
7. Full-Text Indexes in External Memory

Juha Kärkkäinen∗ and S. Srinivasa Rao

7.1 Introduction

A full-text index is a data structure storing a text (a string or a set of strings)
and supporting string matching queries: Given a pattern string P , find all
occurrences of P in the text. The best-known full-text index is the suffix
tree [761], but numerous others have been developed. Due to their fast con-
struction and the wealth of combinatorial information they reveal, full-text
indexes (and suffix trees in particular) also have many uses beyond basic
string matching. For example, the number of distinct substrings of a string
or the longest common substrings of two strings can be computed in lin-
ear time [231]. Gusfield [366] describes several applications in computational
biology, and many others are listed in [359].

Most of the work on full-text indexes has been done on the RAM model,
i.e., assuming that the text and the index fit into the internal memory. How-
ever, the size of digital libraries, biosequence databases and other textual
information collections often exceed the size of the main memory on most
computers. For example, the GenBank [107] database contains more than
20 GB of DNA sequences in its August 2002 release. Furthermore, the size
of a full-text index is usually 4–20 times larger than the size of the text it-
self [487]. Finally, if an index is needed only occasionally over a long period
of time, one has to keep it either in internal memory reducing the memory
available to other tasks or on disk requiring a costly loading into memory
every time it is needed.

In their standard form, full-text indexes have poor memory locality. This
has led to several recent results on adapting full-text indexes to external
memory. In this chapter, we review the recent work focusing on two issues,
full-text indexes supporting I/O-efficient string matching queries (and up-
dates), and external memory algorithms for constructing full-text indexes
(and for sorting strings, a closely related task).

We do not treat other string techniques in detail here. Most string
matching algorithms that do not use an index work by scanning the text
more or less sequentially (see, e.g., [231, 366]), and are relatively trivial to
adapt to an externally stored text. Worth mentioning, however, are algo-
rithms that may generate very large automata in pattern preprocessing, such
as [486, 533, 573, 735, 770], but we are not aware of external memory versions
of these algorithms.
∗ Partially supported by the Future and Emerging Technologies programme of the

EU under contract number IST-1999-14186 (ALCOM-FT).

U. Meyer et al. (Eds.): Algorithms for Memory Hierarchies, LNCS 2625, pp. 149-170, 2003.
 Springer-Verlag Berlin Heidelberg 2003

150 Juha Kärkkäinen and S. Srinivasa Rao

In information retrieval [85, 314], a common alternative to full-text in-
dexes is the inverted file [460], which takes advantage of the natural division
of linguistic texts into a limited number of distinct words. An inverted file
stores each distinct word together with a list of pointers to the occurrences
of the word in the text. The main advantage of inverted files is their space
requirement (about half of the size of the text [85]), but they cannot be used
with unstructured texts such as biosequences. Also, the space requirement of
the data structures described here can be significantly reduced when the text
is seen as a sequence of atomic words (see Section 7.3.2).

Finally, we mention another related string technique, compression. Two
recent developments are compressed indexes [299, 300, 361, 448, 648, 649] and
sequential string matching in compressed text without decompression [40,
289, 447, 575, 576]. Besides trying to fit the text or index into main memory,
these techniques can be useful for reducing the time for moving data from
disk to memory.

7.2 Preliminaries

We begin with a formal description of the problems and the model of com-
putation.

The Problems Let us define some terminology and notation. An alphabet
Σ is a finite ordered set of characters. A string S is an array of characters,
S[1, n] = S[1]S[2] . . . S[n]. For 1 ≤ i ≤ j ≤ n, S[i, j] = S[i] . . . S[j] is a
substring of S, S[1, j] is a prefix of S, and S[i, n] is a suffix of S. The set of
all strings over alphabet Σ is denoted by Σ∗.

The main problem considered here is the following.

Problem 7.1 (Indexed String Matching). Let the text T be a set of K
strings in Σ∗ with a total length N . A string matching query on the text
is: Given a pattern P ∈ Σ∗, find all occurrences of P as a substring of the
strings in T . The static problem is to store the text in a data structure, called
a full-text index, that supports string matching queries. The dynamic version
of the problem additionally requires support for insertion and deletion of
strings into/from T .

All the full-text indexes described here have a linear space complexity.
Therefore, the focus will be on the time complexity of queries and updates
(Section 7.4), and of construction (Section 7.5).

Additionally, the string sorting problem will be considered in Section 7.5.5.

Problem 7.2 (String Sorting). Given a set S of K strings in Σ∗ with a
total length N , sort them into the lexicographic order.

7. Full-Text Indexes in External Memory 151

The Model Our computational model is the standard external memory
model introduced in [17, 755] and described in Chapter 1 of this volume. In
particular, we use the following main parameters:

N = number of characters in the text or in the strings to be sorted
M = number of characters that fit into the internal memory
B = number of characters that fit into a disk block

and the following shorthand notations:

scan(N) = Θ (N/B)

sort(N) = Θ
(
(N/B) logM/B(N/B)

)
search(N) = Θ (logB N)

The following parameters are additionally used:

K = number of strings in the text or in the set to be sorted
Z = size of the answer to a query (the number of occurrences)
|Σ| = size of the alphabet
|P | = number of characters in a pattern P
|S| = number of characters in an inserted/deleted string S

For simplicity, we mostly ignore the space complexity, the CPU com-
plexity, and the parallel (multiple disks) I/O complexity of the algorithms.
However, significant deviations from optimality are noted.

With respect to string representation, we mostly assume the integer al-
phabet model, where characters are integers in the range {1, . . . , N}. Each
character occupies a single machine word, and all usual integer operations on
characters can be performed in constant time. For internal memory compu-
tation, we sometimes assume the constant alphabet model , which differs from
the integer alphabet model in that dictionary operations on sets of characters
can be performed in constant time and linear space.1 Additionally, the packed
string model is discussed in 7.5.6.

7.3 Basic Techniques

In this section, we introduce some basic techniques. We start with the (for our
purposes) most important internal memory data structures and algorithms.
Then, we describe two external memory techniques that are used more than
once later.
1 With techniques such as hashing, this is nearly true even for the integer alphabet

model. However, integer dictionaries are a complex issue and outside the scope
of this article.

