
Nordic Journal of Computing 1(1994), 50–76.

A MECHANIZED THEORY OF THE Π-CALCULUS
IN HOL

T. F. MELHAM
Department of Computing Science

University of Glasgow
17 Lilybank Gardens

Glasgow, Scotland, G12 8QQ
tfm@dcs.glasgow.ac.uk

Abstract. The π-calculus is a process algebra for modelling concurrent systems

in which the pattern of communication between processes may change over time.

This paper describes the results of preliminary work on a definitional formal theory

of the π-calculus in higher order logic using the HOL theorem prover. The ultimate

goal of this work is to provide practical mechanized support for reasoning with the

π-calculus about applications.

CR Classification: F.3.1, F.3.2, D.2.1, D.2.4

Introduction

The π-calculus [17, 18] is a process algebra proposed by Milner, Parrow and
Walker for modelling concurrent systems in which the pattern of intercon-
nection between processes may change over time. This paper describes work
on a mechanized formal theory of the π-calculus in higher order logic using
the HOL theorem prover [8]. The main aim of this work is to construct a
practical and sound theorem-proving tool to support reasoning about appli-
cations using the π-calculus, as well as metatheoretic reasoning about the
π-calculus itself.

Four general principles have been adopted in this project. First, a purely
definitional approach is taken to describing the π-calculus in logic. New no-
tation concerned with the π-calculus is added to the logic not by postulating
arbitrary axioms to give meaning to it, but rather by defining it in terms of
existing expressions of the logic that already have the required semantics.
Second, proofs in the π-calculus are automated wherever feasible, with a
view to eventually using the system to reason about applications. In prac-
tice, this means writing efficient derived inference rules in HOL for proving
decidable classes of propositions, such as the α-equivalence of two terms in
the calculus. The third principle is to make the HOL proofs as robust as
possible, in the sense that they should run without major modification even
when minor changes are made to the π-calculus itself. The hope is that this
will facilitate experimental investigations in HOL of minor variants of the

Received December 1993. Accepted April 1994.

A MECHANIZED THEORY OF THE Π-CALCULUS IN HOL 51

calculus. Finally, the π-calculus as mechanized in HOL is intended to be as
nearly identical as possible to the calculus as described in the papers [17, 18].
The aim is to avoid simplifying the calculus merely in order to make the job
of mechanizing it easier. One point at which we have compromised this last
principle is discussed in section 4.3.

1. The HOL system

The HOL system [8] is a mechanized proof-assistant for generating proofs
in higher order logic. HOL is based on the LCF approach to interactive
theorem proving and has many features in common with the LCF systems
developed at Cambridge [21] and Edinburgh [9]. Like LCF, the HOL system
supports secure theorem proving by representing its logic in the strongly-
typed functional programming language ML. Propositions and theorems of
the logic are represented by abstract data types, and interaction with the
theorem prover takes place by executing ML procedures that operate on
values of these data types. Because HOL is built on top of a general-purpose
programming language, the user can write arbitrarily complex programs
to implement proof strategies. Furthermore, because of the way the logic
is represented in ML, such user-defined proof strategies are guaranteed to
perform only valid logical inferences.

1.1 Higher order logic

The version of higher order logic supported by the HOL theorem prover is
based on Church’s formulation of simple type theory [4]. For the purposes of
this paper, the logic can be viewed as a typed extension of the conventional
syntax of predicate calculus in which functions may be curried and one may
quantify over functions. The notation is illustrated by the theorem shown
below.

` ∀x f. ∃fn. (fn 0 = x) ∧ ∀n. fn:num→num (n+1) = (f (fn n)) n

This says that functions can be defined on the natural numbers such that
they satisfy primitive-recursive defining equations (the quantified variables f
and fn range over functions). We adopt the convention that italic identifiers
(e.g. x, x1, fn) are variables and sans serif identifiers (e.g. a, F, Tau) and
non-alphabetical symbols (e.g. ⊃, =, ∀) are constants.

The HOL logic extends Church’s formulation in two significant ways: the
syntax of types includes the polymorphic type discipline developed by Mil-
ner for the LCF logic PPλ [9], and the primitive basis of the logic includes
explicitly-stated rules of definition for consistently extending the logic with
new constants and new types. Because this second feature of the logic is
particularly relevant to the approach taken to embedding the π-calculus in
HOL, the rules of definition in the HOL logic are very briefly introduced
below. A full description of these rules and details of the rest of the logic,
including a set-theoretic semantics, can be found in [8].

52 T. F. MELHAM

1.1.1 Primitive rules of definition

The HOL user community has a strong tradition of taking a purely defini-
tional approach to using higher order logic, and this is the way in which
the logic is used in the present work on the π-calculus. The advantage of
this approach, as opposed to the axiomatic method, is that the primitive
rules of definition admit only sound extensions to the logic, in the sense that
they preserve the property of the logic having a (standard) model. Making
definitions is therefore guaranteed not to introduce inconsistency. The dis-
advantage is that these rules admit only definitions that satisfy certain very
restrictive rules of formation. Definitions expressed in any other form must
always be justified by deriving them from equivalent, but possibly rather
complex, primitive definitions.

The primitive basis of the HOL logic includes three rules of definition: the
rule of constant definition, the rule of constant specification, and the rule
of type definition. A constant definition is simply an equational axiom of
the form ` c = t that introduces a new constant c as an object-language
abbreviation for a closed term t. Also admitted by this rule are curried or
paired function definitions of the forms

` f v1 v2 . . . vn = t and ` f(v1, v2, . . . , vn) = t

Among the side-conditions of the rule of constant definition, the details of
which are not relevant here, is the condition that the constant being defined
may not occur on the right-hand side of its defining equation. This rules
out, at least as primitive, all recursive definitions—including inconsistent
ones like ` c = ¬c.

The rule of constant specification allows one to introduce a new constant
into the logic as an atomic name for a quantity already known to exist. By
this rule of definition, one may infer from a theorem of the form ` ∃x. P [x]
a theorem ` P [c], where c is a new constant symbol. This simply introduces
c as an object-language name for an existing value x for which P [x] holds.

The third primitive rule of definition in HOL is the rule of type definition.
Suppose that σ is a type and P :σ→bool is the characteristic predicate of
some useful nonempty subset of the set denoted by σ. A type definition
introduces a new type constant τ to name this subset of σ. From the theorem
` ∃x:σ. P x, one may infer by the rule of type definition the existence of a
bijection from the values of a new type τ to the set of values that satisfy P :

` ∃f :τ→σ. (∀x y. (f x = f y) ⊃ (x = y)) ∧ (∀x. P x = (∃y. x = f y))

This definitional theorem introduces the new type constant τ to name the
nonempty set of values whose properties are determined by the choice of
predicate P . The requirement that ` ∃x. P x ensures that there is at least
one value of type τ . This restriction is necessary because the HOL logic
does not allow empty types. The rule of type definition can also be used

A MECHANIZED THEORY OF THE Π-CALCULUS IN HOL 53

to define new type operators; one can define, for example, the Cartesian
product σ1 × σ2 of two types, or the type of finite lists (α)list. See [12] for
a series of detailed examples.

1.1.2 Derived rules of definition

The primitive rules outlined above disallow the direct use of many commonly-
used principles of definition—for example, the definition of functions by
primitive recursion. The general-purpose language ML, however, provides a
facility in HOL for implementing derived rules of definition; using ML, one
can write programs that automatically generate the proofs that justify the
legitimacy of derived forms of definition. The built-in HOL derived rules of
definition include recursive concrete type definitions and primitive recursive
function definitions over these types, as well as certain forms of inductive
definition. The details of the primitive definitions that underlie these rules
are hidden from the user, and their ML implementations are highly opti-
mized. So these derived principles of definition may just be regarded as
primitive by most users of the system.

