Computing the Threshold for g-Gram Filters

Juha Karkkédinen*

Max-Planck-Institut fiir Informatik
Stuhlsatzenhausweg 85, 66123 Saarbriicken, Germany
juha@mpi-sb.mpg.de

Abstract. A popular and much studied class of filters for approximate
string matching is based on finding common g-grams, substrings of length
q, between the pattern and the text. A variation of the basic idea uses
gapped g-grams and has been recently shown to provide significant im-
provements in practice. A major difficulty with gapped g-gram filters is
the computation of the so-called threshold which defines the filter cri-
terium. We describe the first general method for computing the thresh-
old for g-gram filters. The method is based on a carefully chosen precise
statement of the problem which is then transformed into a constrained
shortest path problem. In its generic form the method leaves certain
parts open but is applicable to a large variety of g-gram filters and may
be extensible even to other classes of filters. We also give a full algo-
rithm for a specific subclass. For this subclass, the algorithm has been
implemented and used succesfully in an experimental comparison.

1 Introduction

Given a pattern string P and a text string T', the approzimate string matching
problem is to find all substrings of the text (matches) that are within a distance k
of the pattern P. The most commonly used distance measure is the Levenshtein
distance, the minimum number of single character insertions, deletions and re-
placements needed to change one string into the other. A simpler variant is the
Hamming distance, that does not allow insertions and deletions, i.e., it is the
number of nonmatching characters for strings of the same length. The indexed
version of the problem allows preprocessing the text to build an index while the
online version does not. Surveys are given in [I5lJT6II8].

Filtering is a way to speed up approximate string matching, particularly
in the indexed case but also in the online case. A filter is an algorithm that
quickly discards large parts of the text based on some filter criterium, leaving
the remaining part to be checked with a proper (online) approximate string
matching algorithm. A filter is lossless if it never discards an actual occurrence;
we consider only lossless filters. The ability of a filter to reduce the text area is
called its (filtration) efficiency.

* Partially supported by the Future and Emerging Technologies programme of the EU
under contract number IST-1999-14186 (ALCOM-FT).

M. Penttonen and E. Meineche Schmidt (Eds.): SWAT 2002, LNCS 2368, pp. 348-357 2002.
© Springer-Verlag Berlin Heidelberg 2002

Computing the Threshold for ¢-Gram Filters 349

Many filters are based on g-grams, substrings of length ¢q. The g-gram sim-
ilarity (defined as a distance in [25]) of two strings is the number of ¢-grams
shared by the strings. The g-gram filter is based on the g-gram lemma:

Lemma 1 ([I2]). Let P and S be strings with (Levenshtein or Hamming) dis-
tance k. Then the q-gram similarity of P and S is at least t = |P| — g+ 1 — kq.

The value t in the lemma is called the threshold and gives the minimum number
of g-grams that an approximate match must share with the pattern, which is
used as the filter criterium. The method is well-suited for indexed matching using
an index of text g-grams.

Above we did not define precisely how to count the number of shared ¢-
grams. There are, in fact, many alternatives giving different tradeoffs between
filtration efficiency, filter speed and index size. Here are some variations:

— If the same g-gram occurs rp times in P and rg times in S, it would be
correct to count it as rnin{rp,rg}7 rp, Ts, or 7prg shared g-grams.

— As noted in [T1], a g-gram need to be counted only if it occurs at approxi-
mately the same position in P and S.

— Count the shared g-grams between the pattern and large text areas, buckets.
Buckets with less than ¢ shared g-grams can be discarded as a whole [12/4].

For all these variations of counting, the threshold ¢ defining the filter criterium is
the one given by Lemmal[ll using a higher threshold would make the filter lossy,
using a lower threshold would reduce filtration efficiency. This is a reflection of
the fact that they are all upper bound approximations of the same core similarity
measure. We define this core similarity measure in Section

There are many ways to generalize the basic method, including the following;:

Gapped g-grams. The g-grams may contain gaps. For example, the gapped
3-grams of shape ##-# of the string acgtc are ac-t and cg-c. In [5J6], it
is shown that by using g-grams of a carefully chosen shape, the filtration
efficiency can be improved significantly. The added complexity makes online
filters slower, but on indexed filters the effect is negligible.

