
Nordic Journal of Computing 1(1994), 3–37.

A LAMBDA CALCULUS OF OBJECTS AND
METHOD SPECIALIZATION

KATHLEEN FISHER ∗

Computer Science Department
Stanford University

Stanford, California 94305-4055, U.S.A.
kfisher@cs.stanford.edu

FURIO HONSELL †

Dipartimento di Informatica
Universitá di Udine

via Zanon, 6
33100 Udine, ITALY

honsell@dimi.uniud.it

JOHN C. MITCHELL ‡

Computer Science Department
Stanford University

Stanford, California 94305-4055, U.S.A.
jcm@cs.stanford.edu

Abstract. This paper presents an untyped lambda calculus, extended with object

primitives that reflect the capabilities of so-called delegation-based object-oriented

languages. A type inference system allows static detection of errors, such as message

not understood, while at the same time allowing the type of an inherited method

to be specialized to the type of the inheriting object. Type soundness is proved

using operational semantics and examples illustrating the expressiveness of the pure

calculus are presented.

CR Classification: F.3.1, D.3.3, F.4.1

1. Introduction

There are several forms of object-oriented languages. One of the major lines
of difference is between class-based and delegation-based languages. In class-
based languages such as Smalltalk [9] and C++ [8], each object is created
by a class and inheritance is determined by the class. In delegation-based
languages such as Self [14, 7], an object may be created from another object,
inheriting properties from the original. In this paper, we use an untyped
lambda calculus of objects with a functional form of delegation as a tool
for studying typing issues in object-oriented programming languages. Our

∗ Supported in part by an NSF Graduate Fellowship, an NSF PYI Award and NSF
CCR-9303099.
† Supported in part by a CNR grant, and Mitchell’s funding at Stanford spring 1992.
‡ Supported in part by an NSF PYI Award, with matching funds from AT&T, Digital
Equipment Corporation, the Powell Foundation and Xerox Corporation; and by NSF
CCR-9303099 and the Wallace F. and Lucille M. Davis Faculty Scholarship.

Received May 1994. Accepted May 1994.

4 FISHER, HONSELL, MITCHELL

main interests lie in (i) understanding how the functionality of a method
may change as it is inherited, intuitively due to reinterpretation of the spe-
cial symbol self (or this in C++), and (ii) setting the stage for equational
reasoning about method bodies, apart from the particular context in which
they first occur. The second goal seems a necessary precurser to under-
standing the effects of optimization or program transformations on method
bodies or inheritance hierarchies. The main reason for using a delegation-
based language in this study is its relative simplicity, when compared with
class-based languages.

In our calculus, the main operations on objects are to send a message
m to an object e , written e⇐ m , and two forms of method definition. If
expression e denotes an object without method m , then 〈e ←+ m = e′〉
denotes an object obtained from e by adding the method body e′ for m .
When 〈e ←+ m = e′〉 is sent the message m , the result is obtained by
applying e′ to 〈e ←+ m = e′〉 . This form of “self-application” allows us to
model the special symbol self of object-oriented languages directly by lambda
abstraction. Intuitively, the method body e′ must be a function, and the
first actual parameter of e′ will always be the “object itself.” To reinforce
this intuition, we often write method bodies in the form λself.(. . .). The
final method operation on objects is to replace one method body by another.
This provides a functional form of update. As in the language Self, we do
not distinguish instance variables from methods, since this does not seem
essential. The untyped lambda calculus we use bears a strong resemblance
to the T object system [13, 2] (although it was originally developed without
prior knowledge of T) and the untyped part of the calculus used in [1] to
model a fragment of Modula 3 [3, 4].

The main goal of this paper is to develop a type system that allows meth-
ods to be specialized appropriately as they are inherited. Briefly, suppose
p is a point object with x and y methods returning the integer x- and y -
coordinates of p , and a move method with type int× int→ point. Method
move has this type because if we send the message move to p , we obtain a
function which given distances to move in the x and y directions, returns
a point identical to p , but with updated x- and y -coordinates. If we cre-
ate a colored point cp from p by the object-extension operation, then cp

inherits the x, y and move methods from p . In an untyped object-oriented
language such as Smalltalk, the inherited move method will change the po-
sition of a colored point, leaving the color unchanged. Therefore, in a typed
language, we want the move method of cp to have the “specialized” type
int× int→ colored point. If the inherited method had its original type
int× int→ point, then whenever we moved a colored point, we would ob-
tain an ordinary point without color, making the inherited move function
largely useless. While an imperative version of move would bypass this dif-
ficulty by returning type unit (as it is called in ML, or void in C++), the
same issue arises when we attempt to define a function that must return a
value. The construct like Current in Eiffel [10], analyzed in [6], illustrates
the value of specializing the type of a method in an imperative language.

A LAMBDA CALCULUS OF OBJECTS AND METHOD SPECIALIZATION 5

While C++ does not include such a construct, the widespread use of C++

is not counter-evidence to the usefulness of method specialization. In fact, it
appears to be common for novice C++ programmers to attempt to specialize
the types of methods in derived classes. More experienced C++ program-
mers appear to use “down casts” to approximate the effects described in
this paper.

The phenomenon we are concerned with is called “method specialization”
in [12], which describes a precursor to the calculus used here. The ear-
lier paper describes method specialization and explains its usefulness, but
only presents a tentative type system by extending the already complicated
record calculus of [5]. In addition, no analysis of the type system is given.
The current paper presents a calculus of objects alone, without recourse
to record calculi (although we owe a substantial debt to previous studies
of record calculi), simplifies the typing rules substantially, and proves type
soundness. In addition, we show that equality of typable terms is unde-
cidable by showing how to encode numerals as objects and how to define
all partial recursive function. Objects play an essential role here, since the
function part of our calculus is simply typed, and therefore only sufficient
to express total recursive functions. A preliminary version of this work ap-
peared in [11].

2. Untyped objects and inheritance by delegation

2.1 Untyped calculus of objects

We extend the untyped lambda calculus with four object-related syntactic
forms,

e : : = x | c | λx. e | e1e2 | 〈〉 | e⇐ m | 〈e1 ←+ m=e2〉 | 〈e1← m=e2〉

In this grammar, x may be any variable, c is a constant symbol (such as
a “built-in” function), λx. e is a lambda abstraction (function expression)
and e1 e2 is function application. The object forms are described in tabular
form for easy reference:

〈〉 the empty object
e⇐ m send message m to object e

〈e1 ←+ m=e2〉 extend object e1 with new method m having body e2
〈e1← m=e2〉 replace e1 ’s method body for m by e2

We consider 〈e1 ←+ m=e2〉 meaningful only if e1 denotes an object that
does not have an m method and 〈e1← m=e2〉 meaningful only if e1 denotes
an object that already has an m method. These conditions will be enforced
by the type system. The reason for distinguishing extension from method
replacement is that these two operations will have different typing rules. If a
method is new, then no other method in the object could have referred to it,
so it may have any type. On the other hand, if a method is being replaced,
then we must be careful not to violate any typing assumptions in other

6 FISHER, HONSELL, MITCHELL

methods that refer to it. If we were not concerned with static typing, then
we could use a single operation that adds a method to an object, replacing
any existing method with the same name.

2.2 Examples of objects, inheritance, and method specialization

To provide some intuition for this calculus, we give a few short examples.
The first shows how records may be encoded as objects, while the second and
third illustrate method specialization. The latter examples may be regarded
as the motivating examples for this paper; rather than try to define method
specialization in general, we attempt to convey the essential properties by
the examples of points and colored points given below.

To simplify notation, we write 〈m1 = e1, . . . , mk = ek〉 for 〈. . . 〈〈〉 ←+
m1 = e1〉 . . . ←+ mk = ek〉 , where m1, . . . , mk are distinct method names.
We illustrate the computational behavior of objects in this section using
a simplified evaluation rule that reflects the operational semantics defined
precisely below,

〈m1 = e1, . . . , mk = ek〉⇐ mi
eval
−→ ei 〈m1 = e1, . . . , mk = ek〉

This allows us to evaluate a message send by retrieving the appropriate
method body from the object and applying it to the entire object itself. Note

that the relation
eval
−→ represents one evaluation step, not full evaluation of

an expression.
Record with two components. The first example is a form of “point” object

that has constant x, y -coordinates:

r
def
= 〈x = λself. 3, y = λself. 2〉

If we send the message x to r , we may calculate the result by

r⇐ x
eval
−→ (λself. 3) r

eval
−→ 3

where the second evaluation step is ordinary β -reduction from lambda cal-
culus. This example may be generalized to show how any record may be
represented as an object whose methods are constant functions. In partic-
ular, we may represent the record 〈l1 = e1, . . . , lk = ek〉 by the object
〈m1 = Ke1, . . . , mk = Kek〉 , where K = λx. λself. x .