The HOL mechanization of the π-calculus is a purely definitional theory
in higher order logic. It relies heavily on the derived principles of definition
available in HOL, which are therefore briefly explained as they used in the
sections that follow. Details of these derived rules can be found in the HOL

system documentation [8] or the papers [12, 14].

2. A sketch of the π-calculus

This section provides a summary overview of the π-calculus in just enough
detail for a reader familiar with (for example) CCS [15] to follow the HOL

mechanization described in later sections. For full details of the π-calculus
and for motivational discussion, the reader should consult the papers by
Milner, Parrow and Walker [17, 18]. The summary presented here is based
on the material in these papers, and of course no claim to originality in
respect of the ideas in this section is made by the present author.

2.1 Syntax of the calculus

Let N be an infinite set of names, which in the π-calculus are used both as
variables and as data values, as well as names of the ports or communication
links between processes. The syntax of agents in the π-calculus is defined
by

54 T. F. MELHAM

P ::= 0 inaction
| xy.P output y on x then P
| x(y).P input z on x then P{z/y}
| τ.P do silent τ then P
| (x)P restrict scope of x
| [x=y]P if x = y then P else 0

| P1 | P2 P1 and P2, in parallel
| P1 + P2 P1 or P2

| A(x1, . . . , xn) defined agent

where P , P1, P2 range over agents, x, x1, . . . , xn, y range over names, and
A ranges over n-ary agent identifiers. The forms x(y).P and (y)P introduce
variable binding into the calculus; the prefixes ‘x(y)’ and ‘(y)’ bind the name
y in P . If an occurrence of a name y is not bound, it is called free. The
set of names that occur free in an agent P is written fn(P), and the set of
names bound in an agent P is written bn(P). The set of names of an agent
P , written n(P), is defined to be the union of fn(P) and bn(P).

Agent identifiers provide the π-calculus with both abbreviations for classes
of agents and recursion. Each n-ary agent identifier A is equipped with a
defining equation of the form

A(x1, . . . , xn)
def
= P

where the set of all names that appear free in P is a subset of {x1, . . . , xn}.
A defining equation or a set of such equations may be recursive and hence
may introduce agents with infinite behaviour.

The meaning of agents is very briefly summarized as follows. The agent
0 does nothing. The agent xy.P emits the name y on the output port x
and then behaves like P . The agent x(y).P receives a name z on the input
port x and then behaves like P{z/y}, where ‘P{z/y}’ denotes the result of
substituting z for every free occurrence of y in P , with change of bound
names if necessary to avoid capture of z. The agent τ.P performs the silent
action τ and then behaves like P . In the agent (x)P , the name x is made
local to P by the binding prefix ‘(x)’. The agent [x=y]P behaves like P if
x and y are the same name and otherwise behaves like 0. As in CCS, the
agent P1 |P2 represents the parallel composition of P1 and P2, and the agent
P1 +P2 behaves like either P1 or P2. Finally, the defined agent A(x1, ..., xn)
behaves like the corresponding instance of the right-hand side of the defining
equation for the n-ary agent identifier A.

2.2 The transitional semantics

As in CCS, agents in the π-calculus are given a transitional semantics based
on labelled transitions of the form P

α
−→Q, which can be read ‘P can perform

A MECHANIZED THEORY OF THE Π-CALCULUS IN HOL 55

tau-act:
τ.P

τ

−→ P
output-act:

xy.P
xy

−→ P

input-act:

x(z).P
x(w)
−→ P {w/z}

w 6∈ fn((z)P)

sum:
P

α

−→ P ′

P + Q
α

−→ P ′

match:
P

α

−→ P ′

[x=x]P
α

−→ P ′

ide:
P{y1, . . . , yn/x1, . . . , xn}

α

−→ P ′

A(y1, . . . , yn)
α

−→ P ′

A(x1, . . . , xn)
def
= P

par:
P

α

−→ P ′

P | Q
α

−→ P ′ | Q
bn(α) ∩ fn(Q) = {}

com:
P

xy

−→ P ′ Q
x(z)
−→ Q′

P | Q
τ

−→ P ′ | Q′{y/z}
close:

P
x(w)
−→ P ′ Q

x(w)
−→ Q′

P | Q
τ

−→ (w)(P ′ | Q′)

res:
P

α

−→ P ′

(y)P
α

−→ (y)P ′

y 6∈ n(α)

open:
P

xy

−→ P ′

(y)P
x(w)
−→ P ′{w/y}

y 6= x
w 6∈ fn((y)P ′)

Fig. 1: Transition rules for the π-calculus.

the action α and then evolve into Q’. There are four types of action:

A ::= τ silent action
| xy free output action
| x(y) input action
| x(y) bound output action

The silent action arises from internal communication within an agent, as
well as from agents of the form τ.P . Output-prefixed agents such as xy.P
give rise to the free output action xy, and input prefixed agents x(y).P to
the input action x(y). Bound output actions of the form x(y) arise from
output actions that export a name outside its current scope.

The following notation, which is introduced in [18], is used in defining the
transition relation for the π-calculus. The set of bound names of an action
α is written bn(α), and the set of free names of an action α is written fn(α).
The meaning of this notation is defined by

bn(α) =

{
{y} if α = x(y) or x(y)
{} otherwise

56 T. F. MELHAM

and

fn(α) =

{x} if α = x(y) or x(y)
{x, y} if α = xy
{} if α = τ

The set of names of an action v(α) is defined to be the union of bn(α)
and fn(α). An expression of the form ‘P{y1, . . . , yn/x1, . . . , xn}’ denotes the
result of simultaneously substituting yi for xi for 1 ≤ i ≤ n in P , with
change of bound names as required to avoid capture.

The transition relation P
α

−→ Q itself is defined inductively by the rules
shown in figure 1, together with additional symmetric rules for the operators
| and +. More precisely, the three-place relation −→⊆ (agent × action ×
agent) is defined to be the smallest set closed under these rules, where

‘(P, α,Q) ∈ −→’ is written ‘P
α

−→Q’. The details of the transition rules are
not relevant here; they are shown in full merely to give the reader a general
idea of the size and complexity of the calculus.

2.3 Bisimulation and equivalence

As in CCS, equivalence of agents in the π-calculus is defined using the notion
of a bisimulation between agents. A binary relation S is a strong simulation

if P S Q implies that

(1) If P
α

−→ P ′ and α = τ or α = xy, then for some Q′, Q
α

−→ Q′ and
P ′ S Q′.

(2) If P
x(y)
−→ P ′ and y 6∈ n(P) ∪ n(Q), then for some Q′, Q

x(y)
−→ Q′ and for

all w, P ′{w/y} S Q′{w/y}.

(3) If P
x(y)
−→ P ′ and y 6∈ n(P) ∪ n(Q), then for some Q′, Q

x(y)
−→ Q′ and

P ′ S Q′.

A strong bisimulation is a strong simulation S whose inverse is also a strong
simulation. The relation ∼̇ is defined to be the largest strong bisimulation,
so that two agents P and Q are strongly bisimilar (written ‘P ∼̇ Q’) if P S Q
for some strong bisimulation S.

The algebraic theory of bisimilarity for agents in the π-calculus is based
on the definitions given above. Many of the algebraic laws correspond to
similar or identical laws in CCS. For example the following equations for
summation hold:

P + 0 ∼̇ P zero
P + P ∼̇ P idempotence

P1 + P2 ∼̇ P2 + P1 commutativity
P1 + (P2 + P3) ∼̇ (P1 + P2) + P3 associativity

The equational theory also includes an analogue to the CCS expansion law.
Strong bisimilarity is not preserved by substitution of names for free

names. Equivalence is therefore defined to be strong bisimilarity under all

A MECHANIZED THEORY OF THE Π-CALCULUS IN HOL 57

substitutions. For any substitution σ : N → N , ‘Pσ’ denotes the result
of simultaneously substituting σ(z) for all free z in the agent P , chang-
ing bound variables as necessary to avoid captures. Two agents P and Q
are strongly equivalent (written ‘P ∼ Q’) if Pσ ∼̇ Qσ for all substitutions
σ. The algebraic theory of equivalence is similar (but not identical) to the
theory of bisimilarity.

