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Suffix arrays are a simple and powerful data structure for text processing that can be used for
full text indexes, data compression, and many other applications in particular in bioinformatics.
However, so far it has looked prohibitive to build suffix arrays for huge inputs that do not fit into
main memory. This paper presents design, analysis, implementation, and experimental evaluation
of several new and improved algorithms for suffix array construction. The algorithms are asymp-
totically optimal in the worst case or on the average. Our implementation can construct suffix
arrays for inputs of up to 4GBytes in hours on a low cost machine.

As a tool of possible independent interest we present a systematic way to design, analyze, and
implement pipelined algorithms.

Categories and Subject Descriptors: E.1 [Data Structures]: suffix arrays; F.2.2 [Nonnumerical
Algorithms and Problems]: algorithms for strings; D.4.2 [Storage Management]: secondary
storage

General Terms: Algorithms, Experimentation, Performance

Additional Key Words and Phrases: algorithm engineering, algorithms for strings, external mem-
ory, I/O-efficient, large data sets, secondary memory, suffix array

1. INTRODUCTION

The suffix array [Manber and Myers 1993; Gonnet et al. 1992], a lexicographically
sorted array of the suffixes of a string, has numerous applications, e.g., in string
matching [Manber and Myers 1993; Gonnet et al. 1992], genome analysis [Abouel-
hoda et al. 2002] and text compression [Burrows and Wheeler 1994]. For example,
one can use it as full text index: To find all occurrences of a pattern P in a text T
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do binary search in the suffix array of T , i.e., look for the interval of suffixes that
have P as a prefix. A lot of effort has been devoted to efficient construction of suf-
fix arrays, culminating recently in three direct linear time algorithms [Kärkkäinen
et al. 2006; Kim et al. 2003; Ko and Aluru 2003]. One of the linear time algo-
rithms [Kärkkäinen et al. 2006] is very simple and can also be adapted to obtain
an optimal algorithm for external memory: The DC3-algorithm [Kärkkäinen et al.
2006] constructs a suffix array of a text T of length n using O(sort(n)) I/Os where
sort(n) is the number of I/Os needed for sorting the characters of T .

However, suffix arrays are still rarely used for processing huge inputs. Less pow-
erful techniques like an index of all words appearing in a text are very simple,
have favorable constant factors and can be implemented to work well with exter-
nal memory for practical inputs. In contrast, the only previous external memory
implementations of suffix array construction [Crauser and Ferragina 2002] are not
only asymptotically suboptimal but also so slow that measurements could only be
done for small inputs and artificially reduced internal memory size.

The main objective of the present paper is to narrow the gap between theory
and practice by engineering algorithms for constructing suffix arrays that are at
the same time asymptotically optimal and the best practical algorithms, and that
can process really large inputs in realistic time. In the context of this paper, “en-
gineering” includes algorithm design, theoretical analysis, careful implementation,
and experiments with large, realistic inputs all working together to improve rele-
vant constant factors, to understand realistic inputs, and to obtain fair comparisons
between different algorithms.

1.1 Basic Concepts.

We use the shorthands [i, j] = {i, . . . , j} and [i, j) = [i, j − 1] for ranges of integers
and extend to substrings as seen below. The input of our algorithms is an n
character string T = T [0] · · ·T [n − 1] = T [0, n) of characters in the alphabet Σ =
[1, n]. The restriction to the alphabet [1, n] is not a serious one. For a string T
over any alphabet, we can first sort the characters of T , remove duplicates, assign
a rank to each character, and construct a new string T ′ over the alphabet [1, n]
by renaming the characters of T with their ranks. Since the renaming is order
preserving, the order of the suffixes does not change. A similar technique called
lexicographic naming will play an important role in all of our algorithms where a
string (e.g., a substring of T ) is replaced by its rank in some set of strings.

Let $ be a special character that is smaller than any character in the alphabet.
We use the convention that T [i] = $ if i ≥ n. Ti = T [i, n) denotes the i-th
suffix of T . The suffix array SA of T is a permutation of [0, n) such that TSA[i] <
TSA[j] whenever 0 ≤ i < j < n. Let lcp(i, j) denote the longest common prefix
length of SA[i] and SA[j] (lcp(i, j) = 0 if i < 0 or j ≥ n). Then dps(i) :=
1 + max {lcp(i − 1, i), lcp(i, i + 1)} is the distinguishing prefix size of Ti. We get
the following derived quantities that can be used to characterize the “difficulty” of
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an input or that will turn out to play such a role in our analysis.

maxlcp := max
0≤i<n

lcp(i, i + 1) (1)

lcp :=
1

n

∑

0≤i<n

lcp(i, i + 1) (2)

log dps :=
1

n

∑

0≤i<n

log(dps(i)) (3)

The I/O model [Vitter and Shriver 1994] assumes a machine with fast memory
of size M words and a secondary memory that can be accessed by I/Os to blocks of
B consecutive words on each of D disks [Vitter and Shriver 1994]. Our algorithms
use words of size ⌈log n⌉ bits for inputs of size n. Sometimes it is assumed that an
additional bit can be squeezed in somewhere. We express all our I/O complexities
in terms of the shorthands scan(x) = ⌈x/(DB)⌉ for sequentially reading or writing

x words and sort(x) ≈ 2x
DB

⌈

logM/B
x
M

⌉

for sorting x words of data (not counting

the 2scan(x) I/Os for reading the input and writing the output).
Our algorithms are described using high level Pascal like pseudocode mixed with

mathematical notation. The scope of control structures is determined by inden-
tation. We extend set notation to sequences in the obvious way. For example
〈i : i is prime〉 = 〈2, 3, 5, 7, 11, 13, . . .〉 in that order.

1.2 Overview.

In Section 2 we present the doubling algorithm [Arge et al. 1997; Crauser
and Ferragina 2002] for suffix array construction that has I/O complexity
O(sort(n log maxlcp)). This algorithm sorts strings of size 2k in the k-th iteration.
Our variant already yields some small optimization opportunities.

Using this simple algorithm as an introductory example, Section 3 then system-
atically introduces the technique of pipelined processing of sequences which saves
a factor of at least two in I/Os for many external algorithms and is supported by
our external memory library Stxxl [Dementiev et al. 2005]. The main technical
result of this section is a theorem that allows easy analysis of the I/O complex-
ity of pipelined algorithms. This theorem is also applied to more sophisticated
construction algorithms presented in the subsequent sections.

