
Individual characters or their positions usually do not matter. The
significant entities are the substrings or factors.

Definition 0.1: Let w = xyz for any x, y, z ∈ Σ∗. Then x is a prefix,
y is a factor (substring), and z is a suffix of w.
If x is both a prefix and a suffix of w, then x is a border of w.

Example 0.2: Let w = bonobo. Then

• ε, b, bo, bon, bono, bonob, bonobo are the prefixes of w

• ε, o, bo, obo, nobo, onobo, bonobo are the suffixes of w

• ε, bo, bonobo are the borders of w

• ε, b, o, n, bo, on, no, ob, bon, ono, nob, obo, bono, onob, nobo, bonob, onobo, bonobo
are the factors of w.

Note that ε and w are always suffixes, prefixes, and borders of w.
A suffix/prefix/border of w is proper if it is not w, and nontrivial if it is not ε
or w.

9

Some Interesting Strings

The Fibonacci strings are defined by
the recurrence:

F0 = ε

F1 = b

F2 = a

Fi = Fi−1Fi−2 for i > 2

The infinite Fibonacci string is the limit F∞.
For all i > 1, Fi is a prefix of F∞.

Example 0.3:

F3 = ab

F4 = aba

F5 = abaab

F6 = abaababa

F7 = abaababaabaab

F8 = abaababaabaababaababa

Fibonacci strings have many interesting properties:

• |Fi| = fi, where fi is the ith Fibonacci number.

• F∞ has exactly k + 1 distinct factors of length k.

• For all i > 1, we can obtain Fi from Fi−1 by applying the substitutions
a 7→ ab and b 7→ a to every character.

10

A De Bruijn sequence Bk of order k for an alphabet Σ of size σ is a cyclic
string of length σk that contains every string of length k over the alphabet
Σ as a factor exactly once. The cycle can be opened into a string of length
σk + k − 1 with the same property.

Example 0.4: De Bruijn sequences for the alphabet {a, b}:
B2 = aabb(a)

B3 = aaababbb(aa)

B4 = aaaabaabbababbbb(aaa)

De Bruijn sequences are not unique. They can be constructed by finding
Eulerian or Hamiltonian cycles in a De Bruijn graph.

Example 0.5: De Bruijn graph for the alphabet {a, b} that can be used for
constructing B2 (Hamiltonian cycle) or B3 (Eulerian cycle).

aa bb

ab

ba

b

a

b b

a

a a b

11

1. Sets of Strings

Basic operations on a set of objects include:

Insert: Add an object to the set

Delete: Remove an object from the set.

Lookup: Find if a given object is in the set, and if it is, possibly
return some data associated with the object.

There can also be more complex queries:

Range query: Find all objects in a given range of values.

There are many other operations too but we will concentrate on these here.

12

An efficient execution of the operations requires that the set is stored as a
suitable data structure.

• A (balanced) binary search tree supports the basic operations in
O(logn) time and range searching in O(logn+ r) time, where n is the
size of the set and r is the size of the result.

• An ordered array supports lookup and range searching in the same time
as binary search trees. It is simpler, faster and more space efficient in
practice, but does not support insertions and deletions.

• A hash table supports the basic operations in constant time (usually
randomized) but does not support range queries.

A data structure is called dynamic if it supports insertions and deletions
(tree, hash table) and static if not (array). Static data structures are
constructed once for the whole set of objects. In the case of an ordered
array, this involves another important operation, sorting. Sorting can be
done in O(n logn) time using comparisons and even faster for integers.

13

The above time complexities assume that basic operations on the objects
including comparisons can be performed in constant time. When the objects
are strings, this is no more true:

• The worst case time for a string comparison is the length of the shorter
string. Even the average case time for a random set of n strings is
O(logσ n) in many cases, including for basic operations in a balanced
binary search tree. We will show an even stronger result for sorting
later. And sets of strings are rarely fully random.

• Computing a hash function is slower too. A good hash function
depends on all characters and cannot be computed faster than the
length of the string.