One-dimensional point with move function. A more interesting object,
which we will refer to again, is the following “point” object with an x-
coordinate and move method. We could easily give a similar two-dimensional
point with x- and y -coordinates, but the one-dimensional case illustrates
the same ideas more simply.

p
def
= 〈 x = λself. 3,

move = λself. λdx. 〈self← x = λs.(self⇐ x) + dx〉
〉

A LAMBDA CALCULUS OF OBJECTS AND METHOD SPECIALIZATION 7

The move method, when applied to the object itself and a displacement dx ,
replaces the x method by one returning a coordinate incremented by dx .
This is illustrated in the following example calculation, where we send the
message move with parameter 2 to the object p :

p⇐ move2 = (λself. λdx.〈 . . . 〉) p 2

= 〈p← x = λs.(p⇐ x) + 2〉
= 〈p← x = λs. 3 + 2〉
= 〈p← x = λself. 5〉

Using a sound rule for object equality,

〈〈m1=e1, . . . , mk=ek〉← mi=e′i〉 = 〈m1=e1, . . . , mi=e′i, . . . , mk=ek〉

we may reach the conclusion

p⇐ move2 = 〈 x = λself. 5,
move = λself. λdx.〈. . .〉

〉

showing that the result of sending a move message with integer parameter
is an object identical to p , but with an updated x-coordinate.

Inherit move from point to colored point. Our third introductory example
shows how x and move are inherited when a colored point is defined from
p by adding a color method.

cp
def
= 〈p←+ color = λself. red〉

If we send the move message to cp with the same parameter as above, we
may calculate the resulting object in exactly the same way as before:

cp⇐move2 = (λself. λdx.〈 . . . 〉) cp 2

= 〈cp← x = λs.(cp⇐ x) + 2〉
= . . .
= 〈cp← x = λself. 5〉

with the final conclusion that

cp⇐ move2 = 〈 x = λself. 5,
move = λself. λdx.〈. . .〉,
color = λself. red

〉

The important feature of this computation is that the color of the resulting
colored point is the same as the original one. While move was defined
originally for points, which only have an x-coordinate, the method body
performs the correct computation when the method is inherited by a more
complicated object with additional methods.

8 FISHER, HONSELL, MITCHELL

In many cases, it is also useful to redefine an inherited method to exhibit
more specialized behavior. This may be accomplished in our calculus by
a combination of inheritance and method redefinition. For example, if we
want an object to change to a darker color when moved, we could first define
colored points from points as above, obtaining a colored point with the right
type of move method. Then, move could be redefined (without changing its
type) to have the right behavior.

Mutually recursive methods. As a technical simplification, our system is
formulated so that methods are added to an object one at a time. This leads
us to formulate our typing rules in a manner that makes it difficult to write
object expressions with mutually recursive functions. More specifically, the
static type system will only allow a method body to be added if all the other
methods it refers to are already available from the object. For example, we
cannot type the object expression

〈〈〉 ←+ x plus1 = λself.(self⇐x) + 1〉

which has a method referring to x but does not have an x method. The
reason this object expression is not typable is that if we send it the message
x plus1 , the object will then send the message x to itself. But since the
object does not have an x method, this is an error; it is precisely the error
we aim to prevent with our type system. On the other hand, we may type
the object expression

〈〈〈〉 ←+ x = λself. 3〉 ←+ x plus1 = λself.(self⇐ x) + 1〉,

which is formed by first extending the empty object with an x method, then
the x plus1 method that refers to x .

The typing restriction that no method may refer to a method that the
object does not have is inconvenient if we wish to add mutually-recursive
methods m and n to some object. However, there is a standard idiom
for adding mutually recursive methods. Specifically, we first extend the
object by giving some method body for m that has the correct type but
does not depend on n . Then, the object may be extended with the desired
method body for n , referring to m . Finally, we replace the “dummy” method
body for m with the desired method body referring to n . While this is
a programming inconvenience, it is not a limitation in expressiveness. It
therefore does not seem serious enough to merit complicating the typing
rules in a way that alleviates the difficulty. In any “real” programming
language based on our illustrative object calculus, we would expect there
to be convenient syntactic sugar for simultaneously adding several, possibly
mutually recursive, methods to an object.

2.3 Operational semantics

In defining the operational semantics of our calculus, we must give rules for
extracting and applying the appropriate method of an object. A natural

A LAMBDA CALCULUS OF OBJECTS AND METHOD SPECIALIZATION 9

way to approach this is to use a permutation rule

〈〈e1 ←◦ n=e2〉 ←◦ m=e3〉 = 〈〈e1 ←◦ m=e3〉 ←◦ n=e2〉

where m and n are distinct and each occurrence of ←◦ may be either ←+ or
← . This would let us treat objects as sets of methods, rather than ordered
sequences. However, this equational rule would cause typing complications,
since our typing rules only allow us to type object expressions when methods
are added in an appropriate order. In particular, if we permute the methods
of the object expression

〈〈〈〉 ←+ x = λself. 3〉 ←+ x plus1 = λself.(self⇐ x) + 1〉

then the subexpression

〈〈〉 ←+ x plus1 = λself.(self⇐ x) + 1〉

is not well-typed, as described in the previous section. Therefore, the entire
expression cannot be typed.

We circumvent the problem of method order using a more complicated
“standard form” for object expressions, namely,

〈〈〈m1=e1, . . . mk=ek〉← m1=e′1〉 . . .← mk=e′k〉

where each method is defined exactly once, using some arbitrary method
body that does not contribute to the observable behavior of the object, and
redefined exactly once by giving the desired method body. Even if the two
definitions of a method are the same, this form is useful since it allows us
to permute the list of method redefinitions arbitrarily. More formally, in

addition to the
eval
−→ relation that allows us to evaluate object and function

expressions, the operational semantics includes a subsidiary “bookkeeping”

relation
book
−→ , which allows each object to be transformed into the “standard

form” indicated above. The relation
book
−→ is the congruence closure of the first

four clauses listed in Table I. These rules also allow the method redefinitions
to be permuted arbitrarily. An important property of

book
−→ , proved in Section

4, is that if e
book
−→ e′ , then any type for e is also derivable for e′ . This would

fail if we had the more general permutation rule discussed above.

The evaluation relation is the congruence closure of the union of
book
−→ and

the two evaluation clauses, (β) and (⇐), at the bottom of Table I. In other

words, e
eval
−→ e′ if we may obtain e′ from e by applying a bookkeeping or

basic evaluation step to one subterm.

3. Static type system

3.1 Class types and message send

The type of an object will be called a class type. This is in part a misuse
of the word “class,” since classes in object-oriented languages generally de-
termine the representations as well as the interfaces, or types, of objects.

10 FISHER, HONSELL, MITCHELL

(switch ext ov) 〈〈e1← n=e2〉 ←+ m=e3〉
book
−→ 〈〈e1 ←+ m=e3〉← n=e2〉

(perm ov ov) 〈〈e1← m=e2〉← n=e3〉
book
−→ 〈〈e1← n=e3〉← m=e2〉

(add ov) 〈e1 ←+ m=e3〉
book
−→ 〈〈e1 ←+ m=e3〉← m=e3〉

(cancel ov ov) 〈〈e1← m=e2〉← m=e3〉
book
−→ 〈e1← m=e3〉

(β) (λx. e1)e2
eval
−→ [e2/x]e1

(⇐) 〈e1 ←◦ m=e2〉⇐ m
eval
−→ e2〈e1 ←◦ m=e2〉

where ←◦ may either ←+ or ← .

Table I: Bookkeeping and evaluation rules.

However, “class” seems the best standard term from object-oriented pro-
gramming that suggests the type of an object.

The type defined by the type expression

class t 〈〈m1 : τ1, . . . , mk : τk〉〉

is a type t with the property that any element e of this type is an object
such that for 1 ≤ i ≤ k , the result of e⇐ mi is a value of type τi . A
significant aspect of this type is that the bound type variable t may appear
in the types τ1, . . . , τk . Thus, when we say e⇐ mi will have type τi , we
mean type τi with any free occurrences of t in τi referring to the type
class t 〈〈m1 : τ1, . . . , mk : τk〉〉 itself. Thus, class t 〈〈 . . . 〉〉 is a special form of
recursively-defined type.

The typing rule for message send has the form

e : class t 〈〈 . . . m : τ〉〉

e⇐ m : [class t 〈〈 . . . m : τ〉〉/t]τ

where the substitution for t in τ reflects the recursive nature of class types.
This rule may be used to give the point p with x and move methods con-
sidered in Section 2.2 type

class t 〈〈 x : int , move : int→ t〉〉,

since p⇐ x returns an integer and p⇐ move n has the same type as p .
A subtle but very important aspect of the type system is that when an

object is extended with an additional method, the syntactic type of each
method does not change. For example, when we extend p with a color to
obtain cp , also given in Section 2.2, we obtain an object with type

class t 〈〈 x : int , move : int→ t, color : colors〉〉

The important change to notice here is that although the syntactic type of
move is still int→ t , the meaning of the variable t has changed. Instead

A LAMBDA CALCULUS OF OBJECTS AND METHOD SPECIALIZATION 11

of referring to the type of p , as it did originally, it now refers to the type
of cp . This is the effect that we have called method specialization – the
type of a method may change when the method is inherited. For this kind
of reinterpretation of type variables to be sound, the typing rule for object
extension must insure that every possible type for a new method will be
correct. This is done through a form of implicit higher-order polymorphism.

