
String Range Matching

Juha Kärkkäinen, Dominik Kempa, and Simon J. Puglisi

Department of Computer Science, University of Helsinki Helsinki, Finland
firstname.lastname@cs.helsinki.fi

Abstract. Given strings X and Y the exact string matching problem is
to find the occurrences of Y as a substring of X. An alternative formu-
lation asks for the lexicographically consecutive set of suffixes of X that
begin with Y. We introduce a generalization called string range match-
ing where we want to find the suffixes of X that are in an arbitrary
lexicographical range bounded by two strings Y and Z. The problem has
applications in distributed suffix sorting, where Y and Z are themselves
suffixes of X. Exact string matching can be solved in linear time and
constant extra space under the standard comparison model. Our conjec-
ture is that string range matching is a harder problem and cannot be
solved within the same time–space complexity. In this paper, we trace
the upper bound on the complexity of string range matching by describ-
ing algorithms that are within a logarithmic factor of the time–space
complexity of exact string matching, as well as variants of the problem
and the model that can be solved in linear time and constant extra space.

1 Introduction

Exact string matching, the problem of finding all the occurrences of a string
Y[0..m) (the pattern) in a larger string X[0..n) (the text) is a foundational prob-
lem in computer science, and has applications throughout modern computer soft-
ware. Among the numerous algorithms for exact string matching [5], there are
several that are optimal in space (O(1) extra space) as well as in time (O(n+m))
under the comparison model [9, 8, 3, 2, 4]. We have recently considered a gener-
alization called longest prefix matching, where we want to find the occurrences
of the longest prefix of the pattern that occurs in the text, and have shown that
(at least) one of these algorithms can be generalized to longest prefix matching
within the same optimal time–space complexity [11].

In this paper we introduce a further generalization based on an alternative
view of the above problems. If we regard the text as a collection of its suffixes, the
above problems can be stated as reporting the starting positions of all suffixes
that begin with the pattern or with the longest prefix of the pattern producing a
non-empty result. The resulting subset of suffixes is lexicographically consecutive
and the query could be expressed as a lexicographical range query on the set of
suffixes. A natural generalization, which we call string range matching, then asks
for suffixes in an arbitrary lexicographical range: Given strings X[0..n), Y[0..m1)
and Z[0..m2) report all i such that Y ≤ X[i..n) < Z.

2 Juha Kärkkäinen, Dominik Kempa, and Simon J. Puglisi

We describe two basic algorithms for string range matching. One is based
Crochemore’s string matching algorithm [2] (or its simplification in [11]) and
solves the problem in O(n log(m1 + m2)) time using constant extra space. For
certain important special cases the algorithm can be made to run in linear time,
in particular when the strings Y and Z share a prefix of length ε(m1+m2) for any
constant ε > 0. The second algorithm is based on the string matching algorithm
by Galil and Seiferas [9] and solves the counting version of the problem in linear
time using O(log(m1 +m2)) extra space. In both cases, the modification to solve
string range matching is non-trivial.

Furthermore, we show that the problem can be solved in linear time using
just constant extra space by slightly cheating about the extra space aspect. We
describe two distinct “cheats”: (i) The algorithm can overwrite the strings Y
and Z with other data but must restore the strings to their original state at the
end. The overwritten memory does not count as extra space. (ii) The algorithm
has read access to its own output, which does not count as extra space. The
algorithm works for most reasonable output formats but only for the reporting
version of the problem, not for the counting version.

We conjecture that string range matching is a harder problem than exact
string matching and cannot be solved in linear time and constant extra space in
the comparison model without cheating, i.e., when the only access to the input
is by character comparisons and the output is write-only.

Applications to Suffix Sorting. The suffix array [13] and the Burrows–Wheeler
transform [1] are central to modern string processing and the key task in their
construction is sorting the suffixes of a string. For long strings we may want
to split the task into smaller subtasks in order to distribute the work load or
reduce the memory requirements. One approach partitions the lexicographical
space [10]. For each partition, we then need to collect all suffixes within the given
lexicographical range. The collecting problem is exactly string range matching.