Section 4 gives a simple and efficient way to discard suffixes from fur-
ther iterations of the doubling algorithm when their position in the suffix
array is already known. This leads to an algorithm with I/O complexity
O(sort(n log dps)) improving on a previous discarding algorithm with I/O com-
plexity O(sort(n log dps) + scan(n log maxlcp)) [Crauser and Ferragina 2002]. A
further constant factor is gained in Section 5 by considering a generalization of the
doubling technique that sorts strings of size ak in iteration k. The best multiplica-
tion factor is four (quadrupling) or five. A pipelined optimal algorithm with I/O
complexity O(sort(n)) in Section 6 and its generalization in Section 7 conclude our
sequence of suffix array construction algorithms.

A useful tool for testing our implementations was a fast and simple external
memory checker for suffix arrays described in Section 8.

In Section 9 we report on extensive experiments using synthetic difficult inputs,

Journal of the ACM, Vol. V, No. N, M 20YY.



4 · Roman Dementiev et al.

the human genome, English books, web-pages, and program source code using
inputs of up to 4 GByte on a low cost machine and a faster high-end system.
The theoretically optimal algorithm turns out to be the winner closely followed by
quadrupling with discarding.

Section 10 summarizes the overall results and discusses how even larger suffix
arrays could be build.

1.3 More Related Work.

The first I/O optimal algorithm for suffix array construction [Farach-Colton et al.
2000] is based on suffix tree construction and introduced the basic divide-and-
conquer approach that is also used by DC3. However, the algorithm from [Farach-
Colton et al. 2000] is very complex such that the constant factors hidden in the O()-
notation are very high. Therefore implementing the algorithm looks not promising.

There is an extensive implementation study for external suffix array construction
by Crauser and Ferragina [Crauser and Ferragina 2002]. They implement several
nonpipelined variants of the doubling algorithm [Arge et al. 1997] including one
that discards unique suffixes. However, this variant of discarding still needs to
scan all unique tuples in each iteration. Our discarding algorithm eliminates these
scanning costs which dominate the I/O volume for many inputs. Interestingly,
an algorithm that fares very well in the study of [Crauser and Ferragina 2002] is
the GBS-algorithm [Gonnet et al. 1992] that takes O

(

N
M scan(n)

)

I/Os. We have
not implemented this algorithm not only because more scalable algorithms are
more interesting but also because all our algorithmic improvements (pipelining,
discarding, quadrupling, the DC3-algorithm) add to a dramatic reduction in I/O
volume and are not applicable to the GBS-algorithm. Moreover, the GBS-algorithm
is quite expensive with respect to internal work, which contributes significantly to
the running time on our system as shown by the experiments. Nevertheless it should
be kept in mind that the GBS-algorithm might be interesting for small inputs and
fast machines with slow I/O.

There has been considerable interest in space efficient internal memory algo-
rithms for constructing suffix arrays [Manzini and Ferragina 2002; Burkhardt and
Kärkkäinen 2003] and even more compact full-text indexes [Lam et al. 2002; Hon
et al. 2003; Hon et al. 2003]. We view this as an indication that internal memory
is too expensive for the big suffix arrays one would like to build. Going to external
memory can be viewed as an alternative and more scalable solution to this problem.
Once this step is made, space consumption is less of an issue because disk space is
two orders of magnitude cheaper than RAM.

The biggest suffix array computations we are aware of are for the human genome
[Sadakane and T.Shibuya 2001; Lam et al. 2002]. One [Lam et al. 2002] com-
putes the compressed suffix array on a PC with 3 GBytes of memory in 21 hours.
Compressed suffix arrays work well in this case (they need only 2 GByte of space)
because the small alphabet size present in genomic information enables efficient
compression. The other implementation [Sadakane and T.Shibuya 2001] uses a su-
percomputer with 64 GBytes of memory and needs 7 hours. Our algorithms have
comparable speed using external memory.

Suffix arrays are not used in search engines, instead they use simpler data struc-
tures like inverted word indexes. These data structures are fast for short simple
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Function doubling(T )
S:= 〈((T [i], T [i + 1]), i) : i ∈ [0, n)〉 (0)
for k := 1 to ⌈log n⌉ do

sort S (1)
P := name(S) (2)
invariant ∀(c, i) ∈ P : c is a lexicographic name for T [i, i + 2k)

if the names in P are unique then return 〈i : (c, i) ∈ P 〉 (3)
sort P by (i mod 2k, i div 2k)) (4)
S:= 〈((c, c′), i) : j ∈ [0, n), (c, i) = P [j], (c′, i + 2k) = P [j + 1]〉 (5)

Function name(S : Sequence of Pair)
q:= r:= 0; (ℓ, ℓ′):= ($, $)
result := 〈〉
foreach ((c, c′), i) ∈ S do

q++
if (c, c′) 6= (ℓ, ℓ′) then r:= q; (ℓ, ℓ′):= (c, c′)
append (r, i) to result

return result

Fig. 1. The doubling algorithm.

queries, however, if the query is a long phrase they cannot guarantee the optimal
query time achievable with suffix arrays.

Pipelining to reduce I/Os is well known technique in executing database queries
[Silberschatz et al. 2001]. However, previous algorithm libraries for external memory
[Arge et al. 2002; Crauser and Mehlhorn 1998] do not support it. We decided quite
early in the design of our library Stxxl [Dementiev et al. 2005] that we wanted
to remove this deficit. Since suffix array construction can profit immensely from
pipelining and since the different algorithms give a rich set of examples, we decided
to use this application as a test bed for a prototype implementation of pipelining.

2. DOUBLING ALGORITHM

Figure 1 gives pseudocode for the doubling algorithm [Arge et al. 1997; Crauser
and Ferragina 2002]. The basic idea is to replace characters T [i] of the input by
lexicographic names that respect the lexicographic order of the length 2k substring
T [i, i + 2k) in the k-th iteration. In contrast to previous variants of this algorithm,
our formulation never actually builds the resulting string of names. Rather, it
manipulates a sequence P of pairs (c, i) where each name c is tagged with its
position i in the input. To obtain names for the next iteration k + 1, the names for
T [i, i+2k) and T [i+2k, i+2k+1) together with the position i are stored in a sequence
S and sorted. The new names can now be obtained by scanning this sequence and
comparing adjacent tuples. Sequence S can be build using consecutive elements
of P if we sort P using the pair (i mod 2k, i div 2k). 1 Previous formulations
of the algorithm use i as a sorting criterion and therefore have to access elements
that are 2k characters apart. Our approach saves I/Os and simplifies the pipelining
optimization described in Section 3.

1(i mod 2k, i div 2k) can also be computed using a single left rotation by k-bits of the binary
representation of i.
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The algorithm performs a constant number of sorting and scanning operations
for sequences of size n in each iteration. The number of iterations is determined by
the logarithm of the longest common prefix.