Another subtle aspect of the type system is that objects which behave
identically when we send either any sequence of messages may have differ-
ent types. This is because adding and redefining methods are also considered
operations on objects. A simple example is given by the following two ob-
jects.

p
def
= 〈 x = λself. 3,

move = λself. λdx.
〈self← x = λs.(self⇐ x) + dx〉

〉

q
def
= 〈 x = λself. 3,

move = λself. λdx. (p⇐ move dx)
〉

It is not hard to see that p and q return the same results for any sequence of
message sends. (Either we send x , which clearly gives the same result for p

or q , or we send the message move . But since q⇐ move uses p⇐ move , any
sequence of subsequent messages will produce identical results.) However, p
and q are not equivalent if we extend them with additional methods. The
reason is that the first move method will preserve any additional methods
added by object extension, but the second will not. This distinction shows
up in the type system, where we can give p the first type below and q the
second, but it is unsound to give q the first type.

point = class t 〈〈 x : int , move : int→ t〉〉

q point = class t 〈〈 x : int , move : int→ point〉〉

A similar situation arises in Smalltalk, for example, where it is possible
to have two classes that generate equivalent objects, but behave differently
when we inherit from them. In adapting our type system to Smalltalk, we
might expect to distinguish two such classes by type. The reason is that
we wish the type of a Smalltalk class to not only give information about
the behavior of objects, but also about the types of methods when they are
inherited by other classes.

3.2 Types, rows, and kinds

The type expressions include type variables, function types, and class types.
It would not change the system in any substantial way to add type constants,
but we will not need them in this paper.

12 FISHER, HONSELL, MITCHELL

Types
τ : : = t | τ1→ τ2 | class t R

Rows
R : : = r | 〈〈〉〉 | 〈〈R |m : τ〉〉 | λt.R |Rτ

Kinds
kind : : = T |κ
κ : : = T n→[m1, . . . ,mk]

The row expressions appear as subexpressions of type expressions, with
rows and types distinguished by kinds. As a notational simplification,
we write [m1, . . . ,mk] for T 0→[m1, . . . ,mk] . Intuitively, the elements of
kind [m1, . . . ,mk] are rows that do not include method names m1, . . . ,mk .
The reason we must know statically that some method does not appear
is to guarantee that methods are not multiply defined. Kinds of the form
T n→[m1, . . . ,mk] , for n ≥ 1, are used to infer a form of higher-order poly-
morphism of method bodies.

The environments, or contexts, of the system list term, type, and row
variables.

Γ : : = ε |Γ , x : τ |Γ , t : T |Γ , r : κ

Note that contexts are ordered lists, not sets.
The judgement forms are standard:

Γ`∗ well-formed context
Γ` e : τ term has type
Γ` τ : T well-formed type
Γ`R : κ row has kind

3.3 Typing rules

For the most part, the formulation of the type system is routine. The most
novel rules, which are discussed below, are those associated with objects.
The complete type system appears in Appendix A.

The empty object 〈〉 has the object type class t 〈〈〉〉 , as specified in the
rule:

(empty object)
Γ`∗

Γ` 〈〉 : class t 〈〈〉〉

The empty object has no methods and therefore cannot respond to any
messages. However, this object can be extended with methods to obtain
objects of other types.

The typing rule (meth app) for sending a message to an object has the
form described in the last section. However, in the more precise rule below,
the row occurring in the class type of the object may have any form as
long as the method name being used occurs explicitly. Type equality allows

A LAMBDA CALCULUS OF OBJECTS AND METHOD SPECIALIZATION 13

the order of method names to be permuted, as described in Appendix A.
Consequently, there is no loss of generality in assuming m is the last method
listed in the type.

(meth app)
Γ` e : class t 〈〈R |m : τ〉〉

Γ` e⇐m : [class t 〈〈R |m : τ〉〉/t]τ

The most subtle and complicated rule of the system is the (obj ext) typing
rule for adding methods to objects. In this rule we assume e1 is an object of
some class type and that e1 does not include a method n , to be added. The
final assumption is a typing for e2 , the expression to be used as the method
body for n . The first thing to notice about the typing for e2 is that it
contains a row variable r , which is implicitly universally quantified. Because
of this quantification, e2 will have the indicated type for any substitution
of row expression R for r , provided R has the correct kind. (See Lemma
4.4 below.) This is essential, since it implies that e2 will have the required
functionality for any possible future extension of 〈e1 ←+ n = e2〉 . The
second important property of the typing for e2 is that the type has the
form t→ τ , with a class type substituted for t . While t is hidden in the
class type of 〈e1 ←+ n = e2〉 , it is necessary in the hypothesis since sending
the message n to 〈e1 ←+ n = e2〉 will result in the application of e2 to
this object. To simplify notation, we will use ~m : ~τ as an abbreviation for
m1 : τ1, . . . ,mk : τk .

(obj ext)

Γ` e1 : class t 〈〈R |m1 : τ1, . . . ,mk : τk〉〉

Γ, t : T `R : [m1, . . . ,mk, n]

Γ, r : T → [m1, . . . ,mk, n] `
e2 : [class t 〈〈rt | ~m : ~τ, n : τ〉〉/t](t→ τ) r not in τ

Γ` 〈e1 ←+ n=e2〉 : class t 〈〈R | ~m : ~τ, n : τ〉〉

The rule for redefining, or overriding, a method body has the same form,
but is slightly simpler.

3.4 Example typing derivations

We claimed earlier that we should be able to prove the following two typings:

p : class t 〈〈 x : int , move : int→ t〉〉

q : class t 〈〈 x : int , move : int→ point〉〉,

and argued that it is unsound to give q the first type. To illustrate the use
of the typing rules, we prove the first of these in Table II. The second is
proved similarly. In addition, we can prove that the object expression

cp = 〈p←+ color = λself. red〉

14 FISHER, HONSELL, MITCHELL

Contexts

Γ1 = r : T → [x, move],
self : class t 〈〈rt | x : int , move : int → t〉〉,
dx : int

Γ2 = Γ1, r′ : T → [x, move],
p : class t 〈〈r′t | x : int , move : int → t〉〉

Derivation (assuming ε` 〈x= λself. 3〉 : class t 〈〈x : int〉〉)

Γ2 ` (self⇐ x) + dx : int

Γ2 − p ` λp.(self⇐ x) + dx : class t 〈〈r′t | x : int , move : int → t〉〉→ int

Γ1 ` 〈self← x= λp.(self⇐ x) + dx〉
: class t 〈〈rt | x : int , move : int → t〉〉

Γ1 − dx − self ` λself. λdx.〈self← x= λp.(self⇐ x) + dx〉
: [class t 〈〈rt | x : int , move : int → t〉〉/t](t→ int → t)

ε ` 〈〈x=λself. 3〉
←+ move=λself. λdx.〈self← x=λp.(self⇐ x) + dx〉〉
: class t 〈〈x : int , move : int → t〉〉

Table II: Example typing derivation.

has type

class t 〈〈 x : int , move : int→ t, color : colors〉〉

by similar means. These examples are intended to demonstrate that the
type system captures the desired form of method specialization.

4. Soundness of the Type System

We prove the soundness of the type system in several steps. The first is

subject reduction, i.e., if e has type τ and e
eval
→→ e′ , then e′ also has type τ ,

where the symbol
eval
→→ denotes the transitive closure of the

eval
−→ relation. We

then define an evaluation strategy eval that reduces expressions of the object
calculus to values, a special “value” error , or is undefined if the expression
in question fails to terminate. We then use subject reduction to show that if
we may derive a type for a closed expression e , then eval(e) 6= error . Since
the evaluator returns error if it fails to find a required method, this fact
justfies the claim that our type system prevents “message not understood”
errors.

The subject reduction proof begins with a collection of lemmas about sub-
stitution for row and type variables. These lemmas allow us to specialize
polymorphic object types to include additional methods. In Section 4.2, we
introduce a normal form for our typing derivations to permit us to restrict
our attention to derivations where the only occurrences of equality rules are
as (row β) immediately following an occurrence of (row fn app). This
restriction greatly simplifies later proofs. We then prove a series of tech-

A LAMBDA CALCULUS OF OBJECTS AND METHOD SPECIALIZATION 15

nical lemmas in Section 4.3. The first of these allows us to treat contexts,
which are lists, more like sets. The remaining lemmas in the section pro-
vide tools for constructing row expressions to generalize polymorphic object

types. The lemmas in Section 4.4 then show that the (
book
−→), (β), and (⇐)

components of the (
eval
−→) relation preserve expression types. The subject

reduction theorem then follows. In Section 4.5, we define the eval func-
tion and show that typable closed expressions do not evaluate to error , a
fact which guarantees that we do not get dynamic message-not-understood
errors.

4.1 Substitution Lemmas

The first two lemmas are used to prove that if we may derive a type or row
judgement containing a type or row variable, then substituting a type or row
expression of the appropriate kind produces a derivable judgement. Lemma
4.1 is the desired property, except it has the additional hypothesis that we
may derive the judgement Γ, [U2/u2]Γ

′ `∗ . This extra assumption is re-
quired for the (projection), (weakening), and (empty row) cases. Lemma
4.2 then uses Lemma 4.1 to show that the additional hypothesis is in fact
unnecessary.

Lemma 4.1. If the judgement Γ, u2 : V2, Γ′ `U1 : V1 , the judgement

Γ`U2 : V2 , and the judgement Γ, [U2/u2]Γ
′ `∗ are all derivable, then so

is Γ, [U2/u2]Γ
′ ` [U2/u2]U1 : V1 , where U1 : V1 and U2 : V2 are either of the

form τ : T or R : κ.

