
Fast Lightweight Suffix Array Construction and
Checking

Stefan Burkhardt1� and Juha Kärkkäinen1�

Max-Planck-Institut für Informatik
Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany

{stburk,juha}@mpi-sb.mpg.de

Abstract. We describe an algorithm that, for any v ∈ [2, n], constructs
the suffix array of a string of length n in O(vn + n log n) time using
O(v + n/

√
v) space in addition to the input (the string) and the output

(the suffix array). By setting v = log n, we obtain an O(n log n) time
algorithm using O(

n/
√

log n
)

extra space. This solves the open problem
stated by Manzini and Ferragina [ESA ’02] of whether there exists a
lightweight (sublinear extra space) O(n log n) time algorithm. The key
idea of the algorithm is to first sort a sample of suffixes chosen using
mathematical constructs called difference covers. The algorithm is not
only lightweight but also fast in practice as demonstrated by experiments.
Additionally, we describe fast and lightweight suffix array checkers, i.e.,
algorithms that check the correctness of a suffix array.

1 Introduction

The suffix array [21,9], a lexicographically sorted array of the suffixes of a string,
has numerous applications, e.g., in string matching [21,9], genome analysis [1]
and text compression [5]. In many cases, the construction of the suffix array is a
bottleneck. As suffix arrays are often generated for very long strings, both space
and time requirement matter.

In a typical situation, a string of length n occupies n bytes and its suffix array
4n bytes of space. The suffix array can be constructed using little extra space,
but then the worst-case running time is Ω(n2). All fast construction algorithms
with runtime guarantee O(n log n) or better require at least 4n bytes of extra
space, which almost doubles the space requirement. Manzini and Ferragina [22]
asked whether it is possible to achieve O(n log n) runtime using sublinear extra
space. In this paper, we answer the question positively describing an algorithm
with O(n log n) worst-case runtime that uses only O(

n/
√

log n
)

extra space.

Previous Work. In addition to time and space requirements, suffix array con-
struction algorithms differ in their alphabet model. The models of interest, in
order from the most restrictive to the most general, are constant alphabet (the
� Partially supported by the Future and Emerging Technologies programme of the EU

under contract number IST-1999-14186 (ALCOM-FT).

R. Baeza-Yates et al. (Eds.): CPM 2003, LNCS 2676, pp. 55–69, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN ----------------------------------------
Dateioptionen:
     Kompatibilität: PDF 1.3
     Für schnelle Web-Anzeige optimieren: Nein
     Piktogramme einbetten: Nein
     Seiten automatisch drehen: Nein
     Seiten von: 1
     Seiten bis: Alle Seiten
     Bund: Links
     Auflösung: [ 2400 2400 ] dpi
     Papierformat: [ 594.962 841.96 ] Punkt

KOMPRIMIERUNG ----------------------------------------
Farbbilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 300 dpi
     Downsampling für Bilder über: 450 dpi
     Komprimieren: Ja
     Automatische Bestimmung der Komprimierungsart: Ja
     JPEG-Qualität: Maximal
     Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 300 dpi
     Downsampling für Bilder über: 450 dpi
     Komprimieren: Ja
     Automatische Bestimmung der Komprimierungsart: Ja
     JPEG-Qualität: Maximal
     Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 2400 dpi
     Downsampling für Bilder über: 3600 dpi
     Komprimieren: Ja
     Komprimierungsart: CCITT
     CCITT-Gruppe: 4
     Graustufen glätten: Nein

     Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN ----------------------------------------
     Alle Schriften einbetten: Ja
     Untergruppen aller eingebetteten Schriften: Nein
     Wenn Einbetten fehlschlägt: Abbrechen
Einbetten:
     Immer einbetten: [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]
     Nie einbetten: [ ]

FARBE(N) ----------------------------------------
Farbmanagement:
     Farbumrechnungsmethode: Farbe nicht ändern
     Methode: Standard
Geräteabhängige Daten:
     Einstellungen für Überdrucken beibehalten: Ja
     Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
     Transferfunktionen: Anwenden
     Rastereinstellungen beibehalten: Ja

ERWEITERT ----------------------------------------
Optionen:
     Prolog/Epilog verwenden: Ja
     PostScript-Datei darf Einstellungen überschreiben: Ja
     Level 2 copypage-Semantik beibehalten: Ja
     Portable Job Ticket in PDF-Datei speichern: Nein
     Illustrator-Überdruckmodus: Ja
     Farbverläufe zu weichen Nuancen konvertieren: Ja
     ASCII-Format: Nein
Document Structuring Conventions (DSC):
     DSC-Kommentare verarbeiten: Ja
     DSC-Warnungen protokollieren: Nein
     Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
     EPS-Info von DSC beibehalten: Ja
     OPI-Kommentare beibehalten: Nein
     Dokumentinfo von DSC beibehalten: Ja

ANDERE ----------------------------------------
     Distiller-Kern Version: 5000
     ZIP-Komprimierung verwenden: Ja
     Optimierungen deaktivieren: Nein
     Bildspeicher: 524288 Byte
     Farbbilder glätten: Nein
     Graustufenbilder glätten: Nein
     Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
     sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS ----------------------------------------

