Nordic Journal of Computing 1(1994), 77-93.

EXTENSIBILITY IN THE OBERON SYSTEM

HANSPETER MOSSENBOCK*
Institute for Computer Systems
FETH Zirich
CH-8092 Zuiirich
Switzerland

Abstract. We show how an object-oriented system-and in particular the Oberon
System-can be used to write software that is extensible by end users even while the
software is running. Extensibility instead of completeness may be a way out of the
unpleasant situation in software industry where applications still tend to become
bigger every year. Oberon is both an object-oriented programming language and
an operating system with new concepts such as commands and dynamic loading.
The language and the system make up an environment that is similar to Smalltalk
in its flexibility but offers static type-checking and is much more efficient.

CR Classification: D.2.2, D.1.5

1. Introduction

Ambitious software systems with large functionality and thousands of users
can hardly be designed in a form that meets all future needs from the be-
ginning. It is impossible to foresee all the ways in which such systems will
be used so that requests for extensions will arise naturally.

Current software industry tries to cope with this problem by including
as many features as possible into a software system. This leads to huge
monolithic software that offers amazing functionality but still leaves some
users disappointed because it typically lacks just their favorite feature.

The opposite approach is to design a system only as a minimal kernel and
to provide means to extend it. This allows vendors and even users to add
more functionality later without bothering other users which do not need
it. It leads to small systems that are easier to handle and still more flexible
because the number of future extensions is potentially unrestricted.

The Oberon System [12] follows the latter approach. It supports exten-
sibility both at the language level and at the system level. This paper
describes how it can be used to build small systems that can be adapted by
users on demand.

* Author’s current affiliation: University of Linz, Institute for Computer Science, A—4040
Linz, Austria

Received January 1994. Accepted April 1994.



78 HANSPETER MOSSENBOCK

2. What is Oberon

Oberon is both a programming language and an operating system. It was
designed by Niklaus Wirth and Jirg Gutknecht at ETH Ziirich and follows
the tradition of Pascal and Modula-2. Although the Oberon Language can
be used without the Oberon System, its full power only comes to fruition
when both are used together. Oberon is small and efficient: the whole op-
erating system including editor and compiler easily fits on a single diskette.
The system is available for most common platforms via ftp. The usage,
design, and implementation of Oberon are described in [6], [7], [12], and [4].

The most important features of the Oberon language are modules with
separate compilation, strong type checking (even across module boundaries),
and type extension which makes Oberon an object-oriented language. The
most recent language version is Oberon-2 [5] but in the context of this paper
we will refer to it as Oberon. In spite of its simplicity Oberon is not an
academic language but has all the features that are necessary to build large
real-world systems.

The Oberon operating system is an open system consisting of a set of mod-
ules sharing the same address space. They can be imported in user-written
modules that extend the basic system. There is no difference between a user-
written module and a system module. Programming in Oberon therefore
always means extending the operating system.

The Oberon run-time system offers facilities for writing extensible soft-
ware: the most important among them are the so-called commands (proce-
dures that can be invoked like programs) and the ability to dynamically add
modules to a running system (dynamic loading). Oberon has also a garbage
collector which-together with strong typing-guarantees memory integrity.

Oberon grew out of the experiences with Pascal and Modula-2. Inspired by
the Cedar system [9], which Wirth and Gutknecht studied during a sabbat-
ical at Xerox Parc, Oberon was designed and implemented by just two per-
sons from 1985 to 1988. Since then it has been improved and ported to most
modern platforms (e.g., SparcStation, DECstation, RS/6000, HP worksta-
tions, Intel 386, Macintosh, etc.) [1].

3. Extensibility at the Language Level

A programming language supports software extensibility if it allows adding
new operations and new data types to a program without invalidating exist-
ing code. A program should not be "aware” when it is extended. Only then
is it possible to add new functionality without modifying existing software.
This kind of extensibility is provided by object-oriented languages.
Object-oriented programming is based on the following principles: Data
and their access operations are combined into units called classes (abstract
data types). A class TO can be extended to a class T1 that inherits the data
and operations from TO and can add more. The point is that T1 and TO
are compatible, i.e., clients can work with T1 objects instead of T0 objects



EXTENSIBILITY IN THE OBERON SYSTEM 79

without noticing any difference. Operations on objects are performed by
sending messages to them. A message is a request that tells an object
which service is desired but not which procedure is to be invoked in order
to implement the service.

