i2c-via686a driver

Jan Dittmer (j.dittmer@portrix.net)
Sun, 23 Mar 2003 20:29:59 +0100


This is a MIME-formatted message. If you see this text it means that your
E-mail software does not support MIME-formatted messages.

--=_courier-6744-1048447951-0001-2
Content-Type: text/plain; charset=us-ascii; format=flowed
Content-Transfer-Encoding: 7bit

I just took the driver from cvs and converted it to the new api. Running
with your latest patches now without any problems.
I also needed some fixes in tvmixer.c to compile properly. Should I send
them too?
If this work is okay, I'll convert some other drivers from i2c cvs to
the current api.

Thanks,

Jan

--=_courier-6744-1048447951-0001-2
Content-Type: text/plain; name="via686a_makefile.diff"; charset=iso-8859-1
Content-Transfer-Encoding: 7bit
Content-Disposition: inline;
filename="via686a_makefile.diff"

diff -urN clean/drivers/i2c/chips/Kconfig work/drivers/i2c/chips/Kconfig
--- clean/drivers/i2c/chips/Kconfig 2003-03-21 12:42:02.000000000 +0100
+++ work/drivers/i2c/chips/Kconfig 2003-03-21 23:23:05.000000000 +0100
@@ -37,4 +37,17 @@
in the lm_sensors package, which you can download at
http://www.lm-sensors.nu

+config SENSORS_VIA686A
+ tristate " VIA686A"
+ depends on I2C && I2C_PROC
+ help
+ support for via686a
+ If you say yes here you get support for the integrated sensors in
+ Via 686A/B South Bridges. This can also be built as a module
+ which can be inserted and removed while the kernel is running.
+
+ You will also need the latest user-space utilties: you can find them
+ in the lm_sensors package, which you can download at
+ http://www.lm-sensors.nu
+
endmenu
diff -urN clean/drivers/i2c/chips/Makefile work/drivers/i2c/chips/Makefile
--- clean/drivers/i2c/chips/Makefile 2003-03-21 12:42:02.000000000 +0100
+++ work/drivers/i2c/chips/Makefile 2003-03-21 23:23:01.000000000 +0100
@@ -4,3 +4,4 @@

obj-$(CONFIG_SENSORS_ADM1021) += adm1021.o
obj-$(CONFIG_SENSORS_LM75) += lm75.o
+obj-$(CONFIG_SENSORS_VIA686A) += via686a.o

--=_courier-6744-1048447951-0001-2
Content-Type: text/x-csrc; name="via686a.c"; charset=iso-8859-1
Content-Transfer-Encoding: 8bit
Content-Disposition: inline;
filename="via686a.c"

/*
via686a.c - Part of lm_sensors, Linux kernel modules
for hardware monitoring

Copyright (c) 1998 - 2002 Frodo Looijaard <frodol@dds.nl>,
Kyvsti Mdlkki <kmalkki@cc.hut.fi>,
Mark Studebaker <mdsxyz123@yahoo.com>,
and Bob Dougherty <bobd@stanford.edu>
(Some conversion-factor data were contributed by Jonathan Teh Soon Yew
<j.teh@iname.com> and Alex van Kaam <darkside@chello.nl>.)

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/

/*
Supports the Via VT82C686A, VT82C686B south bridges.
Reports all as a 686A.
See doc/chips/via686a for details.
Warning - only supports a single device.
*/

#include <linux/module.h>
#include <linux/slab.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/i2c.h>
#include <linux/i2c-proc.h>
#include <linux/init.h>
#include <asm/io.h>

/* If force_addr is set to anything different from 0, we forcibly enable
the device at the given address. */
static int force_addr = 0;
MODULE_PARM(force_addr, "i");
MODULE_PARM_DESC(force_addr,
"Initialize the base address of the sensors");

/* Addresses to scan.
Note that we can't determine the ISA address until we have initialized
our module */
static unsigned short normal_i2c[] = { SENSORS_I2C_END };
static unsigned short normal_i2c_range[] = { SENSORS_I2C_END };
static unsigned int normal_isa[] = { 0x0000, SENSORS_ISA_END };
static unsigned int normal_isa_range[] = { SENSORS_ISA_END };

/* Insmod parameters */
SENSORS_INSMOD_1(via686a);

/*
The Via 686a southbridge has a LM78-like chip integrated on the same IC.
This driver is a customized copy of lm78.c
*/

/* Many VIA686A constants specified below */

/* Length of ISA address segment */
#define VIA686A_EXTENT 0x80
#define VIA686A_BASE_REG 0x70
#define VIA686A_ENABLE_REG 0x74

/* The VIA686A registers */
/* ins numbered 0-4 */
#define VIA686A_REG_IN_MAX(nr) (0x2b + ((nr) * 2))
#define VIA686A_REG_IN_MIN(nr) (0x2c + ((nr) * 2))
#define VIA686A_REG_IN(nr) (0x22 + (nr))

/* fans numbered 1-2 */
#define VIA686A_REG_FAN_MIN(nr) (0x3a + (nr))
#define VIA686A_REG_FAN(nr) (0x28 + (nr))

// the following values are as speced by VIA:
static const u8 regtemp[] = { 0x20, 0x21, 0x1f };
static const u8 regover[] = { 0x39, 0x3d, 0x1d };
static const u8 reghyst[] = { 0x3a, 0x3e, 0x1e };