Proof. The proof is by induction on the derivation of Γ, u2 : V2, Γ′ `
U1 : V1 . Most of the cases are either vacuous or follow immediately from
the inductive hypothesis. The (projection) case requires a case analysis on
whether or not u2 is the projected variable. The (row β) and (type β) cases
follow from the fact that if U1 →β U2 , then [U/u]U1 →β [U/u]U2 , where
U1 and U2 are either both row expressions or both type expressions, U is
either a row or type expression, and u is either a row or type variable, to
match U . The (weakening) case requires the fact that Γ `∗ is derivable
if Γ`A is. The (class) and (row fn abs) cases follow from the fact that
bound variables may be consistently renamed as necessary. 2

Lemma 4.2. If Γ, u2 : V2, Γ′ `∗ and Γ`U2 : V2 are both derivable, then so

is Γ, [U2/u2]Γ
′ `∗ , where U2 : V2 is either τ : T or R : κ.

Proof. The proof of Lemma 4.2 is by induction on the length of Γ′ .
Lemma 4.1 is needed for the case where Γ′ is extended via (exp var). 2

Using the fact that Γ`∗ is derivable if Γ`A is, we may combine Lem-
mas 4.1 and 4.2 to give the desired substitution property on type and kind
derivations.

16 FISHER, HONSELL, MITCHELL

Lemma 4.3. If Γ, u2 : V2, Γ′ `U1 : V1 and Γ`U2 : V2 are both derivable,

then so is Γ, [U2/u2]Γ
′ ` [U2/u2]U1 : V1 , where U1 : V1 and U2 : V2 may be

either τ : T or R : κ.

The following lemma is used in conjunction with Lemma 4.3 to specialize
class types to contain additional methods.

Lemma 4.4. If Γ, r : T n→[~m], Γ′ ` e : τ and Γ`R : T n→[~m] are both

derivable, then so is Γ, [R/r]Γ′ ` e : [R/r]τ .

Proof. Lemma 4.4 follows by induction on the derivation of Γ, r:T n→[~m],
Γ′ ` e : τ . Lemma 4.2 is used in the (projection), (weakening), and (empty

object) cases. Lemma 4.3 with U2 as a row expression is needed for the (obj
ext) case. 2

4.2 Normal Form

The equality rules in the proof system introduce many non-essential judge-
ment derivations, which unnecessarily complicate derivation analysis. We
therefore restrict our attention to derivations in which the only appearance
of an equality rule is as (row β) immediately following an occurrence of
(row fn app). We will call these derivations `N -derivations. Although not
all judgements derivable in the full system are derivable by `N -derivations,
we will see below that all judgements whose row and type expressions are
in a particular form, which we will call τnf (for type normal form), are
derivable via `N -derivations. Since every expression that has a type at all
will have a type in τnf , we may prove soundness using only `N -derivations.

The τnf of a type or row expression is its normal form with respect
to β -reduction, applied to the row function application redexes within it.
This notion is well-defined since the row and type portion of our calculus is
strongly normalizing and confluent. We prove this fact by giving a trans-
lation function tr into λ→(Σ), where λ→(Σ) denotes the typed lambda
calculus with function types over signature Σ, which is defined as:

Type Constants : typ,meth
Term Constants : er : meth

ar : typ→ typ→ typ
cl : (typ→meth)→ typ
brm : meth→ typ→meth
for each method name m.

Let the variables of λ→(Σ) contain all of the row and type variables of our
calculus. Then define the translation tr by:

A LAMBDA CALCULUS OF OBJECTS AND METHOD SPECIALIZATION 17

tr(t) = t
tr(τ1→ τ2) = ar tr(τ1) tr(τ2)
tr(class t R) = cl (λt : typ.tr(R))
tr(r) = r
tr(〈〈〉〉) = er

tr(〈〈R |m : τ〉〉) = brm tr(R) tr(τ)
tr(λt.R) = λt : typ.tr(R)
tr(Rτ) = tr(R) tr(τ)

We extend tr to the kinds and contexts of our system as follows:

tr(T) = typ
tr(T n→[~m]) = typn→meth

tr(ε) = ∅
tr(Γ, x : τ) = tr(Γ)
tr(Γ, t : T) = tr(Γ) ∪ {tr(t) : tr(T)}
tr(Γ, r : κ) = tr(Γ) ∪ {tr(r) : tr(κ)}

Note that tr preserves both bound and free variables of expressions, i.e.,
BV (U) = BV (tr(U)) and FV (U) = FV (tr(U)) for all row and type ex-
pressions U . Furthermore, if U1 =α U2 , then tr(U1) =α tr(U2) under the
same renaming of bound variables.

To show that strong normalization for our system follows from strong
normalization for λ→(Σ), we need to establish two properties of tr . We
need to show that the translations of any two terms related via →β in our
system are related via →β in λ→(Σ) and that the translation of every well-
kinded term in our system is a well-typed λ→(Σ) term. Lemma 4.5 proves
the first of these properties.

Lemma 4.5. If U1→β U2 , then tr(U1)→β tr(U2), where U1 and U2 are

either both row or both type expression in our system.

Proof. The proof of Lemma 4.5 is by induction on the structure of U1 .
Each inductive case is a case analysis of the possible forms of U2 . The only
case which does not follow routinely is when U1 = (λt.R)τ and U2 = [τ/t]R .
This case follows from the subsidiary lemma that [tr(τ)/t]tr(U) = tr([τ/t]U)
for all type and row expressions U , which is proved by induction on the
structure of U . 2

Lemma 4.6 establishes that tr produces typable λ→(Σ) terms.

Lemma 4.6. If Γ`U : V is derivable in our system, then tr(Γ) > tr(U) :
tr(V) is derivable in λ→(Σ), where we use > to distinguish λ→(Σ)-deriva-
tions from derivations in our system.

18 FISHER, HONSELL, MITCHELL

Proof. The proof of Lemma 4.6 is by induction on the derivation of
Γ`U : V . The cases for (row β) and (type β) require Lemma 4.5 and
Subject Reduction for λ→(Σ). 2

Combining Lemmas 4.5 and 4.6 we get that the row and type portion of
our calculus is strongly normalizing:

Lemma 4.7. (Strong Normalization for Row and Type Portion)
If Γ`U : V is derivable, where U is either a row or type expression, then

there is no infinite sequence of →β reductions from U .

The following lemma is crucial to showing that confluence for λ→(Σ) im-
plies confluence for the row and type portion of our calculus.

Lemma 4.8. If tr(U)→β W , then there is a unique expression U ′ such that

U→β U ′ and tr(U ′) = W , where U is either a row or type expression and

W is an expression of λ→(Σ).

Proof. The proof of Lemma 4.8 is by induction on the structure of U .
It is similar in outline to the proof of Lemma 4.5. 2

The confluence of the row and type portion of our system now follows.

Lemma 4.9. (Confluence for Row and Type Portion)
If Γ`U1 : V1 is derivable and U1 →→β U2 and U1 →→β U3 , then there exists

a U4 such that U2 →→β U4 and U3 →→β U4 .

Since each row and type expression has a unique normal form, the τnf
of row and type expressions is a well-defined notion. Because any term
expression that has a type has a type in normal form, we may restrict our
attention to types and rows in τnf . To this end, we need to extend the
definition of τnf to term expressions and contexts. The τnf of a term
expression e is just that expression e . The τnf of a context Γ is the
context listing the τnf ’s of the elements of Γ. The following lemma then
shows we can find a `N -derivation for any judgement in τnf .

Lemma 4.10. (Normal Form)
If Γ`A is derivable, then so is τnf(Γ)`N τnf(A).

Proof. The proof of this lemma is by induction on the derivation of
Γ`A . Occurrences of equality rules may be eliminated in the `N -derivation
because two row or type expressions related via β -reduction must have the
same τnf . Most of the other cases follow immediately from the inductive
hypothesis. We give the (row fn app) case in detail, since it is the most
interesting.

If Γ`A is derived via (row fn app), then Γ `A must be of the form

Γ`Rτ : T n→[~m].

A LAMBDA CALCULUS OF OBJECTS AND METHOD SPECIALIZATION 19

By the hypotheses for (row fn app), we must have previously derived

Γ`R : T n+1→[~m]

and
Γ` τ : T .

By the inductive hypothesis, we know that

τnf(Γ) `
N

τnf(R : T n+1→[~m])

and
τnf(Γ) `

N
τnf(τ : T)

are both derivable. Applying (row fn app) to these two judgements pro-
duces

τnf(Γ) `
N

τnf(R)τnf(τ) : T n→[~m].

There are two cases to consider: either τnf(R) is a λ-abstraction or it is
not.

Case 1: τnf(R) = λt.τnf(R′). In this case, we have that

τnf(Γ) `
N

(λt.τnf(R′))τnf(τ) : T n→[~m].

Now
(λt.τnf(R′))τnf(τ) →

β
[τnf(τ)/t]τnf(R′),

so applying (row β) to the last judgement produces

τnf(Γ) `
N

[τnf(τ)/t]τnf(R′) : T n→[~m],

which is still a `N -derivation. Note that

[τnf(τ)/t]τnf(R′) = τnf(Rτ)

since substituting types in normal form for variables cannot introduce
new β -reductions. (Substituting a row expression for a row variable
could introduce a new β -reduction, but we do not allow abstraction
over row variables so we need not worry about this case.) Thus the
following judgement is derivable:

τnf(Γ) `
N

τnf(Rτ : T n→[~m]).

Case 2: τnf(R) is not a λ-abstraction. In this case, the desired re-
sult follows immediately from the inductive hypothesis. 2

From this point on, we will only concern ourselves with expressions that
are in τnf . This limitation is not severe, since any term that has a type
has a type in τnf . Future analyses of derivations will consider only `N -
derivations, since its restriction on equality rules greatly simplifies the proofs.