For a presentation of the full algebraic theory, detailed proofs of soundness
and of completeness for finite agents, and for a discussion of other notions
of equivalence for the π-calculus, see the papers [17, 18].

3. Mechanizing the π-calculus in HOL

One possible approach to mechanizing a formal system in HOL is to translate
its syntactic objects directly into appropriate denotations in higher order
logic. This approach is exemplified by Mike Gordon’s work on mechanizing
Hoare logic [7]. Meaning is given to partial correctness statements in Hoare
logic by translating them into propositions of higher order logic that capture
their intended semantics. For example, the partial correctness statement

{X=n} X:=X+1 {X=n+1}

is translated into the assertion that the following relation holds of any pair
of initial and final states s1 and s2:

∀n. ((s1 X = n) ∧ (s2 = λv. (v=X ⇒ (s1 X) + 1 | s1 v))) ⊃ (s2 X = n + 1)

Program variables (e.g. X) are represented by constants of a specially-defined
logical type var, and states are modelled by total functions from program
variables to natural numbers. Partial correctness statements are represented
directly by their denotations in logic; with sufficient parser and pretty-
printer support, these can be made to look like assertions in Hoare logic
(see [7]).

The advantage of this approach is that the embedded formal system inher-
its a certain amount of syntactic infrastructure from the underlying logic.
For example, λ-abstraction and β-reduction in higher order logic can be used
to simulate variable binding and substitution in the language being mech-
anized. The result is a system particularly well suited to reasoning about
applications, since the HOL system provides highly optimized proof sup-
port for these basic syntactic notions. This is sometimes called the shallow

embedding approach to mechanizing another formal system in HOL [2].
The disadvantage of direct translation is that it does not allow metatheo-

retic reasoning about the embedded formal system to be carried out within
higher order logic itself. For example, a proposition that makes reference
to the embedded language as a whole cannot be expressed in the logic; it
can be stated only as a metatheorem about classes of logical assertions and
hence cannot be proved in HOL.

58 T. F. MELHAM

One goal of the present work is to support formal metatheoretic reason-
ing about the π-calculus itself, as well as reasoning in the calculus about
applications. For example, one might wish to prove properties of a pro-
gramming language semantics given by a translation into the π-calculus;
such properties are typically meta-theoretical in nature with respect to the
target language and its semantics. A different approach is therefore taken
to mechanizing the π-calculus in HOL. The language of agents is embedded
as an object (or, more specifically, as a defined type) within the logic, rather
than metalinguistically translated into terms of the logic. Higher order logic
is thus used as a formal metalanguage whose objects are the process or agent
expressions of the π-calculus. Meaning is then given to these expressions by
defining the labelled transition semantics, strong bisimulation, and the rela-
tions ∼̇ and ∼ within the logic itself. This is an example of a so-called deep

embedding of a formal system in HOL.

A similar approach is taken by Camilleri [3] in his formalization of CSP

in higher order logic, by Back and von Wright [1] in their work on mech-
anized program transformation in HOL, and in the present author’s work
on reasoning about circuit models [14]. All this work, however, contrives
to avoid explicit definitions of substitution, essentially by inheriting it from
higher order logic. In this respect, it differs from the present formalization
of the π-calculus, in which all syntactic operations over the embedded lan-
guage of agent expressions are defined within the logic and can therefore be
mentioned explicitly in propositions of the logical metalanguage.

4. Embedding the syntax of agents in HOL

This section outlines a definitional HOL theory of the language of agent
expressions in the π-calculus. For clarity of notation, as well as for fidelity
to the presentation in [17, 18], the theory makes use of a predefined logical
type (α)set, values of which are sets of elements of type α. This type is
defined formally in the built-in HOL ‘set theory’ library, which contains
a substantial collection of basic theorems about sets. Also provided by
the library are parser and pretty-printer support for naming finite sets by
enumeration, for example by writing ‘{a, b, c}’, and for the set specification
notation ‘{x | φ(x)}’. Sets written in these notations should be regarded
as metalinguistic abbreviations; they are expanded by the HOL term parser
into logical terms that denote the appropriate values.

4.1 Representing names in logic

An obvious way to represent names in higher order logic is to model the
set of names N by a logical type. The only property required of N is that
it must be infinite, so that bound names can always be changed to avoid
capture of names by the binding constructs ‘x(y).P ’ and ‘(y)P ’ when a
substitution is done. Names can therefore be represented in logic by any

A MECHANIZED THEORY OF THE Π-CALCULUS IN HOL 59

type that contains an infinite number of distinct values, for example the
type of natural numbers.

But rather than develop the theory with a particular fixed representation
for names, the set of names N is represented by a type variable ‘α’. An
infinite set of names is then assumed by working (when necessary) under
the hypothesis that there exists a choice function ch:(α)set→α which for
any finite set of names S yields a name not in S:

∀S. Finite S ⊃ ¬(ch S ∈ S)

This infinity hypothesis is required only for the proofs of certain theorems
about the π-calculus whose truth depends on the ability to change bound
names during substitution. The assumption that there exists a choice func-
tion ch with the above property is provably equivalent in HOL to the alter-
native hypothesis

∃f :α→α. (∀x y. (f x = f y) ⊃ (x = y)) ∧ (∃y. ∀x. ¬(f x = y))

This asserts of the type α that it has no more elements than some proper
subset of α. That is, it asserts of α that it satisfies the conventional definition
of an infinite set.

Using a type variable to represent the set of names results in a ‘polymor-
phic’ theory of the π-calculus in HOL. The entire theory can be specialized
for a particular application by choosing an (infinite) application-specific log-
ical type to model names, instantiating the type variable α to this type, and
discharging the resulting infinity hypothesis wherever it appears. This is
not an atomic operation in the HOL system, but it is not hard to program
in ML. The only part that cannot be automated is proving the existence of
a choice function for the type selected to represent names.

4.2 Defining the syntax of agents

The formal language of agents in the π-calculus is embedded in HOL by
defining a logical type (α)agent, values of which represent agent expressions
with names of type α. The primitive rule of type definition, as was already
mentioned, allows new types to be introduced into the logic only as names
for subsets of already existing types. So to define a type of agent expressions
a rather complex encoding into values of an existing logical type is required.

The HOL system, however, provides a derived principle of definition that
automates all the formal inference necessary to define an arbitrary concrete
recursive type in higher order logic [12]. The user supplies a specification of
the required type in a form similar to a datatype declaration in Standard
ML [22]. The system then constructs an appropriate encoding for values of
the required type, defines the type using this encoding and the primitive rule
of type definition, and automatically proves an abstract characterization of
the newly-defined type. The details of the definition are hidden from the

60 T. F. MELHAM

user, who may regard this derived principle of recursive type definition just
as if it were primitive.

Using the derived rule of recursive type definition, the language of agent
expressions is embedded in logic by the type (α)agent specified by

agent ::= Zero Zero represents 0

| Out α α agent Out x y P represents xy.P
| In α α agent In x y P represents x(y).P
| Tau agent Tau P represents τ.P
| Res α agent Res x P represents (x)P
| Match α α agent Match x y P represents [x=y]P
| Comp agent agent Comp P1 P2 represents P1 | P2

| Plus agent agent Plus P1 P2 represents P1 + P2

| Repl agent Repl P represents !P

This equation specifies a concrete recursive type with nine constructors, each
of which (except Repl, which is explained later) corresponds to one of the
forms of agent expression in the π-calculus syntax presented in section 2.1.
Given this specification, the rule of recursive type definition automatically
finds a representation for the required type (α)agent and makes an appro-
priate primitive type definition for it. The system also makes an appropriate
constant definition for each of the specified constructors. Plus, for example,
becomes a constant of type

(α)agent→(α)agent→(α)agent

introduced by means of the primitive rule of constant definition. Likewise,
Res becomes a constant function that maps a value of type α representing
a name to a value of type (α)agent representing an agent, and so on.