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
     /ColorSettingsFile ()
     /AntiAliasMonoImages false
     /CannotEmbedFontPolicy /Error
     /ParseDSCComments true
     /DoThumbnails false
     /CompressPages true
     /CalRGBProfile (sRGB IEC61966-2.1)
     /MaxSubsetPct 100
     /EncodeColorImages true
     /GrayImageFilter /DCTEncode
     /Optimize false
     /ParseDSCCommentsForDocInfo true
     /EmitDSCWarnings false
     /CalGrayProfile (Ø©M)
     /NeverEmbed [ ]
     /GrayImageDownsampleThreshold 1.5
     /UsePrologue true
     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /AutoFilterColorImages true
     /sRGBProfile (sRGB IEC61966-2.1)
     /ColorImageDepth -1
     /PreserveOverprintSettings true
     /AutoRotatePages /None
     /UCRandBGInfo /Preserve
     /EmbedAllFonts true
     /CompatibilityLevel 1.3
     /StartPage 1
     /AntiAliasColorImages false
     /CreateJobTicket false
     /ConvertImagesToIndexed true
     /ColorImageDownsampleType /Bicubic
     /ColorImageDownsampleThreshold 1.5
     /MonoImageDownsampleType /Bicubic
     /DetectBlends true
     /GrayImageDownsampleType /Bicubic
     /PreserveEPSInfo true
     /GrayACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>
     /ColorACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>
     /PreserveCopyPage true
     /EncodeMonoImages true
     /ColorConversionStrategy /LeaveColorUnchanged
     /PreserveOPIComments false
     /AntiAliasGrayImages false
     /GrayImageDepth -1
     /ColorImageResolution 300
     /EndPage -1
     /AutoPositionEPSFiles true
     /MonoImageDepth -1
     /TransferFunctionInfo /Apply
     /EncodeGrayImages true
     /DownsampleGrayImages true
     /DownsampleMonoImages true
     /DownsampleColorImages true
     /MonoImageDownsampleThreshold 1.5
     /MonoImageDict << /K -1 >>
     /Binding /Left
     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
     /MonoImageResolution 2400
     /AutoFilterGrayImages true
     /AlwaysEmbed [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]
     /ImageMemory 524288
     /SubsetFonts false
     /DefaultRenderingIntent /Default
     /OPM 1
     /MonoImageFilter /CCITTFaxEncode
     /GrayImageResolution 300
     /ColorImageFilter /DCTEncode
     /PreserveHalftoneInfo true
     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /ASCII85EncodePages false
     /LockDistillerParams false
>> setdistillerparams
<<
     /PageSize [ 595.276 841.890 ]
     /HWResolution [ 2400 2400 ]
>> setpagedevice



56 S. Burkhardt and J. Kärkkäinen

size of the alphabet is bounded by a constant), integer alphabet (characters are
integers in a range of size nO(1)), and general alphabet (only character compar-
isons are allowed).

Previous suffix array construction algorithms can be classified into four main
categories.

The algorithms in the first category compute the suffix array from the suffix
tree in linear time. The classical suffix tree construction algorithms [28,23,26]
work in linear time for constant alphabets. Farach’s algorithm [8] achieves linear
time for integer alphabets. The drawback of these algorithms is their space re-
quirement. The most space efficient implementation by Kurtz [18] uses 8n–14n
bytes of space in total, but this comes at the cost of limiting the maximum string
length to 135 million characters.

The second category, direct linear time construction algorithms, has appeared
very recently [16,17,11]. It is not yet clear what the space requirements of prac-
tical implementations are but all of them appear to require at least 4n bytes
of extra space and likely more. One of these algorithms [11] is, in fact, closely
related to the present algorithm as described in Section 9. All of these algorithms
support integer alphabets.

The algorithms in the third category are based on the doubling algorithm of
Karp, Miller and Rosenberg [13]. These algorithms sort the suffixes initially by
their first characters and then double the significant prefix length in each further
pass. The first algorithm in this category was by Manber and Myers [21], but the
Larsson-Sadakane algorithm [19] is considered to be the best in practice. Both
algorithms run in O(n log n) time, need 4n bytes of extra space, and support
general alphabets.

The final category consists of algorithms based on sorting the suffixes as
independent strings. For most real world inputs, string sorting is very fast [19]
and it needs little extra space. Furthermore, Itoh and Tanaka [10] as well as
Seward [24] reduce the number of suffixes to be sorted to about half by taking
advantage of the correlation between suffixes starting at consecutive positions.
However, the worst case running time of these algorithms is Ω(n2) and they
can also be very slow on real world inputs with long repeats [22]. Basic string
sorting supports general alphabets but the Itoh–Tanaka, Seward, and Manzini–
Ferragina (below) heuristics assume a constant alphabet.

The string sorting based algorithms are attractive in practice since they are
both the fastest in most cases and use little space, but the possibility of quadratic
running time is unacceptable for many applications. The solution adopted by
the bzip2 compression package [25] implementing Seward’s algorithm uses the
Larsson–Sadakane algorithm as a fallback when the primary algorithm takes too
much time. However, in such cases, the algorithm is slow and, more importantly,
needs 4n bytes of extra space. The algorithms of Manzini and Ferragina [22] sort
the suffixes using only their first � characters and apply fallback heuristics to the
groups of suffixes that remain unsorted. The algorithms use little extra space
(less than 0.03n bytes), are fast even for many difficult cases, but the worst case
running times remain Ω(n2).



