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Abstract. We have recently shown that g-gram filters based on gapped
g-grams instead of the usual contiguous g-grams can provide orders of
magnitude faster and/or more efficient filtering for the Hamming dis-
tance. In this paper, we extend the results for the Levenshtein distance,
which is more problematic for gapped g-grams because an insertion or
deletion in a gap affects a g-gram while a replacement does not. To keep
this effect under control, we concentrate on gapped g-grams with just
one gap. We demostrate with experiments that the resulting filters pro-
vide a significant improvement over the contiguous ¢-gram filters. We
also develop new techniques for dealing with complex g-gram filters.

1 Introduction

Given a pattern string P and a text string T, the approrimate string matching
problem is to find all substrings of the text (matches) that are within a distance k
of the pattern P. The most commonly used distance measure is the Levenshtein
distance, the minimum number of single character insertions, deletions and re-
placements needed to change one string into the other. A simpler variant is the
Hamming distance, that does not allow insertions and deletions, i.e., it is the
number of nonmatching characters for strings of the same length. The indezred
version of the problem allows preprocessing the text to build an index while the
online version does not. Good surveys are given in [11,12].

Filtering is a way to speed up approximate string matching, particularly
in the indexed case but also in the online case. A filter is an algorithm that
quickly discards large parts of the text based on some filter criterium, leaving
the remaining part to be checked with a proper (online) approximate string
matching algorithm. A filter is lossless if it never discards an actual match; we
consider only lossless filters. The ability of a filter to reduce the text area is
called its (filtration) efficiency.
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Many filters are based on ¢-grams, substrings of length ¢. The g-gram sim-
ilarity (defined as a distance in [14]) of two strings is the number of ¢-grams
shared by the strings. The g-gram filter is based on the g-gram lemma:

Lemma 1 ([7]). Let P and S be strings with (Levenshtein or Hamming) dis-
tance k. Then the q-gram similarity of P and S is at least t = |P| — g+ 1 — kq.

The value ¢ in the lemma is called the threshold and gives the minimum number
of g-grams that an approximate match must share with the pattern, which is
used as the filter criterium. There are actually many possible ways to count the
number of shared g-grams offering different tradeoffs between speed and filtration
efficiency (see, e.g., [7,14,6,2]). However, in all cases the value of the threshold
is the one given by the lemma.

A generalization of the ¢g-gram filter uses gapped g-grams, subsets of ¢ char-
acters of a fixed non-contiguous shape. For example, the 3-grams of shape ##-#
in the string ACAGCT are ACG, CAC and AGT. In [3], we showed that the use of
gapped g-grams can significantly improve the filtration efficiency and/or speed
of the ¢-gram filter for the Hamming distance. The result cannot be trivially ex-
tended to the Levenshtein distance due to the effect of insertions and deletions
on the gaps. In the above example, a replacement of G would leave the 3-gram
CAC unaffected but the deletion of G or an insertion of a character before G would
change all 3-grams.

In this paper, we study gapped g¢-gram filters for the Levenshtein distance
based on an idea already suggested in [3]. The idea is to use multiple shapes that
differ only in the length of the gap(s), for example, the shapes ##--#, ##-# and
###. We restrict our consideration to g-grams with only one gap, which minimizes
the number of different shapes needed. Our experimental results show that with
the right choice of the shape a significant improvement over conventional g-gram
filters can be achieved for the Levenshtein distance, too.

Even with the restriction to one-gapped ¢-grams, a major obstacle in imple-
menting the filters is determining the value of the threshold. As already noted
in [3], for gapped g-gram filters, there is no simple threshold formula like the
one given by Lemma 1. Indeed, even defining the threshold precisely is far from
trivial. The definition we give here not only solves the problem for the one-
gapped g¢-gram filters but provides a framework for solving it for other even
more complicated filters.

Gapped ¢-grams have also been used in [4,13,10]. In [4,13], the motivation
is to increase the filtration efficiency by considering multiple shapes. Pevzner
and Waterman [13] use ¢-grams containing every (k 4 1)st character together
with contiguous g-grams for the Hamming distance. Califano and Rigoutsos [4]
describe a lossy filter for the Levenshtein distance that uses as many as 40
different random shapes. Their approach is effective for high k& but they need a
huge index (18GB for a 100 million nucleotide DNA database). The Grampse
system of Lehtinen et al. [10] uses a shape containing every hth character for
some h (similar to [13]) for exact matching. Their motivation of using gapped g¢-
grams is to reduce dependencies between the characters of a g-gram.