/* temps numbered 1-3 */
#define VIA686A_REG_TEMP(nr) (regtemp[(nr) - 1])
#define VIA686A_REG_TEMP_OVER(nr) (regover[(nr) - 1])
#define VIA686A_REG_TEMP_HYST(nr) (reghyst[(nr) - 1])
#define VIA686A_REG_TEMP_LOW1 0x4b // bits 7-6
#define VIA686A_REG_TEMP_LOW23 0x49 // 2 = bits 5-4, 3 = bits 7-6

#define VIA686A_REG_ALARM1 0x41
#define VIA686A_REG_ALARM2 0x42
#define VIA686A_REG_FANDIV 0x47
#define VIA686A_REG_CONFIG 0x40
// The following register sets temp interrupt mode (bits 1-0 for temp1,
// 3-2 for temp2, 5-4 for temp3). Modes are:
// 00 interrupt stays as long as value is out-of-range
// 01 interrupt is cleared once register is read (default)
// 10 comparator mode- like 00, but ignores hysteresis
// 11 same as 00
#define VIA686A_REG_TEMP_MODE 0x4b
// We'll just assume that you want to set all 3 simultaneously:
#define VIA686A_TEMP_MODE_MASK 0x3F
#define VIA686A_TEMP_MODE_CONTINUOUS (0x00)

/* Conversions. Rounding and limit checking is only done on the TO_REG
variants. */

/********* VOLTAGE CONVERSIONS (Bob Dougherty) ********/
// From HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew):
// voltagefactor[0]=1.25/2628; (2628/1.25=2102.4) // Vccp
// voltagefactor[1]=1.25/2628; (2628/1.25=2102.4) // +2.5V
// voltagefactor[2]=1.67/2628; (2628/1.67=1573.7) // +3.3V
// voltagefactor[3]=2.6/2628; (2628/2.60=1010.8) // +5V
// voltagefactor[4]=6.3/2628; (2628/6.30=417.14) // +12V
// in[i]=(data[i+2]*25.0+133)*voltagefactor[i];
// That is:
// volts = (25*regVal+133)*factor
// regVal = (volts/factor-133)/25
// (These conversions were contributed by Jonathan Teh Soon Yew
// <j.teh@iname.com>)
//
// These get us close, but they don't completely agree with what my BIOS
// says- they are all a bit low. But, it all we have to go on...
static inline u8 IN_TO_REG(long val, int inNum)
{
// to avoid floating point, we multiply everything by 100.
// val is guaranteed to be positive, so we can achieve the effect of
// rounding by (...*10+5)/10. Note that the *10 is hidden in the
// /250 (which should really be /2500).
// At the end, we need to /100 because we *100 everything and we need
// to /10 because of the rounding thing, so we /1000.
if (inNum <= 1)
return (u8)
SENSORS_LIMIT(((val * 210240 - 13300) / 250 + 5) / 1000,
0, 255);
else if (inNum == 2)
return (u8)
SENSORS_LIMIT(((val * 157370 - 13300) / 250 + 5) / 1000,
0, 255);
else if (inNum == 3)
return (u8)
SENSORS_LIMIT(((val * 101080 - 13300) / 250 + 5) / 1000,
0, 255);
else
return (u8) SENSORS_LIMIT(((val * 41714 - 13300) / 250 + 5)
/ 1000, 0, 255);
}

static inline long IN_FROM_REG(u8 val, int inNum)
{
// to avoid floating point, we multiply everything by 100.
// val is guaranteed to be positive, so we can achieve the effect of
// rounding by adding 0.5. Or, to avoid fp math, we do (...*10+5)/10.
// We need to scale with *100 anyway, so no need to /100 at the end.
if (inNum <= 1)
return (long) (((250000 * val + 13300) / 210240 * 10 + 5) /10);
else if (inNum == 2)
return (long) (((250000 * val + 13300) / 157370 * 10 + 5) /10);
else if (inNum == 3)
return (long) (((250000 * val + 13300) / 101080 * 10 + 5) /10);
else
return (long) (((250000 * val + 13300) / 41714 * 10 + 5) /10);
}

/********* FAN RPM CONVERSIONS ********/
// Higher register values = slower fans (the fan's strobe gates a counter).
// But this chip saturates back at 0, not at 255 like all the other chips.
// So, 0 means 0 RPM
static inline u8 FAN_TO_REG(long rpm, int div)
{
if (rpm == 0)
return 0;
rpm = SENSORS_LIMIT(rpm, 1, 1000000);
return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1, 255);
}

#define FAN_FROM_REG(val,div) ((val)==0?0:(val)==255?0:1350000/((val)*(div)))