Fast Lightweight Suffix Array Construction and Checking 57

Our Contribution. We describe an algorithm that runs in O(vn + n log n)
time using O(v + n/

√
v) extra space for any v ∈ [2, n]. Thus, the choice of v

offers a space–time tradeoff. Moreover, setting v = log n gives an O(n log n) time,
O(

n/
√

log n
)

extra space algorithm, the first O(n log n) time algorithm using
sublinear extra space. The algorithm is alphabet-independent, i.e., it supports
general alphabets. Note that O(n log n) time is optimal under general alphabets.

The key to the result are mathematical constructs called difference covers
(see Section 2). Difference covers are a powerful tool that can be used to obtain
a number of other results, too. We give a brief glimpse to such results in Section 9.
Difference covers have also been used for VLSI design [15] and distributed mutual
exclusion [20,7].

Experiments show that the algorithm is also practical. A straightforward
implementation using less than n bytes of extra space is competitive with the
Larsson-Sadakane algorithm [19], which is considered the best among the good
worst case algorithms. The algorithm of Manzini and Ferragina [22], probably
the fastest string sorting based implementation available, is significantly faster
and slightly more space efficient on real world data but is unusably slow on
worst case data. We believe that an improved implementation of our algorithm
can bring its running time close to that of Manzini–Ferragina even on real world
data (see Section 6).

Verifying the correctness of an implementation of an algorithm is a difficult,
often impossible task. A more modest but still useful guard against incorrect im-
plementation is a result checker [4,27] that verifies the output of a computation.
A suffix array checker verifies the correctness of a suffix array. The trivial suffix
array checker has an O(

n2
)

worst case running time. In Section 8, we describe
some simple, fast and lightweight checkers. These checkers are not directly re-
lated to our main result, but we found them useful during the implementation
of the difference cover algorithm.

2 Basic Idea

Our algorithm is based on the following simple observation. Suppose we want
to compare two suffixes Si and Sj (i.e., suffixes starting at positions i and j) to
each other. If we can find another pair Si+k and Sj+k, called an anchor pair, of
suffixes whose relative order is already known, then at most the first k characters
of Si and Sj need to be compared. Some of the fallback heuristics of Manzini
and Ferragina [22] rely on this observation. Unlike their methods, our algorithm
gives a guarantee of finding an anchor pair with a small offset k for any pair of
suffixes. This is achieved by sorting first a sample of suffixes, and then finding
the anchor pairs among the sample.

The question is how to choose such a sample.
An initial attempt might be to take every vth suffix for some v. However,

for any pair of suffixes Si and Sj such that i �≡ j (mod v), there would be no
anchor pairs at all. A second try could be a random sample of size n/

√
v, which

makes expected distance to an anchor pair O(v). The problem is that there are



58 S. Burkhardt and J. Kärkkäinen

no time and space efficient algorithms for sorting an arbitrary set of suffixes. The
alternatives are basically general string sorting and full suffix array construction,
neither of which is acceptable in our case.

Our solution is based on using difference covers. A difference cover D modulo
v is a set of integers in the range [0, v) such that for all i ∈ [0, v), there exist
j, k ∈ D such that i ≡ k − j (mod v). For example, D = {1, 2, 4} is a difference
cover modulo 7:

i 0 1 2 3 4 5 6
k − j 1 − 1 2 − 1 4 − 2 4 − 1 1 − 4 2 − 4 1 − 2

The sample we use contains all suffixes whose starting positions are in D
modulo v. The key properties of the sample are:

– The size of the sample is O(n/
√

v) (see Section 3).
– The sample guarantees that an anchor pair is found within distance v (see

Section 4).
– The periodicity of the sample (with period v) makes it possible to sort the

sample efficiently (see Section 5).

3 Tools

Let s[0, n) be a string of length n over a general alphabet, i.e., we assume that
the characters can be compared in constant time but make no other assumptions
on the alphabet. Let Si, i ∈ [0, n), denote the suffix s[i, n). A set of suffixes is
v-ordered if they are ordered by their first v characters, i.e., as if the suffixes
longer than v were truncated to length v.

Lemma 1. A set of m suffixes (represented by an array of their starting posi-
tions) can be v-ordered in O(vm + m log m) time using O(log m) extra space.

Proof. Use the multikey quicksort algorithm of Bentley and Sedgewick [3] that
can sort m strings of total length M in time O(M + m log m). Only the recursion
stack requires non-constant extra space.

The suffix array SA[0, n) of s is a permutation of [0, n) specifying the lexico-
graphic order of the suffixes of s, i.e., for all 0 ≤ i < j < n, SSA[i] < SSA[j]. The
inverse suffix array ISA[0, n) is the inverse permutation of SA, i.e., ISA[i] = j if
and only if SA[j] = i. The inverse suffix array constitutes a lexicographic nam-
ing of the suffixes allowing constant time comparisons: Si ≤ Sj if and only if
ISA[i] ≤ ISA[j]. The suffix array and its inverse can be computed quickly with
the algorithms of Manber and Myers [21] or Larsson and Sadakane [19].

Lemma 2 ([21,19]). The suffix array SA and the inverse suffix array ISA of
a string s of length n can be computed in O(n log n) time and O(n) space.



Fast Lightweight Suffix Array Construction and Checking 59

A difference cover D modulo v is a set of integers in the range [0, v) such
that for all i ∈ [0, v), there exists j, k ∈ D such that i ≡ k − j (mod v). It
is easy to see that a difference cover modulo v must be of size at least

√
v. A

simple method for generating small difference covers is described by Colbourn
and Ling [7]:

Lemma 3 ([7]). For any v, a difference cover modulo v of size ≤ √
1.5v + 6

can be computed in O(
√

v) time.

