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Abstract. A method for proof by structural induction is studied, and problems

of automatizing the method is investigated. We specially consider the equational

part of such proofs and we observe that the ability to cope with possibly infinite

searches for non-existent equational proofs is crucial. Completion as a means to find

an equational proof of equivalence of two given terms is studied. By heuristics we

weaken the requirements of completeness on the resulting set, and thereby present

modifications of both standard completion and ordered completion which guarantee

termination.
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1. Introduction

In the mid seventies the idea of modeling data types algebraically emerged,
the basic thought being that each state in a data structure could be repre-
sented by a ground term built from some set of function symbols [13, 14].
This gave syntactical control over the data types, and allowed functions op-
erating on the data to be defined by induction on the structure of the terms.
We have since the birth of this idea seen several programming languages
that are built on this notion of abstract data types, see e.g. [5, 12, 15].

Having programs represented algebraically it is a natural next step to try
to use algebraic methods to prove properties of them. We have basically seen
two different approaches to such proofs. The first is proof by structural in-
duction which was introduced by Burstall [4]. This proof method is based on
explicit induction on the complexity of terms, and has later been elaborated
by many authors [7, 9, 11, 13]. The second approach is proof by consistency,
which is sometimes also referred to as inductionless induction. This is a
method which is based on searching for inconsistencies by a process inspired
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by Knuth and Bendix completion [20], and the idea first emerged in a paper
by Musser [24]. This seminal paper triggered a lot of research extending the
applicability and strength of proof by consistency [10, 18, 19, 21, 23].

Comparing the two proof methods is not an easy task since either one
of them is superior on some examples. The general advantage of proof by
consistency is that it is not based on interaction from the user. Proof by
structural induction, however, is not that easily automatizable, first because
it is difficult to decide which variable in the expression under consideration
one should perform the induction on, and secondly because the equational
part of proofs by structural induction is often non-trivial. Even so, it seems
that proof by structural induction does succeed more often than proofs by
inductionless induction. This view is supported by Garland and Guttag
in [9], and Goguen writes in [11]: Experience indicates that it is generally
easier to prove things with structural induction. . . (structural induction) does
not produce an uncontrollable explosion of strange new rules that often seem
to gradually become less and less relevant. It is anyhow an indisputable fact
that the examples yet seen of proofs by consistency are dwarfed by some of
the proofs found using e.g. the Boyer-Moore theorem prover [3].

In this paper we work towards an automatization of proofs by structural
induction. The equational part of such proofs is given special attention,
and we suggest using a completion based method. This does introduce the
problem of the explosion of gradually less and less relevant rules. We there-
fore present heuristics handling the special termination problems attached
to completion. Our method has been implemented in SIMULA, and the ex-
amples we provide are generated by our implementation. The outline of the
paper is as follows: Sections 2 and 3 present preliminary notions, sections
4 and 5 handle standard completion, whereas ordered completion is treated
in sections 6 and 7. Finally we demonstrate our methods by applying them
to some of the most popular examples in the literature.

2. Notation and basic concepts

Let F be a finite set of function symbols, each with fixed arity. Furthermore
let V be a countable set of variables. The set of terms T (F ,V) is defined
recursively as the smallest set containing V such that f(t1, . . . , tn) is a term
if t1, . . . , tn are terms, f ∈ F and n is the arity of f (n ≥ 0). A function with
arity zero is called a constant. A term containing no variables is a ground
term. The set of all ground terms is denoted G.

A term may be viewed as an ordered tree in the obvious way. A position
in a term can be viewed as a finite sequence of natural numbers, pointing
out a path from the root of the term. The place in the term where the path
ends is the actual position. The subterm of t at position i, written t[i], is the
subterm of t which has its root symbol at position i. The result of replacing
the subterm of t at position i by the term u is written t[i/u].

To each function symbol is assigned a profile. The profile is a pair of
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types in which the first element is a Cartesian product of types defining the
functions domain, and the second element is the codomain of the function.
A well formed term is a term in which all functions has correctly typed
arguments according to their profiles. Whenever we use the word term from
now on, we implicitly assume that it is well formed.

Let CT1
⊂ F , . . . , CTn

⊂ F be disjoint sets of function symbols such that
the codomain of a function in CTi

is Ti. Furthermore let C be the union of all
these sets. We call C the set of constructors. The set GC is defined to be the
set of all well formed ground terms containing only function symbols from
C. The value set of type Ti is the set of terms in GC which has an element
from CTi

as its leading function symbol.
A substitution is a finite set of pairs consisting of one variable and one

term. We shall denote substitutions like this: {x1 7→ t1, x2 7→ t2, . . .} where
xi is a variable and ti is a term, or by lowercase Greek letters when no details
are needed. Applying a substitution σ to a term t consists of simultaneously
replacing every occurrence of a σ-variable in t with the term corresponding
to the variable in σ. The result of the application is written tσ.

An equation is an unordered pair of terms, written t = u. A set E of
equations defines a variety V(E). This is the class of algebras which are
models of the equations in E. An equation t = u is said to be valid in V(E),
written t =E u, if it is true in all models in the variety. It is well known
that this is equivalent to t = u being derivable from E using replacement of
equals by equals.

Equations may also be used as definitions, defining functions by induction
on their GC arguments. In order to be consistent with the type definitions
above the defining equations, DE, should be such that for every term t ∈ G
there should be a term u ∈ GC such that t =DE u. The initial algebra
(see [6] for further detail) in V(DE) is denoted I(DE), and the corresponding
equivalence relation is =I(DE). It is well known that t =I(DE) u whenever
tσ =E uσ for every ground substitution σ. If DE satisfies the restriction
above, t =I(DE) u whenever tσ =E uσ for every GC-substitution σ.

