
Nordic Journal of Computing 1(1994), 157–171.

COMPLEXITY OF DOMINATION-TYPE
PROBLEMS IN GRAPHS∗

JAN ARNE TELLE
Department of Computer and Information Science
University of Oregon, Eugene, Oregon 97403, USA

telle@cs.uoregon.edu

Abstract. Many graph parameters are the optimal value of an objective function

over selected subsets S of vertices with some constraint on how many selected neigh-

bors vertices in S, and vertices not in S, can have. Classic examples are minimum

dominating set and maximum independent set. We give a characterization of these

graph parameters that unifies their definitions, facilitates their common algorithmic

treatment and allows for their uniform complexity classification. This characteriza-

tion provides the basis for a taxonomy of domination-type and independence-type

problems. We investigate the computational complexity of problems within this

taxonomy, identify classes of NP -complete problems and classes of problems solv-

able in polynomial time.

CR Classification: F.2.2, G.2.2

1. Introduction

If every vertex in a selected subset S of vertices of a graph has zero selected
neighbors then S is an independent set, and similarly if every vertex not in S
has at least one selected neighbor then S is a dominating set. This suggests
a common characterization of independent sets and dominating sets based
on the constraints imposed on the number of selected neighbors the vertices
in S, and vertices not in S, can have. As we show in this paper, a large
collection of well-known vertex subset properties admit such a characteriza-
tion. For these vertex subset properties we consider the graph parameters
definable by optimization over, or existence of, vertex subsets having the
property. From the standard definitions of these parameters it is not ob-
vious that they are related as described here. This characterization thus
facilitates the common algorithmic treatment of the problems computing
these parameters. In recent years, a variety of domination-type parameters
in graphs have been introduced, and the number of papers devoted to this
topic is steadily increasing [11, 12].

∗ This work supported by The Norwegian Research Council for Science and Humanities
and by NSF grant CCR9213439.

Received July 1993. Accepted December 1993.

158 JAN ARNE TELLE

In the next section, we present our characterization and show that many
of the graph parameters found in the literature admit such a characteri-
zation. We give a table cataloging the computational complexity of com-
puting these parameters. In section 3, we investigate the computational
complexity of further problems admitting the characterization. We identify
several classes of NP -complete and of polynomial-time solvable problems.
The NP -completeness results identify properties with interesting features,
such as when both maximum and minimum versions are NP -complete (in-
dependent dominating sets), or when merely deciding whether a graph has a
vertex subset with the property is NP -complete (perfect codes). A natural
by-product of these results is the introduction of several new domination-
type parameters in graphs.

2. Characterization of Domination-type Problems

We use standard graph terminology [3]. For a vertex v ∈ V (G) of a graph G,
let NG(v) = {u : (u, v) ∈ E(G)} be the set of neighbors of v and degG(v) =
|NG(v)|. For S ⊆ V (G) let G[S] denote the graph induced in G by S
and let the symbols σ and ρ indicate membership in S and membership in
V (G) \ S = {v ∈ V (G) : v 6∈ S}, respectively.

Definition 1. Given a graph G and a set S ⊆ V (G) of selected vertices

◦ The state of a vertex v ∈ V (G) is

stateS(v)
df
=

{

ρi if v 6∈ S and |NG(v) ∩ S| = i
σi if v ∈ S and |NG(v) ∩ S| = i

◦ Define syntactic abbreviations

ρ≤i ≡ ρ0, ρ1, ..., ρi ρ≥i ≡ ρi, ρi+1, ...
σ≤i ≡ σ0, σ1, ..., σi σ≥i ≡ σi, σi+1, ...

Thus ρ≥i and σ≥i each represents an infinite set of states. Mnemonically,
σ represents a vertex selected for S and ρ a vertex rejected from S, with the
subscript indicating the number of neighbors the vertex has in S. A variety
of vertex subset properties can be defined by allowing only a specific set L as
legal states of vertices. For example, S is a dominating set if state ρ0 is not
allowed for any vertex, giving the legal states L = {ρ≥1, σ≥0}. Optimization
problems over these sets often maximize or minimize the cardinality of the
set of vertices with states in a given M ⊆ L. For instance, in the minimum
dominating set problem, M = {σ≥0}.

COMPLEXITY OF DOMINATION-TYPE PROBLEMS IN GRAPHS 159

Our notation Standard terminology ∃[L] max[L] min[L]
[ρ≥0, σ0]-set Independent set P NPC P
[ρ≥1, σ≥0]-set Dominating set P P NPC
[ρ≤1, σ0]-set Strong Stable set or 2-Packing P NPC P
[ρ1, σ0]-set Efficient Dominating set or Perfect Code NPC NPC NPC
[ρ≥1, σ0]-set Independent Dominating set P NPC NPC
[ρ1, σ≥0]-set Perfect Dominating set P P NPC
[ρ≥1, σ≥1]-set Total Dominating set P P NPC
[ρ1, σ1]-set Total Perfect Dominating set NPC NPC NPC
[ρ≤1, σ≥0]-set Nearly Perfect set P P P
[ρ≤1, σ≤1]-set Total Nearly Perfect set P NPC P
[ρ1, σ≤1]-set Weakly Perfect Dominating set NPC NPC NPC
[ρ≥0, σ≤q]-set Induced Bounded-Degree subgraph (q ≥ 0) P NPC P
[ρ≥q, σ≥0]-set q-Dominating set (q ≥ 1) P P NPC
[ρ≥0, σq]-set Induced q-Regular subgraph (q ≥ 0) P NPC P

Table I: Some vertex subset properties and the complexity of derived problems.