For a string set R, there are also new types of queries:

Prefix query: Find all strings in R that have the query string S as a
prefix. This is a special type of range query.

Lcp (longest common prefix) query: What is the length of the
longest prefix of the query string S that is also a prefix of some
string in R.

Thus we need special set data structures and algorithms for strings.

14

Trie

A simple but powerful data structure for a set of strings is the trie. It is a
rooted tree with the following properties:

• Edges are labelled with symbols from an alphabet Σ.

• For every node v, the edges from v to its children have different labels.

Each node represents the string obtained by concatenating the symbols on
the path from the root to that node.

The trie for a string set R, denoted by trie(R),
is the smallest trie that has nodes representing
all the strings in R. The nodes representing
strings in R may be marked.

Example 1.1: trie(R) for
R = {ali, alice, anna, elias, eliza}.

a

l

i

c

e

n

n

a

e

l

i

a

s

z

a

15

The trie is conceptually simple but it is not simple to implement efficiently.
The time and space complexity of a trie depends on the implementation of
the child function:

For a node v and a symbol c ∈ Σ, child(v, c) is u if u is a child of v
and the edge (v, u) is labelled with c, and child(v, c) = ⊥ (null) if v
has no such child.

As an example, here is the insertion algorithm:

Algorithm 1.2: Insertion into trie
Input: trie(R) and a string S[0..m) 6∈ R
Output: trie(R∪ {S})

(1) v ← root; j ← 0
(2) while child(v, S[j]) 6= ⊥ do
(3) v ← child(v, S[j]); j ← j + 1
(4) while j < m do
(5) Create new node u (initializes child(u, c) to ⊥ for all c ∈ Σ)
(6) child(v, S[j])← u
(7) v ← u; j ← j + 1
(8) Mark v as representative of S

16

There are many implementation options for the child function including:

Array: Each node stores an array of size σ. The space complexity is O(σN),
where N is the number of nodes in trie(R). The time complexity of the
child operation is O(1). Requires an integer alphabet.

Binary tree: Replace the array with a binary tree. The space complexity is
O(N) and the time complexity O(logσ). Works for an ordered alphabet.

Hash table: One hash table for the whole trie, storing the values
child(v, c) 6= ⊥. Space complexity O(N), time complexity O(1).
Requires an integer alphabet.

A common simplification in the analysis of tries is to assume a constant
alphabet. Then the implementation does not matter: Insertion, deletion,
lookup and lcp query for a string S take O(|S|) time.

Note that a trie is a complete representation of the strings. There is no
need to store the strings separately.

17

Prefix free string sets

Many data structures and algorithms for a string set R become simpler if R
is prefix free.

Definition 1.3: A string set R is prefix free if no string in R is a prefix of
another string in R.

There is a simple way to make any string set prefix free:

• Let $ 6∈ Σ be an extra symbol satisfying $ < c for all c ∈ Σ.

• Append $ to the end of every string in R.

This has little or no effect on most operations on the set. The length of
each string increases by one only, and the additional symbol could be there
only virtually.

Example 1.4: The set {ali, alice, anna, elias, eliza} is not prefix free
because ali is a prefix of alice, but {ali$, alice$, anna$, elias$, eliza$} is
prefix free.

18

If R is prefix free, the leaves of trie(R) represent exactly R. This simplifies
the implementation of the trie.

Example 1.5: The trie for {ali$, alice$, anna$, elias$, eliza$}.

a

l

i

$
c

e

$

n

n

a

$

e

l

i

a

s

$

z

a

$

19

Compact Trie

Tries suffer from a large number of nodes, close to ||R|| in the worst case.

• For a string set R, we use |R| to denote the number of strings in R and
||R|| to denote the total length of the strings in R.

The space requirement can be problematic, since typically each node needs
much more space than a single symbol.

Compact tries reduce the number
of nodes by replacing branchless
path segments with a single edge.