152 Juha Kärkkäinen and S. Srinivasa Rao

p

o

t

a

t

o

t

e

r

y

t

a

t

t

o

o

e
m

p

o

pot

ato

tery

t

attoo

empo

Fig. 7.1. Trie and compact trie for the set {potato, pottery, tattoo, tempo}

7.3.1 Internal Memory Techniques

Most full-text indexes are variations of three data structures, suffix ar-
rays [340, 528], suffix trees [761] and DAWGs (Directed Acyclic Word
Graphs) [134, 230]. In this section, we describe suffix arrays and suffix trees,
which form the basis for the external memory data structures described here.
We are not aware of any adaptation of DAWG for external memory.

Let us start with an observation that underlies almost all full-text indexes.
If an occurrence of a pattern P starts at position i in a string S ∈ T , then P
is a prefix of the suffix S[i, |S|]. Therefore, we can find all occurrences of P
by performing a prefix search query on the set of all suffixes of the text: A
prefix search query asks for all the strings in the set that contain the query
string P as a prefix. Consequently, a data structure that stores the set of all
suffixes of the text and supports prefix searching is a full-text index.

The simplest data structure supporting efficient prefix searching is the
lexicographically sorted array, where the strings with a given prefix always
form a contiguous interval. The suffix array of a text T , denoted by SAT ,
is the sorted array of pointers to the suffixes of T (see Fig. 7.2). By a bi-
nary search, a string matching (prefix search) query can be answered with
O(log2N) string comparisons, which needs O(|P | log2N) time in the worst
case. Manber and Myers [528] describe how the binary search can be done in
O(|P | + log2N) time if additional (linear amount of) information is stored
about longest common prefixes. Manber and Myers also show how the suffix
array can be constructed in time O(N log2N). Suffix arrays do not support
efficient updates.

The trie is another simple data structure for storing a set of strings [460].
A trie (see Fig. 7.1) is a rooted tree with edges labeled by characters. A
node in a trie represents the concatenation of the edge labels on the path
from the root to the node. A trie for a set of strings is the minimal trie
whose nodes represent all the strings in the set. If the set is prefix free, i.e.,
no string is a proper prefix of another string, all the nodes representing the
strings are leaves. A compact trie is derived from a trie by replacing each
maximal branchless path with a single edge labeled by the concatenation of
the replaced edge labels (see Fig. 7.1).

7. Full-Text Indexes in External Memory 153

SAT : 6 a
4 ana
2 anana
1 banana
5 na
3 nana

STT :

7

$

a

6

$

na

4

$

2

na$

1

banana$

na

3

na$

5

$

+

Fig. 7.2. Suffix array SAT and suffix tree STT for the text T = {banana}. For
the suffix tree, a sentinel character $ has been added to the end. Suffix links are
shown with dashed arrows. Also shown are the answers to a string matching query
P = an: in SAT the marked interval, in STT the subtree rooted at +. Note that
the strings shown in the figure are not stored explicitly in the data structures but
are represented by pointers to the text.

The suffix tree of a text T , denoted by STT , is the compact trie of the
set of suffixes of T (see Fig. 7.2). With suffix trees, it is customary to add
a sentinel character $ to the end of each string in T to make the set of
suffixes prefix free. String matching (prefix searching) in a suffix tree is done
by walking down the tree along the path labeled by the pattern (see Fig. 7.2).
The leaves in the subtree rooted at where the walk ends represent the set of
suffixes whose prefix is the pattern. The time complexity is O(|P |) for walking
down the path (under the constant alphabet model) and O(Z) for searching
the subtree, where Z is the size of the answer.

The suffix tree has O(N) nodes, requires O(N) space, and can be con-
structed in O(N) time. Most linear-time construction algorithms, e.g. [540,
736, 761], assume the constant alphabet model, but Farach’s algorithm [288]
also works in the integer alphabet model. All the fast construction algorithms
rely on a feature of suffix trees called suffix links. A suffix link is a pointer
from a node representing the string aα, where a is a single character, to
a node representing α (see Fig. 7.2). Suffix links are not used in searching
but they are necessary for an insertion or a deletion of a string S in time
O(|S|) [297] (under the constant alphabet model).

7.3.2 External Memory Techniques

In this section, we describe two useful string algorithm techniques, Patricia
tries and lexicographic naming. While useful for internal memory algorithms
too, they are particularly important for external memory algorithms.

Suffix arrays and trees do not store the actual strings they represent. In-
stead, they store pointers to the text and access the text whenever necessary.
This means that the text is accessed frequently, and often in a nearly random
manner. Consequently, the performance of algorithms is poor when the text
is stored on disk. Both of the techniques presented here address this issue.

154 Juha Kärkkäinen and S. Srinivasa Rao

7

$,1

a,1

6

$,1

n,2

4

$,1

2

n,3

1

b,7

n,2

3

n,3

5

$,1

1

7
1

1

6

2

4

4

2

2

6

1

1

13

3

3

6

5

2

Fig. 7.3. Pat tree PTT for T = {banana$} using native encoding and binary
encoding. The binary encoding of characters is $=00, a=01, b=10, n=11.

The first technique is the Patricia trie [557], which is a close relative of
the compact trie. The difference is that, in a Patricia trie, the edge labels
contain only the first character (branching character) and the length (skip
value) of the corresponding compact trie label. The Patricia trie for the set of
suffixes of a text T , denoted by PTT , is called the Pat tree [340]. An example
is given in Fig. 7.3.

The central idea of Patricia tries and Pat trees is to delay access to the
text as long as possible. This is illustrated by the string matching procedure.
String matching in a Pat tree proceeds as in a suffix tree except only the
first character of each edge is compared to the corresponding character in the
pattern P . The length/skip value tells how many characters are skipped. If
the search succeeds (reaches the end of the pattern), all the strings in the
resulting subtree have the same prefix of length |P |. Therefore, either all of
them or none of them have the prefix P . A single string comparison between
the pattern and some string in the subtree is required to find out which is
the case. Thus, the string matching time is O(|P |+Z) as with the suffix tree,
but there is now only a single contiguous access to the text.

Any string can be seen as a binary string through a binary encoding of
the characters. A prefix search on a set of such binary strings is equivalent
to a prefix search on the original strings. Patricia tries and Pat trees are
commonly defined to use the binary encoding instead of the native encoding,
because it simplifies the structure in two ways. First, every internal node has
degree two. Second, there is no need to store even the first bit of the edge
label because the left/right distinction already encodes for that. An example
is shown in Fig. 7.3.