Oberon is a hybrid object-oriented language in the sense that there are
ordinary types (integers, arrays, etc.) besides classes. Static type checking
guarantees that objects will understand messages sent to them. However, it
is also possible to send messages that are only checked at run time. Both
ways of message sending have their benefits and are explained below.

3.1 Classes and Type-Bound Procedures

In Oberon a class is a record type with associated procedures (type-bound
procedures or methods). For simplicity we call a pointer to a record type also
a class. Let us consider a class Text that maintains a sequence of characters
with operations such as Insert or Delete. The interface of such a class may
look as follows:

TYPE
Text = POINTER TO TextDesc;
TextDesc = RECORD
length: INTEGER,;
PROCEDURE (t: Text) Insert (pos: INTEGER; s: ARRAY OF CHAR);
PROCEDURE (t: Text) Delete (from, to: INTEGER);

END;

Note that the interface hides the actual implementation of the text. Only
the length is visible; other data fields are hidden. This prevents clients from
directly accessing the data possibly invalidating certain invariants. It also
allows changing the implementation of the data without requiring modifica-
tions in the clients.

To insert characters in a text ¢ one can write t.Insert(0, "abc”). The
compiler knows that ¢ is of type Tezt and can therefore check that Insert is
indeed a method of TextDesc. A message t.Print would result in a compile-
time error since Print is not a method of TextDesc.

The object to which a message is sent is called the receiver. It is a parame-
ter of every method. To distinguish it from other parameters it is written in
front of the method’s name. In contrast to other object-oriented languages,
where the receiver is usually predeclared with a special name such as self,
Oberon requires an explicit declaration. This avoids hidden mechanisms and
allows choosing a meaningful name for the receiver.

The interface of a class is an extract of its actual implementation which is
contained in a module. While the interface lists only the fields and methods
visible to clients, the implementation gives their full declarations inluding
the code of the methods. The implementation of the class Text may look as
follows:



80 HANSPETER MOSSENBOCK

MODULE Texts;

TYPE
Text* = POINTER TO TextDesc;
TextDesc* = RECORD
length*: INTEGER;
buffer: ...
END:;

PROCEDURE (t: Text) Insert* (pos: INTEGER; s: ARRAY OF CHAR);
BEGIN

...code for this method ...
END Insert;

PROCEDURE (t: Text) SetlnsertPoint (pos: INTEGER);
BEGIN

...code for this method ...
END SetlnsertPoint;

...other methods ...

END Texts.

Names that are to be exported are marked with an asterisk in their declara-
tion. Thus the field length is visible in client modules while the field buffer is
not. Similarly the method Insert is exported but the method SetInsertPoint
is not. Note that the interface of a class is not written down explicitly but
is extracted from the implementation by a browser. This avoids the need
for a special definition module and keeps redundancy small.

Now let us assume that we want to have texts that maintain not only
characters but also fonts. We can derive such a class StyledText from Text
by writing:

TYPE
StyledText = POINTER TO StyledTextDesc;
StyledTextDesc = RECORD (TextDesc)
fonts: FontList;
PROCEDURE (t: StyledText) SetFont (from, to: INTEGER; font: Font);

END

Writing the name TextDesc behind the keyword RECORD means that
StyledTextDesc extends TextDesc, i.e., it inherits all the fields and meth-
ods from TextDesc just as if they were redeclared at this point explicitly.
In addition to that, new fields and methods such as fonts and SetFont may
be declared. Since the record StyledTextDesc extends TextDesc we also say
that the pointer StyledText extends Text. StyledText is called a subclass of
Text and Text a base class of StyledText.



EXTENSIBILITY IN THE OBERON SYSTEM 81

Oberon supports single inheritance, i.e., a class may be derived only from
a single base class. Other languages allow multiple inheritance where a class
can be derived from several base classes. We did not find many convinc-
ing examples for the usefulness of multiple inheritance. It rather tends to
complicate class hierarchies and sometimes imposes a run-time penalty on
programs even if it is not used [8]. In many cases multiple inheritance can
be modelled reasonably with single inheritance as is shown in [11].

Styled Text inherits also the methods Insert and Delete from Text. However,
these methods only work on plain characters and not on fonts so they have
to be overridden in StyledText. This can be done by redeclaring them in
StyledText with the same signature but a different implementation. For
example, Insert may be redeclared as follows:

PROCEDURE (t: StyledText) Insert* (pos: INTEGER; s: ARRAY OF CHAR);
BEGIN

t.Insert”(pos,s); (*call the inherited method fromText*)

... update the font information of t ...
END Insert;

Note that it is possible to call the inherited method from within the over-
riding method. This allows building on existing code and avoids rewriting
everything from scratch.