Another approach to suffix sorting for large strings is to split the string into
smaller blocks, sort the suffixes of each block separately, and then merge [6].
Assume the string is ABC, where B is the current block. When sorting the suffixes
of B, what we really want is the lexicographical ordering of the |B| longest suffixes
of BC, which can differ significantly from the ordering of the suffixes of B as a
standalone string. The correct ordering can be obtained without accessing C if we
know which of the |B| longest suffixes of BC are smaller than C. This information
can be obtained using a one-sided string range matching query.

In both of the papers mentioned above [10, 6], the string range matching
problem is solved using an algorithm introduced in [10], which is based on the
Knuth–Morris–Pratt [12] exact string matching algorithm, and is the only prior
work on string range matching that we are aware of. However, the O(m1 +m2)
extra space needed by the algorithm is a problem since Y and Z are poten-
tially very long suffixes of X. The techniques used in those papers to reduce the
space requirement (a global data structure [10] and sequential processing of the
blocks [6]) are not well suited for distributed computation. Thus our small space
algorithms open up new possibilities for distributed suffix sorting.

String Range Matching 3

2 General Framework

Consider a string X = X[0..n) = X[0]X[1] . . .X[n − 1] of |X| = n symbols drawn
from an ordered alphabet. Here and elsewhere we use [i..j) as a shorthand for
[i..j − 1]. For i ∈ [0..n) we write Xi to denote the suffix of X of length n − i,
that is Xi = X[i..n) = X[i]X[i + 1] . . .X[n − 1]. We also generalize the notation
to sets of suffixes: for any S ⊆ [0..n), XS = {Xi | i ∈ S}. The empty string
is denoted by ε. For strings X and Y, we use lcp(X,Y) to denote the length of
the longest common prefix of X and Y. If X ≤ Y, we write [X,Y) to denote the
lexicographical range of strings between X and Y, i.e., the set {Z | X ≤ Z < Y}.
For X ≤ Y ≤ Z, we have [X,Z) = [X,Y) ∪· [Y,Z), where ∪· denotes the disjoint
union. A positive integer p is a period of X if X[i] = X[i+ p] for all i ∈ [0..n− p).
If p and q are periods of X and p + q ≤ |X|, then gcd(x, y) is a period of X too
(Weak Periodicity Lemma [7]). The smallest period of X is denoted per(X). A
string X is called primitive if it cannot be written as X = Yk for an integer k > 1.

We focus on the one-sided string range matching problem of computing the
set X[0..n) ∩ [ε,Y), to which the two-sided version can be reduced since [Y,Z) =
[ε,Z) \ [ε,Y). All our algorithms use a similar basic approach. In a generic step,
they compute ` = lcp(Xi,Y) and then i is incremented by h, where either h = p =
per(Y[0..`)) or h < p and h = Θ(`). The efficient computation of ` and h is based
on well-known exact string matching algorithms. For exact string matching,
nothing else is needed as none of the skipped suffixes Xi+j , j ∈ [1..h), can have
Y as a prefix. Our contribution is to show how to add order comparisons between
Y and the suffixes. Checking whether Xi < Y needs just one symbol comparison.
Comparing the skipped suffixes to Y is based on the following lemma.

Lemma 1. Let ` = lcp(Xi,Y) and p = per(Y[0..`)). Then Xi+j < Y iff Yj < Y
for any j ∈ [1..p).

Proof. Fix j ∈ [1..p). If we had lcp(Xi+j ,Y) ≥ ` − j, this would imply that j is
a period of Y[0..`), which violates the assumption that p = per(Y[0..`)). Thus
lcp(Xi+j ,Y) < `− j and the claim follows since lcp(Xi+j ,Yj) = `− j. ut

In other words, the status of the suffixes in the skipped segment depends
only on Y enabling the use of precomputed information.

3 Linear Time and Logarithmic Extra Space

Our first algorithm solves the one-sided counting variant of the string range
matching problem, that is, computes the value of |X[0..n) ∩ [ε,Y)|. The two-sided
problem needs two calls to the algorithm. The algorithm is built on the exact
string matching algorithm of Galil and Seiferas that uses O(logm) extra space [9]
(or more precisely on the cleaner formulation due to Crochemore and Rytter [4]).

