
Project in String Processing Algorithms

Spring 2016, period III

Juha Kärkkäinen



Who is this course for?

• Master’s level course in Computer Science, 2 cr

• Continuation of String Processing Algorithms course

• Requires some programming experience

• Regular course of Algorithms, Data Analytics and Machine Learning
subprogramme

• Suitable for Algorithmic Bioinformatics subprogramme (or MBI)
particularly for those interested in biological sequence analysis

• Good fit for Software Systems subprogramme

2



Course structure

• Three main tasks
1. Implementation of string processing algorithms
2. Experimental analysis and/or comparison of the algorithms
3. Presentation of the results as a poster

• Each task has about the same weight in grading

• Can be done in groups of at most three
– Each group member implements something

3



Algorithm implementation

• Each student in a group implements a significant part of the core
algorithms

– Separate grading for each student

• Can be based on existing implementations

• Any programming language, provided that:
– Compiles and runs on department computers
– Same within a group

• Important qualities:
– correct, well tested
– readable, well documented
– efficient, well tuned

• Degree of difficulty is taken into account

4



Algorithm implementation (continued)

Return to instructor:

• Implementation code

• Scripts for compiling and running
– simple example(s)
– correctness tests

• Documentation
– description of what was done: existing code used, main design

decisions, tuning details etc.
– roles of group members
– guidance for understanding the code
– instructions for compiling and running
– format is free, even comments in the code is OK

• By email in a single package (zip, tar.gz, or something like that)

5



Experiments

• The purpose of the experiments:
– Determine the performance of algorithms under different conditions
– Find best algorithms, variations or parameter settings

• Choice of test data is important
– Try to find best and worst cases for each algorithm.
– Compare theory and practice.
– Use generated, artificial data for fine control of parameters, real

world data for real world performance.
– Avoid too trivial experiments. For example, exact string matching

time is trivially linear in the length of the text.

• Mainly joint responsibility of a group, but each student should make
sure that their algorithms are well represented.

6



Poster

• Includes:
– Description of the problem
– Description of algorithms and implementations
– Experimental setting (repeatability)
– Experimental results and their interpretation

• Presented to an audience of other students and staff of the department
– Not all have taken the String Processing Algorithms course

(recently)

• Visual clarity is important
– Avoid too much detail, include only main points and results.

Additional details may be explained verbally.
– Use figures, graphs, colors, etc.

• See examples

7



Tentative schedule

Week 1 (19.1.): Formation of groups, selection of topics

• Study the topic

Week 2 (26.1.): Finalization of topic details

• Study implementation details, start coding

Week 3 (2.2.): Additional details on implementations

• Coding, start documenting, study experimenting

Week 4 (9.2.): Initial design of experiments

• Coding, documenting, design experiments, study poster making

Week 5 (16.2.): Final design of experiments, initial design of poster

• (18.2.): Return of implementations

• Experimenting, poster making

Week 6 (23.2.): Final design of poster, show draft poster

• Finalize poster

Week 7 (1.3.?): Poster presentation

8



Topic: Exact String Matching

• Extensive implementations and experiments using C

– http://www.dmi.unict.it/~faro/smart/

– S. Faro and T. Lecroq: The exact online string matching problem:
A review of the most recent results. ACM Computing Surveys 45,
2, Article 13 (March 2013), 42 pages.
http://doi.acm.org/10.1145/2431211.2431212

• Other programming languages?

9

http://www.dmi.unict.it/~faro/smart/
http://doi.acm.org/10.1145/2431211.2431212


Topic: String Range Matching

• Generalization of exact string matching

• Given a text T and two patterns P and Q, list suffixes of T that are
lexicographically between P and Q

• J. Kärkkäinen, D. Kempa, S. Puglisi: String Range Matching.
Proceedings of the 25th Symposium on Combinatorial Pattern
Matching (CPM), pp. 232-241, 2014.
http://dx.doi.org/10.1007/978-3-319-07566-2_24

10

http://dx.doi.org/10.1007/978-3-319-07566-2_24


Topic: Multiple Exact String Matching

• Aho-Corasick

• Multi-pattern versions of Shift-Or, Horspool, BOM, Karp-Rabin, ...

• L. Salmela, J. Tarhio, and J. Kytöjoki: Multipattern string matching
with q-grams. Journal of Experimental Algorithmics 11, Article 1.1
(February 2007). http://doi.acm.org/10.1145/1187436.1187438

11

http://doi.acm.org/10.1145/1187436.1187438


Topic: Approximate String Matching

• Standard dynamic programming, Ukkonen’s cut-off heuristic, Myers’
bitparallel algorithm, filtering algorithms, ...

• G. Navarro: A guided tour to approximate string matching. ACM
Computing Surveys 33(1): 31–88, 2003.
http://doi.acm.org/10.1145/375360.375365

• L. Salmela and J. Tarhio: Approximate String Matching with Reduced
Alphabet. Workshop on Algorithms and Applications, LNCS 6060,
Springer 2010. http://dx.doi.org/10.1007/978-3-642-12476-1_15

12

http://doi.acm.org/10.1145/375360.375365
http://dx.doi.org/10.1007/978-3-642-12476-1_15


Topic: String sorting

• Extensive set of implementations and experiments in C++:

– https://panthema.net/2013/parallel-string-sorting/

• Other programming languages?

• Cache misses are important

13

https://panthema.net/2013/parallel-string-sorting/


Other topics

• string search trees

• suffix tree construction

– McCreight vs. transform from suffix array

• ...

• Topics from an earlier year:
www.cs.helsinki.fi/u/vmakinen/strproject12/strproject12.pdf

• Own topic

14

www.cs.helsinki.fi/u/vmakinen/strproject12/strproject12.pdf