Sampling. A popular way to reduce time requirement and/or index size at the
cost of filtration efficiency is to consider only a sample, say every 5th, of the
g-grams of the text or the pattern [824T412223|2T1T7[T9].

Multiple shapes. As an opposite to sampling, the number of g-grams can be
increased by using gapped ¢-grams of several different shapes [7J20]. This
improves filtration efficiency but increases time and/or space requirements.

Approximate g-grams. Another way to improve filtration efficiency at the
cost of slower filtering is to allow errors in g-grams [I4I8[22/[T9].

Of course, various combinations of these methods are possible. For exam-
ple, sampling and approximate g-grams have often been used together [148/22]
19]. Gapped g¢-grams, in particular, offer a lot of possibilities for combination
through the use of (possibly multiple) different shapes. The recent results in [5]
6] suggest that the possibilities of gapped g-grams are worth exploring. However,
the problem is the difficulty of determining the threshold.

350 J. Karkkainen

All the filtering methods mentioned above can be formulated using a similar-
ity measure based on counting shared g-grams. A text substring is checked only if
the similarity between the pattern and the substring is at least a given threshold.
Most of the methods mentioned above give a simple equation for the threshold.
However, when gapped ¢-grams are involved, things get more complicated. Even
for the simple filter in [5] (Hamming distance, single shape, no sampling or ap-
proximate g-grams) no simple equation can be given; the threshold was computed
separately for each shape with a dynamic programming algorithm. Pevzner and
Waterman [20], too, consider only the Hamming distance and give an equation
for a very limited class of regular shapes, and even that is not the optimal value
but a lower bound (which guarantees losslessness but at a reduced efficiency).
Califano and Rigoutsos [7] use a heuristically chosen threshold supported by
probabilistic calculations and experiments; their filter is lossy.

In this paper, we consider the problem of computing the threshold. We give
a formal definition of the value of the threshold that captures the essence of
the concept and describe an algorithm for computing it. The definition and the
algorithm are generic, leaving certain parts open, but being applicable to a large
variety of g-gram filters. Filling in the missing pieces for a given class of filters is
a non-trivial task, but it is simpler and much more precisely defined than trying
to define and compute the threshold from scratch. As a concrete example, we
also give the missing pieces for the class of filters considered in [6]. For these
filters, the algorithm has been implemented.

The outline of the method (and the paper) is as follows. In section [2, we
give a simple, precise statement of the threshold computation problem for core
similarity measures of a specific form. The threshold problem is then transformed
into a constraint shortest path problem (defined in Section Hl) on a graph that
depends on the core similarity (as described in Section B). When applying the
method to a specific filter, two things must be specified. First, a core similarity
measure of the specified form must be given (Section[2]). The similarity measure
used by the filter should be an upper bound approximation of the core similarity.
Second, an algorithm for building the above mentioned graph for the chosen core
similarity must be given (Section[3]). On the other hand, the constrained shortest
path algorithm (Section [) can be used for any filter.

2 Threshold

As in the classic g-gram lemma, we define the threshold of a g-gram filter as
a function of the length m of the pattern and the distance limit k. That is,
the threshold ¢(m, k) is the smallest number of matching g-grams between a
pattern of length m and a substring of the text that is within distance k of the
pattern. The number of matching ¢-grams is a similarity function for strings.
Since we are looking for the minimum similarity, we can assume that there are
no “accidentally” matching ¢-grams, i.e., g-grams match only if they are not
affected (too much) by the edit operations. Therefore, the minimum is defined
by the worst possible arrangement of the edit operations.