Example 1.6: Compact trie for
{ali$, alice$, anna$, elias$, eliza$}.

a

li

$

ce$

nna$

eli

as$ za$

20

The space complexity of a compact trie is O(|R|) (in addition to the
strings):

• In a compact trie, every internal node (except possibly the root) has at
least two children. In such a tree, there is always at least as many
leaves as internal nodes. Thus the number of nodes is at most 2|R|.

• The egde labels are factors of the input strings. If the input strings are
stored separately, the edge labels can be represented in constant space
using pointers to the strings.

The time complexities are the same or better than for tries:

• An insertion adds and a deletion removes at most two nodes.

• Lookups may execute fewer calls to the child operation, though the
worst case complexity is the same.

• Prefix and range queries are faster even on a constant alphabet
(exercise).

21

There is also an intermediate form of trie called leaf-path-compacted trie,
where branchless path segments are compacted only when they end in a leaf.

• Typically (though not in the worst case) this achieves most of the
advantages of a compact trie.

• For trie algorithms, this means stopping the normal search, when only
one string is remaining in the subtree.

Example 1.7: Leaf-path-compacted trie for
{ali$, alice$, anna$, elias$, eliza$}.

a

l

i

$

ce$

nna$

e

l

i

as$ za$

22

Ternary Trie

Tries can be implemented for ordered alphabets but a bit awkwardly using a
comparison-based child function. Ternary trie is a simpler data structure
based on symbol comparisons.

Ternary trie is like a binary search tree except:

• Each internal node has three children: smaller, equal and larger.

• The branching is based on a single symbol at a given position as in a
trie. The position is zero (first symbol) at the root and increases along
the middle branches but not along side branches.

There are also compact ternary tries and leaf-path-compated ternary tries
based on compacting branchless path segments.

23

Example 1.8: Ternary tries for {ali$, alice$, anna$, elias$, eliza$}.

a

l

i

c

$
e

$

n

n

a

$

e

l

i

a

s

$

z

a

$

a

l

i

c

e

l

i

a
$ e$

nna$

s$

za$

a

l

c

a

i

$ e$
nna$

eli

s$

za$

Ternary tries have the same asymptotic size as the corresponding (σ-ary)
tries.

24

A ternary trie is balanced if each left and right subtree contains at most half
of the strings in its parent tree.

• The balance can be maintained by rotations similarly to binary search
trees.

C

rotation

C

d

D E

b

A B

b

A B

d

D E

• We can also get reasonably close to a balance by inserting the strings in
the tree in a random order.

Note that there is no restriction on the size of the middle subtree.

25

In a balanced ternary trie each step down either

• moves the position forward (middle branch), or

• halves the number of strings remaining in the subtree (side branch).

Thus, in a balanced ternary trie storing n strings, any downward traversal
following a string S passes at most |S| middle edges and at most logn side
edges.

Thus the time complexity of insertion, deletion, lookup and lcp query is
O(|S|+ logn).

In comparison based tries, where the child function is implemented using
binary search trees, the time complexities could be O(|S| logσ), a
multiplicative factor O(logσ) instead of an additive factor O(logn).

Prefix and range queries behave similarly (exercise).

26

Longest Common Prefixes

The standard ordering for strings is the lexicographical order. It is induced
by an order over the alphabet. We will use the same symbols (≤, <, ≥, 6≤,
etc.) for both the alphabet order and the induced lexicographical order.

We can define the lexicographical order using the concept of the longest
common prefix.

Definition 1.9: The length of the longest common prefix of two strings
A[0..m) and B[0..n), denoted by lcp(A,B), is the largest integer
` ≤ min{m,n} such that A[0..`) = B[0..`).

Definition 1.10: Let A and B be two strings over an alphabet with a total
order ≤, and let ` = lcp(A,B). Then A is lexicographically smaller than or
equal to B, denoted by A ≤ B, if and only if

1. either |A| = `

2. or |A| > `, |B| > ` and A[`] < B[`].

27

An important concept for sets of strings is the LCP (longest common
prefix) array and its sum.