The result is a single theorem which provides a complete and abstract
characterization of the type (α)agent and forms the basis for all further rea-
soning about it. The theorem asserts the admissibility of defining functions
over agents by primitive recursion:

` ∀e f0 f1 f2 f3 f4 f5 f6 f7.
∃!fn:(α)agent→β.

fn Zero = e ∧
∀x0 x1 a. fn(Out x0 x1 a) = f0 (fn a) x0 x1 a ∧
∀x0 x1 a. fn(In x0 x1 a) = f1 (fn a) x0 x1 a ∧
∀a. fn(Tau a) = f2 (fn a) a ∧
∀x a. fn(Res x a) = f3 (fn a) x a ∧
∀x0 x1 a. fn(Match x0 x1 a) = f4 (fn a) x0 x1 a ∧
∀a1 a2. fn(Comp a1 a2) = f5 (fn a1) (fn a2) a1 a2 ∧
∀a1 a2. fn(Plus a1 a2) = f6 (fn a1) (fn a2) a1 a2 ∧
∀a. fn(Repl a) = f7 (fn a) a

A MECHANIZED THEORY OF THE Π-CALCULUS IN HOL 61

This is an abstract characterization of the language of agents in logic which
is both succinct and complete, in the sense that it completely determines the
structure of agent expressions up to isomorphism. It can be viewed as slight
extension of the initiality property by which structures are characterized in
the ‘initial algebra’ approach to specifying abstract data types [5].

4.2.1 Primitive recursion and induction over agents

As was discussed in section 1.1.1, function constants that satisfy recursive
defining equations are not directly definable by the primitive rule for con-
stant definitions. To define such a constant, one must first prove that there
in fact exists a total function that satisfies the required recursive equation.
The HOL system, however, has a built-in derived principle of primitive re-

cursive function definition, which automates existence proofs for primitive
recursive functions defined over concrete recursive types such as (α)agent.

Given the characterizing theorem for (α)agent and the primitive recursive
defining equations for a function over agents, this rule automatically proves
the existence of a total function that satisfies these equations. A constant is
then introduced by a constant specification to name this total function. The
details of the proofs are hidden from the user, who for all practical purposes
can simply regard this derived principle of recursive function definition as
part of the primitive basis of the logic.

The HOL system also has a built-in derived inference rule for proving
a structural induction theorem for any concrete recursive type. Given the
recursion theorem for (α)agent shown above, this rule automatically proves a
theorem that states the validity of structural induction on agent expressions.
This induction theorem can, in turn, be used with another built-in proof
tool to automatically construct a HOL tactic for interactive goal-directed
proofs by structural induction on agents. (See any one of [8, 9, 21] for an
explanation of tactics.) As one might expect, this tactic is invaluable for
proving many of the basic syntactic theorems about the π-calculus in HOL.

4.3 Agent identifiers and replication

The π-calculus syntax shown in section 2.1 includes defined agents of the
form A(x1, . . . , xn), where A is an n-ary agent identifier. Agent identi-
fiers, together with their defining equations, supply the π-calculus both
with object-language abbreviations for agent expressions and with recur-
sion. The latter is the essential function of agent identifiers; without them,
there is no way to express infinite behaviour. In the HOL mechanization,
however, agent identifiers are replaced by an alternative way of providing
unbounded behaviour, namely the replication of agents. This difference rep-
resents the only significant point at which the principle that the HOL theory
should be as close as possible to the calculus as presented in [17, 18] has
been compromised.

62 T. F. MELHAM

The replication of an agent P is written ‘!P ’ and is represented in logic by
‘Repl P ’. The agent !P can be thought of as the parallel composition of as
many instances of P as desired. Informally,

!P = P | P | · · · | P
︸ ︷︷ ︸

n copies

| !P

This is reflected in the following transition rule for replication

repl:
P | !P

α
−→ P ′

!P
α

−→ P ′

which states that whatever action can be performed by the parallel composi-
tion of an agent P with the replication !P can also be done by the replication
!P itself. In the HOL theory of the π-calculus, this rule replaces the agent
identifier rule ide shown in figure 1.

Replacing agent identifiers by replication considerably simplifies the HOL

mechanization; it avoids the need to parameterize the entire theory by sets of
defining equations and to work under well-formedness hypotheses for these
equations. But for many applications, recursive agent definitions are likely
to be more direct and natural to use than replication. The theory aims,
therefore, to recover at least some of the utility of agent identifiers. The
merely abbreviatory role of agent identifiers can just be transferred to or-
dinary constant definitions in the logic. But the expressive power of recur-
sive defining equations can be regained only at the cost of developing some
special-purpose proof support. The aim is eventually to support recursive
agent definitions by a method similar to that by which recursive function
definitions are automated in HOL. Preliminary experiments indicate that
this approach is feasible, but to date little work has been done on this in
the HOL mechanization. For an explanation of how at least some recursive
definitions can be encoded using replication, see Milner’s tutorial [16].

Using replication departs from the formulation in the original exposition
of the π-calculus. In subsequent work, however, replication has in any case
largely replaced agent identifier definitions as the chosen primitive for infinite
behaviours. Replication is used in the polyadic π-calculus [16], a generaliza-
tion allowing simultaneous communication of several names, as well as more
recent formulations of the original π-calculus.

4.4 Elementary syntactic theory

Having defined the type (α)agent in logic, it is straightforward, if some-
what tedious, to develop the elementary theory of the syntax of agents in
HOL. This comprises the various definitions and theorems about free and
bound names, substitution, and α-equivalence of agents needed for later
proofs—matters that are covered in a mere page or so in the paper [18], but
which naturally take considerably longer to treat formally. The following
sections outline the HOL theory of free and bound names and substitution;
the definition of α-equivalence is omitted.

A MECHANIZED THEORY OF THE Π-CALCULUS IN HOL 63

4.4.1 Free and bound names

Development of the theory begins with defining the function constants Fn,
Bn and N. These have the logical type (α)agent→(α)set and correspond to
the functions fn, bn and n described above in section 2.1. The definitions use
some of the infrastructure provided by the HOL set theory library, namely
the basic operations of set union and set difference, as well as notation for
specifying finite sets by enumeration. The functions themselves are primitive
recursive over the type of agent expressions (α)agent. They can therefore
be defined simply by supplying the required defining equations to the HOL

derived rule of recursive function definition. The recursive definition of Fn,
for example, is given by the theorem

` Fn Zero = {} ∧
∀x y P. Fn(Out x y P) = {x, y} ∪ (Fn P) ∧
∀x y P. Fn(In x y P) = {x} ∪ ((Fn P) − {y}) ∧
∀P. Fn(Tau P) = Fn P ∧
∀x P. Fn(Res x P) = (Fn P) − {x} ∧
∀x y P. Fn(Match x y P) = {x, y} ∪ (Fn P) ∧
∀P Q. Fn(Comp P Q) = (Fn P) ∪ (Fn Q) ∧
∀P Q. Fn(Plus P Q) = (Fn P) ∪ (Fn Q) ∧
∀P. Fn(Repl P) = Fn P

which is proved automatically by this derived rule, as outlined above in
section 4.2.1. The definitions of Bn and N are similar.

A collection of theorems about free and bound names in the π-calculus has
been proved in HOL from the definitions of Fn, Bn and N . These theorems
are mostly very simple and their proofs trivial; two illustrative examples are

` ∀P. Finite(Fn P)

` ∀P. N P = Fn P ∪ Bn P

Both theorems are proved by structural induction on the agent P using the
tactic discussed above in section 4.2.1. The significance of the first theorem
has to do with the need to change bound names to avoid capture during
substitution. A fresh name is sometimes needed, distinct from all the names
free in a given agent P , and this is possible only if the set Fn(P) is finite.
The second theorem merely states that the function N, which is defined
recursively in HOL, satisfies the more direct definition used in [18].