For any integers i, j, let δ(i, j) be an integer k ∈ [0, v) such that (i+k) mod v
and (j + k) mod v are both in D.

Lemma 4. Given a difference cover D modulo v, a data structure allowing con-
stant time evaluation of δ(i, j) for any i and j can be computed in O(v) time
and space.

Proof. Build a lookup table d such that, for all h ∈ [0, v), both d[h] and (d[h] +
h) mod v are in D, and implement δ as δ(i, j) = (d[(j−i) mod v]−i) mod v. Then
i + δ(i, j) = d[(j − i) mod v] ∈ D and j + δ(i, j) = d[(j − i) mod v] + (j − 1) ∈ D
(mod v).

For the difference cover D = {1, 2, 4} modulo 7, we have

h 0 1 2 3 4 5 6
d[h] 1 1 2 1 4 4 2

For example, let i = 2 and j = 12. Then we have k = δ(2, 12) = (d[10 mod 7] −
2) mod 7 = (1 − 2) mod 7 = 6, and (i + δ(i, j)) mod 7 = (2 + 6) mod 7 = 1 ∈ D
and (j + δ(i, j)) mod 7 = (12 + 6) mod 7 = 4 ∈ D.

4 The Algorithm

The algorithm consists of the following phases:

Phase 0. Choose v ≥ 2, a difference cover D modulo v with |D| = Θ(
√

v), and
compute the associated function δ.

Phase 1. Sort the suffixes whose starting position modulo v is in D.
Phase 2. Construct SA by exploiting the fact that, for any i, j ∈ [0, n − v], the

relative order of the suffixes starting at i + δ(i, j) and j + δ(i, j) is already
known.

The implementation of Phase 0 was already explained in the previous section.
Phase 1 is described in detail in the next section. In this section, we concentrate
on Phase 2.

Let D be a difference cover modulo v. A D-sample Dn is the set {i ∈ [0, n] |
i mod v ∈ D}. Let m = |Dn| ≤ (n/v + 1)|D|. A lexicographic naming of the
D-sample suffixes is a function � : Dn �→ [0, m) satisfying �(i) ≤ �(j) if and only
if Si ≤ Sj (see Fig. 1). Phase 1 produces the function � as its output. In the next
section, we prove the following lemma.



60 S. Burkhardt and J. Kärkkäinen

Lemma 5. A data structure allowing constant time evaluation of �(i) for
any i ∈ Dn can be computed in O(

√
vn + (n/

√
v) log(n/

√
v)) time using

O(v + n/
√

v) space in addition to the string s.

Input:
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

s[i] a r o s e i s a r o s e i s a r o s e

Result of phase 1:
i ∈ D26 1 2 4 8 9 11 15 16 18 22 23 25

�(i) 3 8 11 10 0 2 5 1 9 7 6 4

Result of step 2.1:
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

SA7[i] 9 19 6 1621 1 1120 0 1025 5 15 7 1723 3 1322 2 12 8 1824 4 14

Output:
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

SA[i] 19 9 16 6 2111 1 2010 0 2515 5 17 7 2313 3 2212 2 18 8 2414 4

Fig. 1. The difference cover algorithm with the difference cover D = {1, 2, 4} modulo 7
applied to the string “a rose is a rose is a rose”

The essence of Phase 2 is the observation that the following comparisons are
equivalent for all i, j ∈ [0, n − v]:

Si ≤ Sj

〈s[i, i + v), Si+δ(i,j)〉 ≤ 〈s[j, j + v), Sj+δ(i,j)〉
〈s[i, i + v), �(i + δ(i, j))〉 ≤ 〈s[j, j + v), �(j + δ(i, j))〉

Thus we can implement Phase 2 as follows.

Step 2.1. v-order the suffixes using multikey quicksort.
Step 2.2. For each group of suffixes that remains unsorted, i.e., shares a prefix

of length v, complete the sorting with a comparison based sorting algorithm
using �(i + δ(i, j)) and �(j + δ(i, j)) as keys when comparing suffixes Si and
Sj .

The operation of the algorithm is illustrated in Fig. 1. As an example of
Step 2.2, consider the ordering of suffixes S2 and S12, which were not sorted in
Step 2.1 because they share the prefix “rose is”. We compute δ(2, 12) = 6 and
compare �(2 + 6) = 10 and �(12 + 6) = 9 to find out that S12 is smaller than S2.

Lemma 6. If δ and � can be evaluated in constant time, the suffix array SA[0, n)
of a string s[0, n) can be constructed in O(vn + n log n) time using O(log n) space
in addition to s, SA, and the space needed for δ and �.



Fast Lightweight Suffix Array Construction and Checking 61

Proof. The time complexity follows from Lemma 1. To keep the space require-
ment within O(log n), Step 2.2 is performed for an unsorted group immediately
when it is formed during Step 2.1. Then the only extra space is needed for the
stack.

Combining Lemmas 3, 4, 5, and 6 we obtain the main result.

Theorem 1. For any positive integer v, the suffix array of a string of length n
can be constructed in O(vn + n log n) time using O(v + n/

√
v) space in addition

to the string and the suffix array.

By choosing v = log n, we get:

Corollary 1. The suffix array of a string of length n can be constructed in
O(n log n) time using O(

n/
√

log n
)

extra space.