Since StyledText was derived from Text it is a special kind of Text. There-
fore it is possible to assign a StyledText object to a Text variable t. If we
now send an insert message to t, e.g., t.Insert(0, "abc”), the Insert method
from StyledText will be invoked and not the one from Tezt as above. This is
correct because t now holds a StyledText object. This mechanism is called
dynamic binding: a message always invokes the method from that object
that is stored in the receiver at run time.

What is this all good for? The big benefit is that all programs that were
written to work with Texts can now also work with StyledTexrts without
having to be modified. By simply storing Styled Text objects in Text variables
all messages to these variables will invoke Styled Text methods. We may even
decide to derive more types from Text such as StructuredText or HyperText.
The existing programs can work with all these types without distinguishing
between them. In other words: they can treat all variants uniformly. This
is something which is hard to do in non-object-oriented languages.

3.2 Message Records

Methods are just one possibility to implement messages. Another possibility
is to take the term ”"sending a message” literally, and to regard a message
is a piece of data (a record) that is passed to an object for being handled.
This requires one record type per message and one method in every object



82 HANSPETER MOSSENBOCK

to handle the messages. Since this handler must accept various messages all
message records must be derived from a common base type:

TYPE
Message = RECORD END; (*common base type for all messages*)

InsertMsg = RECORD (Message) pos: INTEGER; s: ARRAY 256 OF CHAR END;
DeleteMsg = RECORD (Message) from, to: INTEGER END;

The parameters of the methods become fields of the message records. The
interface of Text may now look as follows:

TYPE
Text = POINTER TO TextDesc;
TextDesc = RECORD
length: INTEGER,;
PROCEDURE (t: Text) Handle (VAR m: Message);
END:;

Sending a message becomes:

VAR insert: InsertMsg;

insert.pos := 0; insert.s := "abc”;
t.Handle(insert);

The implementation of Handle must inspect the run-time type of the re-
ceived message and react according to it. Oberon provides a WITH state-
ment that performs such a test:

PROCEDURE (t: Text) Handle (VAR m: Message);
BEGIN

WITH

m: InsertMsg DO ... (*insert m.s at m.pos into t*)

| m: DeleteMsg DO ... (*delete m.from..m.to from t*)
ELSE ... (*unknown message*)

END
END Handle;

If m holds an InsertMsg at run time the first branch of the WITH state-
ment is executed and m is regarded as an InsertMsg variable; if m holds a
DeleteMsg at run time the second branch is executed, and so on. If none of
the type tests is satisfied the ELSE branch is executed.



EXTENSIBILITY IN THE OBERON SYSTEM 83

Message records have several advantages over methods:

o Message records are pieces of data that can be stored and sent later
on. In principle they can even be sent over a network to a distant
computer.

o The same message can easily be distributed to more than one object.
This can be used to implement broadcasts.

o An object can be sent a message that it does not understand. It may
ignore the message, forward it to another object, or report an error.
For example, a SetFont message may be broadcast to several texts
although only StyledTexts will understand it. It is sometimes simpler
and more flexible to send the message to all objects and let the objects
decide if they want to react. With methods this is not possible because
the compiler checks if a message is understood by the receiver.

o It is possible to implement the message handler as a procedure variable
rather than as a method. Then the handler can be exchanged at run
time to dynamically exchange the behavior of an object. With this
approach an object may assume different roles during its lifetime.

Message records also have some disadvantages:

o It is not immediately clear which operations belong to a class, i.e.,
which messages an object understands. To find that out, one has to
look at the implementation of the message handler.

o Message records are interpreted at run time using a WITH statement
that checks the variants sequentially. This is slower than a method
invocation, which is usually implemented as a table look up.

o Sending a message record is somewhat clumsy. First the input param-
eters have to be packed into the record, then the handler has to be
called, and finally output parameters can be obtained from the record.

o What was considered an advantage above can also be a drawback:
the compiler cannot check if an object understands a message. If a
message is not understood this might lead to a run time error. The
error can show up only after months and is difficult to find then.