Assume that k ≥ 3 is an integer constant. A prefix P of Y is called a k-highly
repeating prefix (k-hrp) of Y if P is primitive and Pk is a prefix of Y. With each
k-hrp P of Y we associate the interval of positions

[
2|P|, lcp(Y,Y|P|)

)
called the

scope of P. Scopes have a number of useful properties:

4 Juha Kärkkäinen, Dominik Kempa, and Simon J. Puglisi

Lemma 2 ([4]). A string Y of length m has O(logm) scopes and they can be
computed in O(m) time and O(logm) extra space. Two distict scopes do not
overlap and for any prefix Y[0..`) of Y it holds that:

per(Y[0..`)) = b/2 if ` ∈ [b, e) and [b, e) is a scope of some k-hrp of Y; and

per(Y[0..`)) > `/k otherwise.

Using the scopes, we can compute the skip value h in the generic matching
step as either b/2 or b`/kc+ 1, which is sufficient for exact string matching [4].
For string range matching, we need additional precomputed information. First,
for each k-hrp P of Y we precompute, in addition to its scope [b, e), the value
c = |Y[0..|P|) ∩ [ε,Y)|. We store all triples (b, e, c) in a sorted list Sp, which allows
us to count all suffixes that are skipped-over whenever h = per(Y[0..`)). If the
match length ` does not belong to a scope, the Galil–Seiferas algorithm would
use a skip value h = b`/kc+ 1. Our strategy in this case is to do a shorter (by a
constant factor) skip h for which we know the value |Y[0..h) ∩ [ε,Y)|. To be able
to do that, we will precompute a second list Sn = ((b1, c1), . . . , (bt, ct)) of length
O(logm) that satisfies: ci = |Y[0..bi) ∩ [ε,Y)| for i ∈ [1..t] and 2bi ≤ bi+1 < 4bi
for i ∈ [1..t− 1]. Moreover 4bt > m.

Pseudo-code for the algorithm is given in Fig. 1. The algorithm precomputing
lists Sp and Sn is given in Fig. 2. It is essentially the same as in Fig. 1, except
we are now matching the pattern against itself.

Algorithm OneSidedStringRangeCounting(X,Y)

Input: strings X[0..n), Y[0..m).
Output: |X[0..n) ∩ [ε,Y)|.
1: (Sp,Sn)← Precompute(Y)
2: count← i← `← 0
3: while i < n do // Invariant: count = |X[0..i) ∩ [ε,Y)|
4: while i + ` < n and ` < m and X[i + `] = Y[`] do `← ` + 1
5: (b, e, c)← contains(Sp, `)
6: if ` < m and (i + ` = n or X[i + `] < Y[`]) then
7: count← count + 1
8: if b 6= 0 then // per(Y[0..`)) = b/2

// c = |Y[1..b/2) ∩ [ε,Y)| = |X[i+1..i+b/2) ∩ [ε,Y)|
9: count← count + c
10: i← i + b/2; `← `− b/2
11: else // per(Y[0..`)) > `/k
12: (b, c)← pred(Sn, b`/kc+ 1) // (b`/kc+ 1)/4 < b

// c = |Y[1..b) ∩ [ε,Y)| = |X[i+1..i+b) ∩ [ε,Y)|
13: count← count + c
14: i← i + b; `← 0
15: return count

Fig. 1. String range counting in linear time and logarithmic space.

String Range Matching 5

Algorithm Precompute(Y)

Input: a string Y[0..m).
Output: lists Sp and Sn.
1: Sp ← (); Sn ← ((1, 0))
2: i← last← 1; `← count← 0
3: while i < m do // Invariant: count = |Y[0..i) ∩ [ε,Y)|
4: while i + ` < m and Y[i + `] = Y[`] do `← ` + 1
5: (b, e, c)← contains(Sp, `)
6: if k · i ≤ i + ` and b = 0 then
7: (b, e, c)← (2i, i + `, count)
8: add(Sp, (b, e, c)) // Y[0..i) is a new k-hrp
9: if 2 · last ≤ i then
10: add(Sn, (i, count)); last← i
11: if i + ` = m or Y[i + `] < Y[`] then count← count + 1
12: if b 6= 0 then
13: count← count + c
14: i← i + b/2; `← `− b/2
15: else
16: (b, c)← pred(Sn, b`/kc+ 1)
17: count← count + c
18: i← i + b; `← 0
19: return (Sp,Sn)

Fig. 2. Computation of lists Sp and Sn.