Definition 1.11: Let R = {S1, S2, . . . , Sn} be a set of strings and assume
S1 < S2 < · · · < Sn. Then the LCP array LCPR[1..n] is defined so that
LCPR[1] = 0 and for i ∈ [2..n]

LCPR[i] = lcp(Si, Si−1)

Furthermore, the LCP array sum is

ΣLCP (R) =
∑

i∈[1..n]

LCPR[i] .

Example 1.12: For R = {ali$, alice$, anna$, elias$, eliza$}, ΣLCP (R) = 7
and the LCP array is:

LCPR
0 ali$
3 alice$
1 anna$
0 elias$
3 eliza$

28

A variant of the LCP array sum is sometimes useful:

Definition 1.13: For a string S and a string set R, define

lcp(S,R) = max{lcp(S, T) | T ∈ R}
Σlcp(R) =

∑

S∈R
lcp(S,R \ {S})

The relationship of the two measures is shown by the following two results:

Lemma 1.14: For i ∈ [2..n], LCPR[i] = lcp(Si, {S1, . . . , Si−1}).

Lemma 1.15: ΣLCP (R) ≤ Σlcp(R) ≤ 2 ·ΣLCP (R).

The proofs are left as an exercise.

The concept of distinguishing prefix is closely related and often used in place
of the longest common prefix for sets. The distinguishing prefix of a string
is the shortest prefix that separates it from other strings in the set. It is
easy to see that dp(S,R \ S) = lcp(S,R \ S) + 1 (at least for a prefix free R).

Example 1.16: For R = {ali$, alice$, anna$, elias$, eliza$}, Σlcp(R) = 13
and Σdp(R) = 18.

29

Theorem 1.17: The number of nodes in trie(R) is exactly
||R|| −ΣLCP (R) + 1, where ||R|| is the total length of the strings in R.

Proof. Consider the construction of trie(R) by inserting the strings one by
one in the lexicographical order using Algorithm 1.2. Initially, the trie has
just one node, the root. When inserting a string Si, the algorithm executes
exactly |Si| rounds of the two while loops, because each round moves one
step forward in Si. The first loop follows existing edges as long as possible
and thus the number of rounds is LCPR[i] = lcp(Si, {S1, . . . , Si−1}). This
leaves |Si| −LCPR[i] rounds for the second loop, each of which adds one new
node to the trie. Thus the total number of nodes in the trie at the end is:

1 +
∑

i∈[1..n]

|Si| − LCPR[i] = ||R|| −ΣLCP (R) + 1 .

�

The proof reveals a close connection between LCPR and the structure of
the trie. We will later see that LCPR is useful as an actual data structure in
its own right.

30

String Sorting

Ω(n logn) is a well known lower bound for the number of comparisons
needed for sorting a set of n objects by any comparison based algorithm.
This lower bound holds both in the worst case and in the average case.

There are many algorithms that match the lower bound, i.e., sort using
O(n logn) comparisons (worst or average case). Examples include quicksort,
heapsort and mergesort.

If we use one of these algorithms for sorting a set of n strings, it is clear
that the number of symbol comparisons can be more than O(n logn) in the
worst case. Determining the order of A and B needs at least lcp(A,B)
symbol comparisons and lcp(A,B) can be arbitrarily large in general.

On the other hand, the average number of symbol comparisons for two
random strings is O(1). Does this mean that we can sort a set of random
strings in O(n logn) time using a standard sorting algorithm?

31

The following theorem shows that we cannot achieve O(n logn) symbol
comparisons for any set of strings (when σ = no(1)).

Theorem 1.18: Let A be an algorithm that sorts a set of objects using
only comparisons between the objects. Let R = {S1, S2, . . . , Sn} be a set of n
strings over an ordered alphabet Σ of size σ. Sorting R using A requires
Ω(n logn logσ n) symbol comparisons on average, where the average is taken
over the initial orders of R.

• If σ is considered to be a constant, the lower bound is Ω(n(logn)2).