One-Gapped g-Gram Filters for Levenshtein Distance 227

2 Filter Algorithm

The basic idea behind the gapped g-gram filters for the Levenshtein distance was
already suggested in [3]. The filters use a basic shape with only one gap and two
other shapes formed from the basic shape by increasing and decreasing the length
of the gap by one. For example, with the basic shape ##-# we would also use the
shapes ##--# and ###. The filter compares the g-grams of all three shapes in the
pattern to the g-grams of the basic shape in the text.! Then matching ¢-grams
are found even if there is an insertion or a deletion in the gap.

Otherwise the filter algorithm is similar to the one described in [6] for the
contiguous g-grams. Let us define a hit as a pair (¢,7) such that a g-gram (of
any of the three shapes) starting at position ¢ in P matches a g-gram (of the
basic shape) starting at position j in T. The diagonal of a hit (i,7) is j — 4.
The diagonal represents the approximate starting position of the corresponding
substring of T', or more accurately, the diagonal of the dynamic programming
matrix corresponding to the beginning of the g-gram. The following result was
shown for contiguous g-grams in [6] and it trivially extends to gapped ¢-grams.

Lemma 2. If a substring S of T is within distance k of P, then S and P share
at least t q-grams such that the diagonals of the corresponding hits differ by at
most k.

For contiguous g-grams, the threshold ¢ in the lemma is the one in Lemma 1.
For gapped ¢-grams, the threshold is defined in the next section.

Based on the lemma, it is enough to find all sets of k£ + 1 adjacent diagonals
that contain at least ¢ hits. We call such a set of diagonals a match.? The matches
can be computed by finding all the hits with a ¢-gram index of the text, sorting
them by diagonal, and scanning the sorted list. If radix sort is used, the time
requirement is O(q|P| + h), where h is the number of hits.

3 Threshold

For contiguous g-grams, there is a simple formula (Lemma 1) for computing the
threshold, but this is not the case for gapped ¢-grams. In fact, even defining the
threshold precisely is nontrivial. In this section, we give a formal definition of
the threshold. The algorithm we used for computing the threshold is described
in [8].

Following [5], we define an edit transcript as a string over the alphabet
M(atch), R(eplace), I(nsert) and D(elete), describing a sequential character-by-
character transformation of one string to another. For two strings P and S,

1 An alternative would be to use two shapes, for example ##-# and ##--#, for both
strings. The main advantage of the asymmetric approach is that it requires a text
index for only one shape.

2 Matches that overlap are merged into one larger match by the algorithm and are
counted as one match in the experiments.
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let T(P,S) denote the set of all transcripts transforming P to S. For exam-
ple, T (actg, acct) contains MMRR, MMIMD, MIMMD, IRMMD, IDIMDID, etc.. For a
transcript 7 € 7 (P, S), the source length slen(r) of 7 is the length of P, i.e.,
the number of non-insertions in 7. The Levenshtein cost ¢p(7) is the number
of non-matches. The Hamming cost ¢y (7) is infinite if 7 contains insertions
or deletions and the same as Levenshtein cost otherwise. The Levenshtein dis-
tance and Hamming distance of P and S are dr(P,S) = min,cr(ps)cr(7)
and dg (P, S) = min,e7(p,s) ca(T), respectively.

Here we defined distance measures for strings using cost functions for edit
transcripts. Similarly, we define the ¢g-gram similarity measures for strings using
profit functions for edit transcripts. Then we can define the threshold using edit
transcripts as follows.

Definition 1. The threshold for a cost function ¢ and a profit function p of edit
transcripts is

ty(m, k) = InTin{p(T) | slen(T) = m,c(T) < k}.

The following lemma gives the filter criterium.

Lemma 3. Let ¢ be a cost function and p a profit function for edit transcripts.
Define a distance d of two strings P and S as d(P,S) = min.c7(p,g)c(7) and a
similarity s as s(P,S) = max,cr(p,s)p(7). Now, if d(P,S) < k, then s(P,S) >
tp (1P| k).

P

The lemma holds for any choice of cost ¢ and profit p. The cost functions of
interest to us were defined above. The profit functions that define the ¢-gram
based similarity measures are described next.

Let I be a set of integers. The span of I is span(I) = max] —minl + 1, i.e.,
the size of the minimum contiguous interval containing I. The position of I is
min I, and the shape of I is the set {i —min[ | ¢ € I}. An integer set @ with
position zero is called a shape. For any shape @ and integer i, let @); denote
the set with shape @ and position i, i.e., @Q; = {i +j | 7 € Q}. Let Q; =
{i1,42,...,iq}, where i = i1 < iz < -+ <i4, and let S = s182...5s,, be a string.
For 1 <i<m—span(Q)+ 1, the Q-gram at position ¢ in S, denoted by S[Q;],
is the string s;, sy, ... s;,. For example, if S = acagagtct and Q = {0,2,3,6},
then S[Q1] = S[Q3] = aagt and S[Q2] = cgac.