5 Sorting the Sample

The remaining part is to show how to sort the D-sample suffixes. More pre-
cisely, we want to compute the lexicographic naming function �. Let D =
{d0, . . . , dk−1} with d0 < d1 < · · · < dk−1 < dk = v, and let h be such that
dh ≤ n mod v < dh+1. Then Dn = {d0, . . . , dk−1, d0 + v, . . . , dk−1 + v, d0 +
2v, . . . , d0 + �n/v�v, . . . , dh + �n/v�v}. Let µ be the mapping Dn �→ [0, m) :
µ(di+jv) = �n/v�i+min(i, h)+j, i.e., it maps each sequence di, di+v, di+2v, . . .
to consecutive positions (see Fig. 2). To compute µ(k), for k ∈ Dn, we need to
find i and j such that k = di + jv. This is done by computing j = �k/v�,
di = k mod v, and using a lookup table to compute i from di. Thus, the function
µ can be evaluated in constant time after an O(v) time and space preprocessing.

Let �v be a lexicographic naming of the D-sample suffixes based on their first
v characters, i.e., �v(i) ≤ �v(j) if and only if s[i,min(i+v, n)) ≤ s[j,min(j+v, n)).
Let s′[0, m) be the string defined by s′[µ(i)] = �v(i) for i ∈ Dn. Note that, for
all i ∈ (n − v, n] ∩ Dn, the character s′[µ(i)] = �v(i) is unique and acts as a
separator.

Let S′
i, i ∈ [0, m), denote the suffixes of s′, and let SA′ and ISA′ be the suffix

array of s′ and its inverse. The following inequalities are all equivalent for all
i, j ∈ Dn.

�(i) ≤ �(j)
Si ≤ Sj

s[i, n) ≤ s[j, n)
s[i, i + v) · s[i + v, i + 2v) · · · ≤ s[j, j + v) · s[j + v, j + 2v) · · ·

�v(i) · �v(i + v) · · · ≤ �v(j) · �v(j + v) · · ·
s′[µ(i)] · s′[µ(i) + 1] · · · ≤ s′[µ(j)] · s′[µ(j) + 1] · · ·

S′
µ(i) ≤ S′

µ(j) (Note: separators in s′)

ISA′[µ(i)] ≤ ISA′[µ(j)]



62 S. Burkhardt and J. Kärkkäinen

Input:
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

s[i] a r o s e i s a r o s e i s a r o s e

i ∈ D26 1 2 4 8 9 11 15 16 18 22 23 25

�v(i) 2 7 9 8 0 2 4 1 8 6 5 3
µ(i) 0 4 8 1 5 9 2 6 10 3 7 11

i 0 1 2 3 4 5 6 7 8 9 10 11

s′[i] 2 8 4 6 7 0 1 5 9 2 8 3
ISA′[i] 3 10 5 7 8 0 1 6 11 2 9 4

Output of Phase 1:
i ∈ D26 1 2 4 8 9 11 15 16 18 22 23 25

�(i) 3 8 11 10 0 2 5 1 9 7 6 4

Fig. 2. Phase 1 of the algorithm with the difference cover D = {1, 2, 4} modulo 7
applied to the string “a rose is a rose is a rose”

Thus we can implement �(i) as ISA′[µ(i)].
The inverse suffix array ISA′ is computed as follows:

Step 1.1. v-order the D-sample suffixes using multikey quicksort.
Step 1.2. Compute �v(i) for all i ∈ Dn by traversing the D-sample suffixes in

lexicographic order and construct s′ by setting s′[µ(i)] = �v(i).
Step 1.3. Compute ISA′ using Manber-Myers or Larsson-Sadakane algorithm.

Proof (of Lemma 5). For D of size O(
√

v), m = O(n/
√

v). Thus, the first step
takes O(vm + m log m) = O(

√
vn + (n/

√
v) log(n/

√
v)) time (Lemma 1). The

second step requires O(m) and the third O(m log m) time (Lemma 2). The space
requirements are O(v) for implementing µ, O(m) = O(n/

√
v) for s′, SA′, and

ISA′, and O(log m) for a stack.

6 Implementation

We implemented the difference cover algorithm in C++ using difference
covers modulo powers of two for fast division (available through http:
//www.mpi-sb.mpg.de/˜juha/publications.html). The difference covers up
to modulo 64 are from [20]. The difference covers modulo 128 and 256 we found
using an exhaustive search algorithm. For larger v, we computed the difference
covers using the algorithm in [7] (see Lemma 3). In addition to the string and
the suffix array, the only non-constant data structures in the implementation are
an array storing the difference cover, two lookup tables of size v to implement
δ and µ, and an array of size about 4n|D|/v bytes for the inverse suffix array
ISA′. During Phase 1, another array of size 4n|D|/v is needed for SA′ but we
use (a part of) the suffix array for this. The sizes of the difference cover D and
the ISA′ array (the latter in bytes) for different values of v are:



Fast Lightweight Suffix Array Construction and Checking 63

v 4 8 16 32 64 128 256 512 1024 2048
|D| 3 4 5 7 9 13 20 28 40 58

|ISA′| 3n 2n 1.25n 0.88n 0.56n 0.41n 0.31n 0.22n 0.16n 0.11n

We used our own implementations of multikey quicksort [3] for v-ordering, and
Larsson-Sadakane [19] for ISA′ construction.

There are several possibilities for further improving the running time. For
real world data, the majority of the construction time is spent in Step 2.1 for v-
ordering the suffixes. The Manzini–Ferragina algorithm [22] also spends it most
of its time on v-ordering the suffixes but, as shown by the experiments in the next
section, they are much faster. Their implementation of v-ordering uses several
additional optimization techniques that could also be used in our algorithm. The
most important of these is probably Seward’s “pointer copying” heuristic [24].