Computing the Threshold for ¢-Gram Filters 351

Following [10], we define an edit transcript as a string over the alphabet
M(atch), R(eplace), I(nsert) and D(elete), describing a sequential character-by-
character transformation of one string to another. For two strings P and S,
let T(P,S) denote the set of all transcripts transforming P to S. For exam-
ple, T (actg,acct) contains MMRR, MMIMD, MIMMD, IRMMD, IDIMDID, etc.. For a
transcript 7 € T(P,5), the source length slen(r) of 7 is the length of P, i.e.,
the number of non-insertions in 7. The Levenshtein cost cp(7) is the number
of non-matches. The Hamming cost cy(7) is infinite if 7 contains insertions
or deletions and the same as Levenshtein cost otherwise. The Levenshtein dis-
tance and Hamming distance of P and S are dr(P,S) = min,cr(p gy cL(7) and
dp (P, S) = min,c7(p,s) cu(T), respectively.

Here we defined distance measures for strings using cost functions for edit
transcripts. Similarly, we define the ¢-gram similarity measures for strings using
profit functions for edit transcripts. Then we can define the threshold as follows.

Definition 1. The threshold for a cost function ¢ and a profit function p is

ty(m, k) = mTin{p(T) | slen(T) = m,c(r) < k}.

The following lemma gives the filter criterium.

Lemma 2. Let ¢ be a cost function and p a profit function for edit transcripts.
Define a distance d of two strings P and S as d(P,S) = min,c7(p,s) c(T) and a
similarity s as s(P,S) = max.c7(p,s)p(7). Now, if d(P,S) <k, then s(P,S) >
ty(| Pl k).

P

The lemma holds for any choice of cost ¢ and profit p. The cost functions
leading to the Hamming and Levenshtein distances were defined above. Below,
we give examples of profit functions that define g-gram similarity measures.

Let I be a set of integers. The span of I is span(I) = max] — minl + 1,
i.e., the size of the minimum contiguous interval containing I. The position of
I is minI, and the shape of I is the set {i — min7 | i € I}. An integer set
@ with position zero is called a shape. For any shape () and integer ¢, let Q;
denote the set with shape @ and position i, i.e., Q; = {i +j | j € Q}. Let
Qi = {i1,%2,...,1q}, where i = i3 < ig < -++ < iy, and let S = $182...5
be a string. For 1 < ¢ < m — span(Q) + 1, the Q-gram at position ¢ in S,
denoted by S[Q;], is the string s;, s, ... s;,. For example, if S = acagagtct and
Q =1{0,2,3,6}, then S[Q1] = S[Q3] = aagt and S[Qs2] = cgac.

A match alignment M, of a transcript 7 is the set of pairs of positions that
are matched to each other. For example, Myrmrpmr = {(1,1),(2,3),(5,5)}. For
a set I of integers, let M, (I) be the set to which M, maps I, i.e., M, (I) =
{jli€land (i,j) € M;}. A Q-hit in a transcript 7 is a pair (z,7) such that
MT(QL) = Qj- Note that a Q-hit (Z,j) in7 € T(P, S) implies P[QZ] = S[Q]]

Now we are ready to define our first profit function. The Q-profit pg(r) of a
transcript 7 is the number of its Q-hits, i.e., po(7) = [{(¢,)) | M- (Q:) = Q;}-
Using pg as the profit function defines the Q-similarity of two strings P and S
as sQ(P, S) = max,cr(p,s) po(7). If Q is the contiguous shape {0,1,...,¢—1},

352 J. Karkkainen

s¢g is the core similarity measure underlying the classic g-gram filter, and the
threshold of Definition [[lagrees with the one in Lemma [for both Hamming and
Levenshtein distance. For a gapped shape @, sg is the core similarity measure
for the Hamming distance filters described in [5].

As a more complicated example, let us define the profit functions for the
Levenshtein distance filters in [6]. The filters use a basic shape with only one gap
and two other shapes formed from the basic shape by increasing and decreasing
the length of the gap by one. For example, with the basic shape ##-# we would
also use the shapes ##--# and ###. The filter compares the g-grams of all three
shapes in the pattern to the g-grams of the basic shape in the text.