/******** TEMP CONVERSIONS (Bob Dougherty) *********/
// linear fits from HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew)
// if(temp<169)
// return double(temp)*0.427-32.08;
// else if(temp>=169 && temp<=202)
// return double(temp)*0.582-58.16;
// else
// return double(temp)*0.924-127.33;
//
// A fifth-order polynomial fits the unofficial data (provided by Alex van
// Kaam <darkside@chello.nl>) a bit better. It also give more reasonable
// numbers on my machine (ie. they agree with what my BIOS tells me).
// Here's the fifth-order fit to the 8-bit data:
// temp = 1.625093e-10*val^5 - 1.001632e-07*val^4 + 2.457653e-05*val^3 -
// 2.967619e-03*val^2 + 2.175144e-01*val - 7.090067e+0.
//
// (2000-10-25- RFD: thanks to Uwe Andersen <uandersen@mayah.com> for
// finding my typos in this formula!)
//
// Alas, none of the elegant function-fit solutions will work because we
// aren't allowed to use floating point in the kernel and doing it with
// integers doesn't rpovide enough precision. So we'll do boring old
// look-up table stuff. The unofficial data (see below) have effectively
// 7-bit resolution (they are rounded to the nearest degree). I'm assuming
// that the transfer function of the device is monotonic and smooth, so a
// smooth function fit to the data will allow us to get better precision.
// I used the 5th-order poly fit described above and solved for
// VIA register values 0-255. I *10 before rounding, so we get tenth-degree
// precision. (I could have done all 1024 values for our 10-bit readings,
// but the function is very linear in the useful range (0-80 deg C), so
// we'll just use linear interpolation for 10-bit readings.) So, tempLUT
// is the temp at via register values 0-255:
static const long tempLUT[] =
{ -709, -688, -667, -646, -627, -607, -589, -570, -553, -536, -519,
-503, -487, -471, -456, -442, -428, -414, -400, -387, -375,
-362, -350, -339, -327, -316, -305, -295, -285, -275, -265,
-255, -246, -237, -229, -220, -212, -204, -196, -188, -180,
-173, -166, -159, -152, -145, -139, -132, -126, -120, -114,
-108, -102, -96, -91, -85, -80, -74, -69, -64, -59, -54, -49,
-44, -39, -34, -29, -25, -20, -15, -11, -6, -2, 3, 7, 12, 16,
20, 25, 29, 33, 37, 42, 46, 50, 54, 59, 63, 67, 71, 75, 79, 84,
88, 92, 96, 100, 104, 109, 113, 117, 121, 125, 130, 134, 138,
142, 146, 151, 155, 159, 163, 168, 172, 176, 181, 185, 189,
193, 198, 202, 206, 211, 215, 219, 224, 228, 232, 237, 241,
245, 250, 254, 259, 263, 267, 272, 276, 281, 285, 290, 294,
299, 303, 307, 312, 316, 321, 325, 330, 334, 339, 344, 348,
353, 357, 362, 366, 371, 376, 380, 385, 390, 395, 399, 404,
409, 414, 419, 423, 428, 433, 438, 443, 449, 454, 459, 464,
469, 475, 480, 486, 491, 497, 502, 508, 514, 520, 526, 532,
538, 544, 551, 557, 564, 571, 578, 584, 592, 599, 606, 614,
621, 629, 637, 645, 654, 662, 671, 680, 689, 698, 708, 718,
728, 738, 749, 759, 770, 782, 793, 805, 818, 830, 843, 856,
870, 883, 898, 912, 927, 943, 958, 975, 991, 1008, 1026, 1044,
1062, 1081, 1101, 1121, 1141, 1162, 1184, 1206, 1229, 1252,
1276, 1301, 1326, 1352, 1378, 1406, 1434, 1462
};

/* the original LUT values from Alex van Kaam <darkside@chello.nl>
(for via register values 12-240):
{-50,-49,-47,-45,-43,-41,-39,-38,-37,-35,-34,-33,-32,-31,
-30,-29,-28,-27,-26,-25,-24,-24,-23,-22,-21,-20,-20,-19,-18,-17,-17,-16,-15,
-15,-14,-14,-13,-12,-12,-11,-11,-10,-9,-9,-8,-8,-7,-7,-6,-6,-5,-5,-4,-4,-3,
-3,-2,-2,-1,-1,0,0,1,1,1,3,3,3,4,4,4,5,5,5,6,6,7,7,8,8,9,9,9,10,10,11,11,12,
12,12,13,13,13,14,14,15,15,16,16,16,17,17,18,18,19,19,20,20,21,21,21,22,22,
22,23,23,24,24,25,25,26,26,26,27,27,27,28,28,29,29,30,30,30,31,31,32,32,33,
33,34,34,35,35,35,36,36,37,37,38,38,39,39,40,40,41,41,42,42,43,43,44,44,45,
45,46,46,47,48,48,49,49,50,51,51,52,52,53,53,54,55,55,56,57,57,58,59,59,60,
61,62,62,63,64,65,66,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,83,84,
85,86,88,89,91,92,94,96,97,99,101,103,105,107,109,110};
*/

// Here's the reverse LUT. I got it by doing a 6-th order poly fit (needed
// an extra term for a good fit to these inverse data!) and then
// solving for each temp value from -50 to 110 (the useable range for
// this chip). Here's the fit:
// viaRegVal = -1.160370e-10*val^6 +3.193693e-08*val^5 - 1.464447e-06*val^4
// - 2.525453e-04*val^3 + 1.424593e-02*val^2 + 2.148941e+00*val +7.275808e+01)
// Note that n=161:
static const u8 viaLUT[] =
{ 12, 12, 13, 14, 14, 15, 16, 16, 17, 18, 18, 19, 20, 20, 21, 22, 23,
23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 39, 40,
41, 43, 45, 46, 48, 49, 51, 53, 55, 57, 59, 60, 62, 64, 66,
69, 71, 73, 75, 77, 79, 82, 84, 86, 88, 91, 93, 95, 98, 100,
103, 105, 107, 110, 112, 115, 117, 119, 122, 124, 126, 129,
131, 134, 136, 138, 140, 143, 145, 147, 150, 152, 154, 156,
158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180,
182, 183, 185, 187, 188, 190, 192, 193, 195, 196, 198, 199,
200, 202, 203, 205, 206, 207, 208, 209, 210, 211, 212, 213,
214, 215, 216, 217, 218, 219, 220, 221, 222, 222, 223, 224,
225, 226, 226, 227, 228, 228, 229, 230, 230, 231, 232, 232,
233, 233, 234, 235, 235, 236, 236, 237, 237, 238, 238, 239,
239, 240
};