A match alignment M, of a transcript 7 is the set of pairs of positions that
are matched to each other. For example, Myrmrpmr = {(1,1),(2,3),(5,5)}. For
a set I of integers, let M, (I) be the set to which M, maps I, i.e., M (I) = {j |
i€l and (i,j) € M.}. A Q-hit in a transcript 7 is a pair (¢, ) of integers such
that M, (Q;) = Q;. The Q-profit po(7) of a transcript 7 is the number of its Q-
hits, i.e., po(T) = [{(4,§) | M-(Q;) = @Q;}|. Using pq as the profit function de-
fines the Q-similarity of two strings P and S as sq(P, S) = max,c7(p,s) pQ (7).

For any by,g,ba > 0, let (b1,g,b2) denote the one-gap shape {0,...,b; —
1,by +g,...,b1 + g+ by — 1}. For a one-gap shape Q@ = (b1, 9, b2), let Q! =
(bl,g+ 1,b2) and Qil = (bl,g— 1,b2) (OI‘ Qil = {O,...,bl + by — 1} lfg: 1)
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Then, a @ £ 1-hit in a transcript 7 is a pair (¢,7) of integers such that Q; €
{M(Q;Y), M- (Q:), M- (Qf")}. The Q + 1-profit of T, pg+1(7), is the number
of Q1-hits in 7, Le., pout (1) = [{(5,9) | Q5 € {Mo(Q; ), M, (Q), M, (QF )}
The Q=£1-similarity of two strings P and S'is sq+1(P, S) = max,c7(p,s) pQ+1(7).

For ¢ = cy and p = pg, Definition 1 gives the thresholds that were used by
the Hamming distance filters in [3]. If @ is the contiguous shape {0,1,...,¢—1},
the threshold is the same as given by Lemma 1 and also used in the Levenshtein
distance filter. For ¢ = ¢z, and p = pg+1, Definition 1 gives the thresholds used
by the one-gapped ¢-gram filters for the Levenshtein distance.

The filters compute the number of matching g-grams which is an upper
bound of the corresponding similarity defined here. For example, if 7 € 7 (P, S),
then a Q-hit (¢,7) in 7 implies P[Q;] = S[Q,]. Therefore, the number of
matching @-grams between P and S is at least sg(P,S), but may be higher.
For example, aca and cac have two matching {0,1}-grams (ac and ca) even
though s 11(aca, cac) = 1. The exact value of s¢(P, S) could be computed by
a more careful analysis of the matching ¢-grams, but it may not be worth the
extra effort in practice. Since the filter computes an upper bound of the similar-
ity, its value is at least the threshold if d(P, S) < k. However, a higher threshold
cannot be used without possibly making the filter lossy, at least as long as the
threshold is a function of only the pattern length and the distance k.

4 Minimum Coverage

The two main properties of a filter are filter speed and filtration efficiency. When
using an index the dominating factor for the filter speed is the total number of
hits that have to be accessed and processed by the filter. Predicting the number
of hits is straighforward using the number of shapes in P and T', and the value ¢
of matching characters per shape with the following equation:

hits ~ %3(|P| —span(Q) + 1)(|T| — span(Q) + 1)

The factor of 3 comes in for one-gap shapes since we use 3 shapes per starting
position in P. In practice, all one-gapped shapes with the same value of ¢ are
essentially equivalent with respect to the filter speed.

The filtration efficiency of a filter, i.e., the probability of having a random
match at a fixed position depends in a complex way on the basic shape, defining
the guality of the shape. In [3], we used the notion of minimum coverage to
predict the quality of shapes. This was vital due to the large number of available
shapes. When only using shapes with one gap, the number of possible choices
is dramatically reduced, which allows experimental evaluation of all candidate
shapes. However, we also wanted to analyse the general concept of quality pre-
diction for this case, especially since it was easily verifiable with the experimental
results.

For the case of the Hamming distance, the minimum coverage was defined
as the size of the smallest union of ¢ shapes with different positions. This corre-
sponds to the minimum number of ‘fixed’ characters required to match between
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a pattern and a text substring for there to be ¢ matching Q-grams. The prob-
ability of matching a certain arrangement of ¢ ()-grams depends exponentially
on the number of fixed characters in that arrangement. To exactly compute the
probability of a random match one would have to take into account all possible
arrangements of ¢ or more shapes. However, since those arrangements with the
lowest or close to the lowest number of fixed characters are much more likely, one
can compute a good approximation using only the most probable arrangements,
i.e. those with the minimum coverage. The expected number of matches given a
minimum coverage mc would therefore be roughly proportional to 1/X™¢€.