For any b1,g,ba > 0, let (b1, g,b2) denote the one-gap shape {0,... by —
1,by +g,... ,b1 + g+ by — 1}. For a one-gap shape Q = (by,g,b2), let Q! =
(bl,g+ 1,b2) and Q_l = (bl,g— l,bg) (OI‘ Q_1 = {0, ,b1 +bo — 1} if g= 1).
Then, a @ £ 1-hit in a transcript 7 is a pair (¢,7) of integers such that @), €
{M(Q;Y), Mo (Qs), M (QF1)}. If 7 € T(P,S), then a Q+1-hit (i, j) in 7 implies
S[Q;] € {P[Q; "], P[Qs], P[Q; ']}, which is the criterion for a shared g-gram for
the filters in [6]. The Q+1-profit of 7, denoted by pg+1(7), is the number of Q+1-
hits in 7. Le., poir(r) = [{(1.4) | Q5 € {Mo(Q;), M (Q), M (QF)}}]. The
Q £ 1-similarity of two strings P and S is sqg+1(P, S) = max,c7(p,s) PQ+1(T)-

The similarities sg and sg+1 are core similarity measures. Computing them
for given strings is not straightforward. Instead filters use simpler upper bound
approximations that may give a higher similarity value. Designing good upper
bound approximations is nontrivial and beyond the scope of this paper.

3 Profit Automata

In the remainder of the paper, we describe a general technique for computing
the threshold according to Definition [l The technique is based on automata
for computing the values slen(7), ¢(7), and p(7) for any transcript 7. These
automata have four transitions out of each state labeled with M, R, I and D.
Each transition has an output value, which is the change in the target value
caused by the transition. Thus, the target value is the sum of the output labels
on the transition path corresponding to 7. Such automata are more generally
known as weighted finite automata [3] or string-to-weight transducers [13]. Fig. [l
shows simple examples.

slen(T) M/1 cen(r) M/0 pe(7) {R,[,D}/0
{RID}/0 T 1 1 M/1
R/1C§QD/1 R/1C§OD/1 C;?M/oV1\/1/0"1\/1/0"1\/1/03JO
1/0 1/1

Fig. 1. Automata for computing the source length slen(7), Levenshtein cost ¢ (7) and
Q-profit po(7), where Q = {0, 1,2, 3,4}, for any transcript 7

Computing the Threshold for ¢-Gram Filters 353

For more complicated forms of profits the automata are also more compli-
cated. We show how to build the automaton for the profit pg+1 for any one-gap
shape @ = (b1, g, b2). Automata for other profits can be build using similar ideas.

We start by describing a dynamic programming algorithm for finding the
(Q %= 1-hits for a given transcript 7 = 71 ... 7,. Table[l] defines the computation of
an entry P[i,j] in a table P[0..s,0..n], where s = by 4+ g + bs is the span of Q. A
column j in table P stores the state of the computation after reading the prefix
71 ---7; of 7. Each entry represents a set of shape) overlapping or touching the
cut point between 7; and 7;41. The value infinite means that the set cannot be
a part of a @ & 1-hit. When the cut point is in the gap, a finite value represents
the change in the length of the gap (insertion—deletion difference). An example
is shown in Fig. 2] In the last row of the table P, each zero signifies a hit. Thus
the profit can be computed as po+1(7) = |{j € {1,... ,n} | P[s,j] = 0}|.

Table 1. Rules for computing the values in the dynamic programming table
P[0..s,0..n]

7=0 7, =M ‘ 75, =R
i=0 0
1<i<b 00
b1 <i<bi+g Pli—1,j—1] Pli—1,j—1]

X 1o if-1<Pli—-1,7-1<1

t=bitgtl oo otherwise 00
bi+g+1<i<s Pli—1,j—1]
7 =1 ‘ 7, =D
i=0 0
1<i<b 00
i = by Pli,j—1—1 if Pli,j—1]+bi+g—i>0
by <i<bi+g|Pli—-1,7j—-1]+1 oo otherwise
bi+g<i<s o0

A column j in table P depends only on the previous column j — 1 and the
symbol 7;. Thus the computation can be done with an automaton, where each
state represents a distinct column. The first and last entry can be omitted from
the state description: the first because it is always 0, the last because it does
not affect the next column. Instead, the last entry determines the output value
of the transition: 1 when last entry is 0, 0 when the last entry is co. The result
is an automaton for computing the profit pg+1(7) similar to the automatons in
Fig. [An example is given in Fig. Bl

The size of the automaton is bounded in the following lemma. The proof is
omitted in this extended abstract.