4.4.2 Substitution

One of the more complex definitions in the syntactic theory is the definition
of simultaneous substitution of names for free occurrences of names in an
agent. The complexity is due, of course, to the name binding constructs
of the π-calculus. Bound names sometimes have to be changed to avoid

64 T. F. MELHAM

the capture of names introduced by substitution. Furthermore, the present
theory of substitution is designed with future use for applications in mind,
so bound names are changed only when strictly necessary. This further
complicates the definition.

To formalize substitution for the π-calculus in logic, a function

Sub : (α→(α)set→α)
︸ ︷︷ ︸

choice function

→ (α)agent
︸ ︷︷ ︸

agent

→ (α→α)
︸ ︷︷ ︸

name mapping

→ (α)agent
︸ ︷︷ ︸

result

is defined by primitive recursion on agents. The function Sub takes two
arguments in addition to the agent in which the substitution is to be done.
One is a name mapping s:α→α, which specifies the particular substitu-
tion of names for names required. The other argument is a choice function
ch:α→(α)set→α, which is used in the body of the definition of substitution
to generate fresh names wherever a change of bound names is required. It
is assumed that the choice function has the property that for any name n
and finite set of names S, the name ch n S is not an element of S. This is
expressed by

∀S. Finite S ⊃ ∀n. ¬(ch n S ∈ S)

which is taken as a hypothesis, if necessary, in proofs involving substitu-
tion—as was discussed above in section 4.1. In general, the choice function
is assumed to take both a name n and a set S as arguments. This is done
so that application-specific instances of the choice function can, if desired,
generate a name not in S by taking some variant of the name n.

The primitive recursive definition of Sub in HOL is given by the theorem
shown below. The notation ‘let v = t1 in t2’ used in this definition is a
metalinguistic abbreviation supported by the HOL parser and pretty-printer.
It expands into a term provably equivalent to (λv. t2) t1.

` ∀ch s. Sub ch Zero s = Zero ∧
∀ch x y P s. Sub ch (Out x y P) s = Out (s x) (s y) (Sub ch P s) ∧
∀ch x y P s. Sub ch (In x y P) s =

let vs = Image s ((Fn P) − {y}) in
let y′ = (y ∈ vs ⇒ ch y vs | y) in

In (s x) y′ (Sub ch P (λn. (n=y) ⇒ y′ | s n)) ∧
∀ch P s. Sub ch (Tau P) s = Tau (Sub ch P s) ∧
∀ch y P s. Sub ch (Res y P) s =

let vs = Image s ((Fn P) − {y}) in
let y′ = (y ∈ vs ⇒ ch y vs | y) in

Res y′ (Sub ch P (λn. (n = y) ⇒ y′ | s n)) ∧
∀ch x y P s. Sub ch (Match x y P) s = Match (s x) (s y) (Sub ch P s) ∧
∀ch P Q s. Sub ch (Comp P Q) s = Comp (Sub ch P s) (Sub ch Q s) ∧
∀ch P Q s. Sub ch (Plus P Q) s = Plus (Sub ch P s) (Sub ch Q s) ∧
∀ch P s. Sub ch (Repl P) s = Repl (Sub ch P s)

A MECHANIZED THEORY OF THE Π-CALCULUS IN HOL 65

The definition is straightforward, except for the defining equations for the
input prefix In and restriction Res. For all the other constructors, the func-
tion Sub simply maps the substitution recursively down through an agent,
applying the mapping s wherever free names occur. The input prefix and
restriction constructs ‘In x y P ’ and ‘Res y P ’, however, both bind the name
y. It may therefore be necessary to change this bound name to a fresh name
y′, in order to avoid capture of names when the substitution s is applied to
P . The definition ensures that bound names are changed only when neces-
sary, namely when y occurs in the image of the function s on the set of all
names (other than y itself) that occur free in P . In this case, the bound
name is changed to a new name y′ which is generated by the choice function
ch and which, under the infinity hypothesis for ch, does not occur in this
set. Any free occurrences of y in P are also changed to y ′.

4.4.3 Theorems about substitution

A number of general theorems about substitution are needed for proofs about
the π-calculus. The content of these theorems is mostly predictable, and a
full list of theorems need not be given here. In proving these theorems in the
HOL system, care was taken to restrict dependence on the infinity hypothesis
for the choice function to only those theorems for which it is really needed.
For example, one of the theorems proved in HOL states that the identity
substitution leaves agents unchanged:

` ∀P ch. Sub ch P (λx.x) = P

This proposition holds for any function ch whatsoever, and the theorem
therefore does not include the infinity hypothesis for ch as an assumption.
By contrast, the following theorem

` ∀ch. (∀S. Finite S ⊃ ∀n. ¬(ch n S ∈ S)) ⊃
∀P s. Fn (Sub ch P s) = Image s (Fn P)

states that the set of names that occur free in an agent after substitution
with a name mapping s is the same as the image of the function s on the
original set of free names. This holds only if the choice function ch correctly
generates new bound names chosen from an infinite set of names α. In this
theorem, the infinity hypothesis is essential.

4.4.4 Substitution for a single name

Simultaneous substitution of names for names is needed for only certain
parts of the theory developed in [17, 18]. In the absence of agent identifiers,
full simultaneous substitution is not needed for defining the transition rela-
tion, strong bisimulation and the relation ∼̇. Substitution for a single name
will suffice.

66 T. F. MELHAM

Substitution of x for y in the agent P , written ‘P{x/y}’ in the notation
of section 2.1, is formalized by the constant definition

` ∀ch P x y. Sub1 ch P (x, y) = Sub ch P (λn. (n = y) ⇒ x | n)

where substitution for a single name is defined in terms of a simultaneous
substitution in which the name mapping is the identity function on all names
but one. Theorems about the special case of substitution for a single name
are (mostly) straightforward to prove in HOL, given this definition of Sub1

and the more general theory of simultaneous substitution.

5. Formalizing the transitional semantics

The theory outlined above provides all the syntactic infrastructure needed
to define and reason about the transitional semantics for the π-calculus in
logic. This section describes how the labelled transition relation on which
this semantics is based is defined in HOL and gives a sketch of the theory
developed from this definition.

5.1 Representing actions in HOL

The transition system for the π-calculus shown in section 2.2 is based on
four kinds of actions. These are represented in logic by values of the type
(α)action, which is specified by

action ::= tau tau represents τ
| fo α α fo x y represents xy
| in α α in x y represents x(y)
| bo α α bo x y represents x(y)

and which is defined automatically using the same derived rule of (recur-
sive) type definition used to define the type of agents. The concrete type
(α)action specified by this equation has four constructors. One of these,
namely tau, is a constant representing the distinguished action τ ; the other
three are functions of type α→α→(α)action that map a pair of names to
the representation of an action.

Given this specifying equation for the type of actions, the derived rule
of type definition automatically proves the following characterizing theorem
for the type (α)action:

` ∀e f0 f1 f2. ∃!fn:(α)action→β.
fn tau = e ∧
∀x0 x1. fn(fo x0 x1) = f0 x0 x1 ∧
∀x0 x1. fn(in x0 x1) = f1 x0 x1 ∧
∀x0 x1. fn(bo x0 x1) = f2 x0 x1

A MECHANIZED THEORY OF THE Π-CALCULUS IN HOL 67

This theorem asserts that functions over the type (α)action can be uniquely
defined by cases on the four different kinds of actions in the π-calculus. It is
straightforward to use this theorem in conjunction with the derived principle
of (primitive recursive) function definition to define logical counterparts to
the functions fn, bn and n on actions introduced in section 2.2. For example,
the definition of a function fn:(α)action→(α)set that corresponds to fn is just

` fn tau = {} ∧
∀x y. fn(fo x y) = {x, y} ∧
∀x y. fn(in x y) = {x} ∧
∀x y. fn(bo x y) = {x}

The definitions of functions bn and n corresponding to bn and n are sim-
ilar. Given these definitions and the characterizing theorem for the type
(α)action, it is trivial to develop a basic theory of actions for the π-calculus
in HOL.