The algorithms use the following additional procedures: add(L, x) adds an
element x at the end of a list L, pred(Sn, x) returns (b, c) ∈ Sn, b ≤ x with
the largest b, and contains(Sp, x) returns (b, e, c) ∈ Sp such that b ≤ x < e or
(0, ·, ·) if no such triple belongs to Sp.

Theorem 1. The algorithm in Figure 1 solves the counting version of the string
range matching problem in linear time and O(log(m1 +m2)) extra space.

Proof. The correctness of the algorithm follows from Lemmas 1 and 2 as ex-
plained above and detailed in the invariants included in the code. The time
complexity is linear by the same arguments as in [4]. In particular, the shifts
made by our algorithm may be shorter but only by a constant factor. ut

4 O(n log(m1 + m2)) Time and Constant Extra Space

In this section, we first describe an algorithm solving the string range matching
problem in linear time and constant extra space for the special case, where the
query range is of the form [Y[0..r),Y) with b2m/3c ≤ r < m = |Y|. We will
then show how the general string range matching problem can be solved using
O(logm) calls to the special case algorithm.

The backbone of the algorithm is the exact string matching algorithm of
Crochemore [2] (see [11] for a simplified version, which we use here). Similarly

6 Juha Kärkkäinen, Dominik Kempa, and Simon J. Puglisi

to the Galil–Seiferas algorithm, it computes the skip value h in the generic step
either as h = per(Y[0..`)) ≤ `/3 or h = b`/3c + 1 ≤ per(Y[0..`)), but now using
only O(1) extra space. Our addition is two precomputed values q = per(Y[0..r))
and e = q + lcp(Y,Yq), i.e., Y[0..e) is the longest prefix of Y having period
q. Both values can be computed in linear time using constant extra space [2].
Determining of the status of the skipped suffixes is based on Lemma 1 and the
following result. The pseudo-code is given in Figure 3.

Lemma 3. Let h ≤ bm/3c+ 1 be a positive integer and g = min(dh−qq e, b
e−r
q c).

Then:

{j ∈ [0..h) | Y[0..r) ≤ Yj < Y} =

{
{q, 2q, . . . , gq} if Yq < Y
∅ otherwise

Proof. First note that Y[0..r) ≤ Yj < Y iff Yj < Y and lcp(Yj ,Y) ≥ r. If
lcp(Yj ,Y) ≥ r, then j is a period of Y[0..r). Since q = per(Y[0..r)) and j +
q ≤ 2j ≤ 2bm/3c ≤ r, the Weak Periodicity Lemma implies that j must be
a multiple of q. Thus let j = kq for some integer k such that kq < h ≤ e.
Then lcp(Yj ,Y) = e − j and Yj < Y iff Yq < Y. Thus, if Yq ≥ Y, the set in
the lemma is empty. Otherwise, the set includes all j = kq such that kq < h
and lcp(Yj ,Y) ≥ r, which give the limits k ≤ d(h − q)/qe and k ≤ b(e − r)/qc,
respectively. ut

Algorithm RestrictedOneSidedStringRangeReporting(X,Y, r)

Input: strings X[0..n), Y[0..m) and an integer r ≥ b2m/3c.
Output: the set R = {j ∈ [0..n) | Y[0..r) ≤ Xj < Y}.
1: (q, e)← Precompute(Y, r)
2: R← ∅
3: i← `← s← p← 0
4: while i < n do // Invariant: R = {j ∈ [0..i) | Y[0..r) ≤ Xj < Y}
5: while i + ` < n and ` < m and X[i + `] = Y[`] do
6: UpdateMS(Y, `, s, p) // Increments ` by one
7: if r ≤ ` < m and (i + ` = n or X[i + `] < Y[`]) then R← R∪ {i}
8: if 0 < p ≤ `/3 and Y[0..s) = Y[p..p + s) then // per(Y[0..`)) = p
9: h← p; `← `− p
10: else // per(Y[0..`)) > `/3
11: h← b`/3c+ 1; (`, s, p)← (0, 0, 0)
12: if e < m and Y[e] < Y[e mod q] then // Yq < Y