354 J. Karkkainen

Ti|Tj41 MMRDMMI RMMMMDDIMMDDDM
##-#0/000000000D0000D00D0O00D0O0O0O0ODO0CO0
H#H#-H# 1loo0 0c0coco0 0 o0 00 0ococococoo 0 0ocooooo 0

H# H| - # 20000 0 cococooo 0 coocooo 0 0 0 -1-20000 0 —1-20000
H#H# —|# 3looocooo 0 -loooo+1looowoo 0 0 —100-1 000000000000
HH - F# 4 loooooooooo 0 0o oo ccoooooo 0 coocooo 0 00000000

Fig. 2. The dynamic programming table P for @ = (2,1,1) = {0, 1, 3}

, D/0
(b AN
RID/0 00 M/0 0 M/0 0 M/0 DM/I
Coo 00 0
0 RID/0 00 00 1/0 R/0
R/

M/ T

RID/0 M/1

1/0 RI/O

RI/0

—2

E
o
A
o
2
~
o
z
~
=
o
+ coco
|H88 =
o

o8 8

D/0

p/o| ®r/0 R/0 I

D/0 D/0

H
~
(=)

M
o 70 Rrip/o] 0 D/0N 00
— -1 o0 -1 P —
00 M/0 -1 M/1 1

Fig. 3. An automaton for computing the profit po+1(7) for @ = (2,1,1) = {0,1, 3}

Lemma 3. The number of states in the profit automaton for the profit pg+1,
where Q = (b, g,by), is less than R = b1b3(g + 2)319/%11. The automaton can be
constructed in O(R(by + g + b)) time and O(Rg/by) space.

4 Constrained Shortest Path Problem

We are now ready to describe the threshold computation problem as a constraint
shortest path problem. The graph is formed by combining the three automata
for computing slen(r), ¢(7) and p(7). In general, the state set of the combined
automaton is the Cartesian product of the state sets of the three automata, but
since the automata for source length and Leveshtein or Hamming cost have just
one state, the graph is essentially the profit automaton with additional labels.

Thus, we have a directed graph G = (V, E), where each edge e € E is labeled
with three non-negative values: l(e), ¢(e) and p(e) corresponding to the (source)
length, cost, and profit, respectively. The values are additive along paths. One
node is designated as the source node s (the initial state). Each node has at
most four outward edges.

Now, the treshold computation problem can be stated as follows:

Computing the Threshold for ¢-Gram Filters 355

Problem 1. Find the minimum profit p(w) of a path 7 in G starting from the
source node (and ending anywhere) that satisfies: (1) ¢(7) < k and (2) I(7) = m.

The constraint (2) can be replaced with [(7) > m without changing the solution.

This problem is very similar to the constrained shortest path (CSP) prob-
lem [26], differing in two ways from the standard form. First, no target node for
the path is specified. However, by creating an additional node ¢ as the target and
adding an all-zero edge from every other node to t, the problem can be stated in
the more usual form. Second, in the standard form all constraints are of type (1),
i.e., limited from above. Limited-from-below constraints change the problem in
a nontrivial way, e.g., the shortest path may contain cycles. However, many of
the basic techniques used in CSP algorithms are still applicable.

The CSP problem is NP-hard, but there are pseudopolynomial algorithms,
i.e., algorithms that work in polynomial time when the edge labels are polyno-
mially bounded integers. We give a pseudopolynomial algorithm that belongs to
a well-known class of shortest path algorithms called label-setting algorithms,
which can be seen as generalizations of Dikstra’s algorithm [I], Chapter 4]. For the
CSP problem, label-setting algorithms have been given in [2]9]. Our algorithm
uses one nonstandard trick to deal with the limited-from-below constraint.