A rewrite rule is an ordered pair of terms, written s → t. It states that
any subterm of a term l which is an instance of s may be replaced by the
same instance of t in a rewrite step. If R is a set of rewrite rules we shall
let →R denote a rewrite step involving a rule from R, and →∗

R a possibly
empty sequence of such steps. A convergent set of rewrite rules is a set which
satisfies termination and confluence. That is, a term can only go through
finitely many rewrite steps with the set of rules, and that no matter what
rewrite path is chosen, the same irreducible term will be the result of the
rewriting. By t!R we shall mean the term t fully reduced by the terminating
set R of rewrite rules. A set R of rewrite rules is said to be complete for
a theory consisting of the set E of equations if it is convergent, and all
equational proofs that can be performed by using E has a corresponding
rewrite proof in R and vice versa. Easy guidelines can be given to ensure
that a set of defining equations constitute a convergent set of rewrite rules.

An ordering � on terms is said to be well founded if there is no infinite



138 OLAV LYSNE

sequence of terms t1 � t2 � . . .. It satisfies the subterm property, if s � t
whenever t is a subterm of s. Furthermore it is monotone over substitutions,
if sσ � tσ for any σ whenever t � s, and over context application, if s[i/t] �
s[i/t′] whenever t � t′. We shall in the sequel assume that the term orderings
have the subterm property as well as well foundedness and monotonicity.

3. Proof by structural induction

Let E be a set of equations. From Birkhoff’s theorem we know that if
there exists an equational proof by E between the terms t and u, then the
equation t = u is valid in all models of E and vice versa. Obviously I(DE)
is a model of DE, thus whenever we find an equational proof between t
and u we may conclude that t = u is valid in the initial algebra as well.
Unfortunately the indicated implication does only go one way, therefore the
proof concept consisting of replacing equals by equals is not complete for
the initial algebra.

We shall view structural induction as a proof inference for the initial al-
gebra which allows us to replace one proof obligation with that of several
others. If we are not able to prove an equation valid in some initial model
by an equational proof, we may perform an induction inference and com-
plete the inductive proof by finding some other equational proofs instead.
Let us present a generalised inference rule for proof by structural induction.
Let A(f) be the arity of the function f . Furthermore let CT be the set of
constructors of the type T . The induction schema for proving t =I(DE) u
by induction on the variable x of type T is

t{x 7→ g(x1, . . . , xA(g))} =I(DEg) u{x 7→ g(x1, . . . , xA(g))} ; for all g ∈ CT

t =I(DE) u

where DEg = DE ∪ {t{x 7→ xj} = u{x 7→ xj}|1 ≤ j ≤ A(g) ∧ xj ∈ T}, and
each of x1, . . . , xA(g) is either a new constant of type T , or a new variable of a
type different from T . The requirement that every term in the formula shall
be well formed gives us for each x1, . . . , xA(g) whether it is a fresh constant
or a fresh variable. We are now ready to give a procedural description of
proof by structural induction. Let P be the set of inductive consequences
we want to prove:

LOOP WHILE NONEMPTY(P ) DO

1. Choose an arbitrary item from P .

2. Try to find an equational proof for the item in the set of equations

assigned to that particular item.

3. If found, remove the item from P .

4. If not, use the induction schema on one of the variables of the item,

to replace this inductive problem with several others.

If there are no variables then exit LOOP.

OD

IF EMPTY(P) THEN Terminate with SUCCESS ELSE Terminate with FAIL.
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If we aim at automatizing the proof process we encounter two problems,
the first of which is choosing the correct induction variable. There are cases
where the wrong choice of induction variable entirely blocks the possibility
of finding a proof, but very often this can be remedied by introducing an
additional level of induction in which the correct variable is chosen (see e.g.
the second part of example 1 in section 8). The second problem, which is
the one we shall address in the rest of the paper, is the search for equational
subproofs.

The fact that the definition of abstract data types in principle leads to
convergent sets of rewrite rules makes the search for equational subproofs
simple in many cases. During a proof by structural induction, however,
lemmas and induction hypotheses are added to the picture, and these new
equations frequently destroys both termination and confluence. This means
that the equational proofs have to be searched for in a general setting, and
the problem of existence of such proofs is undecidable.

The equational part of inductive proofs is treated in a rather ad hoc man-
ner by existing theorem provers [11, 8, 7], in that the lemmas and induction
hypotheses are either assumed to maintain convergence when added to DE,
or in that they are only applied to DE-minimal forms. In the Boyer-Moore
theorem prover [3] there is a feature called cross-fertilisation which is more
powerful than the two mentioned above, but also this method presupposes
that the equational proofs are of a special form. In [22] a general method
for the equational part of proofs by structural induction is presented, but
this method requires all defining equations to be left linear.

An approach which does not presuppose anything about the proof one is
looking for is to start a completion procedure, and hope that it is able to
transform the given set of equations into a convergent set of rewrite rules.
Completion based semi decision processes for the equational validity problem
have been developed by Hsiang and Rusinowitch [16] and Bachmair [1]. The
problem with both these approaches is that they most often diverge if the
proof they are looking for does not exist. While searching for a proof by
structural induction, one will frequently look for equational proofs that do
not exist, simply because the actual inductive proof requires another level
of induction. Therefore a method for handling these cases is crucial.