13: g ← min(dh−q
q
e, b e−r

q
c)

14: R← R∪ {i + q, i + 2q, . . . , i + gq}
15: i← i + h
16: return R

Fig. 3. Reporting suffixes Xj ∈ [Y[0..r),Y) in linear time and constant extra space.
Due to lack of space, we omit the code for UpdateMS(Y, `, s, p), which can be found
in [11], and the precomputation of q and e.

String Range Matching 7

Let us now consider more general forms of queries. First, consider the query
[Y[0..`),Y) with ` < r = b2|Y|/3c. We can break the query into two distinct sub-
queries: [Y[0..`),Y) = [Y[0..`),Y[0..r))∪· [Y[0..r),Y). This leads to a tail-recursive
algorithm that makes O(log(|Y|/`)) calls to the algorithm in Fig. 3 and thus
runs in O(n log(|Y|/`)) time still using only constant extra space. An alterna-
tive formulation for the query [Y[0..`),Y) is to compute the set {Xj | Xj <
Y and lcp(Xj ,Y) ≥ `}. By a symmetrical procedure, we can also compute the
set {Xj | Y ≤ Xj and lcp(Xj ,Y) ≥ `} in O(n log(|Y|/`)) time and constant extra
space.

Consider now the fully general query [Y,Z) and let ` = lcp(Y,Z). We can
partition the result set X[0..n) ∩ [Y,Z) into three disjoint sets R1 = {Xj | Xj <
Z and lcp(Xj ,Z) > `}, R2 = {Xj | Y ≤ Xj and lcp(Xj ,Y) > `} and R3 = {Xj |
Y ≤ Xj < Z and lcp(Xj ,Y) = lcp(Xj ,Z) = `}. The sets R1 and R2 can be
computed as described above. R3 can be found using any time–space optimal
exact string matching algorithm (e.g. [2]). We have proven the following result.

Theorem 2. It is possible to solve the string range matching problem using
constant extra space in O(n log((m1 +m2)/(1 + lcp(Y,Z)))) time.

The worst case time complexity is O(n log(m1 +m2)). If lcp(Y,Z) ≥ ε(m1 +
m2) for some constant ε > 0, the algorithm runs in linear time.

5 Linear Time and Constant Extra Space

In this section, we describe two algorithms for string range matching that run in
linear time and constant extra space by taking advantage of the space reserved
for input or output, which we do not count as extra space. Both algorithms are
based on Crochemore’s string matching algorithm.

We will describe the algorithms for one-sided queries [ε,Y). Since these al-
gorithms produce their output in a sequential order, we can answer two-sided
queries by running two one-sided queries in parallel: [Y,Z) = [ε,Z) \ [ε,Y). To
ease the description of the algorithms, we assume that the output is produced
as a bitvector B[0..n) satisfying, for all i ∈ [0..n), B[i] = 1 iff Xi < Y. We will
later describe how to produce output in other formats.

Copying Output. Consider the actions of Crochemore’s algorithm as it compares
the pattern Y against the text suffix Xi. It computes ` = lcp(Xi,Y) and then
shifts the pattern forward by h positions. With one character comparison we can
determine B[i], so the problem now is computing the output for the skipped-over
positions B[i+ 1..i+ h).

Let `max be the longest previously found match, which occurred at position
j, i.e., `max = lcp(Xj ,Y). If ` ≤ `max, then by Lemma 1 we have B[i+ 1..i+h) =
B[j+1..j+h). Thus, if we have access to the previous output, we can simply copy
the missing output. Note that this works even if the two intervals [i + 1..i + h)
and [j + 1..j + h) overlap.