The second technique is lexicographic naming introduced by Karp, Miller
and Rosenberg [450]. A lexicographic naming of a (multi)set S of strings is
an assignment of an integer (the name) to each string such that any order
comparison of two names gives the same result as the lexicographic order
comparison of the corresponding strings. Using lexicographic names, arbi-
trarily long strings can be compared in constant time without a reference to

7. Full-Text Indexes in External Memory 155

4 ban
2 ana
6 nan
2 ana
5 na$
1 a$$

4 banana
3 anana
6 nana
2 ana
5 na
1 a

Fig. 7.4. Lexicographic naming of the substrings of length three in banana$$, and
of the suffixes of banana

the actual strings. The latter property makes lexicographic naming a suitable
technique for external memory algorithms.

A simple way to construct a lexicographic naming for a set S is to sort
S and use the rank of a string as its name, where the rank is the number of
lexicographically smaller strings in the set (plus one). Fig. 7.4 displays two
examples that are related to the use of lexicographic naming in Section 7.5.

Lexicographic naming has an application with linguistic texts, where
words can be considered as ‘atomic’ elements. As mentioned in the intro-
duction, inverted files are often preferred to full-text indexes in this case
because of their smaller space requirement. However, the space requirement
of full-text indexes (at least suffix arrays) can be reduced to the same level
by storing only suffixes starting at the beginning of a word [340] (making
them no more full-text indexes). A problem with this approach is that most
fast construction algorithms rely on the inclusion of all suffixes. A solution
is to apply lexicographic naming to the set of distinct words and transform
the text into strings of names. Full-text indexes on such transformed texts
are called word-based indexes [46, 227].

7.4 I/O-Efficient Queries

In this section, we look at some I/O-efficient index structures. In particular,
we look at the structures described by Baeza-Yates et al. [83], Clark and
Munro [206] and Ferragina and Grossi [296]. We then briefly sketch some
recent results.

7.4.1 Hierarchies of Indexes

Baeza-Yates et al. [83] present an efficient implementation of an index for
text databases when the database is stored in external memory. The imple-
mentation is built on top of a suffix array. The best known internal memory
algorithm, of Manber and Myers [528], for string matching using a suffix
array is not I/O-efficient when the text and the index reside in external
memory. Baeza-Yates et al. propose additional index structures and search-
ing algorithms for suffix arrays that reduce the number of disk accesses. In

156 Juha Kärkkäinen and S. Srinivasa Rao

dat [3] of [6] Thi [9]

This text is an example of a textual database

28 14 38 17 11 25 6 30 1

Short Pat array

Text

1 6 11 14 17 25 28 30 38

 1 2 3 4 5 6 7 8 9
Suffix array block (p entries)

Suffix array

Implicit suffix array pointer

SPat entry (l chars)

Fig. 7.5. Short Pat array

particular, they introduce two index structures for two and three level mem-
ory hierarchy (that use main memory and one/two levels of external storage),
and present experimental and analytical results for these. These additional
index structures are much smaller in terms of space compared to the text and
the suffix array. Though, theoretically these structures only improve the per-
formance by a constant factor, one can adjust the parameters of the structure
to get good practical performance. Here, we briefly describe the structure for
a two-level hierarchy. One can use a similar approach for building efficient
indexes for a steeper hierarchy.

Two-Level Hierarchy. The main idea is to divide the suffix array into
blocks of size p, where p is a parameter, and move one element of each block
into main memory, together with the first few characters of the corresponding
suffix. This structure can be considered a reduced representation of the suffix
array and the text file, and is called Short Pat array or SPat array2. The
SPat array is a set of suffix array entries where each entry also carries a
fixed number, say �, of characters from the text, where � is a parameter (see
Fig. 7.5). Due to the additional information about the text in the SPat array,
a binary search can be performed directly without accessing the disk. As a
result, most of the searching work is done in main memory, thus reducing the
number of disk accesses. Searching for a pattern using this structure is done
in two phases:

First, a binary search is performed on the SPat array, with no disk ac-
cesses, to find the suffix array block containing the pattern occurrence. Ad-
ditional disk accesses are necessary only if the pattern is longer than � and
there are multiple entries in the SPat array that match the prefix of length
� of the pattern. Then, O(log2 r) disk accesses are needed, where r is the
number matching entries.
2 A suffix array is sometimes also referred to as a Pat array.

7. Full-Text Indexes in External Memory 157

Second, the suffix array block encountered in the first phase is moved from
disk to main memory. A binary search is performed between main memory
(suffix array block containing the answer) and disk (text file) to find the first
and last entries that match the pattern. If the pattern occurs more than p
times in the text, these occurrences may be bounded by at most two SPat
array entries. In this case the left and right blocks are used in the last phase
of the binary search following the same procedure.

The main advantages of this structure are its space efficiency (little more
than a suffix array) and ease of implementation. See [83] for the analytical
and experimental results. This structure does not support updates efficiently.

7.4.2 Compact Pat Trees

Clark and Munro [206] have presented a Pat tree data structure for full-text
indexing that can be adapted to external memory to reduce the number of
disk accesses while searching, and also handles updates efficiently. It requires
little more storage than log2N bits per suffix, required to store the suffix
array. It uses a compact tree encoding to represent the tree portion of the
Pat tree and to obtain an efficient data structure for searching static text in
primary storage. This structure, called a Compact Pat Tree (CPT), is then
used to obtain a data structure for searching on external memory. The main
idea here is to partition the Pat tree into pieces that fit into a disk block, so
that no disk accesses are required while searching within a partition.
Compact Representation. To represent the Pat tree in a compact form,
first the strings are converted to binary using a binary encoding of the charac-
ters, as explained in Section 7.3.2, which gets rid of the space needed to store
the edge labels. The underlying binary tree (without the skip values and the
pointers to the suffixes at the leaves) is then stored using an encoding similar
to the well known compact tree encoding of Jacobson [425]. The compact
tree representation of Clark and Munro takes less than three bits per node
to represent a given binary tree and supports the required tree navigational
operations (parent, left child, right child and subtree size) in constant time.

For storing the skip values at the internal nodes in a Pat tree, they use the
observation that large skip values are unlikely (occur very rarely). This low
likelihood of large skip values leads to a simple method of compactly encoding
the skip values. A small fixed number of bits are reserved to hold the skip
value for each internal node. Problems caused by overflows are handled by
inserting a new node and a leaf into the tree and distributing the skip bits
from the original node across the skip fields of the new node and the original
node. A special key value that can be easily recognized (say all 0s) is stored
with these dummy leaf nodes. Multiple overflow nodes and leaves can be
inserted for extremely large skip values. Note that skip values are not needed
at the leaves, as we store the pointers to the suffixes at the leaves.