We suggest a completion-based method to handle the equational part of
inductive proofs, and present a flexible heuristic controlling the halting prob-
lem of the completion process. This heuristic is closely connected to the com-
plexity of the equation we are trying to prove, and thus adjusts naturally
to the expected complexity of the proofs. The way we approach the prob-
lem is by observing the following: When the completion process diverges, it
creates an infinite convergent set of rewrite rules. Still only finitely many of
these rules are necessary for computing the minimal form of the terms we
are studying. The rest of this infinite set resembles what Goguen calls “new
rules that gradually becomes less and less relevant”. On this background
we shall present completion algorithms which in a heuristic manner leaves
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out the rewrite rules and equations that do not seem to contribute to the
rewriting of the terms in the equation we are proving.

4. Completion wrt. a set of terms

KB-completion is a process which takes a set E of equations and a well
founded term ordering � as input, and attempts to generate a set R of re-
write rules which terminate by � and which is complete wrt. E. It is usually
described by a set of transition rules:

Orient (E ∪ {s = t}, R) ` (E, R ∪ {s→ t}) if s � t.
Deduce (E, R) ` (E ∪ {s = t}, R) if ∃u.s←R u→R t.
Simplify (E ∪ {s = t}, R) ` (E ∪ {s = u}, R) if t→R u.
Delete (E ∪ {t = t}, R) ` (E, R)
Compose (E, R ∪ {s→ t}) ` (E, R ∪ {s→ u}) if t→R u.
Collapse (E, R ∪ {s→ t}) ` (E ∪ {u = t}, R) if ∃{l→ r} ∈ R s. t.

s→R u by l → r,
and s > l

Where > is the specialisation ordering: u > v iff a subterm of u is an
instance of v and not vice versa. We define a state to be the contents of
E and R respectively between the application of two transition rules. In
addition there is of course an initial and perhaps a terminal state.

In our setting we are interested in using the procedure to find a proof of
given equations. This use of the completion procedure was first suggested
by Huet in [17], where it was proved that the completion process yields as
a semi-decision procedure granted that it does not fail on an equation not
being orientable. When the proof we are looking for does not exist, however,
completion might diverge. In order to use it in equational subproofs of proofs
by structural induction we are therefore interested in restricting the process
such that it terminates anyhow at a point when it is not likely that the proof
we are looking for exists.

When we consider the rewrite rules that can be directly applied to a term t,
we see that an instance of the left hand side of the rule must equal a subterm
of t. A rewrite rule which does not fulfil this requirement could however still
be utilised in a rewriting sequence of t at a later stage. To capture a set
of rewrite rules which can not be used in any rewriting sequence for t, we
use the fact that any terminating set of rewrite rules is contained within a
monotone and well founded term ordering. From now on we shall only write
term ordering, and implicitly assume that it is monotone and well founded.

Definition 1. If for a term ordering � there exists no substitution σ such
that t � lσ then t is said to be incomparable to l by �, or just incompara-
ble if the ordering is obvious. If such a substitution exists, t is said to be
comparable to l.
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It is convenient to introduce a notation for the case of s being comparable

to t by �. For this purpose we shall use s
�

; t.

Lemma 1. Let R be a set of rewrite rules that has a termination proof with
the term ordering �. Let l→ r be in R, and t be a term. If t is incomparable
to l, then l→ r can never be used in any rewriting sequence for t in R.

Proof. This is obvious from the fact that � is monotone wrt. con-
text application and substitutions, has the subterm property, and that any
rewriting sequence from t will only contain terms that are less than t with
respect to �. 2

In KB-completion the term ordering by which the termination of the set
of rewrite rules is proven, is input to the process. By means of lemma 1 we
may therefore rule out the rewrite rules which do not contribute directly in
the sense that they are able to rewrite the terms we are studying. Mark that
we have not said that for a given term t there will only be finitely many rules
that can possibly be of interest. Even if � is expected not to give rise to any
infinite decreasing sequence, it can for a given term give infinitely many finite
decreasing sequences, and for many of the commonly used orderings this is
indeed the case. Since we are striving for a finite method, we would like
there to be only finitely many rules worth considering. Here we only assume
that this is the case, and we return to this problem, and to decidability of
comparability, later.

Let us take a look at the completion process. In order to present a mod-
ification of this process which will terminate in finite time, we first present
this lemma on the behaviour of the set of rewrite rules during the process:

Lemma 2. If the set of rewrite rules R at a state in the completion process
is able to rewrite the term t, the set R′ in any future state will also be able
to rewrite t.

Proof. The lemma states that the set of terms which can be rewritten by
the set of rewrite rules in a completion process is monotonically increasing.
The set of left hand sides in R is what decides which terms can be rewritten,
thus the only transition rules which could defy the lemma is Collapse.

By studying the Collapse rule, we find that a rewrite rule s→ t is removed
from R whenever s can be rewritten by another rewrite rule l → r. But then
every term which could be rewritten by s→ t can also be rewritten by l→ r,
thus the set of reducible terms is not decreased. 2

Theorem 1. A Completion procedure in which only finitely many rewrite
rules can be added, and in which Orient is only used such that the left hand
side of the new rewrite rule is irreducible, will terminate.

Proof. Since there are only finitely many rewrite rules that can be added,
there can also be only finitely many distinct sets R in the procedure. Thus



142 OLAV LYSNE

there are also only finitely many sets of terms reducible by the different sets
of rules.

If we orient an irreducible equation into the rewrite rule l → r, obviously l
was irreducible before the orientation, and is reducible afterwards, thus the
set of reducible terms has increased. Since well foundedness of R is invariant,
and R is finite, there can only be finitely many Simplify, Compose, Deduce,
Collapse and Delete steps before one will have to apply Orient.

