix links.

1
3

5

6

2

4

0

$

$

$

na$

na
$

na

na$

banana$

a

159

Suffix links are well defined for all nodes except the root.

Lemma 4.4: If the suffix tree of T has a node u representing T [i..j) for any
0 ≤ i < j ≤ n, then it has a node v representing T [i+ 1..j).

Proof. If u is the leaf representing the suffix Ti, then v is the leaf
representing the suffix Ti+1.

If u is an internal node, then it has two child edges with labels starting with
different symbols, say a and b, which means that T [i..j)a and T [i..j)b are
both factors of T . Then, T [i+ 1..j)a and T [i+ 1..j)b are factors of T too,
and thus there must be a branching node v representing T [i+ 1..j). �

Usually, suffix links are needed only for internal nodes. For root, we define
slink(root) = root.

160

Suffix links are the same as Aho–Corasick failure links but Lemma 4.4
ensures that depth(slink(u)) = depth(u)− 1. This is not the case for an
arbitrary trie or a compact trie.

Suffix links are stored for compact trie nodes only, but we can define and
compute them for any locus (u, d):

slink(u, d)
(1) v ← slink(parent(u))
(2) while depth(v) < d− 1 do
(3) v ← child(v, T [start(u) + depth(v) + 1])
(4) return (v, d− 1)

parent(u)

(u, d)

u
slink(u)

slink(u, d)

slink(parent(u))

161

The same idea can be used for computing the suffix links during or after the
brute force construction.

ComputeSlink(u)
(1) d← depth(u)
(2) v ← slink(parent(u))
(3) while depth(v) < d− 1 do
(4) v ← child(v, T [start(u) + depth(v) + 1])
(5) if depth(v) > d− 1 then // no node at (v, d− 1)
(6) v ← CreateNode(v, d− 1)
(7) slink(u)← v

The procedure CreateNode(v, d− 1) sets slink(v) = ⊥.

The algorithm uses the suffix link of the parent, which must have been
computed before. Otherwise the order of computation does not matter.

162

The creation of a new node on line (6) never happens in a fully constructed
suffix tree, but during the brute force algorithm the necessary node may not
exist yet:

• If a new internal node ui was created during the insertion of the suffix
Ti, there exists an earlier suffix Tj, j < i that branches at ui into a
different direction than Ti.

• Then slink(ui) represents a prefix of Tj+1 and thus exists at least as a
locus on the path labelled Tj+1. However, it may be that it does not
become a branching node until the insertion of Ti+1.

• In such a case, ComputeSlink(ui) creates slink(ui) a moment before it
would otherwise be created by the brute force construction.

163

McCreight’s Algorithm

McCreight’s suffix tree construction is a simple modification of the brute
force algorithm that computes the suffix links during the construction and
uses them as short cuts:

• Consider the situation, where we have just added a leaf wi representing
the suffix Ti as a child to a node ui. The next step is to add wi+1 as a
child to a node ui+1.

• The brute force algorithm finds ui+1 by traversing from the root.
McCreight’s algorithm takes a short cut to slink(ui).

slink(ui)
ui

wi
wi+1

ui+1

• This is safe because slink(ui) represents a prefix of Ti+1.

164

Algorithm 4.5: McCreight
Input: text T [0..n] (T [n] = $)
Output: suffix tree of T : root, child, parent, depth, start, slink

(1) create new node root; depth(root)← 0; slink(root)← root
(2) u← root; d← 0 // (u, d) is the active locus
(3) for i← 0 to n do // insert suffix Ti
(4) while d = depth(u) and child(u, T [i+ d]) 6= ⊥ do
(5) u← child(u, T [i+ d]); d← d+ 1
(6) while d < depth(u) and T [start(u) + d] = T [i+ d] do d← d+ 1
(7) if d < depth(u) then // (u, d) is in the middle of an edge
(8) u← CreateNode(u, d)
(9) CreateLeaf(i, u)

(10) if slink(u) = ⊥ then ComputeSlink(u)
(11) u← slink(u); d← d− 1

165

Theorem 4.6: Let T be a string of length n over an alphabet of constant
size. McCreight’s algorithm computes the suffix tree of T in O(n) time.

Proof. Insertion of a suffix Ti takes constant time except in two points:

• The while loops on lines (4)–(6) traverse from the node slink(ui) to
ui+1. Every round in these loops increments d. The only place where d
decreases is on line (11) and even then by one. Since d can never
exceed n, the total time on lines (4)–(6) is O(n).

• The while loop on lines (3)–(4) during a call to ComputeSlink(ui)
traverses from the node slink(parent(ui)) to slink(ui). Let d′i be the
depth of parent(ui). Clearly, d′i+1 ≥ d′i − 1, and every round in the while
loop during ComputeSlink(ui) increases d′i+1. Since d′i can never be
larger than n, the total time in the loop on lines (3)–(4) in
ComputeSlink is O(n).

�

166

There are other linear time algorithms for suffix tree construction:

• Weiner’s algorithm was the first. It inserts the suffixes into the tree in
the opposite order: Tn, Tn−1, . . . , T0.

• Ukkonen’s algorithm constructs suffix tree first for T [0..1) then for
T [0..2), etc.. The algorithm is structured differently, but performs
essentially the same tree traversal as McCreight’s algorithm.

• All of the above are linear time only for constant alphabet size.
Farach’s algorithm achieves linear time for an integer alphabet of
polynomial size. The algorithm is complicated and unpractical.

167