Since we still use only one shape for matching in the text, the minimum cov-
erage and the number of fixed characters remain the same here. The additional
shapes used in the pattern can however increase the number of possible pattern
substrings that match the fixed characters in the text. For cases where ¢ shapes
are arranged with a large overlap, this increase is negligible. In general, this is
the case for the minimum coverage. We evaluated the correlation between min-
imum coverage and the experimental results for all shapes and display them in
Figure 1. When compared to the Hamming distance, there is a small loss in cor-
relation but the overall predictive capability of the minimum coverage remains
intact.

minimum coverage vs. matches per query for k=4 and k=5
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5 Experiments

To test the one-gap g-grams in practice, we performed some experiments on a
randomly generated DNA database with 50 million basepairs (even and indepen-
dent distribution of characters). The queries we used were 1000 random strings
of length 500. The query length was chosen since it is a typical query length in
many computational biology applications.

It should be noted that the threshold used in filtering was computed for
m = 50 which is a typical value for finding local matches in DNA. This difference
between query and window length has the effect that, while the filter is still
guaranteed to report all positions where there is an approximate occurrence of
a substring of length 50 of the query, it will also lead to a moderate increase in
the number of potential matches reported due to the increase in the number of
shapes for which one searches. 3

For the edit distance k we used values of 4 and 5, making the experimental
setting correspond to typical high similarity local alignment problems in shot-
gun sequencing [15] and EST clustering [9,2]. The database contained no actual
matches of this quality, i.e., all potential matches reported by the filter were false
positives.

Like in our earlier paper we compared the gapped shapes with the contiguous
shapes used in the classic g-gram lemma. For £k = 4 and k = 5 we tested all
shapes with ¢ > 8. For k = 4 there are 87 such shapes and for k = 5 there
are 35. From these shapes we picked, for each value of ¢, those with the best
experimental filtration efficiency and compared them with the filter based on the
classic g-gram lemma. The best gapped shapes are shown in Table 1. Figure 2
compares them to contiguous g-grams both in theory (expected number of hits
vs. minimum coverage) and in practice (hits vs. matches).

The top plot shows the values used to predict filtration efficiency (the mini-
mum coverage) and filter speed (the expected number of hits) for both contigu-
ous ¢g-grams and the best one-gap shapes. The bottom graph contains the actual
experimental results showing the average number of hits as well as the average
number of matches per query (averaged across all 1000 queries). The expected
number of hits for one-gap shapes in the first plot was computed taking into ac-
count the fact that we use 3 different shapes for each possible starting position
in the query.

Looking at Figure 2 one can observe that for the Levenshtein distance the
shapes with one gap show a better performance than ungapped shapes. In gen-
eral, they allow a substantial increase in the possible values of ¢ and/or the
filtration efficiency. The higher values of ¢ make them prime candidates for
index—based implementations. The comparison between predicted and actual

3 A better filter efficiency can be achieved by counting the hits separately for each
substring of length 50. This should not have a significant effect on the relative per-
formance of the different shapes and we can therefore use this approximation for
comparing them. Looking at the results one should keep in mind that the absolute
values for filtration efficiency are not the best possible but slightly worse.
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performance reinforces the correlation described in Section 4 and with it the
predictive capability of the minimum coverage. It is obvious that the value of ¢
affects the filtration speed and efficiency and provides a tradeoff between the
two. Which choice is the best for a certain application depends on the actual
speed of the filtration and verification algorithms.

Another point we want to make is that the proper choice of the shapes used
for filtering is very important. To illustrate this we want to mention that for a
fixed set of parameters the best shapes had filtration efficiencies that differed by
as much as a factor of 10® from the worst. The difference in filtration efficiency
between the median and the best shape was still up to a factor of 50.

6 Concluding Remarks

We have shown that suitably chosen one-gap g-grams combined with a simple
technique to compensate for insertions and deletions in the gap can significantly
improve the performance of the basic ¢g-gram filter for the Levenshtein distance.
This demonstrates that they are worth studying in further research on the prob-
lem of approximate string matching using the Levenshtein distance.

Aside from looking at shapes with only one gap it might be interesting to
look at shapes with more than one gap. It remains to be seen whether the added
number of shapes is worth the potential increase in filter quality. Also, techniques
like generating word neighborhoods for ¢-grams, which are for example used in
BLAST [1], could perhaps be adapted to gapped g¢-grams. Other possibilities
include combining two or more different shapes into one filter. The framework
for computing thresholds for more complex filters has been provided with the
definitions in this paper.
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