7 Experiments

We evaluated the performance of our implementation for typical inputs
and for bad cases, texts with very high average LCP (longest common
prefix). We compared our implementation using a difference cover mod-
ulo 32 to Larsson’s and Sadakane’s implementation of their algorithm
(http://www.cs.lth.se/˜jesper/qsufsort.c) and to that of Manzini and
Ferragina (http://www.mfn.unipmn.it/˜manzini/papers/ds.tgz).

We ran the experiments on a single processor of a Sun-Fire-15000 and com-
piled with g++ -O3 respectively gcc -O3. The Solaris operating system provides
a virtual file, /proc/self/as, the size of which equals the total amount of mem-
ory a process occupies (including code, stack and data). We monitored this file
during our runs and report the largest value.

For the real-world experiments we selected text files from the Canterbury
Corpus (http://corpus.canterbury.ac.nz/index.html), the tarfile of gcc
3.0, the Swissprot protein database (Version 34) and a random (symmetric
Bernoulli) string. Table 1 shows alphabet size |Σ|, average LCP and maximum
LCP for these files. The results can be found in Table 2. The algorithm by
Manzini and Ferragina outperforms the other two (which are of comparable
speeds) by roughly a factor of 3. It also uses the least memory, followed closely
by our implementation which requires about 17% more space. The algorithm of
Larsson and Sadakane requires between 52 and 59% more space than that of
Manzini and Ferragina.

To evaluate performance for difficult cases we created four artificial strings
with 50 million characters each. The first contains solely the letter A. This is
a frequently used worst-case text, but as our results indicate, it is far from the
worst case for some algorithms. Therefore we also created three others consisting
of a single random (symmetric Bernoulli) ‘seed’ string which is repeated until
50 million characters are reached. We used seed strings of length 20, 1000 and
500 000. Statistics for these texts are presented in Table 3 followed by results
in Table 4. Apart from the not-so worst case string consisting only of the letter

http://www.cs.lth.se/~jesper/qsufsort.c
http://www.mfn.unipmn.it/~manzini/papers/ds.tgz
http://corpus.canterbury.ac.nz/index.html


64 S. Burkhardt and J. Kärkkäinen

Table 1. Real-world text files sorted by average LCP

Text |Σ| Characters average LCP maximum LCP
random string 26 50 000 000 4.84 10
King James Bible (bible.txt) 63 4 047 392 13.97 551
E. coli genome (E.coli) 4 4 638 690 17.38 2 815
CIA World Fact Book (world192.txt) 94 2 473 400 23.01 559
Swissprot V34 Protein Database 66 109 617 186 89.08 7 373
gcc 3.0 source code tarfile 150 86 630 400 8 603.21 856 970

Table 2. Runtimes and space consumption of Larsson-Sadakane(LS), Manzini-
Ferragina(MF) and our difference cover algorithm(DC32) for real world files

Text LS MF DC32
Time[sec] Space[MB] Time[sec] Space[MB] Time[sec] Space[MB]

random 227.46 401.0 106.06 251.9 275.60 295.4
Bible 11.98 33.3 2.12 21.6 5.91 25.5
E. coli 13.56 38.1 2.05 24.6 7.20 28.9
World 4.11 20.8 0.99 13.7 3.81 16.2
Swissprot 996.10 877.9 292.66 551.2 1126.80 645.7
gcc 3.0 528.63 694.0 298.89 439.1 577.60 510.6

Table 3. Text files with long common prefixes

Text |Σ| Characters average LCP maximum LCP
length 500000 random, repeated 26 50 000 000 24 502 500.5 49 500 000
length 1000 random, repeated 26 50 000 000 24 999 000.5 49 999 000
length 20 random, repeated 15 50 000 000 24 999 980.5 49 999 980
{A}5·107

1 50 000 000 24 999 999.5 49 999 999

Table 4. Runtimes and space consumption of Larsson-Sadakane(LS), Manzini-
Ferragina(MF) and our difference cover algorithm(DC32) for worst-case strings. For
the first three databases the algorithm of Manzini and Ferragina did not finish within
24 hours, so we broke off the tests (marked with a -)

Text LS MF DC32
Time[sec] Space[MB] Time[sec] Space[MB] Time[sec] Space[MB]

500000 char repeats 1310.82 401.0 - - 618.91 295.4
1000 char repeats 1221.71 401.0 - - 1460.26 295.4
20 char repeats 1118.49 401.0 - - 808.36 295.4
{A}5·107

160.13 401.0 8.30 251.9 343.44 295.4



Fast Lightweight Suffix Array Construction and Checking 65

A, the speed of our implementation (DC32) is comparable to that of Larsson
and Sadakane (between 53% faster and 19% slower) but it saves 26% space. For
these instances, the algorithm of Manzini and Ferragina had runtimes of more
than one day (an estimate based on experiments with smaller datasets resulted
in a time of 2 weeks).

We also studied the effect of the choice of the difference cover on the per-
formance of the algorithm. For texts with low or moderate average LCP, large
covers result in lower runtimes and space requirements. However, for texts with
high average LCP, there exists a tradeoff between space and time consumption.
Figure 3 illustrates this with the results of experiments using difference covers
modulo 4 to 1024 applied to a random (symmetric Bernoulli) string with 50 mil-
lion characters and a high-LCP string of the same length (length 1000 random,
repeated). It clearly displays the different behaviour of our algorithm for low and
high average LCP texts. In addition to the better performance of large covers
for texts with low or moderate LCP, it shows that moderately sized covers are
relatively good overall performers.