First, since no infinite Completion process can occur without an Orient
step, and secondly the set of reducible terms can never decrease due to
lemma 2 and there are only finitely many such sets possible, the completion
process will terminate. 2

At this point it seems convenient to give the transition rules for the modi-
fied completion procedure that has been indicated. We shall call it Comple-
tion wrt. a set of terms. This will be a process which takes as input a set E
of equations, an ordering �, and a set T of terms, and manipulates E trying
to create a set R of rules which is sufficiently strong to prove the equational
equivalences that might exist between terms in T . The transition rules are
the same as in standard completion, except for the Orient rule, which now
looks like this:

(E ∪ {s = t}, R) ` (E,R ∪ {s→ t}) if s irreducible and

s � t and ∃ l ∈ T.l
�

; s.

Lemma 3. Completion wrt. a set of terms is sound with respect to the orig-
inal E

Proof. Obvious. 2

Having stopped the completion process before it has had a chance to create
a convergent set of rewrite rules introduces another problem. We can no
longer assume that each term in T has a unique normal form. Therefore
we might have to generate the sets of all possible minimal forms of the two
terms we are interested in, and investigate for a nonempty intersection.

Definition 2. A set R of rewrite-rules is said to be sufficiently convergent
for a term t if t has only one irreducible form in R.

Definition 2 indicates a method for determining sufficient convergence that
appears rather complicated. The next lemma gives a way of checking for
sufficient convergence which is sometimes more appropriate.

Lemma 4. Let completion wrt. the set T of terms have terminated with E
and R. If every equation in E contains one term for which there is no term
in T comparable to it by �, then R is sufficiently convergent for T .

Proof. We prove the lemma by showing that if one term in T has two
distinct R-minimal forms, then there exists an equation in E in which both
terms have a term in T comparable to it.
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Assume that the term t in T has more than one irreducible form in R.
Then let t′ be the least term derivable from t which has two irreducible
forms. The critical pair lemma of Knuth and Bendix [20] tells us that there
must exist a critical pair between two rules that can rewrite t′. This critical
pair must have been added to E in the completion process, but by the way
we chose t′, it cannot have been added as a rewrite rule to R.

Obviously, if we oriented this critical pair into a rewrite rule, the rule could
participate in a rewrite sequence starting from t′, thus also in one starting
from t. Therefore t must be comparable to both terms in the equation. 2

The checking of terms in E for possible orientation and comparability with
the terms in T is inherent in the completion wrt. a set of terms procedure.
Therefore the test indicated by lemma 4 is not a significant additional cost.

5. The orderings

We have now described a completion procedure for a system of equations
wrt. the pair of terms we want to reason about. This process is guaranteed
to terminate if there are only finitely many equations appearing during the
procedure that can possibly be oriented into rewrite rules. Let us see what
requirements termination of the process puts on the ordering.

Lemma 5. Let the ordering, �, that we put into the system contain the
property that for a given term t we will only have finitely many l different
up to variable renaming such that t � l. Then for any given finite set of
terms T , our altered transition rule Orient will only be able to orient finitely
many equations different up to variable renaming.

Proof. Let U be the set of terms for which there exists a term in T which
is greater according to the ordering. Since there are only finitely many terms
in T , there are also finitely many terms in U . Let V be the set of terms such
that v ∈ V iff vσ ∈ U for some σ. Obviously V is finite, and contains all
the left hand sides of rewrite rules possibly oriented by our transition rule.

Since there are only finitely many possible left hand sides, and since each
right hand side has to be less than its corresponding left hand side, the
requirement in the lemma guarantees that the number of possible rewrite
rules is finite. 2

Thus we must require our term ordering to satisfy that for every term there
are only finitely many terms less than it. Even though this requirement gives
the impression of being closely related to well foundedness, it is not a general
property of the term orderings currently in use1. Any well-founded and
transitive term ordering that does not meet the requirement can, however,
be restricted in such a way that the requirement is met. There are many ways

1 e.g. the path-orderings will satisfy f(x) � gn(x) for any n whenever f is considered
greater than g. Orderings with polynomial interpretations, however, have the desired
property.
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to do this, but the one we suggest in this paper has been chosen basically
because of two features; it is simple and intuitive, and it is flexible. The
reason why flexibility is important is that completion wrt. a set of terms can
be viewed as looking through a finite search-space for a proof of equivalence
between two terms. If a solution is not found, we may want to be able to
relax the restriction in order to increase the search space.

Definition 3. Finiteness Restriction (FR). Let � be a term ordering and
k ≥ 1 be a constant. The finiteness restriction imposed on � gives �FR(k),
and is implemented by assigning a positive weight to every function symbol,
and letting s �FR(k) t iff s � t and k · sumF (s) ≥ sumF (t). Here sumF (l)
is the sum of the weights of all the function symbol occurrences in l.

Lemma 6. The Finiteness restriction imposed on a term ordering gives a
relation such that no term has infinitely many terms which are smaller than
it with respect to the relation.

Proof. Since all function symbols have positive weights, this should be
obvious. 2

The tuning of the constant k is of course important to the performance of
automatic proofs by structural induction, both for its ability to find proofs,
and for computation time. This tuning will have to be done for each new
term ordering, and in some cases also for each new set of definitions. Expe-
rience indicates, however, that when the weights of the functions are natural
numbers from 1 and upwards, the method works at its best with 1.5 ≤ k ≤ 2.

Imposing FR on an ordering will in general destroy transitivity, so the
result cannot be called an ordering. But since the restricted relation is
contained within an ordering which has the desired terminating properties,
the (lack of) transitivity is not important. Mark, however, that for lemma 4
still to hold, we must state that the comparability check should be performed
with the input ordering without FR.