20 FISHER, HONSELL, MITCHELL

4.3 Technical Lemmas

The following lemma is useful because it allows contexts, which are in fact
lists, to be treated more like sets.

Lemma 4.11. If Γ,Γ′ `A and Γ, y : Z,Γ′ `∗ are both derivable, then so is

Γ, y : Z,Γ′ `A, where y : Z can be r : κ, t : T , or x : τ .

Proof. The proof of Lemma 4.11 is by induction on the derivation of
Γ,Γ′ `A . The (obj ext) and (obj over) cases require a subsidiary lemma
that permits the consistent renaming of the row variables in a judgement.
This renaming is necessary to avoid naming-clashes. 2

The remaining lemmas in this section are used to build well-formed row
expressions that can be substituted for row variables in typing derivations.
This ability is crucial to the proofs of Lemmas 4.15 and 4.17.

Lemma 4.12. If Γ`N λt1, . . . , tn.〈〈R | ~m : ~τ〉〉 : T n→[~l] is derivable, then so

are Γ, t1 : T, . . . , tn : T `N τi : T for each τi in ~τ and Γ, t1 : T, . . . , tn : T `N

R : [~m,~l] .

Proof. The proof of Lemma 4.12 is by induction on the derivation of
Γ`N λt1, . . . , tn.〈〈R | ~m : ~τ〉〉 : T n→[~l] . Most of the cases follow routinely
from the inductive hypothesis. The (weakening) case follows from repeated
applications of Lemma 4.11. The (row β) case is worked out here, since it
is the most difficult.

If Γ`N λt1, . . . , tn.〈〈R | ~m : ~τ〉〉 : T n→[~l] is derived via (row β), then the
previous step must have been (row fn app) by the definition of a `N -
derivation. Furthermore, its hypotheses must have been of the form:

Γ `
N

λt.λt1, . . . , tn.〈〈R∗ | ~m : ~τ ∗〉〉 : T n→[~l]

and
Γ `

N
τ ′ : T

where
λt1, . . . , tn.〈〈R | ~m : ~τ〉〉 = [τ ′/t]λt1, . . . , tn.〈〈R∗ | ~m : ~τ ∗〉〉.

Without loss of generality, t1, . . . tn 6∈ FV (τ ′) ∪ {t} , so

λt1, . . . , tn.〈〈R | ~m : ~τ 〉〉 = λt1, . . . , tn.〈〈[τ ′/t]R∗ | ~m : [τ ′/t]~τ∗〉〉,

which implies that ~τ = [τ ′/t]~τ∗ and R = [τ ′/t]R∗ . By the inductive hy-
pothesis, for each τ ∗

i in ~τ∗

Γ, t : T, t1 : T, . . . , tn : T `
N

τ∗
i : T

and
Γ, t : T, t1 : T, . . . , tn : T `

N
R∗ : [~m,~l]

A LAMBDA CALCULUS OF OBJECTS AND METHOD SPECIALIZATION 21

are derivable. By Lemma 4.3, for each τ ∗
i in ~τ∗ ,

Γ, t1 : T, . . . , tn : T ` [τ ′/t]τ∗
i : T

and
Γ, t1 : T, . . . , tn : T ` [τ ′/t]R∗ : [~m,~l]

are derivable. Since ~τ = [τ ′/t] ~τ∗ and R = [τ ′/t]R∗ , these are just:

Γ, t1 : T, . . . , tn : T ` τi : T

and
Γ, t1 : T, . . . , tn : T `R : [~m,~l].

The original derivation is in τnf , so Γ, ~τ , and R are all in τnf . Hence by
Lemma 4.10, we get for each τi in ~τ

Γ, t1 : T, . . . , tn : T `
N

τi : T

and
Γ, t1 : T, . . . , tn : T `

N
R : [~m,~l]

are derivable. 2

Lemma 4.13. If Γ`N class t 〈〈R | ~m : ~τ〉〉 : T is derivable, then so are

Γ, t : T `N τi : T for each τi in ~τ and Γ, t : T `N R : [~m] .

The proof of Lemma 4.13 is by induction on the derivation of Γ `N

class t 〈〈R | ~m : ~τ〉〉 : T to handle the (weakening) case. Most of the cases
are vacuous, since they could not have been the last step in the derivation of
the form Γ`N class t 〈〈R | ~m : ~τ〉〉 : T . The (type β) case follows vacuously
because it cannot appear in a `N -derivation. The (class) case follows im-
mediately from Lemma 4.12.

Lemma 4.14. If Γ`N e : τ is derivable, then so is Γ `N τ : T .

Proof. The proof of Lemma 4.14 is by induction on the derivation of
Γ`N e : τ . Below is the case for (obj ext), which is the most difficult. The
other cases follow for similar reasons or directly from the inductive hypoth-
esis.

If Γ`N e : τ is derived via (obj ext), then the judgement must have the
form:

Γ `
N
〈e1 ←+ n=e2〉 : class t 〈〈R | ~m : ~τ, n : τ〉〉.

By the hypotheses for (obj ext), we must have previously derived

Γ `
N

e1 : class t 〈〈R | ~m : ~τ〉〉.

22 FISHER, HONSELL, MITCHELL

Applying the inductive hypothesis to this produces the judgement:

Γ `
N

class t 〈〈R | ~m : ~τ〉〉 : T .

By Lemma 4.13 then, we have that for all τi in ~τ

Γ, t : T `
N

τi : T

is derivable. The hypotheses for (obj ext) also give us that

Γ, t : T `
N

R : [~m, n]

is derivable. By |~m| applications of (row ext), we may derive

Γ, t : T `
N
〈〈R | ~m : ~τ〉〉 : [n].

The final hypothesis for (obj ext) tells us that the judgement:

Γ, r : T → [~m, n] `
N

e2 : [class t 〈〈rt | ~m : ~τ, n : τ〉〉/t](t→ τ)

is derivable. Applying the inductive hypothesis produces the judgement:

Γ, r : T → [~m, n] `
N

[class t 〈〈rt | ~m : ~τ, n : τ〉〉/t](t→ τ) : T .

It then follows from an easily proved property of derivations that

Γ, r : T → [~m, n] `
N

class t 〈〈rt | ~m : ~τ, n : τ〉〉 : T

is also derivable. Lemma 4.13 gives us that

Γ, r : T → [~m, n], t : T `
N

τ : T

is also derivable. By the side condition for (row ext), r 6∈ FV (τ), so as a
consequence of Lemma 4.3 we may derive

Γ, t : T `
N

τ : T .

Applying row extension, we may derive the judgement

Γ, t : T `
N
〈〈R | ~m : ~τ, n : τ〉〉 : ∅.

Applying (class) to this judgement produces

Γ `
N

class t 〈〈R | ~m : ~τ, n : τ〉〉 : T ,

which is the judgement we wished to derive. 2

A LAMBDA CALCULUS OF OBJECTS AND METHOD SPECIALIZATION 23

4.4 Type Preservation Lemmas

The next three lemmas show that the various components of the (
eval
−→)

relation preserve expression types.

Lemma 4.15. If Γ`N e : τ is derivable, and e
book
−→ e′ , then Γ`N e′ : τ is

also derivable.

Proof. The proof of Lemma 4.15 consists of two parts: the first shows
that a derivation from Γ ` e : τ can only depend on the form of τ , not on
the form of e . More formally, if Γ `C[e] : τ is derived from Γ′ ` e : σ and
Γ′ ` e′ : σ is also derivable, then so is Γ `C[e′] : τ . This fact may be seen
by an inspection of the typing rules. The second part shows that if Γ ` e : τ

is derivable, and e
book
−→ e′ by e matching the left-hand side of one of the

(
book
−→) axioms, then Γ` e′ : τ is also derivable. This fact follows from a case

analysis of the four (
book
−→) axioms. Row variables and Lemmas 4.4, 4.13,

and 4.14 are essential for the (switch ext ov) case. 2

The fact that (β)-reduction preserves expression types is an immediate
consequence of the following lemma:

Lemma 4.16. If Γ, x : τ1,Γ
′ ` e2 : τ2 and Γ` e1 : τ1 are both derivable, then

so is Γ,Γ′ ` [e1/x]e2 : τ2 .

Proof. The proof of Lemma 4.16 is by induction on the derivation of
Γ, x : τ1,Γ

′ ` e2 : τ2 . Several of the cases require a lemma of the form that
if Γ, x : τ,Γ′ `A is derivable with x not in A , then the judgement Γ,Γ′ `A
is also derivable. The proof of this sub-lemma is similar in structure to the
proof of Lemma 4.3. 2

An immediate consequence of the next lemma is that (⇐)-reduction pre-
serves expression types.

Lemma 4.17. If Γ `N 〈〈e←◦1 m1=e1〉 . . .←◦k mk=ek〉 : class t 〈〈R |m1 :
τ1, . . . ,mk : τk〉〉 is derivable, where m1, . . . ,mk are distinct and are pre-

cisely the method names that occur consecutively to the right of e, then

Γ` ei : [class t 〈〈R |m1 : τ1, . . . ,mk : τk〉〉/t](t→ τi) is derivable.