300

350

 4  8  16  32  64  128  256  512  1024
200

500

1000

10000

30000

P
ro

ce
ss

 S
iz

e 
[M

B
]

T
im

e 
[s

ec
on

ds
]

Difference cover modulo x

High LCP, Time
Random, Time

Space

Fig. 3. Influence of the difference cover on performance

8 Suffix Array Checkers

A suffix array checker is an algorithm that takes a string and its suffix array
and verifies the correctness of the suffix array. In this section, we describe suffix
array checkers based on the following fact.

Theorem 2. An array SA[0, n) of integers is the suffix array of a string s[0, n)
if and only if the following conditions are satisfied:

1. For all i ∈ [0, n), SA[i] ∈ [0, n).
2. For all i ∈ [1, n), s[SA[i − 1]] ≤ s[SA[i]].
3. For all i ∈ [1, n) such that s[SA[i − 1]] = s[SA[i]] and SA[i − 1] �= n − 1,

there exists j, k ∈ [0, n) such that SA[j] = SA[i − 1] + 1, SA[k] = SA[i] + 1
and j < k.

We omit the proof here.



66 S. Burkhardt and J. Kärkkäinen

The conditions 1 and 2 are easy to check in linear time. For checking con-
dition 3, we can find the values j and k by j = ISA[SA[i − 1] + 1] and
k = ISA[SA[i] + 1] if the inverse suffix array ISA is available. Since ISA can
be computed from SA (or checked against SA) in linear time, we obtain a simple
linear time checker.

The drawback of the above algorithm is the extra space required for the
inverse suffix array. Therefore, we offer lightweight alternatives based on the
following alternative formulation of Condition 3:

For all characters c ∈ Σ: If SA[a, b] contains the suffixes starting with
the character c, then SA[a]+1, SA[a+1]+1, . . . ,SA[b]+1 occur in SA in
this order (but not consecutively in general), except that the first entry
SA[a] + 1 is missing when c = s[n − 1].

For a given character, checking the condition in linear time is trivial. This leads to
an O(σ2n) time, O(1) extra space algorithm, where σ2 is the number of distinct
characters that occur at least twice in s (no checking is needed for characters
that occur only once).

The following algorithm does the checking for all the characters in one pass.

The time and space complexity of the algorithm depends on the implemen-
tation of A. The algorithm performs O(n) accesses to A and everything else
runs in linear time and constant extra space. Simple implementations include a
lookup table, a hash table and a sorted array.

For large alphabets, the space requirement can approach the simpler inverse
suffix array checker. A simple optimization, already mentioned above, is to in-
clude only characters that occur at least twice. Furthermore, the σ2 characters
can be split into smaller groups and the lines 3–7 of the above algorithm per-
formed separately for each group. Limiting group size to d < σ2, the sorted
array implementation runs in O((σ2n/d) log d) time and O(d) extra space. Set-
ting d = n/

√
log n to match the space requirement of our construction algorithm,

we obtain an O(
n log σ2 + σ2 log1.5 n

)
time checker.

A straightforward sorted array implementation (to make it comparison based
as the construction algorithm is) never took more than half the construction time
and usually much less.



Fast Lightweight Suffix Array Construction and Checking 67

9 Discussion

We have described a suffix array construction algorithm that combines fast worst
case running times with small space consumption. The key idea behind the
algorithm is using a sample of suffixes based on a difference cover. There are
several further possibilities for extensions and variations of the algorithm. For
example, the algorithm can be extended to compute the longest common prefix
(LCP) of each pair of adjacent suffixes with the same time and extra space limits.
There is a linear time LCP algorithm [14] but it requires 4n bytes of extra space.

Another application is sorting a subset of suffixes. Some special kinds of sub-
sets can be sorted efficiently [12,2,6,17]. Also, the technique of Section 5 can
be used when the set of starting positions is periodic. However, the previous
alternatives for sorting an arbitrary subset of m suffixes of a string of length
n are string sorting, with Ω(nm) worst case running time, and full suffix ar-
ray construction, with Ω(n) extra space requirement. Phase 2 of the difference
cover algorithm works just as well for an arbitrary subset of suffixes, giving an
algorithm that runs in O(

√
vn + (n/

√
v) log(n/

√
v) + vm + m log m) time and

O(v + n/
√

v) extra space. For example, if m = n/ log n, by choosing v = log2 n
we obtain an O(n log n) time and O(n/ log n) = O(m) extra space algorithm.

The basic idea of using difference covers can also be realized in ways that are
quite different from the present one. This is demonstrated by the linear time (but
not lightweight) algorithm in [11]. To illustrate the similarities and differencies
of the two algorithms, we give a brief description (which is quite different from
the one in [11]) of the linear time algorithm:

Phase 0. Choose v = 3 and D = {1, 2}. Then the D-sample contains two thirds
of the suffixes.

Phase 1. Perform the same steps as in Phase 1 of the present algorithm but do
Step 1.1 by radix sort and Step 1.3 by a recursive call.

Phase 2(a). Perform Phase 2 on the remaining one third of the suffixes (not
on all suffixes) using radix sort for both steps. Note that using radix sort in
Step 2.2 is possible because δ(i, j) = 1 for all i, j ≡ 0 (mod 3).