In section 4 we defined what it means for one term to be comparable to
another by an ordering. At that point we did not care to give any argument
as to whether this is decidable or effectively implementable. The answer will
of course depend very much on the ordering in question. One property of
the orderings in general is, however, stated in this theorem:

Theorem 2. Let � be a monotonic ordering satisfying the subterm prop-
erty. Then the term t is comparable to s by � iff there exists a substitution
γ such that t � sγ, and where the image of each variable is either a constant
or a variable.

Proof. If such a γ exists, then of course this is a witness of t being
comparable to s. The other way there exists a substitution σ such that
t � sσ. Let σ be {x1 7→ t1, x2 7→ t2, . . . , xn 7→ tn} Because of the subterm
property, for every i, 1 ≤ i ≤ n, there will either be a variable v such that
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ti � v or a constant f such that ti � f . Let ci be that variable or constant,
and let γ be {xi 7→ ci|i = 1, . . . , n}. By context application sσ � sγ, and by
transitivity t � sγ. 2

Corollary. Comparability is decidable for monotonic and well founded
term orderings.

The corollary holds because there will only be finitely many constants in
the theory, and secondly because we only have to consider the variables that
occur in t, as the next easy lemma shows:

Lemma 7. Let � be a monotonic well founded term ordering. For t � s it
is a requirement that all variables in s are also in t.

Proof. Let t � s and let s contain the variable x which is not in t.
Furthermore, let σ be the substitution {x 7→ t}. According to monotonicity
tσ � sσ which gives t � sσ. Obviously t is a subterm of sσ, thus by
repeatedly replacing the subterm t by sσ we get an infinite chain which is
�-decreasing due to monotonicity over context application. 2

In theorem 2 we assume that the ordering is transitive. When we impose
FR on the ordering, transitivity can no longer be taken for granted. There-
fore we shall now deal with comparability in the relations resulting from the
finiteness restriction.

Theorem 3. Let � be transitive, monotonic with respect to context appli-
cation and have the subterm property. Then the term t is comparable to s
by �FR(k) iff there exists a substitution γ such that t �FR(k) sγ, and which
only substitutes by variables and constants.

Proof. As in the proof above, the existence of such a σ is a witness
for comparability. Also as above we can from a given σ construct a γ
with only variable and constant substitutions such that t �FR(k) sσ � sγ.
By transitivity of � we get that t � sγ, and because we obviously have
sumF (sσ) ≥ sumF (sγ) we will also have t �FR(k) sγ. 2

An equivalent corollary to that of theorem 2 is valid for theorem 3.

6. Equational validity by refutation

Completion used as an equational theorem prover has been elaborated by
several authors [1, 16, 17] We shall now study the method of Bachmair, and
extend our completion wrt. a set of terms into his method.

Knowing that equational validity has a semi decision procedure, the pos-
sibility of having a failing completion procedure is rather annoying. This
led to the wish of also being able to handle unorientable equations in both
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the completion process and in term rewriting. For example when we study
the commutativity axiom

f(x, y) = f(y, x)

we see that even if the axiom is not orientable by itself, many of its instances
are e.g. by the lexicographical path ordering:

f(g(x), x) �lpo f(x, g(x))

Having this in mind, we see that we could still be able to use the equation
in a terminating rewriting sequence, by for each application of the equation
making sure that the resulting term is smaller in the term ordering than the
original one. We shall write →�

E to indicate the rewriting relation given by
the set E of equations together with the term ordering �, and↔E to denote
an arbitrary equational proof step by an equation in E. As previously an
asterisk (e.g. →�

E
∗
) is used to denote possibly empty sequences of steps.

The above caters for the simplification steps in the completion process.
The part concerning the computation of critical pairs will also need a bit
of care. In standard completion critical pairs are only created between ori-
ented rules, because it is implicitly assumed that all equations are orientable.
Since we shall extend the procedure to also be able to handle unorientable
equations, we now have to compute critical pairs also between equations.
The lines between rewrite rules and equations have now weakened, thus we
may handle the completion process called ordered completion as if it only
treated equations. These are the transition rules:

Deduce (E) ` (E ∪ {s = t}) if ∃u.s↔E u↔E t
such that s �/ u and t�/ u

Simplify (E ∪ {s = t}) ` (E ∪ {s = u}) if t→�

E
u by s′ = u′ ∈ E

with t � s and t > s′

Delete (E ∪ {t = t}) ` (E)

Ordered completion has been described and elaborated in [1, 16] and [2].
Our version of the procedure is a slight simplification of the one in [1]. It
is worth pointing out that the critical pairs considered by the deduce rule
are only those stemming from two adjacent decreasing equational rewriting
steps. Such critical pairs shall in the following be called feasible. We shall
not need the full explanation of this procedure in our approach, so for details
we simply refer to the mentioned papers. We are however interested in the
following theorems:

Theorem 4. (Bachmair) Let t and u be two ground terms such that t =E u,
and let � be an ordering which can be extended to be total on ground terms.
Then fair ordered completion equipped with E and � will within finite time
create an E ′ such that t→�

E′

∗
s←�

E′

∗
u for some s.
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Theorem 5. (Bachmair) Let s′ and t′ be skolemized versions of s and t.
Furthermore let E ′ be E ∪ {eq(x, x) = True, eq(s′, t′) = False} such that
the functions eq, True, False and the skolem constants are not in E. Also
let � be an ordering total on ground terms such that both True and False
have no term less than it. Then s =E t if and only if ordered completion
with E′ and � creates the equation True = False.