Thus message records have advantages and disadvantages. In general, meth-
ods are preferable because they are more efficient, safer, and better readable.
Message records should be used where special flexibility is needed, e.g., for
broadcasting a message or for cases where it is important to add new mes-
sages to a class later without changing the interface of that class.

4. Extensibility at the System Level

How can an operating system contribute to the extensibility of programs?
First, it must provide means to add new modules with new code and new
data types to already loaded programs. The new modules should share the
same address space with the already loaded modules so that they can access



84 HANSPETER MOSSENBOCK

their data and call their procedures. Moreover, it must be possible for the
new modules to install procedures and objects in the old modules in order
to get the new code invoked by the old system (up-calls).

The Oberon System provides these features together with a couple of fa-
cilities such as commands, run-time types, and garbage collection that help
in writing extensible programs.

4.1 Prerequisites
Commands

In common operating systems like Unix or MS-DOS the unit of execution
is a program. The user first has to invoke a program and can then perform
further actions by selecting from menus (mode-less input) or by responding
to prompts (modal input).

In Oberon the unit of execution is a procedure. Every parameter-less
procedure can be invoked interactively just like a program. If a module M
exports a procedure P, the user can activate it as M.P. In most Oberon
implementations this is done by typing M.P and clicking at it. In fact,
every occurrence of the text M.P on the screen can be used to activate the
procedure. Such procedures are called commands.

What happens when a command M. P is called? First, module M is loaded
(if not already in memory) and linked to the already loaded system. Then
procedure P is looked up in a dictionary of commands associated with M
and is executed. When P terminates, module M stays loaded with all its
global data. A later activation of M.P (or of any other command of M) can
still access this data to read or modify it.

Commands therefore allow writing programs with multiple entry points.
Implementing menus becomes unnecessary, since every action of the system
can be directly invoked as a command. Modules assume the role of data
capsules that maintain data which can be manipulated by commands in
an arbitrary order. Commands can exchange information via memory data
structures and do not have to resort to files or channels. This promotes
efficiency and convenience.

As an example consider a module Counter that maintains a numeric value
and provides two commands Add and Print to modify and inspect it.

MODULE Counter;
VAR val: INTEGER;

PROCEDURE Add*;
VAR x: INTEGER,;

BEGIN
... (*read a value x*)
val := val + x

END Add;



EXTENSIBILITY IN THE OBERON SYSTEM 85

PROCEDURE Print*;
BEGIN

... (*print val*)
END Value;

BEGIN
val .= 0

END Counter.
Since a command is a parameter-less procedure there must be some way
to pass arguments to it. A command is free to expect arguments from
anywhere. Usually the arguments follow the command in the text at the
point of its invocation, but they could also come from a different window or
from a file. A user could now type

Counter.Add 10

and click at it. Counter will be loaded, its body will be executed, and wval
will be initialized to 0. Next, Add will be called, setting val to 10. The user
may now click at the above command again, causing wval to become 20, 30,
and so on. Finally the user may decide to print the value by invoking

Counter.Print

Note the similarity between modules with commands and object-oriented
programming. A module corresponds to an object with local state. Invoking
a command of the module corresponds to sending a message to the module
“object”. This model of user interaction is known from interpreted languages
like Smalltalk and Lisp but it is usually not available in compiled languages
like C++ or Pascal.

Commands are particularly useful for adding new functionality to an ex-
isting system. This will be explained in Section 4.2.

Dynamic Loading and Linking

In many operating systems, a linker is used to put all modules of a system
together, resolve external references, and write the result to a file that can
be loaded by the loader. As soon as the system has been linked, however,
it is a monolithic piece to which nothing can be added any more. It is not
extensible.

Recently, operating systems have relaxed this limitation by the concept
of shared or dynamic link libraries. These libraries allow modules to be
added to a linked and even loaded program. In Oberon, this concept is
called dynamic loading and is particularly straight-forward, since no special
libraries are needed. Every module can be added at run time.

Oberon uses a linking loader. There are no pre-linked files on the disk but
every module is compiled to a separate object file. When a command from
a module M is invoked, M’s object file is loaded and linked with all modules
imported by M. If some of these modules are not yet in memory, they get
loaded, too.



86 HANSPETER MOSSENBOCK

Fig. 1: Dynamic loading of modules

Fig. 2: Every module is loaded only once

After system startup, the loaded modules are just those of the operating
system. Then, while commands are activated, new modules are possibly
added. After some time, all modules needed for a typical session will be in
memory and the system will reflect the user’s work set. Command execution
becomes very fast then, since no new modules have to be loaded any more
(Figure 1).