/* Converting temps to (8-bit) hyst and over registers */
// No interpolation here. Just check the limits and go.
// The +5 effectively rounds off properly and the +50 is because
// the temps start at -50
static inline u8 TEMP_TO_REG(long val)
{
return (u8)
SENSORS_LIMIT(viaLUT[((val <= -500) ? 0 : (val >= 1100) ? 160 :
((val + 5) / 10 + 50))], 0, 255);
}

/* for 8-bit temperature hyst and over registers */
// The temp values are already *10, so we don't need to do that.
// But we _will_ round these off to the nearest degree with (...*10+5)/10
#define TEMP_FROM_REG(val) ((tempLUT[(val)]*10+5)/10)

/* for 10-bit temperature readings */
// You might _think_ this is too long to inline, but's it's really only
// called once...
static inline long TEMP_FROM_REG10(u16 val)
{
// the temp values are already *10, so we don't need to do that.
long temp;
u16 eightBits = val >> 2;
u16 twoBits = val & 3;

// handle the extremes first (they won't interpolate well! ;-)
if (val == 0)
return (long) tempLUT[0];
if (val == 1023)
return (long) tempLUT[255];

if (twoBits == 0)
return (long) tempLUT[eightBits];
else {
// do some interpolation by multipying the lower and upper
// bounds by 25, 50 or 75, then /100.
temp = ((25 * (4 - twoBits)) * tempLUT[eightBits]
+ (25 * twoBits) * tempLUT[eightBits + 1]);
// increase the magnitude by 50 to achieve rounding.
if (temp > 0)
temp += 50;
else
temp -= 50;
return (temp / 100);
}
}

#define ALARMS_FROM_REG(val) (val)

#define DIV_FROM_REG(val) (1 << (val))
#define DIV_TO_REG(val) ((val)==8?3:(val)==4?2:(val)==1?0:1)

/* Initial limits */
#define VIA686A_INIT_IN_0 200
#define VIA686A_INIT_IN_1 250
#define VIA686A_INIT_IN_2 330
#define VIA686A_INIT_IN_3 500
#define VIA686A_INIT_IN_4 1200

#define VIA686A_INIT_IN_PERCENTAGE 10

#define VIA686A_INIT_IN_MIN_0 (VIA686A_INIT_IN_0 - VIA686A_INIT_IN_0 \
* VIA686A_INIT_IN_PERCENTAGE / 100)
#define VIA686A_INIT_IN_MAX_0 (VIA686A_INIT_IN_0 + VIA686A_INIT_IN_0 \
* VIA686A_INIT_IN_PERCENTAGE / 100)
#define VIA686A_INIT_IN_MIN_1 (VIA686A_INIT_IN_1 - VIA686A_INIT_IN_1 \
* VIA686A_INIT_IN_PERCENTAGE / 100)
#define VIA686A_INIT_IN_MAX_1 (VIA686A_INIT_IN_1 + VIA686A_INIT_IN_1 \
* VIA686A_INIT_IN_PERCENTAGE / 100)
#define VIA686A_INIT_IN_MIN_2 (VIA686A_INIT_IN_2 - VIA686A_INIT_IN_2 \
* VIA686A_INIT_IN_PERCENTAGE / 100)
#define VIA686A_INIT_IN_MAX_2 (VIA686A_INIT_IN_2 + VIA686A_INIT_IN_2 \
* VIA686A_INIT_IN_PERCENTAGE / 100)
#define VIA686A_INIT_IN_MIN_3 (VIA686A_INIT_IN_3 - VIA686A_INIT_IN_3 \
* VIA686A_INIT_IN_PERCENTAGE / 100)
#define VIA686A_INIT_IN_MAX_3 (VIA686A_INIT_IN_3 + VIA686A_INIT_IN_3 \
* VIA686A_INIT_IN_PERCENTAGE / 100)
#define VIA686A_INIT_IN_MIN_4 (VIA686A_INIT_IN_4 - VIA686A_INIT_IN_4 \
* VIA686A_INIT_IN_PERCENTAGE / 100)
#define VIA686A_INIT_IN_MAX_4 (VIA686A_INIT_IN_4 + VIA686A_INIT_IN_4 \
* VIA686A_INIT_IN_PERCENTAGE / 100)

#define VIA686A_INIT_FAN_MIN 3000

#define VIA686A_INIT_TEMP_OVER 600
#define VIA686A_INIT_TEMP_HYST 500

/* For the VIA686A, we need to keep some data in memory. That
data is pointed to by via686a_list[NR]->data. The structure itself is
dynamically allocated, at the same time when a new via686a client is
allocated. */
struct via686a_data {
int sysctl_id;

struct semaphore update_lock;
char valid; /* !=0 if following fields are valid */
unsigned long last_updated; /* In jiffies */

u8 in[5]; /* Register value */
u8 in_max[5]; /* Register value */
u8 in_min[5]; /* Register value */
u8 fan[2]; /* Register value */
u8 fan_min[2]; /* Register value */
u16 temp[3]; /* Register value 10 bit */
u8 temp_over[3]; /* Register value */
u8 temp_hyst[3]; /* Register value */
u8 fan_div[2]; /* Register encoding, shifted right */
u16 alarms; /* Register encoding, combined */
};

static struct pci_dev *s_bridge; /* pointer to the (only) via686a */

static int via686a_attach_adapter(struct i2c_adapter *adapter);
static int via686a_detect(struct i2c_adapter *adapter, int address,
unsigned short flags, int kind);
static int via686a_detach_client(struct i2c_client *client);

static int via686a_read_value(struct i2c_client *client, u8 register);
static void via686a_write_value(struct i2c_client *client, u8 register,
u8 value);
static void via686a_update_client(struct i2c_client *client);
static void via686a_init_client(struct i2c_client *client);

static void via686a_in(struct i2c_client *client, int operation,
int ctl_name, int *nrels_mag, long *results);
static void via686a_fan(struct i2c_client *client, int operation,
int ctl_name, int *nrels_mag, long *results);
static void via686a_temp(struct i2c_client *client, int operation,
int ctl_name, int *nrels_mag, long *results);
static void via686a_alarms(struct i2c_client *client, int operation,
int ctl_name, int *nrels_mag, long *results);
static void via686a_fan_div(struct i2c_client *client, int operation,
int ctl_name, int *nrels_mag, long *results);

static int via686a_id = 0;