Theorem 2.1. The doubling algorithm computes a suffix array using
O(sort(n) ⌈log maxlcp⌉) I/Os.

3. PIPELINING

The I/O volume of the doubling algorithm from Figure 1 can be reduced signifi-
cantly by observing that rather than writing the sequence S to external memory,
we can directly feed it to the sorter in Line (1). Similarly, the sorted tuples need
not be written but can be directly fed into the naming procedure in Line (2) which
can in turn forward it to the sorter in Line (4). The result of this sorting operation
need not be written but can directly yield tuples of S that can be fed into the next
iteration of the doubling algorithm. For simplicity assume for now that inputs are
not too large (O

(

M2/B
)

) so that sorting m words can be done in 4m/DB I/Os
using two passes over the data. For example, one run formation phase could build
sorted runs of size M and one multiway merging phase could merge the runs into
a single sorted sequence.

Line (1) sorts n triples and hence needs 12n/DB I/Os. Naming in Line (2) scans
the triples and writes name-index pairs using 3n/DB + 2n/DB = 5n/DB I/Os.
The naming procedure can also determine whether all names are unique now, hence
the test in Line (3) needs no I/Os. Sorting the pairs in P in Line (4) costs 8n/DB
I/Os. Scanning the pairs and producing triples in Line (5) costs another 5n/DB
I/Os. Overall, we get (12 + 5 + 8 + 5)n/DB = 30n/DB I/Os for each iteration.

This can be radically reduced by interpreting the sequences S and P not as
files but as pipelines similar to the pipes available in UNIX. In the beginning we
explicitly scan the input T and produce triples for S. We do not count these I/Os
since they are not needed for the subsequent iterations. The triples are not output
directly but immediately fed into the run formation phase of the sorting operation
in Line (1). The runs are output to disk (3n/DB I/Os). The multiway merging
phase reads the runs (3n/DB I/Os) and directly feeds the sorted triples into the
naming procedure called in Line (2) which generates pairs that are immediately fed
into the run formation process of the next sorting operation in Line (3) (2n/DB
I/Os). The multiway merging phase (2n/DB I/Os) for Line (3) does not write the
sorted pairs but in Line (4) it generates triples for S that are fed into the pipeline
for the next iteration. We have eliminated all the I/Os for scanning and half of the
I/Os for sorting resulting in only 10n/DB I/Os per iteration — only one third of
the I/Os needed for the naive implementation.

Note that pipelining would have been more complicated in the more traditional
formulation where Line (3) sorts P directly by the index i. In that case, a pipelining
formulation would require a FIFO of size 2k to produce shifted sequences. When
2k > M this FIFO would have to be maintained externally causing 2n/DB addi-
tional I/Os per iteration, i.e., our modification simplifies the algorithm and saves
up to 20 % I/Os.

Let us discuss a more systematic model: The computations in many external
memory algorithms can be viewed as a data flow through a directed acyclic graph
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G = (V = F ∪ S ∪ R, E). The file nodes F represent data that has to be stored
physically on disk. When a file node f ∈ F is accessed we need a buffer of size
b(f) = Ω (BD). The streaming nodes s ∈ S read zero, one or several sequences and
output zero, one or several new sequences using internal buffers of size b(s).2 The
Sorting nodes r ∈ R read a sequence and output it in sorted order. Sorting nodes
have a buffer requirement of b(r) = Θ(M) and outdegree one3. Edges are labeled
with the number of machine words w(e) flowing between two nodes. In the proof
of Theorem 3.2 the flow graph for the pipelined doubling algorithm is shown. We
will see somewhat more complicated graphs in Sections 4 and 6. The following
theorem gives necessary and sufficient conditions for an I/O efficient execution of
such a data flow graph. Moreover, it shows that streaming computations can be
scheduled completely systematically in an I/O efficient way.

Theorem 3.1. The computations of a data flow graph G = (V = F ∪ S ∪R, E)
with edge flows w : E → R+ and buffer requirements b : V → R+ can be executed
using

∑

e∈E∩(F×V ∪V ×F )

scan(w(e)) +
∑

e∈E∩(V ×R)

sort(w(e)) (4)

I/Os iff the following conditions are fulfilled: 1. G is a DAG. 2. Consider the
undirected graph G′ = (S, {{u, v} : (u, v) ∈ E ∩ (S × S)}) induced by the streaming
nodes. The total buffer requirement of each connected component C of G′ plus the
buffer requirements of the nodes directly connected to C in G do not exceed the
internal memory size M .

Proof. The basic observation is that all streaming nodes within a connected
component C of G′ must be executed together exchanging data through their inter-
nal buffers — if any node from C is excluded it will eventually stall the computation
because an input or an output buffer fills up. 4

Now assume that G fulfills the requirements. We schedule the computations for
each connected component (CC) of G′ in topologically sorted order. First consider
a CC C of streaming nodes. We perform in a single pass all the computations
of the streaming nodes in C, reading from the file nodes with edges entering C,
writing to the file nodes with edges coming from C, performing the first phase of
sorting (e.g., run formation) of the sorting nodes with edges coming from C, and
performing the last phase of sorting (e.g. multiway merging) for the sorting nodes
with edges entering C. The requirement on the buffer sizes ensures that there is
sufficient internal memory. The topological sorting ensures that all the data from
incoming edges is available. Since there are only streaming nodes in C, data can
freely flow through them respecting the topological sorting of G.5

2Streaming nodes may cause additional I/Os for internal processing, e.g., for large FIFO queues
or priority queues. These I/Os are not counted in our analysis.
3We could allow additional outgoing edges at an I/O cost n/DB. However, this would mean to
perform the last phase of the sorting algorithm several times.
4For example, in Figure 7, nodes 13 and 14 are executed together. Any set of pipelining node not
separated from each other by file nodes or sorting nodes has data dependencies that require them
to be executed together.
5In our implementations the detailed scheduling within the components is done by the user to
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When a sorting node is encountered as a CC we may have to perform I/Os
to make sure that the final phase can incrementally produce the sorted elements.
However for a sorting volume of O

(

M2/B
)

, multiway merging only needs the run
formation phase that will already be done and the final merging phase that will be
done later. For CCs consisting of file nodes we do nothing.