5.2 Defining the labelled transition relation

In the paper [18], the transition relation −→ is defined inductively by the
rules reproduced in the present paper in figure 1. In the mechanized theory
of the π-calculus this relation is also defined inductively, using a derived
principle of inductive predicate definition implemented in HOL [13]. Given
the user’s specification of a desired set of rules, this derived principle of
definition automatically proves the existence of the relation inductively de-
fined by them. More precisely, the system constructs a term that explicitly
denotes the smallest relation closed under the rules specified by the user.
HOL then introduces (via a constant specification) a constant to name this
relation. The result is a collection of automatically proved theorems stating
that the newly-defined relation is in fact closed under the required rules,
together with an additional theorem asserting that it is the smallest such
relation.

To define the transition relation using this derived principle of inductive
definition, the user just enters the transition rules shown in figure 1 as a list
of pairs of the form

(
〈list of premises〉, 〈conclusion〉

)

Each pair consists of a list of the premises of a rule, including any side
conditions, and its conclusion. There is one such pair for each of the tran-
sition rules, including all symmetric forms. The premises and conclusions
are stated using the HOL representation of agents and actions and (where
necessary) the notation for free and bound names and substitution defined
in the syntactic theory described above.

Given this user-supplied specification of the rules, the system constructs
a logical statement of each transition rule in the form of an implication of
conclusion by premises. These express what it means for a 3-place relation

68 T. F. MELHAM

R:(α)agent→(α)action→(α)agent→bool

to be closed under each of the rules. The assertion that the relation R is
closed under the left-hand symmetric form of the sum rule, for example, is
expressed in logic by the implication shown below.

∀P a P ′. R P a P ′ ⊃ ∀Q. R (Plus P Q) a P ′

Likewise, the translation into higher order logic of the open rule is

∀P x y P ′ w.
R P (fo x y) P ′ ∧ ¬(y=x) ∧ ¬w ∈ Fn(Res y P ′) ⊃

R (Res y P) (bo x w) (Sub1 ch P ′ (w, y))

This logical formulation of the open rule illustrates an explicit use of the
defined syntactic notions of substitution and the set of free names in an
agent. The translations into logic of the remaining rules are similar to these
examples.

The definition made by HOL of the transition relation is based on this
translation of the rules into logical implications. The conjunction of all
these implications asserts the closure of an arbitrary three-place relation
R under the transition rules of the π-calculus, and the labelled transition
relation itself is just defined to be the intersection of all such relations. More
precisely, the derived HOL rule of inductive definition makes a constant
specification for the relation

Trans : (α→(α)set→α) → (α)agent → (α)action → (α)agent → bool

which is logically equivalent to the following constant definition:

` Trans ch P a Q =
∀R:(α)agent→(α)action→(α)agent→bool.

〈R is closed under the rules〉 ⊃ R P a Q

This definition states that there is a transition from the agent P to the
agent Q labelled by the action a exactly when P , a and Q are in the in-
tersection (i.e. ‘∀’) of every relation R closed under the transition rules for
the π-calculus. The relation Trans must take the choice function ch as an
argument, since substitution is employed in stating closure under the rules.

The final result of making the automatic inductive definition sketched
above (and all the user actually sees) is a set of theorems that state the
transition rules for the defined relation Trans, together with an additional
theorem stating that Trans is the smallest relation closed under these rules.
The following theorems for the left-hand sum rule and the open rule, for
example, are among the theorems proved automatically by the system:

A MECHANIZED THEORY OF THE Π-CALCULUS IN HOL 69

` ∀ch P a P ′. Trans ch P a P ′ ⊃ ∀Q. Trans ch (Plus P Q) a P ′

` ∀ch P x y P ′ w.
Trans ch P (fo x y) P ′ ∧ ¬(y=x) ∧ ¬w ∈ Fn(Res y P ′) ⊃

Trans ch (Res y P) (bo x w) (Sub1 ch P ′ (w, y))

There are sixteen such theorems for the π-calculus with replication in place
of agent identifiers, one for each transition rule including symmetric forms.
The additional theorem stating that Trans (actually, that Trans ch) is the
smallest relation closed under the rules, which is also derived automatically
by the rule of inductive predicate definition, has the form

` ∀ch. ∀R:(α)agent→(α)action→(α)agent→bool.
〈R is closed under the rules〉 ⊃

∀P a Q. Trans ch P a Q ⊃ R P a Q

This rule induction theorem for Trans is essential for proving properties of
the transition relation by induction on the depth of inference. By appeal to
an appropriate instance of this theorem, one may reduce proving that some
property R[P, a,Q] holds of all a-labelled transitions from P to Q to showing
that this property is preserved by the transition rules for the π-calculus.

5.3 Proof tools associated with the transition relation

Associated with the derived rule of inductive predicate definition are several
general-purpose proof tools for reasoning about inductively defined relations
in HOL. The most important of these is a tactic for interactive goal-directed
proofs by rule induction. This tactic mechanizes the inductive form of ar-
gument outlined above; given the rule induction theorem for Trans and a
hypothesis to be proved of the form

∀P a Q. Trans ch P a Q ⊃ R[P, a,Q]

the rule induction tactic reduces the task of proving this hypothesis to prov-
ing that the property expressed by ‘R[P, a,Q]’ is preserved by the rules that
inductively define Trans. Many of the proofs about the π-calculus in [18]
are done by induction on the depth of inference, so this tactic is of primary
importance in mechanizing these proofs in HOL.

Other proof tools associated with the transition relation include a set
of HOL tactics for proving that specific labelled transitions hold between
agents of the calculus. For example, one of these tactics can be used to
reduce the task of proving that Trans ch (P + Q) a P ′ to proving that
Trans ch P a P ′. These tactics are constructed automatically by the system
from the theorems stating the transition rules for Trans. There is also an
automatic proof procedure for deriving an exhaustive case analysis theorem
for the transition system:

70 T. F. MELHAM

` Trans ch P a Q =
(P=Tau Q ∧ a=tau) ∨
(∃x y. P=Out x y Q ∧ a=fo x y) ∨
(∃P ′ Q′. P=Plus P ′ Q′ ∧ Trans ch P ′ a Q) ∨ . . .

This theorem may be loosely paraphrased as follows:

if ` P
a

−→ Q, then this follows from
the tau-act rule, or
the output-act rule, or
the plus rule, or. . .

This fact is used to mechanize arguments about the transition system of the
kind that are typically accompanied by an explanation of the form ‘if . . . ,
then by a shorter inference . . . ’.

5.4 Theorems about the transition relation

The theorems and proof tools described above provide the logical infrastruc-
ture necessary to develop the HOL theory of the labelled transition relation
for the π-calculus. This theory consists of a collection of simple facts about
the transition relation formalized by Trans. One example is the following
lemma about free and bound names, which shows how dependence on the
infinity hypothesis propagates to the level of transitions:

` ∀ch. (∀S. Finite S ⊃ ∀n. ¬(ch n S ∈ S)) ⊃
∀P a P ′. Trans ch P a P ′ ⊃ (Fn P ′ ⊆ (Fn P ∪ bn a)) ∧ (fn a ⊆ Fn P)

This is one in a series of lemmas for the proof that α-equivalence is a strong
bisimulation presented in the paper [18]. The HOL proof was done using the
rule induction tactic described above; this is very natural, since the theorem
to be proved is an implication of precisely the form one can infer using the
rule indiction theorem for Trans. The HOL proof closely follows the detailed
proof given in [18], which proceeds by induction on the depth of inference.