/* The driver. I choose to use type i2c_driver, as at is identical to both
smbus_driver and isa_driver, and clients could be of either kind */
static struct i2c_driver via686a_driver = {
.owner = THIS_MODULE,
.name = "VIA686A Sensors",
.id = I2C_DRIVERID_VIA686A,
.flags = I2C_DF_NOTIFY,
.attach_adapter = via686a_attach_adapter,
.detach_client = via686a_detach_client,
};

/* The /proc/sys entries */

/* -- SENSORS SYSCTL START -- */
#define VIA686A_SYSCTL_IN0 1000
#define VIA686A_SYSCTL_IN1 1001
#define VIA686A_SYSCTL_IN2 1002
#define VIA686A_SYSCTL_IN3 1003
#define VIA686A_SYSCTL_IN4 1004
#define VIA686A_SYSCTL_FAN1 1101
#define VIA686A_SYSCTL_FAN2 1102
#define VIA686A_SYSCTL_TEMP 1200
#define VIA686A_SYSCTL_TEMP2 1201
#define VIA686A_SYSCTL_TEMP3 1202
#define VIA686A_SYSCTL_FAN_DIV 2000
#define VIA686A_SYSCTL_ALARMS 2001

#define VIA686A_ALARM_IN0 0x01
#define VIA686A_ALARM_IN1 0x02
#define VIA686A_ALARM_IN2 0x04
#define VIA686A_ALARM_IN3 0x08
#define VIA686A_ALARM_TEMP 0x10
#define VIA686A_ALARM_FAN1 0x40
#define VIA686A_ALARM_FAN2 0x80
#define VIA686A_ALARM_IN4 0x100
#define VIA686A_ALARM_TEMP2 0x800
#define VIA686A_ALARM_CHAS 0x1000
#define VIA686A_ALARM_TEMP3 0x8000

/* -- SENSORS SYSCTL END -- */

/* These files are created for each detected VIA686A. This is just a template;
though at first sight, you might think we could use a statically
allocated list, we need some way to get back to the parent - which
is done through one of the 'extra' fields which are initialized
when a new copy is allocated. */
static ctl_table via686a_dir_table_template[] = {
{VIA686A_SYSCTL_IN0, "in0", NULL, 0, 0644, NULL, &i2c_proc_real,
&i2c_sysctl_real, NULL, &via686a_in},
{VIA686A_SYSCTL_IN1, "in1", NULL, 0, 0644, NULL, &i2c_proc_real,
&i2c_sysctl_real, NULL, &via686a_in},
{VIA686A_SYSCTL_IN2, "in2", NULL, 0, 0644, NULL, &i2c_proc_real,
&i2c_sysctl_real, NULL, &via686a_in},
{VIA686A_SYSCTL_IN3, "in3", NULL, 0, 0644, NULL, &i2c_proc_real,
&i2c_sysctl_real, NULL, &via686a_in},
{VIA686A_SYSCTL_IN4, "in4", NULL, 0, 0644, NULL, &i2c_proc_real,
&i2c_sysctl_real, NULL, &via686a_in},
{VIA686A_SYSCTL_FAN1, "fan1", NULL, 0, 0644, NULL, &i2c_proc_real,
&i2c_sysctl_real, NULL, &via686a_fan},
{VIA686A_SYSCTL_FAN2, "fan2", NULL, 0, 0644, NULL, &i2c_proc_real,
&i2c_sysctl_real, NULL, &via686a_fan},
{VIA686A_SYSCTL_TEMP, "temp1", NULL, 0, 0644, NULL, &i2c_proc_real,
&i2c_sysctl_real, NULL, &via686a_temp},
{VIA686A_SYSCTL_TEMP2, "temp2", NULL, 0, 0644, NULL,
&i2c_proc_real, &i2c_sysctl_real, NULL, &via686a_temp},
{VIA686A_SYSCTL_TEMP3, "temp3", NULL, 0, 0644, NULL,
&i2c_proc_real, &i2c_sysctl_real, NULL, &via686a_temp},
{VIA686A_SYSCTL_FAN_DIV, "fan_div", NULL, 0, 0644, NULL,
&i2c_proc_real, &i2c_sysctl_real, NULL, &via686a_fan_div},
{VIA686A_SYSCTL_ALARMS, "alarms", NULL, 0, 0444, NULL,
&i2c_proc_real, &i2c_sysctl_real, NULL, &via686a_alarms},
{0}
};

static inline int via686a_read_value(struct i2c_client *client, u8 reg)
{
return (inb_p(client->addr + reg));
}

static inline void via686a_write_value(struct i2c_client *client, u8 reg,
u8 value)
{
outb_p(value, client->addr + reg);
}