Theorem 3.1 can be used to design and analyze pipelined external memory al-
gorithms in a systematic way. All we have to do is to give a data flow graph that
fulfills the requirements and we can then read off the I/O complexity. Using the
relations a · scan(x) = scan(a ·x) +O(1) and a · sort(x) ≤ sort(a ·x)+O(1), we can
represent the result in the form scan(x) + sort(y) + O(1), i.e., we can characterize
the complexity in terms of the sorting volume x and the scanning volume y. One
could further evaluate this function by plugging in the I/O complexity of a partic-
ular sorting algorithm (e.g., ≈ 2x/DB for x ≪ M2/DB and M ≫ DB) but this
may not be desirable because we lose information. In particular, scanning implies
less internal work and can usually be implemented using bulk I/Os in the sense
of [Crauser and Ferragina 2002] (we then need larger buffers b(v) for file nodes)
whereas sorting requires many random accesses for information theoretic reasons
[Aggarwal and Vitter 1988].

We will also draw data flow graphs with cycles. These will be abbreviations for
larger flow graphs with all cycles unrolled a number of times clear from the context.

Now we apply Theorem 3.1 to the doubling algorithm:

Theorem 3.2. The doubling algorithm from Figure 1 can be implemented to run
using sort(5n) ⌈log(1 + maxlcp)⌉ + O(sort(n)) I/Os.

Proof. The following flow graph shows that each iteration can be implemented
using sort(2n) + sort(3n) ≤ sort(5n) I/Os. The numbers refer to the line numbers
in Figure 1.

1 2 54
3n 2n

sorting nodenodestreaming 

After ⌈log(1 + maxlcp)⌉ iterations, the algorithm finishes. The O(sort(n)) term
accounts for the I/Os needed in Line 0 and for computing the final result. Note
that there is a small technicality here: Although naming can find out “for free”
whether all names are unique, the result is known only when naming finishes.
However, at this time, the first phase of the sorting step in Line 4 has also finished
and has already incurred some I/Os. Moreover, the convenient arrangement of the
pairs in P is destroyed now. However we can then abort the sorting process, undo
the wrong sorting, and compute the correct output.

In Stxxl the data flow nodes are implemented as objects with an interface similar
to the STL input iterators [Dementiev et al. 2005]. A node reads data from input
nodes using their * operators. With help of their preincrement operators a node
proceeds to the next elements of the input sequences. The interface also defines an

keep the overhead small. However, one could also schedule them automatically, possibly using
multithreading.
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2,10 3,11 4 5 6 71

P

98
3N 2N 2ninput

2n2n

output

Fig. 2. Data flow graph for the doubling + discarding . The numbers refer to line numbers in
Figure 4. The edge weights are sums over the whole execution with N = n log dps.

Function name2 (S : Sequence of Pair)
q:= q′:= 0; (ℓ, ℓ′):= ($, $)
result := 〈〉
foreach ((c, c′), i) ∈ S do

if c 6= ℓ then q:= q′:= 0; (ℓ, ℓ′):= (c, c′)
else if c′ 6= ℓ′ then q′:= q; ℓ′:= c′

append (c + q′, i) to result
q++

return result

Fig. 3. The alternative naming procedure.

empty() function which signals the end of the sequence. After creating all node
objects, the computation starts in a “lazy” fashion, first trying to evaluate the result
of the topologically latest node. The node reads its input nodes element by element.
Those nodes continue in the same mode, pulling the inputs needed to produce an
output element. The process terminates when the result of the topologically latest
node is computed. To support nodes with more than one output, Stxxl exposes
an interface where a node generates output accessible not only via the * operator
but a node can also push an output element to output nodes.

The library already offers basic generic classes which implement the functionality
of sorting, file, and streaming nodes. The sorting implementations run in optimal

O
(

x
DB logM/B

x
M

)

I/Os, scanning and file node implementations in O
(

x
DB

)

I/Os,

taking the advantage of parallel disks.

4. DISCARDING

Let ck
i be the lexicographic name of T [i, i + 2k), i.e., the value paired with i at

iteration k in Figure 1. Since ck
i is the number of strictly smaller substrings of

length 2k, it is a non-decreasing function of k. More precisely, ck+1
i − ck

i is the
number of positions j such that ck

j = ck
i but ck

j+2k < ck
i+2k . This provides an

alternative way of computing the names given in Figure 3.
Another consequence of the above observation is that if ck

i is unique, i.e., ck
j 6= ck

i

for all j 6= i, then ch
i = ck

i for all h > k. The idea of the discarding algorithm is
to take advantage of this, i.e., discard pair (c, i) from further iterations once c is
unique. A key to this is the new naming procedure in Figure 3, because it works
correctly even if we exclude from S all tuples ((c, c′), i), where c is unique. Note,
however, that we cannot exclude ((c, c′), i) if c′ is unique but c is not. Therefore,
we will partially discard (c, i) when c is unique. We will fully discard (c, i) = (ck

i , i)
when also either ck

i−2k or ck
i−2k+1 is unique, because then in any iteration h > k,
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Function doubling + discarding(T )
S:= 〈((T [i], T [i + 1]), i) : i ∈ [0, n)〉 (1)
sort S (2)
U := name(S) //undiscarded (3)
P := 〈〉 //partially discarded
F := 〈〉 // fully discarded

for k := 1 to ⌈log n⌉ do
mark unique names in U (4)
sort U by (i mod 2k , i div 2k) (5)
merge P into U ; P := 〈〉 (6)
S:= 〈〉; count := 0
foreach (c, i) ∈ U do (7)

if c is unique then
if count < 2 then append (c, i) to F

else append (c, i) to P
count := 0

else
let (c′, i′) be the next pair in U
append ((c, c′), i) to S
count++

if S = ∅ then
sort F by first component (8)
return 〈i : (c, i) ∈ F 〉 (9)

sort S (10)
U := name2 (S) (11)

Fig. 4. The doubling with discarding algorithm.

the first component of the tuple ((ch
i−2h , ch

i ), i − 2h) must be unique. The final
algorithm is given in Figure 4.

Theorem 4.1. Doubling with discarding can be implemented to run using
sort(5n log dps) + O(sort(n)) I/Os.

Proof. We prove the theorem by showing that the total amount of data in the
different steps of the algorithm over the whole execution is as in the data flow
graph in Figure 2. The nontrivial points are that at most N = n log dps tuples
are processed in each sorting step over the whole execution and that at most n
tuples are written to P . The former follows from the fact that a suffix i is involved
in the sorting steps as long as it has a non-unique rank, which happens in exactly
⌈log(1+dps(i))⌉ iterations. To show the latter, we note that a tuple (c, i) is written
to P in iteration k only if the previous tuple (c′, i − 2k) was not unique. That
previous tuple will become unique in the next iteration, because it is represented
by ((c′, c), i − 2k) in S. Since each tuple turns unique only once, the total number
of tuples written to P is at most n.