• Note that the theorem holds for any comparison based sorting algorithm
A and any string set R. In other words, we can choose A and R to
minimize the number of comparisons and still not get below the bound.

• Only the initial order is random rather than “any”. Otherwise, we could
pick the correct order and use an algorithm that first checks if the order
is correct, needing only O(n+ ΣLCP (R)) symbol comparisons.

An intuitive explanation for this result is that the comparisons made by a
sorting algorithm are not random. In the later stages, the algorithm tends
to compare strings that are close to each other in lexicographical order and
thus are likely to have long common prefixes.

32

Proof of Theorem 1.18. Let k = b(logσ n)/2c. For any string α ∈ Σk, let
Rα be the set of strings in R having α as a prefix. Let nα = |Rα|.
Let us analyze the number of symbol comparisons when comparing strings
in Rα against each other.

• Each string comparison needs at least k symbol comparisons.

• No comparison between a string in Rα and a string outside Rα gives
any information about the relative order of the strings in Rα.

• Thus A needs to do Ω(nα lognα) string comparisons and Ω(knα lognα)
symbol comparisons to determine the relative order of the strings in Rα.

Thus the total number of symbol comparisons is Ω
(∑

α∈Σk knα lognα
)

and

∑

α∈Σk

knα lognα ≥ k(n−√n) log
n−√n
σk

≥ k(n−√n) log(
√
n− 1)

= Ω (kn logn) = Ω (n logn logσ n) .

Here we have used the facts that σk ≤ √n, that
∑

α∈Σk nα > n− σk ≥ n−√n,
and that

∑
α∈Σk nα lognα > (n−√n) log((n−√n)/σk) (see exercises). �

33

The preceding lower bound does not hold for algorithms specialized for
sorting strings.

Theorem 1.19: Let R = {S1, S2, . . . , Sn} be a set of n strings. Sorting R
into the lexicographical order by any algorithm based on symbol
comparisons requires Ω(ΣLCP (R) + n logn) symbol comparisons.

Proof. If we are given the strings in the correct order and the job is to
verify that this is indeed so, we need at least ΣLCP (R) symbol
comparisons. No sorting algorithm could possibly do its job with less symbol
comparisons. This gives a lower bound Ω(ΣLCP (R)).

On the other hand, the general sorting lower bound Ω(n logn) must hold
here too.

The result follows from combining the two lower bounds. �

• Note that the expected value of ΣLCP (R) for a random set of n
strings is O(n logσ n). The lower bound then becomes Ω(n logn).

We will next see that there are algorithms that match this lower bound.
Such algorithms can sort a random set of strings in O(n logn) time.

34

String Quicksort (Multikey Quicksort)

Quicksort is one of the fastest general purpose sorting algorithms in
practice.

Here is a variant of quicksort that partitions the input into three parts
instead of the usual two parts.

Algorithm 1.20: TernaryQuicksort(R)

Input: (Multi)set R in arbitrary order.
Output: R in ascending order.

(1) if |R| ≤ 1 then return R
(2) select a pivot x ∈ R
(3) R< ← {s ∈ R | s < x}
(4) R= ← {s ∈ R | s = x}
(5) R> ← {s ∈ R | s > x}
(6) R< ← TernaryQuicksort(R<)
(7) R> ← TernaryQuicksort(R>)
(8) return R< ·R= ·R>

35

In the normal, binary quicksort, we would have two subsets R≤ and R≥, both
of which may contain elements that are equal to the pivot.

• Binary quicksort is slightly faster in practice for sorting sets.

• Ternary quicksort can be faster for sorting multisets with many
duplicate keys. Sorting a multiset of size n with σ distinct elements
takes O(n logσ) comparisons (exercise).

The time complexity of both the binary and the ternary quicksort depends
on the selection of the pivot (exercise).

In the following, we assume an optimal pivot selection giving O(n logn)
worst case time complexity.

36

String quicksort is similar to ternary quicksort, but it partitions using a single
character position. String quicksort is also known as multikey quicksort.