The basic idea of the algorithm is to maintain a collection of paths (initially
only the empty path) in a priority queue PQ. The paths are selected from PQ
in increasing order of their profit, extended along the four outward egdes, and
the extensions are added to the PQ. Paths with cost more than k are removed.
Since an extension cannot decrease the profit, the first path of required length
selected from PQ is an optimal path.

To prune the set of paths, we use the following concept of domination:

Definition 2. Let m; and mo be two paths from s to v. We say that m; dominates
7o if p(m1) < p(me), c(m1) < c¢(me) and l(m1) > U(me). If equality holds in each
case, the paths are called equivalent. Otherwise, the domination is strict.

Clearly, if m; dominates 7y, any extension of m; dominates the corresponding
extension of . Thus, no extensions of w5 need to be considered. The algorithm
extends a path only if it is not dominated by an already processed path and is not
strictly dominated by any path to be processed later. To check for domination by
already processed paths, information about the dominant paths is maintained at
nodes. To avoid extending a path that is strictly dominated by a later path, the
priority queue order is refined. The profit remains the primary key but secondary
keys are used to break ties. The details are left to the full paper. The complexity
of the algorithm is given by the following theorem.

Theorem 1. Given the graph G = (V, E), the algorithm computes the threshold
t in O(k|V|min{m,t} + kdpast) time and O(k|V |pmas) space, where m and k
are the limits of length and cost, respectively, Pmas s the largest profit value of
an edge, and dyq, s the length of the longest zero-cost, zero-profit path in G.

By combining Theorem [with Lemma Bl we get the following result.

356 J. Karkkainen

Theorem 2. Given a one-gap shape Q = (b1, g,b2) and positive integers m and

k, the threshold tjL (m,k) can be computed in O(kmb1b2g319/0 1Y time and

O((k + g/bl)blbgg?’m/m) space.

5 Concluding Remarks

We have described a method for computing the threshold of a g-gram filter
that is applicable to a large variety of filters. The practicality of the method is
demonstrated by the implementation of the algorithm for the filters based on
the sg+1 similarity. It has been used in an experimental comparison of g-gram
filters, the results of which are described in [6]. The shortest paths part of the
implementation can be reused for other classes of filters without modification.

The method is an important step towards designing good g-gram filters. First,
the threshold (or at least a good lower bound) is needed by any filter. A general
method gives us a large family of filters to choose from. Second, the value of the
threshold is an important criterium in comparing filters (particularly in choosing
the shapes of g-grams [5lJ6]). Third, the framework developed here may be helpful
in designing filters. In particular, the separation of core similarity measures and
their upper bound approximations seems a useful concept.

Acknowledgements. Discussions with Stefan Burkhardt, Mark Ziegelmann
and Kurt Melhorn have contributed to this paper. The implementation is partly
due to Stefan Burkhardt.

References

1. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows : Theory, Algorithms,
and Applications. Prentice Hall, 1993.

2. Y. P. Aneja, V. Aggarwal, and K. P. K. Nair. Shortest chain subject to side
conditions. Networks, 13:295-302, 1983.

3. A. L. Buchsbaum, R. Giancarlo, and J. R. Westbrook. On the determinization of
weighted finite automata. SIAM J. Comput., 30(5):1502-1531, 2000.

4. S. Burkhardt, A. Crauser, P. Ferragina, H.-P. Lenhof, E. Rivals, and M. Vingron.
g-gram based database searching using a suffix array (QUASAR). In Proc. 3rd An-
nual International Conference on Computational Molecular Biology (RECOMB),
pages 77-83. ACM Press, 1999.

5. S. Burkhardt and J. Kérkkédinen. Better filtering with gapped g-grams. In
Proc. 12th Annual Symposium on Combinatorial Pattern Matching, volume 2089
of LNCS, pages 73-85. Springer, 2001.