A slightly different algorithm with the same asymptotic complexity is described
in [Kärkkäinen 2003]. The discarding algorithm in [Crauser and Ferragina 1999;
2002] does partial but not full discarding, adding the term O(scan(n log maxlcp))
to its complexity.
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Function atupling(T )
S:= 〈((T [i], T [i + 1], . . . , T [i + a − 1)]), i) : i ∈ [0, n)〉
for k := 1 to ⌈logan⌉ do

sort S
P := name(S)
invariant ∀(c, i) ∈ P :c is a lexicographic name for T [i, i + ak)

if the names in P are unique then return 〈i : (c, i) ∈ P 〉
sort P by (i mod ak, i div ak))
S:= 〈((c0, . . . , cq, . . . , ca−1), i) : j ∈ [0, n), (cq, i + q · ak) = P [j + q], q ∈ [0, a)〉

Fig. 5. The a-tupling algorithm.

5. FROM DOUBLING TO A-TUPLING

It is straightforward to generalize the doubling algorithms from Figures 1 and 4 so
that it maintains the invariant that in iteration k, lexicographic names represent
strings of length ak: just gather a names from the last iteration that are ak−1

characters apart. Sort and name as before. The pseudocode of the generalized
doubling algorithm without discarding is presented in Figure 5.

Theorem 5.1. The a-tupling algorithm can be implemented to run using

sort(
a + 3

log a
n) log maxlcp + O(sort(n)) or

sort(
a + 3

log a
n) log dps + O(sort(n))

I/Os without or with discarding respectively.

We get a tradeoff between higher cost for each iteration and a smaller number of
iterations that is determined by the ratio a+3

log a . Evaluating this expression we get

the optimum for a = 5 (Table I). But the value for a = 4 is only 1.5 % worse,
needs less memory, and calculations are much easier because four is a power two.
Hence, we choose a = 4 for our implementation of the a-tupling algorithm. This
quadrupling algorithm needs 30 % less I/Os than doubling.

Table I. I/O requirements for different variants of the a-tupling algo-
rithm. The entries specify the variable x defined in the column headings.
+O(sort(n)) terms are omitted.

a 2 3 4 5 6 7

(a + 3)/ log a 5.00 3.78 3.50 3.45 3.48 3.56

6. A PIPELINED I/O-OPTIMAL ALGORITHM

The following three-step algorithm outlines a linear time algorithm for suffix array
construction [Kärkkäinen et al. 2006]:
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(1) Construct the suffix array of the suffixes starting at positions i mod 3 6= 0. This
is done by reduction to the suffix array construction of a string of two thirds
the length, which is solved recursively.

(2) Construct the suffix array of the remaining suffixes using the result of the first
step.

(3) Merge the two suffix arrays into one.

Figure 6 gives pseudocode for an external implementation of this algorithm and
Figure 7 gives a data flow graph that allows pipelined execution. Step 1 is im-
plemented by Lines (1)–(6) and starts out quite similar to the tripling (3-tupling)
algorithm described in Section 5. The main difference is that triples are only ob-
tained for two thirds of the suffixes and that we use recursion to find lexicographic
names that exactly characterize the relative order of these sample suffixes. As a
preparation for the Steps 2 and 3, in lines (7)–(10) these sample names are used
to annotate each suffix position i with enough information to determine its global
rank. More precisely, at most two sample names and the first one or two char-
acters suffice to completely determine the rank of a suffix. This information can
be obtained I/O efficiently by simultaneously scanning the input and the names of
the sample suffixes sorted by their position in the input. With this information,
Step 2 reduces to sorting suffixes Ti with i mod 3 = 0 by their first character and
the name for Ti+1 in the sample (Line 11). Line (12) reconstructs the order of the
mod-2 suffixes and mod-3 suffixes. Line (13) implements Step 3 by ordinary com-
parison based merging. The slight complication is the comparison function. There
are three cases:

—A mod-0 suffix Ti can be compared with a mod-1 suffix Tj by looking at the first
characters and the names for Ti+1 and Tj+1 in the sample respectively.

—For a comparison between a mod-0 suffix Ti and a mod-2 suffix Tj the above
technique does not work since Tj+1 is not in the sample. However, both Ti+2

and Tj+2 are in the sample so that it suffices to look at the first two characters
and the names of Ti+2 and Tj+2 respectively.

—Mod-1 suffixes and Mod-2 suffixes can be compared by looking at their names in
the sample.

The resulting data flow graph is large but fairly straightforward except for the file
node which stores a copy of input stream T . The problem is that the input is
needed twice. First, Line 2 uses it for generating the sample and later, the node
implementing Lines (8)–(10) scans it simultaneously with the names of the sample
suffixes. It is not possible to pipeline both scans because we would violate the
requirement of Theorem 3.1 that edges between streaming nodes must not cross
sorting nodes. This problem can be solved by writing a temporary copy of the
input stream. Note that this is still cheaper than using a file representation for
the input since this would mean that this file is read twice. We are now ready to
analyze the I/O complexity of the algorithm.

Theorem 6.1. The DC3 algorithm from Figure 6 can be implemented to run
using sort(30n) + scan(6n) I/Os.

Proof. Let V (n) denote the number of I/Os for the external DC3 algorithm.
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Function DC3 (T )
S:= 〈((T [i, i + 2]), i) : i ∈ [0, n), i mod 3 6= 0〉 //mod12 suffixes (1)
sort S by the first component // sort triples (2)
P := name(S) //name triples (3)
if the names in P are not unique then

sort the (i, r) ∈ P by (i mod 3, i div 3) //build recursive input (4)

SA12:= DC3 (〈c : (c, i) ∈ P 〉) // recurse (5)
P := 〈(j + 1,SA12[j]) : j ∈ [0, 2n/3)〉 (6)

sort P by the second component // inverse SA of sample (7)
S0:= 〈(T [i], T [i + 1], c′, c′′, i) : i mod 3 = 0, (c′, i + 1), (c′′, i + 2) ∈ P 〉 (8)
S1:= 〈(c, T [i], c′, i) : i mod 3 = 1, (c, i), (c′, i + 1) ∈ P 〉 (9)
S2:= 〈(c, T [i], T [i + 1], c′′, i) : i mod 3 = 2, (c, i), (c′′, i + 2) ∈ P 〉 (10)
sort S0 by components 1,3 // sort mod0 suffixes (11)
sort S1 and S2 by component 1 // resort mod12 suffixes (12)
S:= merge(S0, S1, S2) using comparison function: (13)

(t, t′, c′, c′′, i) ∈ S0 ≤ (d, u, d′, j) ∈ S1 ⇔ (t, c′) ≤ (u, d′)
(t, t′, c′, c′′, i) ∈ S0 ≤ (d, u, u′, d′′, j) ∈ S2 ⇔ (t, t′, c′′) ≤ (u, u′, d′′)
(c, t, c′, i) ∈ S1 ≤ (d, u, u′, d′′, j) ∈ S2 ⇔ c ≤ d

return 〈last component of s : s ∈ S〉 (14)

Fig. 6. The DC3-algorithm.
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321
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if names are not unique

8−
105 6 7

output

n
n

4

Fig. 7. Data flow graphs for the DC3 algorithm. The numbers refer to line numbers in Figure 6.