8 Juha Kärkkäinen, Dominik Kempa, and Simon J. Puglisi

If ` > `max, we cannot obtain all the missing values by copying. In this case,
we set ` to `max (after computing B[i]) and continue as if the match had been a
shorter one. This shorter match length leads to a shorter shift and allows copying
the output for all the skipped-over positions. Shortening the match length does
not violate the correctness of the algorithm as long as the state of algorithm is
adjusted accordingly. The full match length becomes the new value of `max, i.e.,
we are actually swapping the values of ` and `max.

Algorithm OneSidedStringRangeReporting(X,Y)

Input: strings X[0..n) and Y[0..m).
Output: bitvector B[0..n), where B[i] = 1 iff X[i..n) < Y.
1: B← (0, 0, . . . , 0)
2: i← `← p← s← 0
3: imax ← `max ← pmax ← smax ← 0
4: while i < n do
5: while i + ` < n and ` < m and X[i + `] = Y[`] do
6: (`, s, p)← UpdateMS(Y, `, s, p) // Increments ` by one

// ` = lcp(Xi,Y)
7: if ` < m and (i + ` = n or X[i + `] < Y[`]) then B[i] = 1
8: j ← imax

9: if ` > `max then
10: swap (`, s, p) and (`max, smax, pmax)
11: imax ← i
12: if 0 < p ≤ `/3 and Y[0..s) = Y[p..p + s) then // per(Y[0..`)) = p
13: B[i + 1..i + p)← B[j + 1..j + p)
14: i← i + p
15: `← `− p
16: else // per(Y[0..`)) > `/3
17: h← b`/3c+ 1
18: B[i + 1..i + h)← B[j + 1..j + h)
19: i← i + h
20: (`, s, p)← (0, 0, 0)
21: return B

Fig. 4. Linear time, constant extra space algorithm.

The pseudocode for the algorithm is given in Fig. 4. The key changes to the
original algorithm in [11, Figure 2] are the computation of B on lines 7, 13 and
18, and the swap of ` and `max on line 10. The two other variables, s and p,
swapped together with ` represent the rest of the state of the algorithm that
needs to change when ` changes. We refer to [11] for their explanation. Here it
suffices to know that they are functions of ` (and Y).

Theorem 3. The algorithm in Fig. 4 solves the string range reporting problem
in linear time using constant extra space.

String Range Matching 9

Proof. The correctness of the algorithm has been established above, and the
algorithm clearly uses only constant extra space. In [11], it is shown that the
time spent in any round of the original algorithm is proportional to the increase
of the value 6i + ` + s during that round. Because of the swap on line 11, this
might not hold for the modified algorithm, but this can be corrected by using
the value 6i+ `+ s+ `max + smax instead. The copying of the output does not
add more than O(n) time. Thus the time complexity is still O(n+m). ut

The algorithm can be easily modified to handle other output formats such
as a sequence of starting positions. On the other hand, the algorithm cannot be
used if the output is streamed or compressed in such a way that it cannot be
quickly decompressed from an arbitrary position. Also, the counting version of
the problem cannot be solved this way without extra space.

Overwriting Input. Suppose we have separate storage space of m bits and con-
sider the following variant of the algorithm in Fig. 4. Whenever imax changes
we write B[imax + 1..imax + m) to our separate storage at the same time as it
is being written to the output. Whenever we need to copy a part of the output,
we can copy from our separate storage instead of from the output itself. Now
the algorithm never needs to access the output, and so can stream the output,
encode it in any way, or just count the number of occurrences without producing
any output until the end.

Let ˆ̀ be the length of the longest prefix of Y that also occurs elsewhere in Y.
We will use the space occupied by Y[0..ˆ̀) as a separate storage of at least ˆ̀ bits.

Any access to the characters of Y[0..ˆ̀) are redirected to that other occurrence.

Clearly this can be made to work even if that other occurrence overlaps Y[0..ˆ̀).

The value ˆ̀ is easily computed in O(m) time using O(1) extra space.
The largest number of bits the algorithm may need to copy from the separate

storage at a given stage is at most `max/3, since the longest possible shift is

b`max/3c+1. Thus as long as `max ≤ 3ˆ̀, the algorithm can operate as described.