Under the assumption that the given text (in binary) is generated by a
uniform symmetric random process, and that the bit strings in the suffixes

158 Juha Kärkkäinen and S. Srinivasa Rao

are independent, Clark and Munro show that the expected size of the CPT
can be made less than 3.5+log2N+log2 log2N+O(log2 log2 log2N/ log2N)
bits per node. This is achieved by setting the skip field size to log2 log2 log2N .
They also use some space saving techniques to reduce the storage requirement
even further, by compromising on the query performance.

External Memory Representation. To control the accesses to the ex-
ternal memory during searching, Clark and Munro use the method of de-
composing the tree into disk block sized pieces, each called a partition. Each
partition of the tree is stored using the CPT structure described above. The
only change required to the CPT structure for storing the partitions is that
the offset pointers in a block may now point to either a suffix in the text or
to a subtree (partition). Thus an extra bit is required to distinguish these
two cases. They use a greedy bottom-up partitioning algorithm and show
that such a partitioning minimizes the maximum number of disk blocks ac-
cessed when traversing from the root to any leaf. While the partitioning rules
described by Clark and Munro minimize the maximum number of external
memory accesses, these rules can produce many small pages and poor fill ra-
tios. They also suggest several methods to overcome this problem. They show
that the maximum number of pages traversed on any root to leaf path is at
most 1 +

⌈
H/

√
B

⌉
+ �2 logB N�, where H is the height of the Pat tree. Thus

searching using the CPT structure takes O(scan(|P |+Z)+ search(N)) I/Os,
assuming that the height H is O(

√
B logB N). Although H could be Θ(N)

in the worst case, it is logarithmic for a random text under some reasonable
conditions on the distribution [711].

Updates. The general approach to updating the static CPT representation
is to search each suffix of the modified document and then make appropriate
changes to the structure based on the path searched. While updating the
tree, it may become necessary to re-partition the tree in order to retain the
optimality. The solution described by Clark and Munro to insert or delete
a suffix requires time proportional to the depth of the tree, and operates on
the compact form of the tree. A string is inserted to or deleted from the text
by inserting/deleting all its suffixes separately. See [206] for details and some
experimental results.

7.4.3 String B-trees

Ferragina and Grossi [296] have introduced the string B-tree which is a combi-
nation of B-trees (see Chapter 2) and Patricia tries. String B-trees link exter-
nal memory data structures to string matching data structures, and overcome
the theoretical limitations of inverted files (modifiability and atomic keys),
suffix arrays (modifiability and contiguous space) and Pat trees (unbalanced
tree topology). It has the same worst case performance as B-trees but han-
dles unbounded length strings and performs powerful search operations such
as the ones supported by Pat trees. String B-trees have also been applied to

7. Full-Text Indexes in External Memory 159

BT

BTBT

BT BT BT BT

56 20 64 31

64 60 24 31

 56 1 35 5

56 5 10 20

10 45 68 20 64 52 48 60 24 41 31

t l a s s u n b y f i t d o g a c e l i d c o d b y e

1 5 10 20 24 31 35

 41 45 48 52 56 60 64 68

a i d a t o m a t t e n u a t e c a r p a t e n t z o o a

Fig. 7.6. String B-tree

(external and internal) dynamic dictionary matching [298] and some other
internal memory problems [296].

String B-trees are designed to solve the dynamic version of the indexed
string matching problem (Problem 1). For simplicity, we mainly describe the
structure for solving the prefix search problem. As mentioned in Section 7.3.1,
a string matching query can be supported by storing the suffixes of all the
text strings, and supporting prefix search on the set of all suffixes.

String B-tree Data Structure. Given a set S = {s1, . . . , sN} of N strings
(the suffixes), a string B-tree for S is a B-tree in which all the keys are stored
at the leaves and the internal nodes contain copies of some of these keys.
The keys are the logical pointers to the strings (stored in external memory)
and the order between the keys is the lexicographic order among the strings
pointed to by them. Each node v of the string B-tree is stored in a disk block
and contains an ordered string set Sv ⊆ S, such that b ≤ |Sv| ≤ 2b, where
b = Θ(B) is a parameter which depends on the disk block size B. If we denote
the leftmost (rightmost) string in Sv by L(v) (R(v)), then the strings in S
are distributed among the string B-tree nodes as follows (see Fig. 7.6 for an
example):

– Partition S into groups of b strings except for the last group, which may
contain from b to 2b strings. Each group is mapped into a leaf v (with string
set Sv) in such a way that the left-to-right scanning of the string B-tree
leaves gives the strings in S in lexicographic order. The longest common
prefix length lcp(Sj, Sj+1) is associated with each pair (Sj , Sj+1) of Sv’s
strings.

160 Juha Kärkkäinen and S. Srinivasa Rao

– Each internal node v of the string B-tree has d(v) children u1, . . . , ud(v),
with b/2 ≤ d(v) ≤ b (except for the root, which has from 2 to b children).
The set Sv is formed by copying the leftmost and rightmost strings con-
tained in each of its children, from left to right. More formally, Sv is the
ordered string set {L(u1), R(u1), L(u2), R(u2), . . . , L(ud(v)), R(ud(v))}.

Since the branching factor of the string B-tree isΘ(B), its height is Θ(logB N).
Each node v of the string B-tree stores the set Sv (associated with the

node v) as a Patricia trie (also called a blind trie). To maximize the number
b of strings stored in each node for a given value of B, these blind tries are
stored in a succinct form (the tree encoding of Clark and Munro, for example).
When a node v is transferred to the main memory, the explicit representation
of its blind trie is obtained by uncompressing the succinct form, in order to
perform computation on it.

Search Algorithm. To search for a given pattern P , we start from the root
of the string B-tree and follow a path to a leaf, searching for the position
of P at each node. At each internal node, we search for its child node u
whose interval [L(u), R(u)] contains P . The search at node v is done by first
following the path governed by the pattern to reach a leaf l in the blind trie.
If the search stops at an internal node because the pattern has exhausted,
choose l to be any descendant leaf of that node. This leaf does not necessarily
identify the position of P in Sv, but it provides enough information to find
this position, namely, it points to one of the strings in Sv that shares the
longest common prefix with P . Now, we compare the string pointed to by l
with P to determine the length p of their longest common prefix. Then we
know that P matches the search path leading to l up to depth p, and the
mismatch character P [p+ 1] identifies the branches of the blind trie between
which P lies, allowing us to find the position of P in Sv. The search is then
continued in the child of v that contains this position.