Proof. Suppose Γ `N 〈〈e←◦1 m1=e1〉 . . .←◦k mk=ek〉
: class t 〈〈R |m1 :τ1, . . . ,mk :τk〉〉 is derivable. The proof then has two parts.
The first part, which establishes Claim 4.1 below, gives a derivable type
for each object obtained from 〈〈e←◦1 m1=e1〉 . . .←◦k mk=ek〉 by stripping
off some number of the ←◦ operations. Names for these “subobjects” are
introduced below. The second part, establishing Claim 4.2, shows that we
may derive the required type for each of the ei ’s. Claim 4.2 follows from an
analysis of the typing judgements given by Claim 4.1.

24 FISHER, HONSELL, MITCHELL

To represent the subobjects of 〈〈e←◦1 m1=e1〉 . . .←◦k mk=ek〉 , we intro-
duce the following notation:

O0
def
= e

Oj
def
= 〈Oj−1 ←◦j mj=ej〉.

Note that the object in the assumption of the lemma is just Ok . We also need
to be able to name particular collections of the methods defined in Ok and
their associated types. To this end, let Mj = [mj+1, . . . ,mk] and M−

j be the

subsequence of Mj such that mi ∈M−
j if and only if ←◦i =←+. Similarly,

let Σj = [τj+1, . . . , τk] and Σ−
j be the subsequence of Σj such that τi ∈ Σ−

j

if and only if mi ∈M−
j . Note that Mk = M−

k = ε , M0 = [m1, . . . ,mk] , and

M−
0 = [mi| ←◦i =←+]. Thus M−

0 is the sequence of all methods in Ok that
are not defined in O0 . It follows that the methods in (M0−M−

0) are those
methods that are overridden in Ok . Similarly, M−

j is the sequence of all

methods in Ok that are not defined in Oj , and the methods in (Mj −M−
j)

are those methods defined in Oj that are later overridden in Ok .
Lemma 4.17 follows immediately from the following two claims, written

using the notation just defined:

Claim 4.1. If Γ`N Ok : class t 〈〈R |m1 : τ1, . . . ,mk : τk〉〉 is derivable, then

Γ `
N

Ok−n : class t 〈〈R |m1 : τ1, . . . ,mk−n : τk−n,

(Mk−n −M−
k−n) : (Σk−n − Σ−

k−n)〉〉

is also derivable for all 0 ≤ n ≤ k .

Claim 4.2. If Γ`N Ok : class t 〈〈R |m1 : τ1, . . . ,mk : τk〉〉 and

Γ `
N

Oi : class t 〈〈R |m1 : τ1, . . . ,mi : τi, (Mi −M−
i) : (Σi − Σ−

i)〉〉

are derivable, where 1 ≤ i ≤ k , then

Γ `
N

ei : [class t 〈〈R |m1 : τ1, . . . ,mk : τk〉〉/t](t→ τi)

is also derivable.

The proof of Claim 4.1 is by induction on n . Claim 4.2 follows by an
induction on the derivation of the typing for Oi . (An induction is necessary
to handle the (weakening) case. Otherwise a simple case analysis would
suffice.) The only cases besides (weakening) that need to be considered are
(obj ext) and (obj over). Both of these rules have a hypothesis of the form:

Γ′, r : T → [m1, . . . ,mi, (Mi −M−
i)] `N

ei : [class t 〈〈rt |m1 : τ1, . . . ,mi : τi, (Mi −M−
i) : (Σi − Σ−

i)〉〉/t](t→ τi).

A LAMBDA CALCULUS OF OBJECTS AND METHOD SPECIALIZATION 25

Lemmas 4.13 and 4.14 are used to build a row expression that is substi-
tuted via Lemma 4.4 for the row variable r in the above judgement to give
the desired type to ei . 2

Theorem 4.1. (Subject Reduction) If Γ ` e : τ is derivable, and e
eval
−→

e′ , then Γ` e′ : τ is also derivable.

Proof. The proof is similar in outline to that of Lemma 4.15; it reduces
to showing that each of the basic evaluation steps preserves the type of the

expression being reduced. The (
book
−→) case follows from Lemma 4.15, the

(β) case from Lemma 4.16 and the (⇐) case from Lemma 4.17. 2

4.5 Type Soundness

Now that we have subject reduction, we need to formalize the notion of
message-not-understood errors to show that our type system prevents them.
Intuitively, a message-not-understood error occurs when a message m is
sent to an expression that does not define an object with an m-method. To
formalize this notion, we define mutually recursive functions eval and getm

via proof rules in the style of structured operational semantics. The ideas
behind this proof system are discussed below. The full system is given in
Appendix B

The eval function is the standard lazy evaluator from lambda calculus,
extended to our object calculus in the following way. Object expressions
other than message sends evaluate to themselves. On expressions of the
form e⇐m , eval uses the function getm to extract the m method from e .
This behavior is specified in the (eval ⇐) proof rule:

(eval ⇐)

getm(e) = 〈e1←m = e2〉
eval(e2〈e1←n = e2〉) = z

eval(e⇐m) = z

which we may read as follows. Once getm has extracted the m method
from e by returning an expression of the form 〈e1←m = e2〉 , we “send” the
message m to this expression by applying e2 to the object. This resulting
expression is then recursively evaluated to z , which is then returned as the
value of the original message send. Meta-variable z is either an expression
or the special “value” error .

How does getm extract an m-method from its expression? There are two
different forms of expressions from which getm may immediately extract an
m method: 〈e1←m = e2〉 and 〈e1 ←+ m = e2〉 . The corresponding axioms
are:

(getm ←) getm(〈e1←m = e2〉) = 〈e1←m = e2〉

(getm ←+) getm(〈e1 ←+ m = e2〉) = 〈〈e1 ←+ m = e2〉←m = e2〉

26 FISHER, HONSELL, MITCHELL

The second of these rules converts its object 〈e1 ←+ m = e2〉to the equiv-
alent object 〈〈e1 ←+ m = e2〉←m = e2〉 so that getm returns objects in a
standard form.

To extract an m method from more complicated expressions, we recur-
sively use the eval and getm functions. The (getm ⇐) rule is representative
of these cases:

(getm ⇐)

getn(e) = 〈e1←n = e2〉
getm(e2〈e1←n = e2〉) = z

getm(e⇐n) = z

To find an m-method in an expression of the form e⇐n , we first find an n-
method in the expression e by calling getn(e), which returns an expression
of the form 〈e1←n = e2〉 . We then “send” the object 〈e1←n = e2〉 the
message n by extracting the n method and applying it to 〈e1←n = e2〉 .
We return the result of recursively looking for an m-method in the resulting
expression.

How could getm fail to find an m method? There are three different ways
in which getm may immediately “realize” that its object does not have the
required method m . Its object could be a variable, a lambda abstraction,
or the empty object 〈〉 . These possibilities are described by the following
three axioms:

(getm var) getm(x) = error

(getm 〈〉) getm(〈〉) = error

(getm λ) getm(λx. e) = error

When called on more complicated expressions, getm fails to find its desired
method if one of its recursive calls fails. The (getm ⇐ err) and (getm ⇐)
rules are representative of these cases:

(getm ⇐ err)
getn(e) = error

getm(e⇐n) = error

(getm ⇐)

getn(e) = 〈e1←n = e2〉
getm(e2〈e1←n = e2〉) = z

getm(e⇐n) = z

These rules reflect the fact that there are two ways we could fail to find
an m-method in an expression of the form e⇐n . The first, described by
(getm ⇐ err), occurs when we cannot find an n-method in e . The second,
described by the same (getm ⇐) rule that we saw above, occurs when

A LAMBDA CALCULUS OF OBJECTS AND METHOD SPECIALIZATION 27

we cannot find an m method in the expression obtained by invoking e ’s
n-method.

We need to define these mutually recursive functions instead of using a
single eval function because the notion of a value changes within the context
of a message send. In particular, when we are not looking for a method, any
object expression of the form 〈e ←◦ m = e′〉 is a value. If we are looking
for an m method, then expressions of the form〈e←m = e′〉 are still values.
However, if we are looking for an n method, 〈e ←◦ m = e′〉 is not a value
and must be evaluated further.

Our specific eval and getm functions are designed so that we may demon-
strate that our type system prevents message-not-understood errors in pro-
grams. The same technique would allow us to show that terms typed as
function expressions in programs either diverge or reduce to lambda ab-
stractions. To do this, we would need to add a third evaluation function,
getλ , that “looks” for lambda abstractions and returns a tagged error value
function − error when called on an expression that cannot reduce to a
lambda abstraction. To simplify the presentation, we only consider message-
not-understood errors here.

Using the proof rules, we may show formally that typable programs of our
object calculus do not produce message-not-understood errors.

Lemma 4.18. If ev(e1) = e2 , then e1
eval
→→e2 , where ev is either getm or

eval .

Proof. The proof is by induction on the derivation of ev(e1) = e2 . The
base case for the (getm ←+) axiom follows from the (add ov) bookkeep-
ing rule. The other base cases are either vacuous, since error is not an
expression, or immediate.

The inductive case for the (getm ⇐) proof rule is given below since it
is representative of the non-vacuous inductive cases. If we have derived
getm(e⇐n) = e′ via (getm ⇐), then we must previously have derived that

getn(e) = 〈e1←n = e2〉

and
getm(e2〈e1←n = e2〉) = e′.

