Project in String Processing Algorithms

Spring 2015, period III
Juha Karkkainen



Who is this course for?

e Master’s level course in Computer Science, 2 cr
e Continuation of String Processing Algorithms course
e Requires some programming experience

e Regular course of Algorithms, Data Analytics and Machine Learning
subprogramme

e Suitable for Algorithmic Bioinformatics subprogramme (or MBI)
particularly for those interested in biological sequence analysis

e Good fit for Software Systems subprogramme



Course structure

e [hree main tasks
1. Implementation of string processing algorithms
2. Experimental analysis and/or comparison of the algorithms

3. Presentation of the results as a poster
e Each task has about the same weight in grading

e Can be done in groups of at most three
— Each group member implements something



Algorithm implementation
e Each student in a group implements a significant part of the core
algorithms

— Separate grading for each student

e Can be based on existing implementations

e Any programming language, provided that:
— Compiles and runs on department computers
— Same within a group

e Important qualities:
— correct, well tested
— readable, well documented
— efficient, well tuned

Degree of difficulty is taken into account



Algorithm implementation (continued)

Return to instructor:

e Implementation code

e Scripts for compiling and running
— simple example(s)

correctness tests

e Documentation

description of what was done: existing code used, main design
decisions, tuning details etc.

roles of group members

guidance for understanding the code

instructions for compiling and running

format is free, even comments in the code is OK

e By email in a single package (zip, tar.gz, or something like that)



Experiments

e The purpose of the experiments:
— Determine the performance of algorithms under different conditions
— Find best algorithms, variations or parameter settings

e Choice of test data is important
— Try to find best and worst cases for each algorithm.
— Compare theory and practice.
— Use generated, artificial data for fine control of parameters, real
world data for real world performance.
— Avoid too trivial experiments. For example, exact string matching
time is trivially linear in the length of the text.

e Mainly joint responsibility of a group, but each student should make
sure that their algorithms are well represented.



Poster

e Includes:
— Description of the problem
— Description of algorithms and implementations
— Experimental setting (repeatability)
— Experimental results and their interpretation

e Presented to an audience of other students and staff of the department

— Not all have taken the String Processing Algorithms course
(recently)

e Visual clarity is important

— Avoid too much detail, include only main points and results.
Additional details may be explained verbally.

— Use figures, graphs, colors, etc.

e See examples



Tentative schedule

Week 1

Week 2

Week 3

Week 4

Week 5
o

Week 6

Week 7

(13.1.): Formation of groups, selection of topics

Study the topic

(20.1.): Finalization of topic details

Study implementation details, start coding

(27.1.): Additional details on implementations

Coding, start documenting, study experimenting

(3.2.): Initial design of experiments

Coding, documenting, design experiments, study poster making
(10.2.): Final design of experiments, initial design of poster
(12.2.): Return of implementations

Experimenting, poster making

(17.2.): Final design of poster, show draft poster

Finalize poster

(24.2.7): Poster presentation



Topic: Exact String Matching

e EXxtensive implementations and experiments using C
— http://www.dmi.unict.it/~faro/smart/

— S. Faro and T. Lecroq: The exact online string matching problem:
A review of the most recent results. ACM Computing Surveys 45,
2, Article 13 (March 2013), 42 pages.

http://doi.acm.org/10.1145/2431211.2431212

e Other programming languages?


http://www.dmi.unict.it/~faro/smart/
http://doi.acm.org/10.1145/2431211.2431212

Topic: String Range Matching

e Generalization of exact string matching

e Given a text T and two patterns P and @), list suffixes of T" that are
lexicographically between P and @

e J. Karkkainen, D. Kempa, S. Puglisi: String Range Matching.
Proceedings of the 25th Symposium on Combinatorial Pattern
Matching (CPM), pp. 232-241, 2014.
http://dx.doi.org/10.1007/978-3-319-07566-2_24

10


http://dx.doi.org/10.1007/978-3-319-07566-2_24

Topic: Multiple Exact String Matching

e Aho-Corasick
e Multi-pattern versions of Shift-Or, Horspool, BOM, Karp-Rabin, ...

e L. Salmela, J. Tarhio, and J. Kytojoki: Multipattern string matching
with g-grams. Journal of Experimental Algorithmics 11, Article 1.1
(February 2007). http://doi.acm.org/10.1145/1187436.1187438

11


http://doi.acm.org/10.1145/1187436.1187438

Topic: Approximate String Matching

e Standard dynamic programming, Ukkonen's cut-off heuristic, Myers’
bitparallel algorithm, filtering algorithms, ...

e G. Navarro: A guided tour to approximate string matching. ACM
Computing Surveys 33(1): 31-88, 2003.
http://doi.acm.org/10.1145/375360.375365

e L. Salmela and J. Tarhio: Approximate String Matching with Reduced
Alphabet. Workshop on Algorithms and Applications, LNCS 6060,
Springer 2010. http://dx.doi.org/10.1007/978-3-642-12476-1_15

12


http://doi.acm.org/10.1145/375360.375365
http://dx.doi.org/10.1007/978-3-642-12476-1_15

Topic: String sorting

e EXxtensive set of implementations and experiments in C++4:

— https://panthema.net/2013/parallel-string-sorting/
e Other programming languages?

e Cache misses are important

13


https://panthema.net/2013/parallel-string-sorting/

Other topics

string search trees

e suffix tree construction

— McCreight vs. transform from suffix array

Topics from an earlier year:
www.cS.helsinki.fi/u/vmakinen/strprojectl12/strprojectl12.pdf

Own topic

14


www.cs.helsinki.fi/u/vmakinen/strproject12/strproject12.pdf