/* This is called when the module is loaded */
static int via686a_attach_adapter(struct i2c_adapter *adapter)
{
return i2c_detect(adapter, &addr_data, via686a_detect);
}

int via686a_detect(struct i2c_adapter *adapter, int address,
unsigned short flags, int kind)
{
int i;
struct i2c_client *new_client;
struct via686a_data *data;
int err = 0;
const char *type_name = "via686a";
u16 val;

/* Make sure we are probing the ISA bus!! */
if (!i2c_is_isa_adapter(adapter)) {
printk
("via686a.o: via686a_detect called for an I2C bus adapter?!?\n");
return 0;
}

/* 8231 requires multiple of 256, we enforce that on 686 as well */
if(force_addr)
address = force_addr & 0xFF00;

if(force_addr) {
printk("via686a.o: forcing ISA address 0x%04X\n", address);
if (PCIBIOS_SUCCESSFUL !=
pci_write_config_word(s_bridge, VIA686A_BASE_REG, address))
return -ENODEV;
}
if (PCIBIOS_SUCCESSFUL !=
pci_read_config_word(s_bridge, VIA686A_ENABLE_REG, &val))
return -ENODEV;
if (!(val & 0x0001)) {
printk("via686a.o: enabling sensors\n");
if (PCIBIOS_SUCCESSFUL !=
pci_write_config_word(s_bridge, VIA686A_ENABLE_REG,
val | 0x0001))
return -ENODEV;
}

/* Reserve the ISA region */
if (!request_region(address, VIA686A_EXTENT, "via686a-sensors")) {
printk("via686a.o: region 0x%x already in use!\n",
address);
return -ENODEV;
}

if (!(new_client = kmalloc(sizeof(struct i2c_client) +
sizeof(struct via686a_data),
GFP_KERNEL))) {
err = -ENOMEM;
goto ERROR0;
}

memset(new_client,0x00, sizeof(struct i2c_client) +
sizeof(struct via686a_data));
data = (struct via686a_data *) (new_client + 1);
i2c_set_clientdata(new_client, data);
new_client->addr = address;
new_client->adapter = adapter;
new_client->driver = &via686a_driver;
new_client->flags = 0;

/* Fill in the remaining client fields and put into the global list */
strncpy(new_client->dev.name, client.name, DEVICE_NAME_SIZE);

new_client->id = via686a_id++;
data->valid = 0;
init_MUTEX(&data->update_lock);

/* Tell the I2C layer a new client has arrived */
if ((err = i2c_attach_client(new_client)))
goto ERROR3;

/* Register a new directory entry with module sensors */
if ((i = i2c_register_entry((struct i2c_client *) new_client,
type_name,
via686a_dir_table_template)) < 0) {
err = i;
goto ERROR4;
}
data->sysctl_id = i;

/* Initialize the VIA686A chip */
via686a_init_client(new_client);
return 0;

ERROR4:
i2c_detach_client(new_client);
ERROR3:
release_region(address, VIA686A_EXTENT);
kfree(new_client);
ERROR0:
return err;
}

static int via686a_detach_client(struct i2c_client *client)
{
int err;
struct via686a_data *data = i2c_get_clientdata(client);
i2c_deregister_entry(data->sysctl_id);

if ((err = i2c_detach_client(client))) {
printk
("via686a.o: Client deregistration failed, client not detached.\n");
return err;
}

release_region(client->addr, VIA686A_EXTENT);
kfree(client);

return 0;
}

/* Called when we have found a new VIA686A. Set limits, etc. */
static void via686a_init_client(struct i2c_client *client)
{
int i;

/* Reset the device */
via686a_write_value(client, VIA686A_REG_CONFIG, 0x80);

/* Have to wait for reset to complete or else the following
initializations won't work reliably. The delay was arrived at
empirically, the datasheet doesn't tell you.
Waiting for the reset bit to clear doesn't work, it
clears in about 2-4 udelays and that isn't nearly enough. */
udelay(50);

via686a_write_value(client, VIA686A_REG_IN_MIN(0),
IN_TO_REG(VIA686A_INIT_IN_MIN_0, 0));
via686a_write_value(client, VIA686A_REG_IN_MAX(0),
IN_TO_REG(VIA686A_INIT_IN_MAX_0, 0));
via686a_write_value(client, VIA686A_REG_IN_MIN(1),
IN_TO_REG(VIA686A_INIT_IN_MIN_1, 1));
via686a_write_value(client, VIA686A_REG_IN_MAX(1),
IN_TO_REG(VIA686A_INIT_IN_MAX_1, 1));
via686a_write_value(client, VIA686A_REG_IN_MIN(2),
IN_TO_REG(VIA686A_INIT_IN_MIN_2, 2));
via686a_write_value(client, VIA686A_REG_IN_MAX(2),
IN_TO_REG(VIA686A_INIT_IN_MAX_2, 2));
via686a_write_value(client, VIA686A_REG_IN_MIN(3),
IN_TO_REG(VIA686A_INIT_IN_MIN_3, 3));
via686a_write_value(client, VIA686A_REG_IN_MAX(3),
IN_TO_REG(VIA686A_INIT_IN_MAX_3, 3));
via686a_write_value(client, VIA686A_REG_IN_MIN(4),
IN_TO_REG(VIA686A_INIT_IN_MIN_4, 4));
via686a_write_value(client, VIA686A_REG_IN_MAX(4),
IN_TO_REG(VIA686A_INIT_IN_MAX_4, 4));
via686a_write_value(client, VIA686A_REG_FAN_MIN(1),
FAN_TO_REG(VIA686A_INIT_FAN_MIN, 2));
via686a_write_value(client, VIA686A_REG_FAN_MIN(2),
FAN_TO_REG(VIA686A_INIT_FAN_MIN, 2));
for (i = 1; i <= 3; i++) {
via686a_write_value(client, VIA686A_REG_TEMP_OVER(i),
TEMP_TO_REG(VIA686A_INIT_TEMP_OVER));
via686a_write_value(client, VIA686A_REG_TEMP_HYST(i),
TEMP_TO_REG(VIA686A_INIT_TEMP_HYST));
}