Algorithm 1.21: StringQuicksort(R, `)
Input: (Multi)set R of strings and the length ` of their common prefix.
Output: R in ascending lexicographical order.

(1) if |R| ≤ 1 then return R
(2) R⊥ ← {S ∈ R | |S| = `}; R← R \R⊥
(3) select pivot X ∈ R
(4) R< ← {S ∈ R | S[`] < X[`]}
(5) R= ← {S ∈ R | S[`] = X[`]}
(6) R> ← {S ∈ R | S[`] > X[`]}
(7) R< ← StringQuicksort(R<, `)
(8) R= ← StringQuicksort(R=, `+ 1)
(9) R> ← StringQuicksort(R>, `)

(10) return R⊥ · R< · R= · R>

In the initial call, ` = 0.

37

Example 1.22: A possible partitioning, when ` = 2.

al p habet
al i gnment
al l ocate
al g orithm
al t ernative
al i as
al t ernate
al l

=⇒

al i gnment
al g orithm
al i as
al l ocate
al l
al p habet
al t ernative
al t ernate

Theorem 1.23: String quicksort sorts a set R of n strings in
O(ΣLCP (R) + n logn) time.

• Thus string quicksort is an optimal symbol comparison based algorithm.

• String quicksort is also fast in practice.

38

Proof of Theorem 1.23. The time complexity is dominated by the symbol
comparisons on lines (4)–(6). We charge the cost of each comparison either
on a single symbol or on a string depending on the result of the comparison:

S[`] = X[`]: Charge the comparison on the symbol S[`].

• Now the string S is placed in the set R=. The recursive call on R=
increases the common prefix length to `+ 1. Thus S[`] cannot be
involved in any future comparison and the total charge on S[`] is 1.

• Only lcp(S,R \ {S}) symbols in S can be involved in these
comparisons. Thus the total number of symbol comparisons
resulting equality is at most Σlcp(R) = Θ(ΣLCP (R)).
(Exercise: Show that the number is exactly ΣLCP (R).)

S[`] 6= X[`]: Charge the comparison on the string S.

• Now the string S is placed in the set R< or R>. The size of either
set is at most |R|/2 assuming an optimal choice of the pivot X.

• Every comparison charged on S halves the size of the set containing
S, and hence the total charge accumulated by S is at most logn.
Thus the total number of symbol comparisons resulting inequality is
at most O(n logn). �

39

Radix Sort

The Ω(n logn) sorting lower bound does not apply to algorithms that use
stronger operations than comparisons. A basic example is counting sort for
sorting integers.

Algorithm 1.24: CountingSort(R)
Input: (Multi)set R = {k1, k2, . . . kn} of integers from the range [0..σ).
Output: R in nondecreasing order in array J[0..n).

(1) for i← 0 to σ − 1 do C[i]← 0
(2) for i← 1 to n do C[ki]← C[ki] + 1
(3) sum← 0
(4) for i← 0 to σ − 1 do // cumulative sums
(5) tmp← C[i]; C[i]← sum; sum← sum+ tmp
(6) for i← 1 to n do // distribute
(7) J[C[ki]]← ki; C[ki]← C[ki] + 1
(8) return J

• The time complexity is O(n+ σ).

• Counting sort is a stable sorting algorithm, i.e., the relative order of
equal elements stays the same.

40

Similarly, the Ω(ΣLCP (R) + n logn) lower bound does not apply to string
sorting algorithms that use stronger operations than symbol comparisons.
Radix sort is such an algorithm for integer alphabets.

Radix sort was developed for sorting large integers, but it treats an integer
as a string of digits, so it is really a string sorting algorithm.

There are two types of radix sorting:

MSD radix sort starts sorting from the beginning of strings (most
significant digit).

LSD radix sort starts sorting from the end of strings (least
significant digit).

41

The LSD radix sort algorithm is very simple.