Proof. (Sketch) Obviously s =E t iff s′ =E t′. Therefore True =E′ False
iff s =E t because the functions eq, True and False are not referred to in
E. The reverse direction follows immediately. For the forward direction
assume s′ =E t′. Ordered completion will by virtue of theorem 4 create an
equational rewrite proof between True and False within finite time. Since
these two terms are smaller than all the other ground terms, this proof will
have to consist of only one application of the equation True = False. 2

By virtue of theorem 5 ordered completion can be used as a semi decision
process for the equational validity problem.

7. Ordered completion wrt. a set of terms

The motivation for wanting to alter the ordered completion procedure is the
same as for standard completion. Even if ordered completion can be used as
a semi decision procedure for equational validity, it will most likely diverge
whenever the equational proof one is looking for does not exist.

In order to impose the same idea as we have presented for standard com-
pletion in this case, there are two problems to be solved. The first is that
when using ordered completion as a theorem prover, we are not primarily
looking for a rewrite proof between two terms. On the contrary what triggers
the success of the procedure is the existence of the equation True = False.
It is therefore not obvious how to find reasonable terms by which one can
limit the search space. The second problem is to make sure that the limited
search space is really finite.

We shall discuss the problem with the terms first. By studying the refu-
tational theorem prover described in the last section, we see that it is
based on the transformation of a proof between ground terms in a set
E′ = E ∪ {eq(x, x) = True, eq(s′, t′) = False} of equations of the form

True↔E′ eq(t, t)↔E, . . . ,↔E eq(s′, t′)↔E′ False

into a proof in the set E ′′ of the form

True↔E′′ False

where s′ = t′ is the equation we are trying to prove. We can further see that
in the part of the original proof which is marked by dots, all the reasoning
will be on the two immediate subterms of the term on the form eq(x, y).
This because E does not refer to the function eq.
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From the above it is likely that the “biggest” terms which we will have
to handle by the equations generated by ordered completion is of the same
order of size as eq(s′, t′). This term might, however, be twice as big as any
of the terms s′ and t′, which are the terms involved in the equation we are
proving.

By studying theorem 4, however, we find that we can simplify the ordered
completion/proof by refutation procedure. After all, s′ and t′ are skolem-
ized, and thus ground. Therefore we can remove from the method the two
equations defining eq, and the method reduces to equational rewriting of
s′ and t′ in the set of equations found by ordered completion. Theorem 4
guarantees that this method is also a semi decision procedure.

Now for the problem of limiting the search space. In standard completion
wrt. a set of terms we were able to limit the number of critical pairs to be
considered by refusing to orient equations into rewrite rules which could not
rewrite any of the terms we were studying. Here critical pairs are computed
between equations, so this approach will not be applicable.

We must in other words impose our restriction directly on the transition
rule for computing critical pairs. The transition rule Deduce will then look
like this:

Deduce (E) ` (E ∪ {s = t}) if ∃u.s↔E u↔E t
such that s �/ u and t�/ u and

∃ l ∈ T.l
�

; s ∧ l
�

; t

In words; there should be a term in T which is comparable to both terms
in the new equation. Delete and Simplify are left unchanged.

Lemma 8. If at any ordered completion state, the set of equations E in the
process is able to rewrite the term t, the set E ′ in any future state will also
be able to rewrite t.

Proof. A trivial extension of the proof of lemma 2. 2

Theorem 6. Let an Ordered Completion Procedure be restricted such that
the Deduce transition step is only performed between equations which are
irreducible. If there are only finitely many equations that can be added, the
procedure will terminate.

Proof. We shall first show that if a critical pair between two equations
e and e′ has been computed, one will never have produced two equations
identical to e and e′ later so that the same critical pairs will have to be
recomputed. The only way we could have another equation identical to
e is by adding it to E by the standard set union operation. But then of
course e itself must have disappeared from the set. The only way e can
have disappeared is by it being reduced by another equation. By virtue of
lemma 8 because it is identical to e, the new equation will also be reducible,
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thus by the assumption that Deduce is only applied to irreducible equations,
the new equation will not have its critical pairs computed.

Thus the above gives us that no critical pair is computed twice. Since
there are only finitely many possible equations, there are only finitely many
critical pairs between them.

Obviously we cannot have an infinite completion sequence with only a
finite number of Deduce steps, thus the procedure must terminate. 2

The above proof leans on the assumption that the procedure keeps track
of which equations it has computed critical pairs from in order not to do the
same operation again. This does not follow from the transition rules, but is
a natural requirement on any implementation.

We have an analogue to lemma 4 for ordered completion wrt. a set of
terms which is even stronger, because it does not introduce an additional
test. Sufficient convergence for equations is here the obvious extension of
that of rewrite rules.

Lemma 9. Let ordered completion wrt. the set T of skolemized (and there-
fore ground) terms, and with the term ordering � which is total on ground
terms, have terminated with E. Then E is sufficiently convergent for T .

Proof. Let E ′ be the set of critical pairs which has been disregarded as
the result of the additional comparability test in deduce.

Assume that the term t in T has more than one irreducible form in E.
Then let t′ be the least term derivable from t which has two irreducible forms.
The extended critical pair lemma of Bachmair [1] tells us that there must
exist a feasible critical pair between two equations in E that can rewrite t ′.
Because � is total on ground terms we know that by the way we chose t′,
the critical pair cannot have been added to E thus it must be in E ′. But
obviously t′ is comparable to both terms in this critical pair, thus so is t. So
the critical pair cannot be in E ′ either, and we have contradiction. 2

By the alternative transition rule we have presented, we are guaranteed to
have only finitely many equations to consider granted that the term ordering
has the property of no term having infinitely many terms less than it. This
transition rule for Deduce therefore gives us a heuristic for ruling out equa-
tions which do not seem to contribute to the proof. We have further proved
that this heuristic gives us a terminating ordered completion procedure.