Now consider a round i of the algorithm with ` = lcp(Xi,Y) > 3ˆ̀. We call this
a long match. In this case, the algorithm behaves as it would for a shorter match
except the value of `max (and the associated smax and pmax) is not modified.
Thus `max never grows too large for the separate storage. The extra time spent
in round i because of this is at most O(`), and the total extra time is bounded
by the total length of the long matches. Thus the following lemma shows that
the time complexity of the algorithm is still O(n).

Lemma 4. The total length of all long matches is at most 1.5n.

Proof. Consider a long match of length ` at position i, i.e., X[i..i+ `) = Y[0..`),
and assume that the next long match starts at j > i and has length `′. Then
min{`, `′} > 3ˆ̀. First observe that we must have j + `′ > i + `. Otherwise,

Y[0..`′) has another occurrence as Y[j − i..j − i + `′) and ˆ̀≥ `′. Furthermore,
we must have j > i + ` − d`/3e. Otherwise, Y[0..d`/3e) has another occurrence

as Y[j− i..j− i+ d`/3e) and 3ˆ̀≥ `. Thus at most one third of a long match can
be overlapped by a later long match, which proves the lemma. ut

10 Juha Kärkkäinen, Dominik Kempa, and Simon J. Puglisi

We have proven the following.

Theorem 4. The string range matching problem can be solved in linear time
and constant extra space if each character of the range boundary strings occupies
at least one bit and that bit can be overwritten by the algorithm.

Note that the algorithm can restore the overwritten part of Y at the end as
long as equal characters are always represented by identical bit patterns. The
restoration might not be possible in some cases, for example, when upper and
lower case letters are considered equal in comparisons.

6 Concluding Remarks

This article is the first to directly consider the string range matching problem.
Many interesting avenues for future work remain, but perhaps the most chal-
lenging open problem is to establish if the algorithms described in this paper
for the general setting (read-only input, inaccessible output) are optimal, or if
linear-time constant extra-space methods indeed exist.

References

1. M. Burrows and D.J. Wheeler. A block sorting lossless data compression algorithm.
Technical Report 124, Digital Equipment Corporation, Palo Alto, California, 1994.

2. M. Crochemore. String-matching on ordered alphabets. Theor. Comp. Sci., 92:33–
47, 1992.

3. M. Crochemore and D. Perrin. Two-way string matching. J. ACM, 38(3):651–675,
1991.

4. M. Crochemore and W. Rytter. Squares, cubes, and time-space efficient string
searching. Algorithmica, 13(5):405–425, 1995.

5. S. Faro and T. Lecroq. The exact online string matching problem: A review of the
most recent results. ACM Comp. Surv., 45(2):13, 2013.

6. P. Ferragina, T. Gagie, and G. Manzini. Lightweight data indexing and compression
in external memory. Algorithmica, 63(3):707–730, 2012.

7. N. J. Fine and H. S. Wilf. Uniqueness theorems for periodic functions. Proc. Amer.
Math. Soc., 16(1):109–114, 1965.

8. Z. Galil and J. Seiferas. Time-space optimal string matching. J. Comp. Sys. Sci.,
26:280–294, 1983.

9. Z. Galil and J. I. Seiferas. Saving space in fast string-matching. SIAM J. Comp.,
9(2):417–438, 1980.

10. J. Kärkkäinen. Fast BWT in small space by blockwise suffix sorting. Theor. Comp.
Sci., 387(3):249–257, 2007.

11. J. Kärkkäinen, D. Kempa, and S. J. Puglisi. Crochemore’s string matching algo-
rithm: Simplification, extensions, applications. In Proc. PSC 2013, pages 168–175,
Czech Technical University, 2013.

12. D. Knuth, J. H. Morris, and V. Pratt. Fast pattern matching in strings. SIAM J.
Comp., 6(2):323–350, 1977.

13. U. Manber and G. W. Myers. Suffix arrays: a new method for on-line string
searches. SIAM J. Comp., 22(5):935–948, 1993.