Note that getm(e2〈e1←n = e2〉) cannot equal error , since we know that
getm(e⇐n) = e′ and e′ is an expression, not error . Thus

e⇐n
eval
→→ 〈e1←n = e2〉⇐n
eval
→ e2〈e1←n = e2〉
eval
→ e′

The first step above follows from the inductive hypothesis and the fact that
the reduction rules are a congruence relation. The second step follows from
the (⇐)-reduction rule, and the final one via the inductive hypothesis. 2

28 FISHER, HONSELL, MITCHELL

It remains to show that if we may derive ∅ ` e : τ , then eval(e) 6= error .
Because there are two ways in which eval(e) could not equal error , either by
returning an expression or being undefined (which happens when e diverges
under lazy evaluation), it is simpler to prove the contrapositive:

Lemma 4.19. If ev(e) = error , then

◦ if ev = getm , then ∅ 6 ` e : class t 〈〈R |m : τ〉〉 for any row R and type

τ , and

◦ if ev = eval , then ∅ 6 ` e : τ for any type τ ,

where Γ 6 ` A indicates that the judgment Γ `A is not derivable.

Proof. The proof is by induction on the derivation of ev(e) = error .
The base cases are either vacuous or follow by inspection of the typing rules.
We give the inductive cases for the (getm ⇐ err) and (getm ⇐) rules,
since they are representative of the non-vacuous inductive cases.

(getm ⇐ err) If we derive ev(e) = error via (getm ⇐ err), then ev is
getm , e must be of the form e′⇐n , and we must have previously derived
that getn(e′) = error . Applying the inductive hypothesis, we get that

∅ 6 ` e′ : class t 〈〈R′ |n : τ ′〉〉

for any row R′ and any type τ ′ . Then an inspection of the typing rule for
message send (meth app) reveals that

∅ 6 ` e′⇐n : τ ′′

for any type τ ′′ . A fortiori,

∅ 6 ` e′⇐n : class t 〈〈R | m : τ〉〉

for any row R and type τ , which is what we needed to show.
(getm ⇐) If we derive ev(e) = error via (getm ⇐), then ev is getm and

e must be of the form e′⇐n . Also, we must have previously derived that
getn(e′) = 〈e1←n = e2〉 and getm(e2〈e1←n = e2〉) = error . Applying the
inductive hypothesis to the second of these equations, we get

∅ 6 ` e2〈e1←n = e2〉 : class t 〈〈R |m : τ〉〉.

By Lemma 4.18, e′
eval
→→ 〈e1←n = e2〉 , so

e′⇐n
eval
→→ 〈e1←n = e2〉⇐n
eval
→ e2〈e1←n = e2〉.

Since ∅ 6 ` e2〈e1←n = e2〉 : class t 〈〈R |m : τ〉〉 , we get by Subject Reduc-
tion (Theorem 4.1) that

∅ 6 ` e′⇐n : class t 〈〈R |m : τ〉〉,

which is what we needed to show. 2

Theorem 4.2. (Type Soundness) If the judgement ∅ ` e : τ is deriv-

able, then eval(e) 6= error .

A LAMBDA CALCULUS OF OBJECTS AND METHOD SPECIALIZATION 29

5. Expressive power

Since the function part of our calculus is simply typed, every typable ex-
pression that does not contain object operations is strongly normalizing.
It follows that using only function expressions, only a subset of the total
recursive functions are representable. In contrast, we show that all partial
recursive functions are representable in the calculus of functions and objects.
Intuitively, this is because class types are a form of recursive type that al-
lows self application. We begin with a simple example of a nonterminating
expression, illustrating the failure of strong normalization for typable object
expressions.

Divergent Computation

The object Ω has one method m , which sends the message m to the object
itself. Consequently, the evaluation of Ω⇐ m produces an infinite sequence
of message sends.

Ω
def
= 〈m = λself.(self⇐ m)〉
: class t 〈〈m : t〉〉

Ω⇐ m
eval
−→ (λself.(self⇐ m))Ω
eval
−→ Ω⇐ m

Fixed-point Operator

Before considering natural numbers and their basic operations, we show how
to define a fixed-point operator on any type. The main idea is illustrated
by the following object X , whose rec (for “recurse”) method causes the
function f to be applied to X⇐ rec .

X
def
= 〈rec = λself. f(self⇐ rec)〉

X⇐ rec
eval
−→ f(X⇐ rec)

We define a general fixed point operator by treating the object X above
as a function of f . Using the context

Γ = f : σ→σ,
r : T → [rec],
x : class t 〈〈rt | rec : σ〉〉

the following typing derivation shows that the resulting function has type
(σ→σ)→σ , for any σ that does not contain t .

30 FISHER, HONSELL, MITCHELL

Γ ` f(x⇐ rec) : σ

Γ− x ` λx. f(x⇐ rec)
: class t 〈〈rt | rec : σ〉〉 → σ

Γ− x− r ` 〈rec=λx. f(x⇐ rec)〉
: class t 〈〈rec : σ〉〉

Γ− x− r ` 〈rec=λx. f(x⇐ rec)〉⇐ rec : σ

ε ` λf.〈rec=λx. f(x⇐ rec)〉⇐ rec

: (σ→σ)→ σ

Object Numerals

The representation of natural numbers by object expressions is more com-
plicated than the preceding examples. The main idea is to represent the
natural number n by an object n with a method that sends its formal pa-
rameter the message m a total of n times. This is similar in spirit to the
Church numeral λf. λx. fnx , where the number n is represented using a
function that does n function applications. The differences are that the
numeral for n involves n message sends instead of n function applications,
and that since message/method names cannot be parameters, the message
that is sent n times must be fixed, rather than being a formal parameter.
While it is possible to type the Church numerals in our calculus, we have not
been able to type a predecessor or equality function on Church numerals.

The “representation” of a number is “stored” as the rep method of the
numeral. In addition to the rep method, it is convenient to include successor
and predecessor as methods. This gives us numerals with three methods:
S for successor, P for predecessor, and rep for “representation.” Numerals
have type

nat
def
= class t 〈〈S : t, P : t,

rep : test(t)→ test(t)〉〉

test(t)
def
= class s 〈〈m : s, b : t→ t→ t〉〉

where the type of rep is chosen to make it easy to test whether a number
is zero and evaluate one of two argument expressions accordingly.

The numeral for n is defined as follows, using the combinator K and
postponing the full definition of predecessor until after zero test is defined.

n
def
= 〈 rep=K(λx. x⇐

n
︷ ︸︸ ︷
m⇐ m⇐ . . .⇐ m),

S=λself.〈self←
rep=K(λx.(self⇐ repx)⇐ m)〉,

P=λself.〈self← rep=K(λx. . . .)〉
〉

A LAMBDA CALCULUS OF OBJECTS AND METHOD SPECIALIZATION 31

It is easy to see that successor increments the number of times m is sent by
rep without relying on the predecessor method. For each n , we may show
n : nat .

Zero test

The function IFZ, for zero test, has the property that IFZ n yields true
def
=

λx. λy. x : nat→nat→nat if n = 0 and false
def
= λx. λy. y : nat→nat→nat

otherwise. As a result, IFZ n e1 e2 is e1 if n = 0 and e2 otherwise. The
functions true and false are used in the objects

F
def
= 〈m=λx. x, b=K false〉

T
def
= 〈m=K F, b=K true〉

with the properties that T⇐m
eval
−→ F , F⇐m

eval
−→ F , T⇐b

eval
−→ true and

F⇐ b
eval
−→ false. Using these objects, we define zero test as follows.

IFZ
def
= λx.((x⇐ rep) T)⇐ b

IFZ n
eval
−→ T

n
︷ ︸︸ ︷
⇐ m . . .⇐ m⇐ b

eval
−→

{
true if n = 0
false if n > 0

Predecessor

In rough terms, the main idea for predecessor is to pass an object of the
form 〈m=x, b=K(. . .)〉 to the rep method of the object. (The b method is
not used, so any function of the right type will do.) If rep sends this object
the message m n times, the net effect will be to send x the message m n− 1
times. This gives us a way of decrementing the number of times m is sent
to the formal parameter of a function. Zero test, IFZ , is used to take care
of the special case n = 0, where the result would otherwise be the object
〈m=x, b=K(. . .)〉 , rather than the numeral for 0. The predecessor method
of each numeral is defined as follows.

P=λself.〈self← rep=K(λx.(
(IFZ self 1 self)⇐ rep 〈m=x, b=K(. . .)〉))〉

Since the function (IFZ self 1 self)⇐ rep sends m to 〈m=x, b=K(. . .)〉
a total of min{1, self} times, the predecessor method works as follows.

32 FISHER, HONSELL, MITCHELL

P n
eval
−→ 〈n← rep=K(λx.

(IFZ n 1 n)⇐ rep

〈m=x, b=K(. . .)〉)〉

eval
−→ 〈n← rep=K(λx.

〈m=x, b=K(. . .)〉 ⇐ m⇐ m . . .⇐ m
︸ ︷︷ ︸

min{1,n}

)〉

eval
−→ 〈n← rep=K(λx. x⇐ m . . .⇐ m

︸ ︷︷ ︸

min{1,n}−1

)〉

This concludes the set of basic functions on natural numbers that are needed
to represent all partial recursive functions.

6. Conclusion

We have given a computationally expressive typed calculus of functions and
objects with a sound type system. In this “kernel language,” we define ob-
jects and their interfaces (called “classes” here) directly instead of through
some subsidiary calculus of records. This gives an axiomatic presentation
of a simple object-oriented language and its type system in a form that we
hope is conducive to further work. A feature of the calculus is method spe-
cialization: using method redefinition (expressions of the form 〈e←n=e′〉),
we may define functions whose type and behavior change in a natural and
useful way as a result of inheritance. This capability seems very difficult to
achieve directly with any calculus of records. While it seems too early to
claim that we have captured “the essence of inheritance in a simple form,”
it seems that some progress has been made in this direction.