Algorithm 1.25: LSDRadixSort(R)
Input: (Multi)set R = {S1, S2, . . . , Sn} of strings of length m over alphabet [0..σ).
Output: R in ascending lexicographical order.

(1) for `← m− 1 to 0 do CountingSort(R,`)
(2) return R

• CountingSort(R,`) sorts the strings in R by the symbols at position `
using counting sort (with ki replaced by Si[`]). The time complexity is
O(|R|+ σ).

• The stability of counting sort is essential.

Example 1.26: R = {cat, him, ham, bat}.
cat
him
ham
bat

=⇒
hi m
ha m
ca t
ba t

=⇒
h a m
c a t
b a t
h i m

=⇒
b at
c at
h am
h im

It is easy to show that after i rounds, the strings are sorted by suffix of
length i. Thus, they are fully sorted at the end.

42

The algorithm assumes that all strings have the same length m, but it can
be modified to handle strings of different lengths (exercise).

Theorem 1.27: LSD radix sort sorts a set R of strings over the alphabet
[0..σ) in O(||R||+mσ) time, where ||R|| is the total length of the strings in
R and m is the length of the longest string in R.

Proof. Assume all strings have length m. The LSD radix sort performs m
rounds with each round taking O(n+ σ) time. The total time is
O(mn+mσ) = O(||R||+mσ).

The case of variable lengths is left as an exercise. �

• The weakness of LSD radix sort is that it uses Ω(||R||) time even when
ΣLCP (R) is much smaller than ||R||.

• It is best suited for sorting short strings and integers.

43

MSD radix sort resembles string quicksort but partitions the strings into σ
parts instead of three parts.

Example 1.28: MSD radix sort partitioning.

al p habet
al i gnment
al l ocate
al g orithm
al t ernative
al i as
al t ernate
al l

=⇒

al g orithm
al i gnment
al i as
al l ocate
al l
al p habet
al t ernative
al t ernate

44

Algorithm 1.29: MSDRadixSort(R, `)
Input: (Multi)set R = {S1, S2, . . . , Sn} of strings over the alphabet [0..σ)

and the length ` of their common prefix.
Output: R in ascending lexicographical order.

(1) if |R| < σ then return StringQuicksort(R, `)
(2) R⊥ ← {S ∈ R | |S| = `}; R← R \R⊥
(3) (R0,R1, . . . ,Rσ−1)← CountingSort(R, `)
(4) for i← 0 to σ − 1 do Ri ←MSDRadixSort(Ri, `+ 1)
(5) return R⊥ · R0 · R1 · · ·Rσ−1

• Here CountingSort(R,`) not only sorts but also returns the partitioning
based on symbols at position `. The time complexity is still O(|R|+ σ).

• The recursive calls eventually lead to a large number of very small sets,
but counting sort needs Ω(σ) time no matter how small the set is. To
avoid the potentially high cost, the algorithm switches to string
quicksort for small sets.

45

Theorem 1.30: MSD radix sort sorts a set R of n strings over the
alphabet [0..σ) in O(ΣLCP (R) + n logσ) time.

Proof. Consider a call processing a subset of size k ≥ σ:

• The time excluding the recursive calls but including the call to counting
sort is O(k + σ) = O(k). The k symbols accessed here will not be
accessed again.

• At most dp(S,R \ {S}) ≤ lcp(S,R \ {S}) + 1 symbols in S will be
accessed by the algorithm. Thus the total time spent in this kind of
calls is O(Σdp(R)) = O(Σlcp(R) + n) = O(ΣLCP (R) + n).

The calls for a subsets of size k < σ are handled by string quicksort. Each
string is involved in at most one such call. Therefore, the total time over all
calls to string quicksort is O(ΣLCP (R) + n logσ).

�
• There exists a more complicated variant of MSD radix sort with time

complexity O(ΣLCP (R) + n+ σ).

• Ω(ΣLCP (R) + n) is a lower bound for any algorithm that must access
symbols one at a time.

• In practice, MSD radix sort is very fast, but it is sensitive to
implementation details.

46