Because all modules share the same address space, every module is loaded
only once. Thus, if a system consists of several modules, only those are
loaded that are not already in memory (Figure 2).

Dynamic loading is an indispensable prerequisite for extensibility. It re-
sults in short loading times and little memory consumption and soon leads
to a situation in which no new modules have to be loaded any more. The
system has been adapted to the user’s needs.

Instead of invoking a command interactively, it can also be invoked from a
module via a library procedure (Oberon.Call in most implementations). This
allows the system to extend itself. The following example shows how this
works: A module Base may read the name of a command— FEzt. P, say—into
a variable emd and invoke Oberon.Call(cmd, ... ). This will add module Ext
as described above. Fxt may now install a private object in a variable obj
of module Base. When Base sends a message to 0bj, dynamic binding will
cause the corresponding method in module Ezt to be executed (Figure 3).



EXTENSIBILITY IN THE OBERON SYSTEM 87

Fig. 3: A module Base loads a module Ezt that it does not know

Note, that Base is invoking code of which it does not even know that it
exists. In fact, Fxt may have been written long after Base was designed and
implemented.

A practical example of a self-extending program is a module Base that
reads a data file containing objects of a yet unloaded module Ezt. In order
to be able to apply operations to these objects, Fxt must be loaded. To do
so, the data file contains also the name of a command from FEzt that is read
and invoked by Base. Thus Ext is loaded and is extending Base.

Garbage collection

Garbage collection is a generally useful mechanism that automatically re-
claims unreferenced memory and relieves a programmer from explicitly deal-
locating data structures. Explicit deallocation is dangerous since it may lead
to dangling pointers which are a common source of errors and hard to track
down.

In an extensible system, garbage collection is even more important than
in a static system because programs may work with object extensions which
they do not know. Therefore, if a data structure is deallocated, it may
still be referenced by an invisible pointer from some object extension. This
pointer then becomes dangling.



88 HANSPETER MOSSENBOCK

The garbage collector in the Oberon System—together with the strong
typing concept of the language—ensures that a pointer is either NIL or
points to a valid object. Memory integrity is therefore guaranteed, even in
the case of extensions.

4.2 Adding New Commands to a Program

So far, we have discussed some prerequisites for extensibility: object-ori-
entedness, commands, dynamic loading, and garbage collection. Let us now
look at an example that shows how commands can be used to add new
functionality to a program.

Assume that we have a text editor and want to add a spelling checker to
it. The spell-checking algorithm is straight-forward: read every word of the
text and look it up in a dictionary. If the word is not found it is assumed to
be misspelled. But how can we add this functionality to the existing editor?

In Oberon, we can add functionality in the form of a new module and
activate it by a command of this module. Therefore we design a module
Spell with a command Check.

What do we have to do in this command? First, we have to get the
text from the desired window (called wviewer). The Oberon System provides
procedures to do that. Since all modules share the same address space,
our new module can access the text of the editor and read it. For reading,
the Oberon System provides special scanners that can be set to a text and
used for reading symbols like identifiers or numbers. Finally, we have to
implement the dictionary and its look up mechanism. A sketch of module
Spell might look as follows:

MODULE Spell;
IMPORT Oberon, Viewers, Texts, TextFrames;

...declaration and implementation of the dictionary ...

PROCEDURE Check*;
VAR viewer: Viewers.Viewer; frame: TextFrames.Frame;
text: Texts.Text; scanner: Texts.Scanner;
BEGIN
viewer := Oberon.MarkedViewer(); (*get the marked viewer*)
frame := viewer.dsc.next(TextFrames.Frame); (*get the text frame in
this viewer*)
text := frame.text; (*get the text from this frame*)
Texts.OpenScanner(scanner, text, 0); (*set a scanner to the
beginning of the text*)
Texts.Scan(scanner);
WHILE ~ scanner.eot DO (*read words and look them up*)
IF scanner.class = Texts.Name THEN
(*a word has been read and
stored in scanner.s;*)



EXTENSIBILITY IN THE OBERON SYSTEM 89

e (*look it up in the dictionary™)
END;
Texts.Scan(scanner)

END

END Check;

...other commands . ..

END Spell.