Updates. To insert a string S into the set S, we first find the leaf v and
the position j inside the leaf where S has to be inserted by searching for
the string S. We then insert S into the set Sv at position j. If L(v) or R(v)
change in v, then we extend the change to v’s ancestor. If v gets full (i.e.,
contains more than 2b strings), we split the node v by creating a new leaf u
and making it an adjacent leaf of v. We then split the set Sv into two roughly
equal parts of at least b strings each and store them as the new string sets
for v and u. We copy the strings L(v), R(v), L(u) and R(u) in their parent
node, and delete the old strings L(v) and R(v). If the parent also gets full,
then we split it. In the worst case the splitting can extend up to the root
and the resulting string B-tree’s height can increase by one. Deletions of the
strings are handled in a similar way, merging a node with its adjacent node
whenever it gets half-full. The I/O complexity of insertion or deletion of a
string S is O(scan(|S|) + search(N)).

For the dynamic indexed string matching problem, to insert a string S into
the text, we have to insert all its suffixes. A straightforward way of doing this

7. Full-Text Indexes in External Memory 161

requires O(scan(|S|2)+ |S|search(N+ |S|)) I/Os. By storing additional infor-
mation with the nodes (similar to the suffix links described in Section 7.3.1),
the quadratic dependence on the length of S can be eliminated. The same
holds for deletions.

Results. Using string B-tree, one can get the following bounds for the dy-
namic indexed string matching problem:

Theorem 7.3. The string B-tree of a text T of total length N supports

– string matching with a pattern P in O(scan(|P | + Z) + search(N)) I/Os,
– inserting or deleting a string S into/from T in O(|S|search(N+|S|)) I/Os,

and occupies Θ(N/B) disk blocks.

The space occupied by the string B-tree is asymptotically optimal, as the
space required to store the given set of strings is also Θ(N/B) disk blocks.
Also the string B-tree operations take asymptotically optimal CPU time, that
is, O(Bd) time if d disk blocks are read or written, and they only need to
keep a constant number of disk blocks in the main memory at any time.

See [295] for some experimental results on string B-trees.

7.4.4 Other Data Structures

Recently, Ciriani et al. [205] have given a randomized data structure that sup-
ports lexicographic predecessor queries (which can be used for implementing
prefix searching) and achieves optimal time and space bounds in the amor-
tized sense. More specifically, given a set of N strings S1, . . . , SN and a se-
quence of m patterns P1, . . . , Pm, their solution takes O(

∑m
i=1 scan(|Pi|) +∑N

i=1(ni logB(m/ni)) expected amortized I/Os, where ni is the number of
times Si is the answer to a query. Inserting or deleting a string S takes
O(scan(|S|)+search(N)) expected amortized I/Os. The search time matches
the performance of string B-trees for uniform distribution of the answers, but
improves on it for biased distributions. This result is the analog of the Static
Optimality Theorem of Sleator and Tarjan [699] and is achieved by designing
a self-adjusting data structure based on the well-known skip lists [616].

7.5 External Construction

There are several efficient algorithms for constructing full-text indexes in in-
ternal memory [288, 528, 540, 736]. However, these algorithms access memory
in a nearly random manner and are poorly suited for external construction.
String B-trees provide the possibility of construction by insertion, but the
construction time of O(Nsearch(N)) I/Os can be improved with specialized
construction algorithms.

162 Juha Kärkkäinen and S. Srinivasa Rao

In this section, we describe several I/O-efficient algorithms for external
memory construction of full-text indexes. We start by showing that the differ-
ent full-text indexes can be transformed into each other efficiently. Therefore,
any construction algorithm for one type of index works for others, too. Then,
we describe two practical algorithms for constructing suffix arrays, and a the-
oretically optimal algorithm for constructing Pat trees. We also a look at the
related problem of sorting strings.

For the sake of clarity, we assume that the text consists of a single string
of length N , but all the algorithms can be easily modified to construct the
full-text index of a set of strings of total length N with the same complexity.
Unless otherwise mentioned, disk space requirement, CPU time, and speedup
with parallel disks are optimal.

7.5.1 Construction from Another Index

In this section, we show that the different forms of full-text indexes we have
seen are equivalent in the sense that any of them can be constructed from
another in O(sort(N)) I/Os. To be precise, this is not true for the plain
suffix array, which needs to be augmented with the longest common prefix
array: LCP[i] is the longest common prefix of the suffixes starting at SA[i−1]
and SA[i]. The suffix array construction algorithms described below can be
modified to construct the LCP array, too, with the same complexity. The
transformation algorithms are taken from [290].

We begin with the construction of a suffix array SA (and the LCP array)
from a suffix tree ST (or a Pat tree PT which has the same structure differing
only in edge labels). We assume that the children of a node are ordered
lexicographically. First, construct the Euler tour of the tree in O(sort(N))
I/Os (see Chapter 3). The order of the leaves of the tree in the Euler tour is
the lexicographic order of the suffixes they represent. Thus, the suffix array
can be formed by a simple scan of the Euler tour. Furthermore, let w be the
highest node that is between two adjacent leaves u and v in the Euler tour.
Then, w is the lowest common ancestor of u and v, and the depth of w is the
length of the longest common prefix of the suffixes that u and v represent.
Thus LCP can also be computed by a scan of the Euler tour.

The opposite transformation, constructing ST (or PT) given SA and LCP,
proceeds by inserting the suffixes into the tree in lexicographic order, i.e.,
inserting the leaves from left to right. Thus, a new leaf u always becomes
the rightmost child of a node, say v, on the rightmost path in the tree (see
Fig. 7.7). Furthermore, the longest common prefix tells the depth of v (the
insertion depth of u). The nodes on the rightmost path are kept in a stack with
the leaf on top. For each new leaf u, nodes are popped from the stack until
the insertion depth is reached. If there was no node at the insertion depth,
a new node v is created there by splitting the edge. After inserting u as the
child of v, v and u are pushed on the stack. All the stack operations can be
performed with O(scan(N)) I/Os using an external stack (see Chapter 2). The

7. Full-Text Indexes in External Memory 163

v

SA[i-1] SA[i] u

depth LCP[i]

Fig. 7.7. Inserting a new leaf u representing the suffix SA[i] into the suffix tree

construction numbers the nodes in the order they are created and represents
the tree structure by storing with each node its parent’s number. Other tree
representations can then be computed in O(sort(N)) I/Os.