There are many technical open problems, including development of a de-
notational model, a proof system for equivalence that is sufficiently powerful
to derive nontrivial equations between method bodies, and the investigation
of subtyping and substitutivity in this language. Hopefully, the calculus pre-
sented here will provide a basis for studying these mathematical problems in
a manner that is faithful to substantial uses of object-oriented programming
in practice.

References

[1] M. Abadi. Baby Modula-3 and a theory of objects. Technical Report 95, DEC Sys-
tems Research Center, 1993. To appear in J. Functional Prog.

[2] N. Adams and J. Rees. Object-oriented programming in Scheme. In Proc. ACM

Symp. Lisp and Functional Programming Languages, pages 277–288, July 1988.
[3] L. Cardelli, J. Donahue, L. Galssman, M. Jordan, B. Kalsow, and G. Nelson. Modula-

3 report. Technical Report SRC-31, DEC Systems Research Center, 1988.
[4] L. Cardelli, J. Donahue, M. Jordan, B. Kalsow, and G. Nelson. The Modula-3 type

system. In Sixteenth ACM Symp. Principles of Programming Languages, pages 202–
212, 1989.

A LAMBDA CALCULUS OF OBJECTS AND METHOD SPECIALIZATION 33

[5] L. Cardelli and J.C. Mitchell. Operations on records. Math. Structures in Computer

Science, 1(1):3–48, 1991. Summary in Math. Foundations of Prog. Lang. Semantics,

Springer LNCS 442, 1990, pp 22–52.
[6] W.R. Cook. A proposal for making Eiffel type-safe. In European Conf. on Object-

Oriented Programming, pages 57–72, 1989.
[7] C. Chambers and D. Ungar. Customization: Optimizing compiler technology for

Self, a dynamically-typed object-oriented programming language. In SIGPLAN ’89

Conf. on Programming Language Design and Implementation, pages 146–160, 1989.
[8] M. Ellis and B. Stroustrop. The Annotated C++ Reference Manual. Addison-Wesley,

1990.
[9] A. Goldberg and D. Robson. Smalltalk–80: The language and its implementation.

Addison Wesley, 1983.
[10] B. Meyer. Eiffel: The Language. Prentice-Hall, 1992.
[11] J.C. Mitchell, F. Honsell, and K. Fisher. A lambda calculus of objects and method

specialization. In Proc. IEEE Symp. on Logic in Computer Science, pages 26–38,
1993.

[12] J.C. Mitchell. Toward a typed foundation for method specialization and inheritance.
In Proc. 17th ACM Symp. on Principles of Programming Languages, pages 109–124,
January 1990.

[13] J. Rees and N. Adams. T, a dialect of Lisp, or lambda: the ultimate software tool.
In Proc. ACM Symp. Lisp and Functional Programming Languages, pages 114–122,
August 1982.

[14] D. Ungar and R.B. Smith. Self: The power of simplicity. In Proc. ACM Symp. on

Object-Oriented Programming: Systems, Languages, and Applications, pages 227–
241, 1987.

Appendix A. Typing rules

General Rules

(start)
ε`∗

(projection)

Γ`∗
u : v ∈ Γ

Γ`u : v

(weakening)

Γ`A
Γ,Γ′ `∗

Γ,Γ′ `A

Rules for type expressions

(type var)

Γ`∗
t 6∈ dom(Γ)

Γ , t : T `∗

(type arrow)

Γ` τ1 : T
Γ` τ2 : T

Γ` τ1→ τ2 : T

34 FISHER, HONSELL, MITCHELL

(class)
Γ, t : T `R : [m1, . . . ,mk]

Γ` class t R : T

Type and Row Equality

Type or row expressions that differ only in names of bound variables or
order of label :type pairs are considered identical. In other words, we consider
α -conversion of type variables bound by λ or class and applications of the
principle

〈〈〈〈R |n : τ1〉〉 |m : τ2〉〉 = 〈〈〈〈R |m : τ2〉〉 |n : τ1〉〉

within type or row expressions to be conventions of syntax, rather than
explicit rules of the system. Additional equations between types and rows
arise as a result of β -reduction, written →β , or β -conversion, written ↔β .

(row β)
Γ`R : κ, R→β R′

Γ`R′ : κ

(type β)
Γ` τ : T , τ →β τ ′

Γ` τ ′ : T

(type eq)
Γ` e : τ , τ ↔β τ ′, Γ` τ ′ : T

Γ` e : τ ′

Rules for rows

(empty row)
Γ`∗

Γ` 〈〈〉〉 : [m1, . . . ,mk]

(row var)

Γ`∗
r 6∈ dom(Γ)

Γ, r : T n→[m1, . . . ,mk]`∗

(row label)

Γ`R : T n→[m1, . . . ,mk]
{n1, . . . , n`} ⊆ {m1, . . . ,mk}

Γ`R : T n→[n1, . . . , n`]

(row ext)

Γ`R : [m,m1, . . . ,mk]
Γ` τ : T

Γ` 〈〈R |m : τ〉〉 : [m1, . . . ,mk]

(row fn abs)
Γ, t : T `R : T n→[m1, . . . ,mk]

Γ`λt.R : T n+1→[m1, . . . ,mk]

A LAMBDA CALCULUS OF OBJECTS AND METHOD SPECIALIZATION 35

(row fn app)

Γ`R : T n+1→[m1, . . . ,mk]
Γ` τ : T

Γ`Rτ : T n→[m1, . . . ,mk]

Rules for assigning types to terms

(exp var)

Γ` τ : T
x 6∈ dom(Γ)

Γ, x : τ `∗

(exp abs)
Γ , x : τ1 ` e : τ2

Γ`λx. e : τ1→ τ2

(exp app)
Γ` e1 : τ1→ τ2 Γ` e2 : τ1

Γ` e1 e2 : τ2

(empty object)
Γ`∗

Γ` 〈〉 : class t 〈〈〉〉

(meth app)
Γ` e : class t 〈〈R |m : τ〉〉

Γ` e⇐m : [class t 〈〈R |m : τ〉〉/t]τ

(obj ext)

Γ` e1 : class t 〈〈R |m1 : τ1, . . . ,mk : τk〉〉

Γ, t : T `R : [m1, . . . ,mk, n]

Γ, r : T → [m1, . . . ,mk, n] `
e2 : [class t 〈〈rt | ~m : ~τ, n : τ〉〉/t](t→ τ) r not in τ

Γ` 〈e1 ←+ n=e2〉 : class t 〈〈R | ~m : ~τ, n : τ〉〉

(obj over)

Γ` e1 : class t 〈〈R |m1 : τ1, . . . ,mk : τk〉〉

Γ , r : T → [m1, . . . ,mk] `
e2 : [class t 〈〈rt | ~m : ~τ〉〉/t](t→ τi)

Γ` 〈e1←mi=e2〉 : class t 〈〈R | ~m : ~τ〉〉

Here ~m : ~τ is used as an abbreviation for m1 : τ1, . . . ,mk : τk .

36 FISHER, HONSELL, MITCHELL

Appendix B. Definition of evaluation strategy

Axioms

In the following, meta-variable z represents either an expression or error .

(getm var) getm(x) = error

(getm 〈〉) getm(〈〉) = error

(getm λ) getm(λx. e) = error

(getm ←) getm(〈e1←m = e2〉) = 〈e1←m = e2〉

(getm ←+) getm(〈e1 ←+ m = e2〉) = 〈〈e1 ←+ m = e2〉←m = e2〉

(eval var) eval(x) = x

(eval 〈〉) eval(〈〉) = 〈〉

(eval λ) eval(λx. e) = λx. e

(eval ←) eval(〈e1←m = e2〉) = 〈e1←m = e2〉

(eval ←+) eval(〈e1 ←+ m = e2〉) = 〈e1 ←+ m = e2〉

Inference Rules

(getm app err)
eval(e1) = error

getm(e1e2) = error

(getm app)

eval(e1) = λx. e′1
getm([e2/x]e′1) = z

getm(e1e2) = z

(getm ⇐ err)
getn(e) = error

getm(e⇐n) = error

A LAMBDA CALCULUS OF OBJECTS AND METHOD SPECIALIZATION 37

(getm ⇐)

getn(e) = 〈e1←n = e2〉
getm(e2〈e1←n = e2〉) = z

getm(e⇐n) = z

(getm ← err)

n 6= m
getm(e1) = error

getm(〈e1←n = e2〉) = error

(getm ←)

n 6= m
getm(e1) = 〈e3←m = e4〉

getm(〈e1←n = e2〉) = 〈〈e3←n = e2〉←m = e4〉

(getm ←+ err)

n 6= m
getm(e1) = error

getm(〈e1 ←+ n = e2〉) = error

(getm ←+)

n 6= m
getm(e1) = 〈e3←m = e4〉

getm(〈e1 ←+ n = e2〉) = 〈〈e3 ←+ n = e2〉←m = e4〉

(eval app err)
eval(e1) = error

eval(e1e2) = error

(eval app)

eval(e1) = λx. e′1
eval([e2/x]e′1) = z

eval(e1e2) = z

(eval ⇐ err)
getn(e) = error

eval(e⇐ n) = error

(eval ⇐)

getn(e) = 〈e1←n = e2〉
eval(e2〈e1←n = e2〉) = z

eval(e⇐ n) = z

