58131 Data Structures

I exercise, week 40/2003, English translation

Exercise I.1: Show that \mathcal{O} -notation is transitive: if $f(n) = \mathcal{O}(g(n))$ and $g(n) = \mathcal{O}(h(n))$, then also $f(n) = \mathcal{O}(h(n))$.

How could this result be used?

Exercise I.2: Let $f, g: \mathbb{N} \to \mathbb{R}$ be nonnegative functions for which the condition

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0.$$

holds. Prove:

- (a) Every function in $\mathcal{O}(f(n))$ is also in $\mathcal{O}(g(n))$.
- (b) On the other hand, for example g(n) itself is not in $\mathcal{O}(f(n))$.

That is, $\mathcal{O}(f(n)) \subsetneq \mathcal{O}(g(n))$.

How could this way of comparing functions f(n) and g(n) be uselful?

Exercise I.3: The table below contains pairs f(n), g(n) of functions for which either $f(n) = \mathcal{O}(g(n))$ or $g(n) = \mathcal{O}(f(n))$ holds, but not both. Which one?

f(n)	g(n)
$\frac{n^2-n}{2}$	6n
$n+2\sqrt{n}$	n^2
$n + n \log n$	$n\sqrt{n}$
$n^2 + 3n + 4$	n^3
$n \log n$	$\frac{n\sqrt{n}}{2}$
$n + \log n$	\sqrt{n}
$2(\log n)^2$	$\log n + 1$

Exercise I.4: Bubblesort (kuplalajittelu) sorts an array A[1...N] given as input in the following way:

```
1: for all i := 1 up to N-1 do

2: for all j := N down to i+1 do

3: if A[j] < A[j-1] then

4: swap the contents of locations A[j] and A[j-1] with each other

5: end if

6: end for

7: end for
```

- (a) Choose for the inner loop in lines 2–6 an invariant which helps you in part (b). Prove also that your invariant really does hold.
- (b) Choose for the whole loop in lines 1–7 an invariant which allows you to show that the algoritm works correctly. Prove also that your invariant really does hold.
- (c) Count how many times line 3 is executed for a given input length N. Why is this count particularly interesting?

(d) Would the algorithm still work, if its line 4 was changed to read "swap the contents of locations A[j] and $A[\underline{i}]$ with each other" instead, where the change is <u>underlined</u>?

Justify your answer with the invariant in part (b).

Exercise I.5: Consider the following algorithmic problem:

The algorithm receives a subroutine named $\operatorname{outo}(p : \mathbb{Z}) : \mathbb{Z}$ as a parameter. We only know that it is strictly ascending; that is, $\operatorname{outo}(m) < \operatorname{outo}(m+1)$ holds for all $m \in \mathbb{Z}$.

The algorithm must return the $q \in \mathbb{Z}$ for which $\operatorname{outo}(q) = 0$, if such a q exists. Otherwise it must return "none".

- (a) Develop an algorithm which finds the solution q using $\mathcal{O}(\log_2 |q|)$ calls to the subroutine outo, if q exists.
 - Prove that your algorithm really solves the problem and meets this extra condition. Use the methods in the book.
- (b) How many times does your algorithm call the subroutine outo if q does not exist?
- (c) If the subroutine outo runs in constant time, then what is the total maximum time used by your algorithm?
- (d) If the subroutine outo satisfies only $\operatorname{outo}(m) \leq \operatorname{outo}(m+1)$ for all $m \in \mathbb{Z}$, then does your algorithm still work? Justify your answer.