Phase 2(b). Merge the two sorted groups of suffixes. Comparisons of suffixes
are done as in Phase 2 of the present algorithm.

References

1. M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch. The enhanced suffix array and
its applications to genome analysis. In Proc. 2nd Workshop on Algorithms in
Bioinformatics, volume 2452 of LNCS, pages 449–463. Springer, 2002.

2. A. Andersson, N. J. Larsson, and K. Swanson. Suffix trees on words. Algorithmica,
23(3):246–260, 1999.

3. J. L. Bentley and R. Sedgewick. Fast algorithms for sorting and searching strings.
In Proc. 8th Annual Symposium on Discrete Algorithms, pages 360–369. ACM,
1997.

4. M. Blum and S. Kannan. Designing programs that check their work. J. ACM,
42(1):269–291, Jan. 1995.



68 S. Burkhardt and J. Kärkkäinen

5. M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algo-
rithm. Technical Report 124, SRC (digital, Palo Alto), May 1994.

6. R. Clifford. Distributed and paged suffix trees for large genetic databases. In Proc.
14th Annual Symposium on Combinatorial Pattern Matching. Springer, 2003. This
volume.

7. C. J. Colbourn and A. C. H. Ling. Quorums from difference covers. Inf. Process.
Lett., 75(1–2):9–12, July 2000.

8. M. Farach. Optimal suffix tree construction with large alphabets. In Proc. 38th
Annual Symposium on Foundations of Computer Science, pages 137–143. IEEE,
1997.

9. G. Gonnet, R. Baeza-Yates, and T. Snider. New indices for text: PAT trees and
PAT arrays. In W. B. Frakes and R. Baeza-Yates, editors, Information Retrieval:
Data Structures & Algorithms. Prentice-Hall, 1992.

10. H. Itoh and H. Tanaka. An efficient method for in memory construction of suffix
arrays. In Proc. 6th Symposium on String Processing and Information Retrieval,
pages 125–136. IEEE, 1999.

11. J. Kärkkäinen and P. Sanders. Simple linear work suffix array construction. In
Proc. 13th International Conference on Automata, Languages and Programming.
Springer, 2003. To appear.

12. J. Kärkkäinen and E. Ukkonen. Sparse suffix trees. In Proc. 2nd Annual Interna-
tional Conference on Computing and Combinatorics, volume 1090 of LNCS, pages
219–230. Springer, 1996.

13. R. M. Karp, R. E. Miller, and A. L. Rosenberg. Rapid identification of repeated
patterns in strings, trees and arrays. In Proc. 4th Annual Symposium on Theory
of Computing, pages 125–136. ACM, 1972.

14. T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park. Linear-time longest-
common-prefix computation in suffix arrays and its applications. In Proc. 12th
Annual Symposium on Combinatorial Pattern Matching, volume 2089 of LNCS,
pages 181–192. Springer, 2001.

15. J. Kilian, S. Kipnis, and C. E. Leiserson. The organization of permutation architec-
tures with bused interconnections. IEEE Transactions on Computers, 39(11):1346–
1358, Nov. 1990.

16. D. K. Kim, J. S. Sim, H. Park, and K. Park. Linear-time construction of suffix
arrays. In Proc. 14th Annual Symposium on Combinatorial Pattern Matching.
Springer, 2003. This volume.

17. P. Ko and S. Aluru. Linear time construction of suffix arrays. In Proc. 14th Annual
Symposium on Combinatorial Pattern Matching. Springer, 2003. This volume.

18. S. Kurtz. Reducing the space requirement of suffix trees. Software – Practice and
Experience, 29(13):1149–1171, 1999.

19. N. J. Larsson and K. Sadakane. Faster suffix sorting. Technical report LU-CS-
TR:99–214, Dept. of Computer Science, Lund University, Sweden, 1999.

20. W.-S. Luk and T.-T. Wong. Two new quorum based algorithms for distributed mu-
tual exclusion. In Proc. 17th International Conference on Distributed Computing
Systems, pages 100–106. IEEE, 1997.

21. U. Manber and G. Myers. Suffix arrays: A new method for on-line string searches.
SIAM J. Comput., 22(5):935–948, Oct. 1993.

22. G. Manzini and P. Ferragina. Engineering a lightweight suffix array construction
algorithm. In Proc. 10th Annual European Symposium on Algorithms, volume 2461
of LNCS, pages 698–710. Springer, 2002.

23. E. M. McCreight. A space-economic suffix tree construction algorithm. J. ACM,
23(2):262–272, 1976.



Fast Lightweight Suffix Array Construction and Checking 69

24. J. Seward. On the performance of BWT sorting algorithms. In Proc. Data Com-
pression Conference, pages 173–182. IEEE, 2000.

25. J. Seward. The bzip2 and libbzip2 official home page, 2002.
http://sources.redhat.com/bzip2/.

26. E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260,
1995.

27. H. Wasserman and M. Blum. Software reliability via run-time result-checking.
J. ACM, 44(6):826–849, Nov. 1997.

28. P. Weiner. Linear pattern matching algorithm. In Proc. 14th Symposium on Switch-
ing and Automata Theory, pages 1–11. IEEE, 1973.

http://sources.redhat.com/bzip2/

	Introduction
	Basic Idea
	Tools
	The Algorithm
	Sorting the Sample
	Implementation
	Experiments
	Suffix Array Checkers
	Discussion