Using Theorem 3.1 and the data flow diagram from Figure 7 we can conclude that

V (n) ≤ sort((8
3 + 4

3 + 4
3 + 5

3 + 4
3 + 5

3 )n) + scan(2n) + V (2
3n)

= sort(10n) + scan(2n) + V (2
3n)

This recurrence has the solution V (n) ≤ 3(sort(10n) + scan(2n)) ≤ sort(30n) +
scan(6n). Note that the data flow diagram assumes that the input is a data stream
into the procedure call. However, we get the same complexity if the original input
is a file. In that case, we have to read the input once but we save writing it to the
local file node T .

7. GENERALIZED DIFFERENCE COVER ALGORITHM

DC3 computes the suffix array of two thirds of the suffixes in its recursion. In the
generalized algorithm DCX [Kärkkäinen et al. 2006] one tries to reduce the number
of sample suffixes, which might decrease the cost of the recursion.

The algorithm DCX chooses the sample of suffixes starting at indexes IX =
{i | i mod X ∈ CX} (for DC3 X = 3 and C3 = {1, 2}). For any given X the set CX
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Table II. Minimum difference covers.

X C′

X

3 {0, 1}
7 {0, 1, 3}
13 {0, 1, 3, 9}
21 {0, 1, 6, 8, 18}
31 {0, 1, 3, 8, 12, 18}
39 {0, 1, 16, 20, 22, 27, 30}
57 {0, 1, 9, 11, 14, 35, 39, 51}
73 {0, 1, 3, 7, 15, 31, 36, 54, 63}
91 {0, 1, 7, 16, 27, 56, 60, 68, 70, 73}
95 {0, 1, 5, 8, 18, 20, 29, 31, 45, 61, 67}
133 {0, 1, 32, 42, 44, 48, 51, 59, 72, 77, 97, 111}

must be chosen such that |CX | is minimal and the order of the remaining suffixes can
be reconstructed using the sample suffixes. To fulfil these requirements one uses the
minimum difference covers [Haanpää 2004] of ZX (ZX is the integers modulo X).
For a subset C′ of a finite Abelian group G, we define d(C′) = {a − b | a, b ∈ C′}. If
d(C′) = G, we call C′ a difference cover of G. [Haanpää 2004] contains minimum
difference covers C′

X of ZX for primes X up to 133 (see also Table II). The algorithm
DCX sets CX = {j |X − j − 1 ∈ C′

X}.
Now we find the number of I/Os needed by a recursion of the DCX algorithm:

sorting S by T [i, i + X − 1] (Line (2) in Figure 6) costs sort((X + 1)n · |CX |
X ) I/Os,

writing and reading T takes scan(2n) I/Os, building the input for the recursion

(Line (4)) needs sort(2n · |CX|
X ) I/Os, permuting in Line (7) incurs sort(2n · |CX |

X )
I/Os, sorting the merge tuples (Lines (11)–(12)) needs sort(δXn) I/Os, where δX

is the average merge tuple size (δ3 = 5+4+5
3 ). Let VX(n) be the number of I/Os for

the DCX algorithm.

VX(n) ≤ sort(((X + 5) |CX|
X + δX)n) + scan(2n) + VX( |CX |

X n)

This recurrence has the solution

VX(n) ≤ sort(n
(X + 5)|CX | + XδX

X − |CX |
) + scan(2n

X

X − |CX |
)

To analyse VX(n) one need to know the values of δX for given X . Unfortunately,
a simple formula does not exist. Instead, we compute upper bounds for δX using a
simple algorithm. Let

dmax(i) = max {k | i + k mod X ∈ CX ∧ k < X}

be the maximal distance from starting position i to the next sample to the right,
i.e. the maximum number of characters needed in a merge tuple. Then the merge
tuple size for positions j such that i ≡ j mod X is dmax(i) + 1 + |CX |, because
one might need the ranks of all the |CX | samples to compare two arbitrary merge
tuples and one component takes the index value. Hence the average merge tuple
size is:

δX = 1 + |CX | +
1

X

∑

0≤i<X

dmax(i)
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Table III. I/O volume of DCX. We assume that sort(x) = 2 · scan(x) which
is realistic using a pipelined sorter with a proper choice of B. The total I/O
volume is then computed in terms of the scanned I/O volume.

X 3 7 13 21 31 39 57
|CX | 2 3 4 5 6 7 8

sort[N ] 30 24.75 30.11 38.56 50.12 60.65 79.02
scan[N ] 6 3.50 2.89 2.63 2.48 2.39 2.33

Total 66 53 63.11 79.75 102.72 123.75 160.37

Table IV. I/O volume of DCX with the small alphabet optimization.

X 3 7 13 21 31 39 57
|CX | 2 3 4 5 6 7 8

sort[N ] 24.50 18.17 15.46 15.23 15.14 16.57 17.43
scan[N ] 2.46 1.63 1.20 0.96 0.80 0.75 0.61

Total 51.49 37.99 32.13 31.41 31.09 33.89 35.49

Table III presents the computed I/O volume for DCX algorithm with X ∈
{3, 7, 13, 21, 31, 39, 57}. The algorithm with the smallest I/O volume is DC7. Re-
cently, it has been experimentally confirmed that DC7 is faster than DC3 [Weese
2006].

Each tuple component of the DCX algorithm is represented as a 32-bit word,
which is wasteful for small alphabets. For the genome data with a four character
alphabet one can put up to 16 characters needed for a naming tuple in one word.
The merge tuple can be compressed similarly. Table IV shows the computed I/O
volume of the DCX algorithm that uses this bit optimization in its first recursion
and calls DC7 in the further recursions.

8. A CHECKER

To ensure the correctness of our algorithms we have designed and implemented a
simple and fast suffix array checker. It is given in Figure 8 and is based on the
following result.

Lemma 8.1 [Burkhardt and Kärkkäinen 2003]. An array SA[0, n) is the
suffix array of a text T iff the following conditions are satisfied:

(1 ) SA contains a permutation of [0, n).

(2 ) ∀i, j : ri ≤ rj ⇔ (T [i], ri+1) ≤ (T [j], rj+1) where ri denotes the rank of the
suffix Si according to the suffix array.