/* Start monitoring */
via686a_write_value(client, VIA686A_REG_CONFIG, 0x01);

/* Cofigure temp interrupt mode for continuous-interrupt operation */
via686a_write_value(client, VIA686A_REG_TEMP_MODE,
via686a_read_value(client, VIA686A_REG_TEMP_MODE) &
!(VIA686A_TEMP_MODE_MASK | VIA686A_TEMP_MODE_CONTINUOUS));
}

static void via686a_update_client(struct i2c_client *client)
{
struct via686a_data *data = i2c_get_clientdata(client);
int i;

down(&data->update_lock);

if ((jiffies - data->last_updated > HZ + HZ / 2) ||
(jiffies < data->last_updated) || !data->valid) {

for (i = 0; i <= 4; i++) {
data->in[i] =
via686a_read_value(client, VIA686A_REG_IN(i));
data->in_min[i] = via686a_read_value(client,
VIA686A_REG_IN_MIN
(i));
data->in_max[i] =
via686a_read_value(client, VIA686A_REG_IN_MAX(i));
}
for (i = 1; i <= 2; i++) {
data->fan[i - 1] =
via686a_read_value(client, VIA686A_REG_FAN(i));
data->fan_min[i - 1] = via686a_read_value(client,
VIA686A_REG_FAN_MIN(i));
}
for (i = 1; i <= 3; i++) {
data->temp[i - 1] = via686a_read_value(client,
VIA686A_REG_TEMP(i)) << 2;
data->temp_over[i - 1] =
via686a_read_value(client,
VIA686A_REG_TEMP_OVER(i));
data->temp_hyst[i - 1] =
via686a_read_value(client,
VIA686A_REG_TEMP_HYST(i));
}
/* add in lower 2 bits
temp1 uses bits 7-6 of VIA686A_REG_TEMP_LOW1
temp2 uses bits 5-4 of VIA686A_REG_TEMP_LOW23
temp3 uses bits 7-6 of VIA686A_REG_TEMP_LOW23
*/
data->temp[0] |= (via686a_read_value(client,
VIA686A_REG_TEMP_LOW1)
& 0xc0) >> 6;
data->temp[1] |=
(via686a_read_value(client, VIA686A_REG_TEMP_LOW23) &
0x30) >> 4;
data->temp[2] |=
(via686a_read_value(client, VIA686A_REG_TEMP_LOW23) &
0xc0) >> 6;

i = via686a_read_value(client, VIA686A_REG_FANDIV);
data->fan_div[0] = (i >> 4) & 0x03;
data->fan_div[1] = i >> 6;
data->alarms =
via686a_read_value(client,
VIA686A_REG_ALARM1) |
(via686a_read_value(client, VIA686A_REG_ALARM2) << 8);
data->last_updated = jiffies;
data->valid = 1;
}

up(&data->update_lock);
}

/* The next few functions are the call-back functions of the /proc/sys and
sysctl files. Which function is used is defined in the ctl_table in
the extra1 field.
Each function must return the magnitude (power of 10 to divide the date
with) if it is called with operation==SENSORS_PROC_REAL_INFO. It must
put a maximum of *nrels elements in results reflecting the data of this
file, and set *nrels to the number it actually put in it, if operation==
SENSORS_PROC_REAL_READ. Finally, it must get upto *nrels elements from
results and write them to the chip, if operations==SENSORS_PROC_REAL_WRITE.
Note that on SENSORS_PROC_REAL_READ, I do not check whether results is
large enough (by checking the incoming value of *nrels). This is not very
good practice, but as long as you put less than about 5 values in results,
you can assume it is large enough. */
static void via686a_in(struct i2c_client *client, int operation, int ctl_name,
int *nrels_mag, long *results)
{
struct via686a_data *data = i2c_get_clientdata(client);
int nr = ctl_name - VIA686A_SYSCTL_IN0;

if (operation == SENSORS_PROC_REAL_INFO)
*nrels_mag = 2;
else if (operation == SENSORS_PROC_REAL_READ) {
via686a_update_client(client);
results[0] = IN_FROM_REG(data->in_min[nr], nr);
results[1] = IN_FROM_REG(data->in_max[nr], nr);
results[2] = IN_FROM_REG(data->in[nr], nr);
*nrels_mag = 3;
} else if (operation == SENSORS_PROC_REAL_WRITE) {
if (*nrels_mag >= 1) {
data->in_min[nr] = IN_TO_REG(results[0], nr);
via686a_write_value(client, VIA686A_REG_IN_MIN(nr),
data->in_min[nr]);
}
if (*nrels_mag >= 2) {
data->in_max[nr] = IN_TO_REG(results[1], nr);
via686a_write_value(client, VIA686A_REG_IN_MAX(nr),
data->in_max[nr]);
}
}
}

void via686a_fan(struct i2c_client *client, int operation, int ctl_name,
int *nrels_mag, long *results)
{
struct via686a_data *data = i2c_get_clientdata(client);
int nr = ctl_name - VIA686A_SYSCTL_FAN1 + 1;