Other theorems that have been proved in HOL about the labelled transition
system include various equivalences between transitions, for example

` ∀ch P a Q R. Trans ch (Plus P Q) a R = Trans ch (Plus Q P) a R

` ∀ch P a Q. Trans ch (Plus P Zero) a Q = Trans ch P a Q

` ∀ch P x a Q. Trans ch (Match x x P) a Q = Trans ch P a Q

One can also prove that certain transitions are impossible, as in

` ∀ch P a. ¬(Trans ch Zero a P)

A MECHANIZED THEORY OF THE Π-CALCULUS IN HOL 71

Simple theorems of this kind follow directly from the rules defining the rela-
tion Trans and the case analysis theorem discussed in the preceding section.
They are easy to prove, and the proofs are very regular and could be com-
pletely automated in HOL.

6. Defining bisimulation and equivalence

Once the substitution function Sub1 and the transition relation Trans have
been defined, it is straightforward to express the concept of a strong sim-
ulation in logic. The following definition is a direct translation into higher
order logic of the definition given in section 2.3.

` Sim ch S =
∀P Q. S P Q ⊃

∀P ′. Trans ch P tau P ′ ⊃
∃Q′. Trans ch Q tau Q′ ∧ S P ′ Q′ ∧

∀x y P ′. Trans ch P (fo x y) P ′ ⊃
∃Q′. Trans ch Q (fo x y) Q′ ∧ S P ′ Q′ ∧

∀x y P ′. Trans ch P (in x y) P ′ ∧ ¬(y ∈ (N P ∪ N Q)) ⊃
∃Q′. Trans ch Q (in x y) Q′ ∧

∀w. S (Sub1 ch P ′ (w, y)) (Sub1 ch Q′ (w, y)) ∧
∀x y P ′. Trans ch P (bo x y) P ′ ∧ ¬(y ∈ (N P ∪ N Q)) ⊃

∃Q′. Trans ch Q (bo x y) Q′ ∧ S P ′ Q′

This defines ‘Sim ch S’ to mean ‘the relation S is a strong simulation’. The
predicate Sim must take the choice function ch as a parameter because its
definition depends on substitution.

Given this definition, the bisimilarity relation ∼̇ between agents is defined
in HOL by the simple constant definition

` Bisim ch P Q = ∃S. S P Q ∧ Sim ch S ∧ Sim ch (λx y. S y x)

This says that two agents P and Q are bisimilar if S P Q holds for any
strong bisimulation S; it uses (higher-order) existential quantification over
relations to define ‘Bisim ch’ to be the largest strong bisimulation. Once
again, the decision to use a type variable to model the set of names means
that the choice function must appear as a parameter to Bisim.

Finally, strong equivalence is defined to be bisimilarity under all substitu-
tions of names for names. In HOL, we just define

` Equiv ch P Q = ∀s:α → α. Bisim (Sub ch P s) (Sub ch Q s)

Notice that universal quantification over substitution functions is used in this
definition; higher-order logic makes a direct definition completely straight-
forward. As usual, the choice function ch becomes a parameter.

72 T. F. MELHAM

7. The algebraic theory

Having defined strong bisimulation and equivalence in HOL, one may then
proceed to develop the algebraic theory presented in [17, 18] as a collection of
theorems about the relations Bisim and Equiv. Proofs have been completed
in HOL for many of the simpler equivalences in this theory, but work on the
theory is still in progress. Some examples of the theorems proved are the
laws for summation shown above in section 2.3. These are expressed in logic
by the theorems

` ∀ch P. Bisim ch (Plus P Zero) P

` ∀ch P. Bisim ch (Plus P P) P

` ∀ch P Q. Bisim ch (Plus P Q) (Plus Q P)

` ∀ch P Q R. Bisim ch (Plus P (Plus Q R)) (Plus (Plus P Q) R)

These theorems were proved in HOL in the same way that the corresponding
laws are proved in [18], namely by explicitly producing an appropriate strong
bisimulation in each case. For example, the bisimulation used to prove the
commutative law of summation is presented in [18] as

{(P1 + P2, P2 + P1) | P1, P2 agents} ∪ Id

where Id is the identity relation on agents. In the HOL proof, the same
relation is written

λP. λQ. (P = Q) ∨ ∃P ′ Q′. (P = Plus P ′ Q′) ∧ (Q = Plus Q′ P ′)

Formally, this term becomes the witness supplied for the existentially quan-
tified variable in an instance of the definition of Bisim. The proof that this
is indeed a strong bisimulation proceeds essentially by rewriting, making
extensive use of the theory of the transition system discussed above in sec-
tion 5.2. Several other laws are may be proved in HOL in exactly the same
way—that is, by exhibiting an appropriate bisimulation.

Following [18], many of the laws for equivalence may be easily derived in
HOL from corresponding laws for bisimilarity. For example, to prove

` ∀ch P. Equiv ch (Plus P Zero) P

we merely use the theorem-prover’s built-in rewriting facility to rewrite with
the definitions of Equiv and Sim, transforming this proposition into

` ∀ch P s. Bisim ch (Plus (Sub ch P s) Zero) (Sub ch P s)

This is just an instance of the identity law for bisimilarity already proved,
and so the desired result follows immediately.

Once all the laws have been proved, we will have the theory of strong
equivalence for agents available as a collection of (essentially) equational

A MECHANIZED THEORY OF THE Π-CALCULUS IN HOL 73

theorems in HOL. We will then be able to use these theorems to reason
about applications in this theory. In the simplest case, such reasoning could
consist in just interactively guiding HOL’s rewriting tools to use the laws
to show that two particular agents—describing, say, an implementation and
a specification—are equivalent. One could also investigate more automatic
proof strategies based on algebraic manipulation.

But because the definition of equivalence is also available, we could do
equivalence proofs by directly exhibiting bisimulations as well. We might
even employ a mixture of the two proof styles, using both algebra and sim-
ulation as necessary. Furthermore, we could also prove that two agents are
not equivalent in this framework; the case analysis theorem presented in sec-
tion 5.3 lets us reason directly about possible transitions. More generally,
the full range of classical proof techniques—induction, proof by contradic-
tion, equational reasoning—is potentially available in such a system. Both
automatic and semi-automatic (user guided) approaches to proof can be im-
plemented. The result is a rather powerful and flexible framework for both
practical use and theoretical experiments.

8. Concluding remarks

This paper has outlined work in progress on a mechanized formal theory of
the π-calculus in higher order logic using the HOL system. This theory is still
far from complete—the expansion law is yet to be derived, for example—and
it is still too early to tell if the goals mentioned in the introduction can be
achieved. But the results obtained so far seem to indicate that some measure
of success is possible. Once the theory is complete, we intend to test it on
a realistic application. It would also be interesting to compare the practical
utility of the HOL mechanization with a proof system for the π-calculus
implemented using a more general logical framework, such as Isabelle [20]
or the Edinburgh Logical Framework [10].

The research most closely related to the theory described in this paper
is Monica Nesi’s work on a theory of CCS in HOL [19]. This work paral-
lels ours; essentially the same techniques are used to define the syntax and
transitional semantics of CCS and to derive rules for observation congru-
ence. A modal logic for CCS (a variant of Hennessy-Milner logic [11]) is
also included in Nesi’s theory. One of the main technical differences be-
tween the two formalizations is that the CCS theory has managed to avoid
the difficulties connected with substitution. In particular, although Nesi’s
theory includes recursively-defined processes rec X.E, and hence includes
bound process variables and substitutions, it is (informally) assumed that
bound variables are chosen so that captures do not occur. By contrast, the
present theory deals with the possibility of free variable capture explicitly
and formally.

A very different approach to providing theorem-proving support for the
π-calculus is that of the Mobility Workbench [24]. This is a special-purpose

74 T. F. MELHAM

tool for automated reasoning about equivalences between agents. Given two
agents P and Q, the system attempts to construct a bisimulation that relates
them; this is done by incrementally generating the state spaces of P and Q
at the same time as building the bisimulation relation. This gives a decision
procedure for equivalence in a certain class of agents with finite control

(similar to finite state systems in CCS). The exact equivalence employed is
Sangiorgi’s open bisimulation relation [23].