The string B-tree described in Section 7.4.3 can also be constructed from
the suffix array and the LCP array in O(sort(N)) I/Os with a procedure
similar to the suffix tree construction. The opposite transformation is also
similar.

7.5.2 Merging Algorithm

The merging algorithm was introduced by Gonnet, Baeza-Yates and Sni-
der [340] and improved by Crauser and Ferragina [227]. The basic idea is to
build the suffix array in memory-sized pieces and merge them incrementally.
More precisely, the algorithm divides the text T into h = Θ(N/M) pieces of
size � = Θ(M), i.e., T = ThTh−1 . . . T2T1 (note the order). The suffix array
is built incrementally in h stages. In stage k, the algorithm constructs SATk

internally, and merges it with SATk−1...T1 externally.
The algorithm is best described as constructing the inverse SA−1 of the

suffix array SA (see Figs. 7.2 and 7.8). While SA[i] is the starting position
of the ith suffix in the lexicographic order, SA−1[j] is the lexicographic rank
of the suffix starting at j, i.e., SA−1[SA[i]] = i. Obviously, SA can be com-
puted from SA−1 by permutation in O(sort(N)) I/Os. Note that SA−1[j] is
a lexicographic name of the suffix j in the set of suffixes.

A stage k of the algorithm consists of three steps:

1. build SATk

2. update SA−1
Tk−1...T1

into the k − 1 last pieces of SA−1
Tk...T1

3. transform SATk
into the first piece of SA−1

Tk...T1

Let us call the suffixes starting in Tk the new suffixes and the suffixes start-
ing in Tk−1 . . .T1 the old suffixes. During the stage, a suffix starting at i is
represented by the pair 〈T [i . . . i+ �− 1], SA−1[i+ �]〉.3 Since SA−1[i+ �] is
a lexicographic name, this information is enough to determine the order of
3 The text is logically appended with � copies of the character $ to make the pair

well-defined for all suffixes.

164 Juha Kärkkäinen and S. Srinivasa Rao

suffixes. The first step loads into internal memory Tk, Tk−1, and the first �
entries of SA−1

Tk−1...T1
, i.e., the part corresponding to Tk−1. Using this infor-

mation, the representative pairs are formed for all new suffixes and the suffix
array SATk

of the new suffixes is built, all in internal memory.
The second step is performed by scanning Tk−1 . . . T1 and SA−1

Tk−1...T1
si-

multaneously. When processing a suffix starting at i, SA−1[i], SA−1[i + �],
and T [i, i + � − 1] are in internal memory. The latter two are needed for
the representative pair of the suffix and the first is modified. For each i, the
algorithm determines using SATk

how many of the new suffixes are lexico-
graphically smaller than the suffix starting at i, and SA−1[i] is increased by
that amount. During the scan, the algorithm also keeps an array C of coun-
ters in memory. The value C[j] is incremented during the scan when an old
suffix is found to be between the new suffixes starting at SATk

[j − 1] and
SATk

[j]. After the scan, the ranks of the new suffixes are easy to compute
from the counter array C and SATk

allowing the execution of the third step.
The algorithm performs O(N/M) stages, each requiring a scan through

an array of size O(N). Thus, the I/O complexity is O((N/M) scan(N)). The
CPU complexity deserves a closer analysis, since, according to the exper-
iments in [227], it can be the performance bottleneck. In each stage, the
algorithm needs to construct the suffix array of the new suffixes and per-
form O(N) queries. Using the techniques by Manber and Myers [528], the
construction requires O(M log2M) time and the queries O(NM) time. In
practice, the query time is O(N log2M) with a constant depending on the
type of the text. Thus, the total CPU time is O(N2) in the worst case and
O((N2/M) log2M) in practice.

Despite the quadratic dependence on the length of the text, the algo-
rithm is fast in practice up to moderate sized texts, i.e., for texts with small
ratio N/M [227]. For larger texts, the doubling algorithm described next is
preferable.

7.5.3 Doubling Algorithm

The doubling algorithm is based on the lexicographic naming and doubling
technique of Karp, Miller and Rosenberg [450]. It was introduced for external
sorting of strings by Arge et al. [61] (see Section 7.5.5) and modified for suffix
array construction by Crauser and Ferragina [227]. We present an improved
version of the algorithm.

Let rk be the lexicographic naming of the set of substrings of length 2k

in the text appended with 2k − 1 copies of the character $ (see Fig. 7.8).
In other words, rk(i) is one plus the number of substrings of length 2k that
are strictly smaller than the substring starting at i. The doubling algorithm
constructs rk for k = 1, 2, . . . , �log2N�. As Fig. 7.8 illustrates, r�log2 N� is the
same as the inverse suffix array SA−1.

Let us see what happens in a stage k that constructs rk. In the beginning,
each position i is represented by the triple 〈rk−1(i), rk−1(i + 2k−1), i〉, and

7. Full-Text Indexes in External Memory 165

r0:
4 b
1 a
5 n
1 a
5 n
1 a

r1:
4 ba
2 an
5 na
2 an
5 na
1 a$

r2:
4 bana
3 anan
6 nana
2 ana$
5 na$$
1 a$$$

r3:
4 banana$$
3 anana$$$
6 nana$$$$
2 ana$$$$$
5 na$$$$$$
1 a$$$$$$$

SA−1:
4 banana
3 anana
6 nana
2 ana
5 na
1 a

Fig. 7.8. The doubling algorithm for the text banana

the triples are stored in the order of the last component. The following steps
are then performed:

1. sort the triples by the first two components (which is equivalent to sorting
substrings of length 2k)

2. scan to compute rk and update the triples to 〈rk(i), rk−1(i+ 2k−1), i〉
3. sort the triples by the last component
4. scan to update the triples to 〈rk(i), rk(i+ 2k), i〉

The algorithm does O(sort(N)) I/Os in each stage, and thus requires a total
of O(sort(N) log2N) I/Os for constructing the suffix array.

The algorithm can be improved using the observation that, if a name rk(i)
is unique, then rh(i) = rk(i) for all h > k. We call a triple with a unique
first component finished. Crauser and Ferragina [227] show how step 2 can
be performed without using finished triples allowing the exclusion of finished
triples from the sorting steps. This reduces the I/O complexity of stage k
to O(sort(Nk−1) + scan(N)), where Nk−1 is the number of unfinished triples
after stage k − 1. We show how step 4 can also be done without finished
triples, improving the I/O complexity further to O(sort(Nk−1)).