Proof. The conditions are clearly necessary. To show sufficiency, assume that
the suffix array contains exactly permutation of [0, n) but in wrong order. Let
Si and Sj be a pair of wrongly ordered suffixes, say Si > Sj but ri < rj , that
maximizes i + j. The second conditions is violated if T [i] > T [j]. Otherwise, we
must have T [i] = T [j] and Si+1 > Sj+1. But then ri > rj by maximality of i + j
and the second condition is violated.

Theorem 8.2. The suffix array checker from Figure 8 can be implemented to
run using sort(5n) + scan(2n) I/Os.
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Function Checker(SA, T )
P := 〈(SA[i], i + 1) : i ∈ [0, n)〉 (1)
sort P by the first component (2)
if 〈i : (i, r) ∈ P 〉 6= [0, n) then return false
S:= [(r, (T [i], r′)) : i ∈ [0, n), (3)

(i, r) = P [i], (i + 1, r′) = P [i + 1]]

sort S by the first component (4)
if 〈(c, r′) : (r, (c, r′)) ∈ S〉 is sorted (5)
then return true else return false

Fig. 8. The suffix array checker.

Table V. Input instances.

Name Description

Random2 Two concatenated copies of a Random string of length n/2. This is a difficult
instance that is hard to beat using simple heuristics.

Gutenberg Freely available English texts from http://promo.net/pg/list.html.

Genome The known pieces of the human genome from http://genome.ucsc.edu/

downloads.html (status May, 2004). We have normalized this input to ig-
nore the distinction between upper case and lower case letters. The result are
characters in an alphabet of size 5 (ACGT and sometimes long sequences of
“unknown” characters).

HTML Pages from a web crawl containing only pages from .gov domains. These
pages are filtered so that only text and html code is contained but no pictures
and no binary files.

Source Source code (mostly C++) containing coreutils, gcc, gimp, kde, xfree, emacs,
gdb, Linux kernel and Open Office).

9. EXPERIMENTS

We have implemented the algorithms (except DCX) in C++ using the g++ 3.2.3
compiler (optimization level -O2 -fomit-frame-pointer)6 and the external mem-
ory library Stxxl Version 0.52 [Dementiev ; Dementiev et al. 2005]. We have run
the experiments on two platforms. The first system has two 2.0 GHz Intel Xeon
processors (our implementations use only one processor), one GByte of RAM and
eight 80 GByte ATA IBM 120GXP disks. Refer to [Dementiev and Sanders 2003]
for a performance evaluation of this machine whose cost was 2500 Euro in July
2002. The second platform is a more expensive SMP system with four 64-bit AMD
Opteron 1.8 GHz processors, 8 GByte of RAM (we use only one GByte) and eight
73 GByte SCSI Seagate 15000 RPM ST373453LC disks. In our experiments we
used four disks if not otherwise specified.

Table V shows the considered input instances. We have collected some of these
instances at http://algo2.iti.uka.de/dementiev/esuffix/instances.shtml

and ftp://www.mpi-sb.mpg.de/pub/outgoing/sanders/. For a nonsynthetic in-
stance T of length n, our experiments use T itself and its prefixes of the form
T [0, 2i). Table VI and Figure 9 show statistics of the properties of these instances.

6The sources are available under http://algo2.iti.uka.de/dementiev/esuffix/docu/index.

html.
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Table VI. Statistics of the instances used in the experiments.

T n = |T | |Σ| maxlcp lcp log dps

Random2 232 128 231 ≈ 229 ≈ 29.56
Gutenberg 3 277 099 765 128 4 819 356 45 617 10.34
Genome 3 070 128 194 5 21 999 999 454 111 6.53
HTML 4 214 295 245 128 102 356 1 108 6.99
Source 547 505 710 128 173 317 431 5.80
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Fig. 9. Statistics of the instances used in the experiments.

Figure 10 shows the execution time and the I/O volume side by side for each of our
instance families and for the algorithms nonpipelined doubling, pipelined doubling,
pipelined doubling with discarding, pipelined quadrupling, pipelined quadrupling
with discarding7, and DC3 running on the Xeon machine. All ten plots share the
same x-axis and the same curve labels. Computing all these instances takes about
14 days moving more than 20 TByte of data. Due to these large execution times it
was not feasible to run all algorithms for all input sizes and all instances. However,
there is enough data to draw some interesting conclusions.

Complicated behavior is observed for “small” inputs up to 226 characters. The
main reason is that we made no particular effort to optimize special cases where at
least some part of some algorithm could execute internally. Sometimes Stxxl
makes such optimizations, e.g. automatically sorting small inputs in internal
memory. Another factor is the constant start-up overhead of stxxl::vectors
which amortizes only with larger inputs. The data size granularity with which
stxxl::vector loads and stores blocks from/to external memory was not opti-
mized for small inputs.

The most important observation is that the DC3-algorithm is always the fastest
algorithm and is almost completely insensitive to the input. For all inputs of a
size of more than a GByte, DC3 is at least twice as fast as its closest competitor.

7The discarding algorithms we have implemented need slightly more I/Os and perhaps more
complex calculations than the newer algorithms described in Section 4.

Journal of the ACM, Vol. V, No. N, M 20YY.



18 · Roman Dementiev et al.

0

20

40

60

80

100

120

140
R

an
do

m
2:

 T
im

e 
[µ

s]
 / 

n 
nonpipelined

Doubling
Discarding

Quadrupling
Quad-Discarding

DC3

0

500

1000

1500

2000

2500

3000

3500

I/O
 V

ol
um

e 
[b

yt
e]

 / 
n

0

10

20

30

40

50

60

70

80

G
ut

en
be

rg
: T

im
e 

[µ
s]

 / 
n 

0

100

200

300

400

500

600

700

800

900

1000

I/O
 V

ol
um

e 
[b

yt
e]

 / 
n

0

10

20

30

40

50

60

70

80

G
en

om
e:

 T
im

e 
[µ

s]
 / 

n 

0

100

200

300

400

500

600

700

800

900

1000

I/O
 V

ol
um

e 
[b

yt
e]

 / 
n

0

5

10

15

20

25

30

35

40

H
T

M
L:

 T
im

e 
[µ

s]
 / 

n 

0

100

200

300

400

500

600

I/O
 V

ol
um

e 
[b

yt
e]

 / 
n

0

5

10

15

20

25

30

35

40

224 226 228 230 232

S
ou

rc
e:

 T
im

e 
[µ

s]
 / 

n 

n

0

100

200

300

400

500

600

224 226 228 230 232

I/O
 V

ol
um

e 
[b

yt
e]

 / 
n

n

Fig. 10. Execution time (left) and I/O volume (right) for Random2, Gutenberg,
Genome, HTML (Xeon machine).
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With respect to the I/O volume, DC3 is sometimes equaled by quadrupling with
discarding. This happens for relatively small inputs. Apparently quadrupling has
more complex internal work.8 For example, it compares quadruples during half
of its sorting operations whereas DC3 compares triples or pairs during sorting.
For the difficult synthetic input Random2, quadrupling with discarding is by far
outperformed by DC3. Even plain quadrupling, is much faster than quadrupling
with discarding. This indicates that the internal logics for discarding is a bottleneck.