The user may now mark a text viewer and invoke the command Spell. Check.
The module Spell will be loaded and added to the editor. The Check com-
mand will look up every word of the text in the dictionary. Our new module
will probably contain further commands such as SelectDictionary to select
one of several dictionaries, LearnWord to add a new word to the dictionary,
or ForgetWord to remove a word from the dictionary. All these commands
can be invoked individually and in any order. They share the dictionary as
a common data structure.

Note that the spell-checking facility need not be loaded from the beginning.
The editor can be started as a small and simple program. This makes
its loading time short and provides the user with an easily comprehensible
system. Spell-checking is only loaded on demand. Not every user has to
carry it along and pay for functionality that he possibly never uses. In
the same way, other functionality such as regular expression search, word
counting, or special formatting can be added in the form of new modules
with commands.

Compare this to the usual way an application is delivered. Commercial
products are usually huge packages several megabytes in size which contain
every conceivable feature. Yet they can never be complete and since they
are not extensible they are of limited value to some clients.

4.8 Adding New Objects to a Program

We will now look at another example of extensibility. This time we want to
add new objects to a program, i.e., we want to make the program work with
data types that it did not know before. As the reader might guess, this is
accomplished with object-oriented techniques.

Let us stay with the example of the text editor. Assume that we want to
have pictures, tables, formulas, or clocks in the text (Figure 4). The editor
should handle all these objects uniformly, i.e., it should display them on the
screen, load and store them on a file, and allow mouse clicks on them. Every
object should handle mouse clicks in its own way: a picture should react by
interpreting the click as an editing request while a clock should allow setting
the time, etc.

The objects are like big characters. They float with the text while it
is edited and can be selected and deleted much like ordinary text. An
important requirement is that it should be possible to add new kinds of
objects such as hypertext buttons or pop-up menus later. These objects



90 HANSPETER MOSSENBOCK

Fig. 4: Text with objects such as pictures, tables, or clocks

should behave exactly like the existing ones. They should be displayable,
loadable and storable, and they should react to mouse clicks.

How can we plan for such extensions? The only way for the editor to cope
with future object variants is to not distinguish between variants at all.
Objects are treated as abstract entities. The editor knows what operations
can be applied to them (e.g., displaying, loading, storing, etc.) but not how
these operations work. Every object is itself responsible for implementing
them. We therefore define an abstract base class Element from which we
later derive all the specific classes such as pictures, tables, and formulas.

TYPE
Element = POINTER TO ElemDesc;
ElemDesc = RECORD
width, height: INTEGER;
PROCEDURE (e: Element) Display (frame: Display.Frame);

)
PROCEDURE (e: Element) Copy (VAR copy: Element);
PROCEDURE (e: Element) HandleMouse (x, y: INTEGER; buttons: SET);
PROCEDURE (e: Element) Load (VAR r: Files.Rider);
PROCEDURE (e: Element) Store (VAR r: Files.Rider);

END;



EXTENSIBILITY IN THE OBERON SYSTEM 91

Fig. 5: A piece list with 3 text pieces and 2 element pieces

Class Element defines the fields and operations common to all elements but
not more. The methods are still empty because we cannot say how an
abstract element should be displayed or stored.

The specific elements are defined as subclasses of Element. They may add
new data fields and must override the inherited methods. A subclass for
graphic elements might look as follows:

TYPE
GraphicElement = POINTER TO GraphicElemDesc;
GraphicElemDesc = RECORD (ElemDesc)
figures: ...
PROCEDURE (e: GraphicElement) Display (frame: Display.Frame);
PROCEDURE (e: GraphicElement) Copy (VAR copy: Element);
PROCEDURE (e: GraphicElement) HandleMouse
(x, y: INTEGER; buttons: SET);
PROCEDURE (e: GraphicElement) Load (VAR r: Files.Rider);
PROCEDURE (e: GraphicElement) Store (VAR r: Files.Rider);
END;

The text in the editor is organized as a so-called piece list [3]. A piece
denotes either a stretch of characters or an element. Figure 5 shows the
data structure for a text containing two elements. Since graphic elements
and clock elements are subclasses of abstract elements they can be stored in
fields which are of type Element.

The editor may now forget about the specific element kinds. Whenever it
wants to redraw the text it traverses the piece list and sends every element
a Display message. Graphic elements will react by drawing a picture and
clock elements by drawing a clock.

But how can we add new elements like hypertext buttons? We have to
provide a new module M containing the declaration of a class HyperElement
which is a subclass of Element. We also have to write a command Insert
that generates a new hypertext element and inserts it in the piece list using
a special procedure of the editor.