8. Computational experiments

We shall in this section present some experiments on how our heuristics
perform. Since our aim is automatizing more than finding new and exotic
proofs, we have deliberately chosen the examples among the most common
ones in the literature. The examples are generated by a prototype imple-
mentation written in SIMULA. This implementation basically consists of the
completion based methods, whereas the induction steps had to be performed
by hand.
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Example 1. Consider the following simple theory for natural numbers
which is written in ABEL-like syntax [5]:

TYPE NAT ==
FUNCTIONS:

0: −→ NAT;
s: NAT −→ NAT;
add: NAT × NAT −→ NAT;
CONSTRUCTORS: 0, s
DEFINITIONS:

add(x, 0) = x
add(x, s(y)) = s(add(x, y))

END

We wanted to study how our heuristics behaved for the example of as-
sociativity of addition. We therefore started the procedure for proofs by
structural induction as described with the following singleton set P .

add(add(x, y), z) =I(DE) add(x, add(y, z))

Since DE here consists of the two equations in the type definition, the above
equation obviously has no equational proof in DE. We therefore used the
induction scheme on the variable z which transformed P into

add(add(x, y), 0) =I(DE0) add(x, add(y, 0))

add(add(x, y), s(Z)) =I(DEs) add(x, add(y, s(Z)))

Here DE0 = DE, and DEs = DE∪{add(add(x, y), Z) = add(x, add(y, Z))}.
The capital Z is used to denote the new constant introduced by the induction
scheme.

We then picked out the first equation in P , which is easily proven in DE
by rewriting. The second equation we tried to prove by standard comple-
tion wrt. a set of terms. This implied completing DE∪{add(add(x, y), Z) =
add(x, add(y, Z))} wrt. the terms add(add(x, y), s(Z)) and add(x, add(y,
s(Z))). We used lexicographic path ordering with the precedence add >
s > 0 on the function symbols. The finiteness restriction was imposed on
the ordering, with the constant k = 1.7.

Completion terminated with the following not complete set of rewrite rules.

add(x′, add(0, add(Z,Z))) → add(x′, add(Z,Z))

add(x, add(0, Z)) → add(x,Z)

add(add(x, y), Z) → add(x, add(y, Z))

add(x, 0) → x

add(x, s(y)) → s(add(x, y))

The above set is sufficiently convergent for the two terms we are consid-
ering. Furthermore it is strong enough to prove the equation.
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The above is the obvious induction example, where the correct induction
variable is considered immediately. If a computer was to pick the induction
variable, it would in general not be as clever. If we for example tried to
perform the above proof by doing induction first on x then on y and finally
on z, the structural induction strategy would still succeed. The set P would
be expanded into 8 equations, which could all be proved either by rewriting
in DE or by standard completion wrt. a set of terms.

On the way, however it would be looking for several equational proofs
which do not exist. It will e.g. be trying to prove

add(add(s(X), y), z) =I(DEs) add(s(X), add(y, z))

where DEs = DE ∪ {add(add(X, y), z) = add(X, add(y, z))}. Doing this
by standard completion wrt. a set of terms, the procedure will after some
time give up with the following not complete set of rules:

add(X, add(s(s(s(0))), z)) → add(s(s(s(X))), z)

add(s(s(s(add(X, y′)))), z) → add(X, add(s(s(s(y′))), z))

add(X, add(s(s(0)), z)) → add(s(s(X)), z)

add(s(s(add(X, y))), z) → add(X, add(s(s(y)), z))

add(X, add(s(add(0, z ′)), z)) → add(X, add(s(z ′), z))

add(X, add(s(0), z)) → add(s(X), z)

add(X, add(add(0, z), z ′ )) → add(X, add(z, z′))

add(s(add(X, y′)), z) → add(X, add(s(y′), z))

add(X, add(0, z)) → add(X, z)

add(add(X, y), z) → add(X, add(y, z))

add(x, s(y)) → s(add(x, y))

add(x, 0) → x

The 12 rewrite rules above were generated in 4-5 seconds on a SUN 3/60,
which indicates that the search space is small enough for the procedure to
be of practical interest.

Mark that the above proof could still be performed, even if we several
times chose the “wrong” induction variable. These choices only meant that
we had to look for some equational proofs which were not there. Because we
have a heuristic stopping any divergent completion process, all these “blind
alleys” terminated.

Example 2. For demonstrating ordered completion wrt. a set of terms, we
tried to prove an equally common property of addition, namely commuta-
tivity. Here we started with our P consisting of only one equation:

add(x, y) =I(DE) add(y, x)
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For this equation there is no equational proof, thus we had to perform an
induction step, giving us:

add(0, y) =I(DE0) add(y, 0)

add(s(X), y) =I(DEs) add(y, s(X))

In the same manner as previously we get DE0 = DE and DEs = DE ∪
{add(X, y) = add(y,X)}. We wanted to prove the second of these equations
by ordered completion wrt. a set of terms, therefore we had to add the
following induction hypothesis to DEs:

add(X, y) = add(y,X)

Remember that the uppercase symbols X, Y and Z denote constants. In
this case constants are either generated by the induction schema, or they are
skolem constants. Ordered completion was then started wrt. the skolemized
terms add(s(X), Y ) and add(Y, s(X)), and the process terminated with the
following set :

s(add(y,X)) = s(add(X, y))

s(add(y,X)) = add(s(y), X)

add(s(y), X) = s(add(X, y))

add(0, X) = X

add(X, y) = add(y,X)

add(x, 0) = x

add(x, s(y)) = s(add(x, y))

This set of equations is not able to prove add(X, s(Y )) = add(s(Y ), X),
thus we needed another level of induction. If left unrestricted, the algorithm
would not have terminated. With our heuristics it gave up in the state
described above after a couple of seconds, with the constant k = 1.5.