The basic strategy of proving equivalences by constructing bisimulations
is, of course, also technically possible in the HOL mechanization—it was used
‘manually’ in the proofs discussed in section 7, for example. It would inter-
esting to see if algorithms of the kind employed in the Mobility Workbench
could be adapted for the HOL framework, or even if some hybrid system
could be constructed. (Such an investigation may require the HOL theory
to be revised to employ open bisimulation.) A HOL tool based on this idea
should, in principle, be more powerful than the more specialized Workbench;
for example, it should be possible in such a system to combine algebraic
reasoning with the construction of bisimulation relations, perhaps in a semi-
automated way. Furthermore, one could also reason about π-calculus agents
without finite control. The automatic parts of any HOL-based tool are, how-
ever, likely to be considerably slower than the more specialized system.

As a further development of this work, a HOL mechanization of the poly-
adic π-calculus [16] should be considered. The formulation of this calculus
employs the notion of structural congruence to separate the laws dealing
with the structure of groups of agents from those describing how these agents
interact. The former are just postulated as equational axioms, whereas the
latter are derived from a reduced set of transition rules. In the corresponding
HOL theory, one would need to derive the axiomatic component formally;
the most direct approach would be to take a quotient using an appropriately-
defined equivalence relation on terms.

Much of the HOL theory outlined in this paper is concerned with syntax,
and in particular with the fundamental ideas of variable binding and sub-
stitution. As well as being rather dull, these technicalities are notoriously
easy to make mistakes about. A general solution to these problems is one
of the aims of Andy Gordon’s work on representing syntax in a mechanized
logic [6]. The goal is to define a general theory of syntax and to construct
tools to automatically define specific syntaxes in logic and to reason about
them. There is, therefore, some hope that theory developments of the kind
described in the present paper can be made considerably easier in future.

Acknowledgements

I am grateful to Professor Robin Milner for explaining how agent identifiers
could be replaced by replication. Thanks are also due to Monica Nesi and
Yves Bertot, who carefully read an early draft of this paper and found
several typographical errors, and to Konrad Slind for valuable comments on

A MECHANIZED THEORY OF THE Π-CALCULUS IN HOL 75

the theory and its presentation. Some preliminary studies for this work were
done jointly with Mike Gordon at the University of Cambridge Computer
Laboratory.

References

[1] R. J. R. Back and J. von Wright, ‘Refinement Concepts Formalised in Higher Order
Logic’, Formal Aspects of Computing, Vol. 2, No. 3 (July-September 1990), pp. 247–
272.

[2] R. Boulton, A. Gordon, M. Gordon, J. Harrison, J. Herbert, and J. Van Tassel,
‘Experience with embedding hardware description languages in HOL’, in Theorem

Provers in Circuit Design: Theory, Practice and Experience: Proceedings of the IFIP

WG10.2 International Conference, Nijmegen, June 1992, edited by V. Stavridou, T.
F. Melham, and R. T. Boute (North-Holland, 1992), pp. 129–156.

[3] A. J. Camilleri, ‘Mechanizing CSP Trace Theory in Higher Order Logic’, IEEE

Transactions on Software Engineering, Vol. 16, No. 9 (September 1990), pp. 993–
1004.

[4] A. Church, ‘A Formulation of the Simple Theory of Types’, The Journal of Symbolic

Logic, Vol. 5 (1940), pp. 56–68.
[5] J. A. Goguen, J. W. Thatcher, and E. G. Wagner, ‘An initial algebra approach to

the specification, correctness, and implementation of abstract data types’, in Current
Trends in Programming Methodology, edited by R.T. Yeh (Prentice-Hall, 1978), Vol.
iv, pp. 80–149.

[6] A. Gordon, ‘A Mechanisation of Name-carrying Syntax up to Alpha-conversion’ in
Higher-order logic theorem proving and its applications, Proceedings 1993, Lecture
Notes in Computer Science, Vol. 780 (Springer-Verlag, 1994).

[7] M. J. C. Gordon, ‘Mechanizing Programming Logics in Higher Order Logic’, in:
Current Trends in Hardware Verification and Automated Theorem Proving, edited
by G. Birtwistle and P.A. Subrahmanyam (Springer-Verlag, 1989), pp. 387–439.

[8] M. J. C. Gordon and T. F. Melham, eds. Introduction to HOL: A theorem proving
environment for higher order logic (Cambridge University Press, 1993).

[9] M. J. Gordon, A. J. Milner, and C. P. Wadsworth, Edinburgh LCF: A Mechanised

Logic of Computation, Lecture Notes in Computer Science, Vol. 78 (Springer-Verlag,
1979).

[10] R. Harper, F. Honsell, and G. Plotkin, ‘A Framework for Defining Logics’, Report no.
ECS-LFCS-87-23, Laboratory for Foundations of Computer Science, Department of
Computer Science, University of Edinburgh (March 1987).

[11] M. Hennessy and R. Milner, ‘Algebraic Laws for Nondeterminism and Concurrency’,
Journal of the ACM, Vol. 32, No. 1 (January 1985), pp. 137–161.

[12] T. F. Melham, ‘Automating Recursive Type Definitions in Higher Order Logic’, in
Current Trends in Hardware Verification and Automated Theorem Proving, edited
by G. Birtwistle and P. A. Subrahmanyam (Springer-Verlag, 1989), pp. 341–386.

[13] T. Melham, ‘A Package for Inductive Relation Definitions in HOL’, in Proceedings

of the 1991 International Workshop on the HOL Theorem Proving System and its

Applications, Davis, August 1991, edited by M. Archer, J. J. Joyce, K. N. Levitt,
and P. J. Windley (IEEE Computer Society Press, 1992), pp. 350–357.

[14] T. F. Melham, ‘Using Recursive Types to Reason about Hardware in Higher Order
Logic’, in Proceedings of the IFIP WG 10.2 Working Conference on the Fusion of

Hardware Design and Verification, edited by G. J. Milne (North-Holland, 1988), pp.
51–75.

[15] R. Milner, Communication and Concurrency (Prentice Hall, 1989).
[16] R. Milner, ‘The Polyadic π-Calculus: a Tutorial’, Report no. ECS-LFCS-91-180,

Laboratory for Foundations of Computer Science, Department of Computer Science,
University of Edinburgh (October 1991).

76 T. F. MELHAM

[17] R. Milner, J. Parrow, and D. Walker, ‘A Calculus of Mobile Processes, I’, Information

and Computation, Vol. 100, No. 1 (September, 1992), pp. 1–40.
[18] R. Milner, J. Parrow, and D. Walker, ‘A Calculus of Mobile Processes, II’, Informa-

tion and Computation, Vol. 100, No. 1 (September, 1992), pp. 41–77.
[19] M. Nesi, ‘A Formalization of the Process Algebra CCS in Higher Order Logic’,

Technical report no. 278, Computer Laboratory, University of Cambridge (December
1992).

[20] L. C. Paulson, ‘Isabelle: The Next 700 Theorem Provers’, in Logic and Computer
Science, edited by P. Odifreddi (Academic Press, 1990), pp. 361–386.

[21] L. C. Paulson, Logic and Computation: Interactive Proof with Cambridge LCF, Cam-
bridge Tracts in Theoretical Computer Science 2 (Cambridge University Press, 1987).

[22] L. C. Paulson, ML for the Working Programmer (Cambridge University Press, 1991).
[23] D. Sangiorgi, ‘A Theory of Bisimulation for the π-calculus’, in CONCUR’93: 4th

International Conference on Concurrency Theory, Hildesheim, August 1993, Pro-

ceedings, edited by E. Best, Lecture Notes in Computer Science, Vol. 715 (Springer-
Verlag, 1993), pp. 127–142.

[24] B. Victor and F. Moller, ‘The Mobility Workbench: A Tool for the π-calculus’,
Report no. ECS-LFCS-94-285, Laboratory for Foundations of Computer Science,
Department of Computer Science, University of Edinburgh (February 1994).