With only the unfinished triples available in step 2, the new rank of a
triple can no more be computed as its rank in the sorted list. Instead, the
new rank of a triple 〈x, y, i〉 is x+c, where c is the number of triples in the list
with the first component x and the second component smaller than y. This
works correctly because x = rk−1(i) already counts the smaller substrings
that differ in the first 2k−1 characters, and all the triples that have the same
first component are unfinished and thus on the list.

The newly finished triples are identified and marked in step 2 but not
removed until in step 4, which we describe next. When the scan in step 4
processes 〈x, y, i〉, the triples 〈x′, y′, i′〉, i′ = i + 2k−1, and 〈x′′, y′′, i′′〉, i′′ =
i+2k are also brought into memory if they were unfinished after stage k− 1.
The following three cases are possible:

1. If 〈x′′, y′′, i′′〉 exists (is unfinished), the new triple is 〈x, x′′, i〉.
2. If 〈x′, y′, i′〉 exists but 〈x′′, y′′, i′′〉 does not, 〈x′′, y′′, i′′〉 was already fin-

ished before stage k, and thus y′ is its final rank. Then, 〈x, y′, i〉 is the
new triple.

3. If 〈x′, y′, i′〉 does not exist, it was already finished before stage k. Then,
the triple 〈x, y, i〉 must now be finished and is removed.

166 Juha Kärkkäinen and S. Srinivasa Rao

The finished triples are collected in a separate file and used for constructing
the suffix array in the end.

Let us analyze the algorithm. Let Nk be the number of non-unique text
substrings of length 2k (with each occurrence counted separately), and let s
be the largest integer such that Ns > 0. The algorithm needs O(sort(Nk−1))
I/Os in stage k for k = 1, . . . , s + 1. Including the initial stage, this gives
the I/O complexity O(sort(N) +

∑s
k=0 sort(Nk)). In the worst case, such

as the text T = aaa...aa, the I/O complexity is still O(sort(N) log2(N)).
In practice, the number of unfinished suffixes starts to decrease significantly
much before stage log2(N).

7.5.4 I/O-Optimal Construction

An algorithm for constructing the Pat tree using optimal O(sort(N)) I/Os has
been described by Farach-Colton et al. [290]. As explained in Section 7.5.1,
the bound extends to the other full-text indexes. The outline of the algorithm
is as follows:

1. Given the string T construct a string T ′ of half the length by replacing
pairs of characters with lexicographic names.

2. Recursively compute the Pat tree of T ′ and derive the arrays SAT ′ and
LCPT ′ from it.

3. Let SAo and LCPo be the string and LCP arrays for the suffixes of T that
start at odd positions. Compute SAo and LCPo from SAT ′ and LCPT ′ .

4. Let SAe and LCPe be the string and LCP arrays for the suffixes of T that
start at even positions. Compute SAe and LCPe from SAo and LCPo.

5. Construct the Patricia tries PTo and PTe of odd and even suffixes from
the suffix and LCP arrays.

6. Merge PTo and PTe into PTT .

Below, we sketch how all the above steps except the recursive call can be
done in O(sort(N)) I/Os. Since the recursive call involves a string of length
N/2, the total number of I/Os is O(sort(N)).

The naming in the first step is done by sorting the pairs of characters
and using the rank as the name. The transformations in the second and fifth
step were described in Section 7.5.1. The odd suffix array SAo is computed
by SAo[i] = 2 · SAT ′ [i]− 1. The value LCPo[i] is first set to 2 · LCPT ′ [i], and
then increased by one if T [SAo[i] + LCPo[i]] = T [SAo[i− 1] + LCPo[i]]. This
last step can be done by batched lookups using O(sort(N)) I/Os.

Each even suffix is a single character followed by an odd suffix. Let SA−1
o

be the inverse of SAo, i.e., a lexicographical naming of the odd suffixes. Then,
SAe can be constructed by sorting pairs of the form 〈T [2i], SA−1

o [2i+1]〉. The
LCP of two adjacent even suffixes is zero if the first character does not match,
and one plus the LCP of the corresponding odd suffixes otherwise. However,
the corresponding odd suffixes may not be adjacent in SAo. Therefore, to
compute LCPe we need to perform LCP queries between O(N) arbitrary

7. Full-Text Indexes in External Memory 167

pairs of odd suffixes. By a well-known property of LCP arrays, the length
of the longest common prefix of the suffixes starting at SAo[i] and SAo[j]
is mini<k≤j LCPo[k]. Therefore, we need to answer a batch of O(N) range
minimum queries, which takes O(sort(N)) I/Os [192].

The remaining and the most complex part of the algorithm is the merging
of the trees. We will only outline it here. Our description differs from the one
in [290] in some aspects. However, the high level procedure — identify trunk
nodes (called odd/even nodes in [290]), overmerge, then unmerge — is the
same.

We want to create the Pat tree PTT of the whole text T by merging the
Patricia tries PTo and PTe. PTT inherits a part of the tree from PTo, a part
from PTe, and a part from both. The part coming from both is a connected
component that contains the root. We will call it the trunk. Recall that a
Patricia trie is a compact representation of a trie. Thus it represents all the
nodes of the trie, some of them explicitly, most of them implicitly. The trunk
of PTT contains three types of (explicit) nodes:

1. nodes that are explicit in both PTo and PTe,
2. nodes that are explicit in one and implicit in the other, and
3. nodes that are implicit in both.

Before starting the merge, the trunk nodes in PTo and PTe are marked. This
is a complicated procedure and we refer to [290] for details. The procedure
may mark some non-trunk nodes, too, but only ones that are descendants of
the leaves of the trunk. In particular, the nearest explicit descendant of each
implicit trunk leaf should be marked.

The merging process performs a coupled-DFS of PTo and PTe using the
Euler tours of the trees. During the process the type 1 trunk nodes are easy
to merge but the other two types cause problems. Let us look at how the
merging proceeds. Suppose we have just merged nodes uo of PTo and ue of
PTe into a type 1 node u. Next in the Euler tours are the subtrees rooted at
the children of uo and ue. The subtrees are ordered by the first character of
the edges leading to them, which makes it easy to find the pairs of subtrees
that should be merged. If the edges leading to the subtrees have the same
full label, the roots of the subtrees are merged and the merging process
continues recursively in the subtree. However, the full labels of the edges are
not available in Patricia tries, only the first character and the length. The
first character is already known to match. With respect to the edge lengths
there are two cases:

1. If the lengths are the same, the subtrees are merged. If the full labels
are different, the correct procedure would be to merge the edges only
partially, creating a type 3 node where the edges are separated. The al-
gorithm, however, does merge the edges fully; this is called overmerging.
Only afterwards these incorrectly merged edges are identified and un-
merged. What happens in the incorrect recursive merging of the subtrees

168 Juha Kärkkäinen and S. Srinivasa Rao

does not matter much, because the unmerging will throw away the in-
correct subtree and replace it with the original subtrees from PTo and
PTe. For further details on unmerging, we refer to [290].