if (operation == SENSORS_PROC_REAL_INFO)
*nrels_mag = 0;
else if (operation == SENSORS_PROC_REAL_READ) {
via686a_update_client(client);
results[0] = FAN_FROM_REG(data->fan_min[nr - 1],
DIV_FROM_REG(data->fan_div
[nr - 1]));
results[1] = FAN_FROM_REG(data->fan[nr - 1],
DIV_FROM_REG(data->fan_div[nr - 1]));
*nrels_mag = 2;
} else if (operation == SENSORS_PROC_REAL_WRITE) {
if (*nrels_mag >= 1) {
data->fan_min[nr - 1] = FAN_TO_REG(results[0],
DIV_FROM_REG(data->
fan_div[nr -1]));
via686a_write_value(client,
VIA686A_REG_FAN_MIN(nr),
data->fan_min[nr - 1]);
}
}
}

void via686a_temp(struct i2c_client *client, int operation, int ctl_name,
int *nrels_mag, long *results)
{
struct via686a_data *data = i2c_get_clientdata(client);
int nr = ctl_name - VIA686A_SYSCTL_TEMP;

if (operation == SENSORS_PROC_REAL_INFO)
*nrels_mag = 1;
else if (operation == SENSORS_PROC_REAL_READ) {
via686a_update_client(client);
results[0] = TEMP_FROM_REG(data->temp_over[nr]);
results[1] = TEMP_FROM_REG(data->temp_hyst[nr]);
results[2] = TEMP_FROM_REG10(data->temp[nr]);
*nrels_mag = 3;
} else if (operation == SENSORS_PROC_REAL_WRITE) {
if (*nrels_mag >= 1) {
data->temp_over[nr] = TEMP_TO_REG(results[0]);
via686a_write_value(client,
VIA686A_REG_TEMP_OVER(nr + 1),
data->temp_over[nr]);
}
if (*nrels_mag >= 2) {
data->temp_hyst[nr] = TEMP_TO_REG(results[1]);
via686a_write_value(client,
VIA686A_REG_TEMP_HYST(nr + 1),
data->temp_hyst[nr]);
}
}
}

void via686a_alarms(struct i2c_client *client, int operation, int ctl_name,
int *nrels_mag, long *results)
{
struct via686a_data *data = i2c_get_clientdata(client);
if (operation == SENSORS_PROC_REAL_INFO)
*nrels_mag = 0;
else if (operation == SENSORS_PROC_REAL_READ) {
via686a_update_client(client);
results[0] = ALARMS_FROM_REG(data->alarms);
*nrels_mag = 1;
}
}

void via686a_fan_div(struct i2c_client *client, int operation,
int ctl_name, int *nrels_mag, long *results)
{
struct via686a_data *data = i2c_get_clientdata(client);
int old;

if (operation == SENSORS_PROC_REAL_INFO)
*nrels_mag = 0;
else if (operation == SENSORS_PROC_REAL_READ) {
via686a_update_client(client);
results[0] = DIV_FROM_REG(data->fan_div[0]);
results[1] = DIV_FROM_REG(data->fan_div[1]);
*nrels_mag = 2;
} else if (operation == SENSORS_PROC_REAL_WRITE) {
old = via686a_read_value(client, VIA686A_REG_FANDIV);
if (*nrels_mag >= 2) {
data->fan_div[1] = DIV_TO_REG(results[1]);
old = (old & 0x3f) | (data->fan_div[1] << 6);
}
if (*nrels_mag >= 1) {
data->fan_div[0] = DIV_TO_REG(results[0]);
old = (old & 0xcf) | (data->fan_div[0] << 4);
via686a_write_value(client, VIA686A_REG_FANDIV,
old);
}
}
}

static struct pci_device_id via686a_pci_ids[] __devinitdata = {
{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_82C686_4, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
{ 0, }
};

static int __devinit via686a_pci_probe(struct pci_dev *dev,
const struct pci_device_id *id)
{
u16 val;
int addr = 0;

if (PCIBIOS_SUCCESSFUL !=
pci_read_config_word(dev, VIA686A_BASE_REG, &val))
return -ENODEV;

addr = val & ~(VIA686A_EXTENT - 1);
if (addr == 0 && force_addr == 0) {
printk("via686a.o: base address not set - upgrade BIOS or use force_addr=0xaddr\n");
return -ENODEV;
}
if (force_addr)
addr = force_addr; /* so detect will get called */

if (!addr) {
printk("via686a.o: No Via 686A sensors found.\n");
return -ENODEV;
}
normal_isa[0] = addr;
s_bridge = dev;
return i2c_add_driver(&via686a_driver);
}

static void __devexit via686a_pci_remove(struct pci_dev *dev)
{
i2c_del_driver(&via686a_driver);
}

static struct pci_driver via686a_pci_driver = {
.name = "via686a",
.id_table = via686a_pci_ids,
.probe = via686a_pci_probe,
.remove = __devexit_p(via686a_pci_remove),
};

static int __init sm_via686a_init(void)
{
return pci_module_init(&via686a_pci_driver);
}

static void __exit sm_via686a_exit(void)
{
pci_unregister_driver(&via686a_pci_driver);
}

MODULE_AUTHOR("Kyvsti Mdlkki <kmalkki@cc.hut.fi>, "
"Mark Studebaker <mdsxyz123@yahoo.com> "
"and Bob Dougherty <bobd@stanford.edu>");
MODULE_DESCRIPTION("VIA 686A Sensor device");
MODULE_LICENSE("GPL");

module_init(sm_via686a_init);
module_exit(sm_via686a_exit);

--=_courier-6744-1048447951-0001-2--