92 HANSPETER MOSSENBOCK

MODULE M;
IMPORT Texts;

TYPE
HyperElement = POINTER TO HyperElemDesc;
HyperElemDesc = RECORD (Texts.ElemDesc)

END;

PROCEDURE Insert*;
VAR e: HyperElement; t: Texts.Text;
BEGIN
NEW(e);
...Initialize e . ..
...t := text in which the element is to be inserted ...
...insert einto t ...

END Insert;

END M.

Executing M.Insert will now insert a hypertext button in the text. The
editor is able to handle this new kind of element like all the others although
it does not know about the existence of hypertext elements.

The extensibility in this example comes from the following characteristics
of the Oberon System:

(1) The object-oriented nature of the language allows us to extend the
type Element and to treat the extensions in the same way as their
base type.

(2) Dynamic loading makes it possible to add the new hypertext module
to the editor at run time.

(3) Commands allow us to invoke the new functionality directly without
having to modify the menus in the existing editor.

(4) Since all modules share the same address space, the hypertext module
can insert elements in the piece list which belongs to a module of the
base system.

Note that this kind of extensibility has to be planned right from the be-
ginning. The base system must contain slots into which the extensions can
be plugged. Such a slot is the abstract class Element. Although the editor
does not have to know which element kinds will exist in the future, it must
know that there are such things like elements at all. It has to specify the
operations that can be applied to them and has to provide means to store
elements in the base system. Thus, extensibility does not come from an
object-oriented language automatically. It has to be planned.

An editor of this kind has been implemented in the Oberon System [10] and
has proved highly useful. Many users implemented their own element exten-
sions and made them available to others. While the base system remained
small and simple the total functionality offered by elements is amazing. The



EXTENSIBILITY IN THE OBERON SYSTEM 93

editor is now even used in situations for which it was not intended (e.g., as
a framework for user interfaces).

5. Conclusions

This paper showed how programs can be extended in the Oberon System
using its most prominent features: object-orientedness, commands and dy-
namic loading.

Although all object-oriented languages claim to be suitable for writing ex-
tensible software this is often not true because the systems in which they are
embedded lack dynamic loading. Some systems provide dynamic loading in
the form of dynamic link libraries but still these systems lack commands
so that there is no easy way for the user to invoke the extensions interac-
tively. The Smalltalk System [2] is an exception: it allows adding objects to
a running system and sending messages to them interactively (which corre-
sponds to invoking commands). Smalltalk is therefore known for its power
and flexibility. However, Smalltalk is an interpreted and dynamically typed
language which makes it less efficient and less safe. Oberon provides the
same flexibility while it is statically typed and efficient.

References

[1] Brandis M., Crelier R., Franz M., Templ J.: The Oberon System Family. Technical
Report 174, Department of Computer Science, ETH Ziirich, 1992.

[2] Goldberg A., Robson D.: Smalltalk-80 - The Language and its Implementation.
Addison-Wesley, 1983.

[3] Gutknecht J.: Concepts of the Text Editor Lara. Communications of the ACM, Vol.
28, No. 9, Sept. 1985, 942-960.

[4] Méossenbock H.: Object-Oriented Programming in Oberon-2. Springer-Verlag, 1993.

[6] Mossenbock H., Wirth N.: The Programming Language Oberon-2. Structured Pro-
gramming, Vol. 12, No. 4, 1991.

[6] Reiser M.: The Oberon System. User Guide and Programmer’s Manual. Addison-
Wesley, 1991.

[7] Reiser M., Wirth N.: Programming in Oberon. Steps beyond Pascal and Modula-2.
Addison-Wesley, 1992.

[8] Stroustrup B.: Multiple Inheritance for C++. Proceedings of the EUUG Spring
Conference, Helsinki, May 1989.

[9] Swinehart D.C., et al.: A Structural View of the Cedar Programming Environment.
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October
1986, 419-490

[10] Szyperski C.A.: Write-ing Applications: Designing an Extensible Text Editor as
an Application Framework. Proceedings of the TOOLS’92 Conference, Dortmund,
Prentice Hall, 1992.

[11] Templ J.: A Systematic Approach to Multiple Inheritance Implementation. SIG-
PLAN Notices, Vol.28, No.4, April 1993, 61-66.

[12] Wirth N., Gutknecht J.: Project Oberon. The Design of an Operating System and
Compiler. Addison-Wesley, 1993.