We then performed an induction step on both the equations in P , trans-
forming P into

add(0, 0) =I(DE00) add(0, 0)

add(0, s(Y )) =I(DEs0) add(s(Y ), 0)

add(s(X), 0) =I(DE0s) add(0, s(X))

add(s(X), s(Y )) =I(DEss) add(s(Y ), s(X))

Here DE00 = DE, DEs0 = DE ∪ {add(0, Y ) = add(Y, 0)}, DE0s =
DE ∪ {add(X, y) = add(y,X)} and DEss = DE ∪ {add(X, y) = add(y,X),
add(s(X), Y ) = add(Y, s(X))}. We wanted to prove last of these equations
by ordered completion, thus we had to add the following set of equations to
DEss for the duration of the subproof:

add(X, y) = add(y,X)

add(s(X), Y ) = add(Y, s(X))
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After having generated the following equations

s(add(y,X)) = s(add(X, y))

s(add(y,X)) = add(s(y), X)

add(s(y), X) = s(add(X, y))

add(0, X) = X

add(s(X), Y ) = s(add(Y,X))

add(X, y) = add(y,X)

add(x, 0) = x

add(x, s(y)) = s(add(x, y))

the system was able to prove add(s(X), s(Y )) = add(s(Y ), s(X)) by equa-
tional rewriting. The rest of the nontrivial equations in P are easily proven
the same way.

Example 3. Now let us focus on a variant of the formula for the sum of
the n first natural numbers

n∑

i=1

i =
n(n + 1)

2

This require that we extended the previous definition of the natural numbers
by the two functions mult and sum, defined like this:

mult(x, 0) = 0

mult(x, s(y)) = add(mult(x, y), x)

sum(0) = 0

sum(s(x)) = add(s(x), sum(x))

The equation we proved was

add(sum(x), sum(x)) = mult(x, s(x))

In order to do this we needed three lemmas, namely associativity and com-
mutativity of addition, which we already had proven, and the following
property of mult which may be proven the same way using associativity
and commutativity of addition as lemmas:

mult(s(x), y) = add(y,mult(x, y))

We denote by DE∗ the previous DE extended with the new definitions and
the lemmas.

The equation was not immediately provable, thus we had to perform an
induction step on the only variable x, giving the following proof obligations:

add(sum(0), sum(0)) =I(DE∗

0
) mult(0, s(0))

add(sum(s(X)), sum(s(X))) =I(DE∗
s ) mult(s(X), s(s(X)))
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Here DE∗
0 = DE∗ and DE∗

s = DE∗ ∪ {add(sum(X), sum(X)) =
add(X,mult(X,X))}.

The first of these equations was easily proven by rewriting. For the sec-
ond we tried ordered completion wrt. the set {add(sum(s(X)), sum(s(X))),
mult(s(X), s(s(X)))} of terms. After the process had generated the fol-
lowing set of equations, the last equation was also provable by equational
rewriting.

add(s(y), x) = s(add(x, y))

add(0, x) = x

add(z, add(y, x)) = add(x, add(y, z))

add(x, add(z, y)) = add(z, add(x, y))

add(sum(X), sum(X)) = add(X,mult(X,X))

mult(x, s(y)) = add(x,mult(x, y))

mult(s(x), y) = add(y,mult(x, y))

add(x, y) = add(y, x)

add(x, add(y, z)) = add(add(x, y), z)

add(x, s(y)) = s(add(x, y))

sum(s(x)) = add(s(x), sum(x))

add(x, 0) = x

mult(x, 0) = 0

sum(0) = 0

Mark that this proof would have been significantly simpler if we had used AC
(associative and commutative) completion and rewriting, and our method
extends trivially to AC theories. The proof was still performable by only
using AC-lemmas, and thus illustrates the strength of completion based
methods in proofs by structural induction when there are many lemmas
destroying the initial convergence in DE.

9. Discussion

We have in this paper seen how one, by a slight change in two different com-
pletion processes, can make sure that completion will terminate when one
knows what terms one actually wants to rewrite in the system. The method
is meant for use in the equational part of proofs by structural induction.
The price the method has to pay for its guarantee of termination is that it
might terminate with fail, when a continuation of the process would lead to
a convergent set of rules. The benefit of the process is that it enables us to
perform proofs by structural induction in a completely automatic manner.

Whenever a method has been developed it is good science to include in
the presentation examples where the method did not succeed in order to
indicate the limit of the work. Here such an example would be a proof by
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structural induction which does exist, but which the method was not able
to find. Since the method in principle can simulate any inductive proof-tree,
and we base the method on a semi-decision procedure for equational proofs,
such examples are not apparent in this case. For any such proof it is most
often simply a question of tuning the constant k properly. The problem of
tuning this constant is perhaps the most critical part of the method. We
have indicated that values between 1.5 and 2 seems to work fine for most
examples, but we need more knowledge on the tuning of k in order to be
able to handle really complex proofs in reasonable time.

Still we think that the strength of the method is not not in finding big
and complex proofs. It is our experience that when proving the correctness
of programs, the real difficulty lies in the vast mass of trivial proofs that
have to be performed. An automatization of structural induction for this
purpose should therefore rather aim at being able to handle simple proofs
completely automatically than at being able to find really big and complex
proofs.
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