6. S. Burkhardt and J. Kérkkainen. One-gapped g¢-gram filters for Levenshtein dis-
tance. In Proc. 13th Annual Symposium on Combinatorial Pattern Matching,
LNCS. Springer, 2002. To appear.

7. A. Califano and I. Rigoutsos. FLASH: A fast look-up algorithm for string homology.
In Proc. 1st International Conference on Intelligent Systems for Molecular Biology,
pages 56—64. AAAT Press, 1993.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Computing the Threshold for ¢-Gram Filters 357

W. I. Chang and T. G. Marr. Approximate string matching and local similarity.
In Proc. 5th Annual Symposium on Combinatorial Pattern Matching, volume 807
of LNCS, pages 259-273. Springer, 1994.

L. Desrosiers, Y. Dumas, M. M. Solomon, and F. Soumis. Time constrained routing
and scheduling. In M. O. Ball et al., editors, Network Routing, volume 8 of Hand-
books in Operations Research and Management Science, chapter 2, pages 35-139.
North-Holland, 1995.

D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press, 1997.

N. Holsti and E. Sutinen. Approximate string matching using g-gram places. In
Proc. 7th Finnish Symposium on Computer Science, pages 23—-32, 1994.

P. Jokinen and E. Ukkonen. T'wo algorithms for approximate string matching in
static texts. In Proc. 16th Symposium on Mathematical Foundations of Computer
Science, volume 520 of LNCS, pages 240-248. Springer, 1991.

M. Mohri. Finite-state transducers in language and speech processing. Computa-
tional Linguistics, 23:269-311, 1997.

E. W. Myers. A sublinear algorithm for approximate keyword searching. Algorith-
mica, 12(4/5):345-374, 1994.

G. Navarro. Approzimate Text Searching. PhD thesis, Dept. of Computer Science,
University of Chile, 1998.

G. Navarro. A guided tour to approximate string matching. ACM Computing
Surveys, 33(1):31-88, 2001.

G. Navarro and R. Baeza-Yates. A practical g-gram index for text retrieval allowing
errors. CLEI Electronic Journal, 1(2), 1998. http://www.clei.cl.

G. Navarro, R. Baeza-Yates, E. Sutinen, and J. Tarhio. Indexing methods for
approximate string matching. IEEE Data Engineering Bulletin, 24(4):19-27, 2001.
Special issue on Managing Text Natively and in DBMSs.

G. Navarro, E. Sutinen, J. Tanninen, and J. Tarhio. Indexing text with approxi-
mate g-grams. In Proc. 11th Annual Symposium on Combinatorial Pattern Match-
ing, volume 1848 of LNCS, pages 350-363. Springer, 2000.

P. A. Pevzner and M. S. Waterman. Multiple filtration and approximate pattern
matching. Algorithmica, 13(1/2):135-154, 1995.

F. Shi. Fast approximate string matching with g¢-blocks sequences. In Proc. 3rd
South American Workshop on String Processing, pages 257-271. Carleton Univer-
sity Press, 1996.

E. Sutinen and J. Tarhio. On using g-gram locations in approximate string match-
ing. In Proc. 8rd Annual European Symposium on Algorithms, volume 979 of LNCS,
pages 327-340. Springer, 1995.

E. Sutinen and J. Tarhio. Filtration with g-samples in approximate string match-
ing. In Proc. 7th Annual Symposium on Combinatorial Pattern Matching, volume
1075 of LNCS, pages 50-63. Springer, 1996.

T. Takaoka. Approximate pattern matching with samples. In Proc. 5th Interna-
tional Symposium on Algorithms and Computation (ISAAC), volume 834 of LNCS,
pages 236-242. Springer, 1994.

E. Ukkonen. Approximate string matching with g-grams and maximal matches.
Theor. Comput. Sci., 92(1):191-212, 1992.

M. Ziegelmann. Constrained Shortest Paths and Related Problems. PhD thesis,
Universitat des Saarlandes, Germany, 2001.

	Introduction
	Threshold
	Profit Automata
	Constrained Shortest Path Problem
	Concluding Remarks