2. If the lengths are different, the longer edge is split by inserting a new
node v′ on it. The new node is then merged with end node v′′ of the
other edge to form a trunk node v of type 2. This could already be
overmerging, which would be corrected later as above. In any case, the
recursive merging of the subtrees continues, but there is a problem: the
initial character of the edge leading to the only child w′ of v′ (i.e., the
lower part of the split edge) is not known. Retrieving the character from
the text could require an I/O, which would be too expensive. Instead, the
algorithm uses the trunk markings. Suppose the correct procedure would
be to merge the edge (v′, w′) with an edge (v′′, w′′) at least partially.
Then w′′ must be a marked node, and furthermore, w′′ must be the only
marked child of v′′, enabling the correct merge to be performed. If (v′, w′)
should not be merged with any child edge of v′′, i.e., if v′′ does not have a
child edge with the first character matching the unknown first character
of (v′, w′), then any merge the algorithm does is later identified in the
unmerging step and correctly unmerged. Then the algorithm still needs
to determine the initial character of the edge, which can be done in one
batch for all such edges.

Theorem 7.4 (Farach-Colton et al. [290]). The suffix array, suffix tree,
Pat tree, and string B-tree of a text of total length N can be constructed in
optimal O(sort(N)) I/Os.

7.5.5 Sorting Strings

In this section, we consider the problem of sorting strings, which is closely
related to the construction of full-text indexes. The results are all by Arge et
al. [61].

We begin with a practical algorithm using the doubling technique.4 The
algorithm starts by storing the strings in a single file, padded to make the
string lengths powers of two and each string aligned so that its starting
position in the file is a multiple of its (padded) length. The algorithm proceeds
in O(log2N) stages similar to the doubling algorithm of Section 7.5.3. In
stage k, it names substrings of size 2k by sorting pairs of names for substrings
of half the length. However, in contrast to the algorithm of Section 7.5.3, the
substrings in each stage are non-overlapping. As a consequence, the number of
substrings is halved in each stage, and the whole algorithm runs in O(sort(N))
I/Os.

The rank of a string of (padded) length 2k is computed in stage k, where
it is one of the named substrings. The number of lexicographically smaller
4 The algorithm was only mentioned, not described in [61]; thus, the details are

ours.

7. Full-Text Indexes in External Memory 169

strings of the same or greater length is determined by counting the number of
lexicographically smaller substrings that are prefixes of a string. The number
of lexicographically smaller, shorter strings is determined by maintaining a
count of those strings at each substring. The counts are updated at the end
of each stage and passed to the next stage. All the counting needs only
O(scan(N)) I/Os over the whole algorithm.

Arge et al. also show the following theoretical upper bound.

Theorem 7.5 (Arge et al. [61]). The I/O complexity of sorting K strings
of total length N with K1 strings of length less than B of total length N1,
and K2 strings of length at least B of total length N2, is

O
(

min
{
K1 logM K1,

N1

B
logM/B

N1

B

}
+K2 logM K2 + scan(N)

)
.

As suggested by the equation, the result is achieved by processing short and
long strings separately. The algorithm for long strings works by inserting
the strings into a buffered string B-tree, which is similar to the string B-tree
(Section 7.4.3), but all the insertions are done in one batch using buffering
techniques from the buffer tree (see Chapter 2).

Arge et al. also show lower bounds for sorting strings in somewhat artifi-
cially weakened models. One of their lower bounds nearly matches the upper
bound of the above theorem. (The algorithms behind Theorem 7.5 work in
this model.) The full characterization of the I/O complexity of sorting strings,
however, remains an open problem.

7.5.6 Packed Strings

So far we have used the integer alphabet model, which assumes that each
character occupies a full machine word. In practice, alphabets are often small
and multiple characters can be packed into one machine word. For example,
DNA sequences could be stored using just two bits per character. Some of
the algorithms, in particular the doubling algorithms, can take advantage of
this. To analyze the effect, we have to modify the model of computation.

The packed string model assumes that characters are integers in the range
{1, . . . , |Σ|}, where |Σ| ≤ N . Strings are stored in packed form with each
machine word containing Θ(log|Σ|N) characters. The main parameters of
the model are:

N = number of characters in the input strings
n = Θ(N/ log|Σ|N) = size of input in units of machine words
M = size of internal memory in units of machine words
B = size of disk blocks in units of machine words

Note that, while the size of the text is Θ(n), the size of a full-text index is
Θ(N) machine words.

170 Juha Kärkkäinen and S. Srinivasa Rao

Under the packed string model, the results presented in this chapter re-
main mostly unaffected, since the algorithms still have to deal with Θ(N)
word-sized entities, such as pointers and ranks. There are some changes,
though. The worst case CPU complexity of the merging algorithm is reduced
by a factor Θ(log|Σ|N) due to the reduction in the complexity of comparing
strings.

The doubling algorithm for both index construction and sorting can
be modified to name substrings of length Θ(log|Σ|N) in the initial stage.
The I/O complexity of the index construction algorithm then becomes
O(sort(N)+

∑s
k=0 sort(nk)), where nk is the number of non-unique text sub-

strings of length 2k log|Σ|N . On a random text with independent, uniform
distribution of characters, this is O(sort(N)) with high probability [711]. The
I/O complexity of the sorting algorithm becomes O(sort(n+K)).

7.6 Concluding Remarks

We have considered only the simple string matching queries. Performing more
complex forms of queries, in particular approximate string matching [574], in
external memory is an important open problem. A common approach is to
resort to sequential searching either on the whole text (e.g, the most widely
used genomic sequence search engine BLAST [37]) or on the word list of
an inverted file [51, 84, 529]. Recently, Chávez and Navarro [179] turned
approximate string matching into nearest neighbor searching in metric space,
and suggested using existing external memory data structures for the latter
problem (see Chapter 6).

	7.1 Introduction
	7.2 Preliminaries
	7.3 Basic Techniques
	7.4 I/O-Efficient Queries
	7.5 External Construction
	7.6 Concluding Remarks