For real world inputs, discarding algorithms turn out to be successful compared
to their nondiscarding counterparts. They outperform them both with respect to
the I/O volume and the running time. This could be explained by the smaller
log dps values according to Table VI. For random inputs without repetitions the
discarding algorithms might actually beat DC3 since one gets inputs with very
small values of log dps.

Quadrupling algorithms consistently outperform doubling algorithms as pre-
dicted by the analysis of the I/O complexity in Section 5.

Comparing pipelined doubling with nonpipelined doubling in the top pair of plots
(instance Random2) one can see that pipelining brings a huge reduction of the I/O
volume whereas the execution time is affected much less — a clear indication that
our algorithms are dominated by internal calculations. However, in a setting with a
slower I/O subsystem, e.g. a system with a single disk, pipelining gives a significant
speedup. We have also made experiments with D = 1 which show that pipelined
doubling is faster than its nonpipelined version by a factor of 1.9–2.4. We also
have reasons to believe that our nonpipelined sorter is more highly tuned than the
pipelined one so that the advantage of pipelining may grow in future versions of
Stxxl. We do not show the nonpipelined algorithm for the other inputs since
the relative performance compared to pipelined doubling should remain about the
same.

A comparison of the new algorithms with previous algorithms is more difficult.
The implementation of [Crauser and Ferragina 2002] works only up to 2 GByte of
total external memory consumption and would thus have to compete with space
efficient internal algorithms on our machine. At least we can compare the I/O vol-
ume per byte of input for the measurements in [Crauser and Ferragina 2002]. Their
most scalable algorithm for the largest real world input tested (26 MByte of text
from the Reuters news agency) is nonpipelined doubling with partial discarding.
This algorithm needs an I/O volume of 1303 Bytes per character of input. The
DC3-algorithm needs about 5 times less I/Os. Furthermore, it is to be expected
that the lead gets bigger for larger inputs. The GBS algorithm [Gonnet et al. 1992]
needs 486 bytes of I/O per character for this input in [Crauser and Ferragina 2002],
i.e., even for this small input DC3 already outperforms the GBS algorithm. We
can also attempt a speed comparison in terms of clock cycles per byte of input.
Here [Crauser and Ferragina 2002] needs 157 000 cycles per byte for doubling with
simple discarding and 147 000 cycles per byte for the GBS algorithm whereas DC3
needs only about 20 000 cycles. Again, the advantage should grow for larger inputs
in particular when comparing with the GBS algorithm.

8One might also conclude that a similar increase in internal work could be expected in an imple-
mentation of the DC7 algorithm.
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Fig. 12. Execution time (left) and I/O volume (right) for the suffix array checker (Opteron
machine).

The following small table shows the execution time of DC3 for 1 to 8 disks on
the ‘Source’ instance on the Xeon machine.

D 1 2 4 6 8
t[µs/byte] 13.96 9.88 8.81 8.65 8.52

We see that adding more disks gives only very small speedup. (And we would
see very similar speedups for the other algorithms except nonpipelined doubling).
Even with 8 disks, DC3 has an I/O rate of less than 30 MByte/s which is less
than the peak performance of a single disk (45 MByte/s). Hence, by more effective
overlapping of I/O and computation it should be possible to sustain the performance
of eight disks using a single cheap disk so that even very cheap PCs could be used
for external suffix array construction.

Figure 11 shows the execution times of the implementations running on the
Opteron machine. The implementations need a factor of 1.7–2.4 less time. The
largest speedup is observed for the quadrupling with discarding running on the
largest source code instance. This might be due to the faster SCSI hard disks with
higher bandwidth (70 MB/s versus 45 MB/s) and the shorter seek time (3.6 ms
versus 8.8 ms on average), and perhaps a faster 64-bit CPU. However, the relative
performance of the algorithms remains the same as in the experiments using the
Xeon system.

The Checker

Figure 12 shows the execution time and the I/O volume of the suffix array checker
from Section 8 running on the Opteron system. The horizontal axis denotes the
size of the input string T . The curves for the other input families are not shown,
since the algorithm is not sensitive to the type of input. The implementation onyl
needs 1–1.2 µs per input string character.

10. CONCLUSION

Our efficient external version of the DC3-algorithm is theoretically optimal and
clearly outperforms all previous algorithms in practice. Since all practical previous
algorithms are asymptotically suboptimal and dependent on the inputs, this closes a
gap between theory and practice. DC3 outperforms the pipelined quadrupling-with-
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discarding algorithm even for real world instances. This underlines the practical
usefulness of DC3 since a mere comparison with the relatively simple, nonpipelined
previous implementations would have been unfair.

As a side effect, the various generalizations of doubling yield an interesting case
study for the systematic design of pipelined external algorithms.

Most important practical question is whether constructing suffix arrays in ex-
ternal memory is now feasible. We believe that the answer is a careful ‘yes’. We
can now process 4 · 109 characters overnight on a low cost machine, which is two
orders of magnitude more than in [Crauser and Ferragina 2002] in a time faster or
comparable to previous internal memory computations [Sadakane and T.Shibuya
2001; Lam et al. 2002] on more expensive machines.

There are also many opportunities to scale to even larger inputs. In Section 7 we
have outlined that for small alphabets, the generalized difference cover algorithm
DCX, can yield significant further savings in I/O requirements. With respect to
internal work, one could exploit that about half of the sorting operations are just
permutations. It should also be possible to better overlap I/O and computation.
More interestingly, there are many ways to parallelize. On a small scale, pipelining
allows us to run several sorters and one streaming thread in parallel. On a large scale
DC3 is also perfectly parallelizable [Kärkkäinen et al. 2006]. An MPI-based [Gropp
et al. 1998] distributed memory implementation of DC3 [Kulla and Sanders 2006]
scales well up to 128 processors according to the experiments. It looks likely that
the algorithm would also scale to thousands of processors. However, the parallel
implementation does not use I/O-efficient processing, therefore this leaves room
for further improvements which will enable a fast construction of even larger suffix
arrays.
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