Our notation Standard terminology Complexity
∃[ρ1, σ0] Perfect Code Problem NPC
min[ρ≥1, σ≥0] Minimum Dominating Set Problem NPC
max[ρ≥0, σ0] Maximum Independent Set Problem NPC
min{ρ≥0}[ρ≥0, σ0] Minimum Vertex Cover Problem NPC
max{ρ1}[ρ≥0, σ≥0] Efficiency Problem NPC

Table II: Examples of graph problems.

Definition 2. Given sets M and L of vertex states and a graph G:

◦ S ⊆ V (G) is an [L]-set if ∀v ∈ V (G) : stateS(v) ∈ L

◦ ∃[L] is the problem deciding whether there exists any [L]-set S ⊆ V (G)

◦ minM [L] (or maxM [L]) is the problem minimizing (or maximizing)

|{v : stateS(v) ∈ M}| over all [L]-sets S ⊆ V (G)

◦ min[L] (or max[L]) is shorthand for minM [L] (or maxM [L]) when
M consists of all σ-states in L, in effect optimizing the cardinality of
the selected set of vertices.

Thus, a dominating set is a [ρ≥1, σ≥0]-set, with the square brackets im-
plying the set notation. Table I shows some of the classical vertex subset
properties and also the complexity of derived problems, with P denoting
Polynomial time and NPC denoting NP -Complete. Most of these complex-
ity results are old [10, 5, 8, 1, 6, 9, 4, 13], and others are among the results
given in the next section. Properties traditionally defined using closed neigh-
borhoods are easily captured by the characterization. Table II shows exam-
ples of graph problems [2, 18] expressed using the characterization. Note
that complementary problems, e.g. Maximum Independent Set and Mini-
mum Vertex Cover, are both expressible. Table I can be used as a quick
reference guide to the exact definitions of the various properties represented

160 JAN ARNE TELLE

and to the complexity of the associated problems. The characterization may
also be useful when introducing new parameters.

3. Complexity Results

We are mainly interested in classifying problems admitting the given charac-
terization as NP -complete or as solvable in polynomial time. The objective
functions most studied in the past involve minimizing or maximizing the
cardinality of the set of selected vertices, and for each entry in Table I, ex-
cept Nearly Perfect Sets, there is at least one NP -complete problem related
to such a parameter. In this paper we continue this trend, and the optimiza-
tion problems we concentrate on are of the form min[L] and max[L]. For
certain subset properties, such as Perfect Code, it is well known that even
deciding whether a graph has any such set is an NP -complete problem. In
the following Lemma we observe several consequences of NP -completeness
of an ∃[L] problem.

Lemma 1. If ∃[L] is NP -complete on a class of graphs C then any decision
problems of the form max[L], min[L], maxM [L], minM [L] or maxL[Q],
L ⊆ Q are NP -complete on C. Conversely, if any of the latter problems
have a polynomial time algorithm, then so does ∃[L].

Proof. The decision version of maxM [L] takes a graph G and an integer
k as input, and asks if G has an [L]-set S with |{v : stateS(v) ∈ M}| ≥ k.
Thus, with an algorithm for the decision version of maxM [L], we can decide
∃[L] by a single call of that algorithm providing the integer k = 0 as the
second part of the input. With an algorithm for minM [L] or maxL[Q]
problems we decide ∃[L] using k = |V (G)| for the input graph G as the
second part of the input. 2

In particular, Theorems 1,2,3,4 and 7 can each be combined with Lemma 1
to yield corollaries of this kind. We will not state these corollaries explic-
itly. We observe from Table I that vertex subset properties attracting most
interest in the past are characterizable by two syntactic states (using the
abbreviations) in which vertices have zero, one, at least zero, or at least one
selected neighbors. Our focus in this paper continues this trend.

We show NP -completeness of several infinite classes of problems by re-
ducing from the NP -complete problem Exact 3-Cover.

Definition 3. Exact 3-Cover (X3C)

Instance: Set U and T ⊆
(

U
3

)

.
Question: ∃T ′ ⊆ T , where T ′ a partition of U?

We introduce each NP -completeness result by way of a short comparison
with the complexity of some related problem from Table I. In contrast
to the NP -complete problem of deciding existence of [ρ1, σ0]-sets (Perfect
Codes) our first result shows the NP -completeness of ∃[L] problems with L
containing an infinite number of legal states.

COMPLEXITY OF DOMINATION-TYPE PROBLEMS IN GRAPHS 161

1..uk

x_u

K_uk

1..vk

K_vk
K_wk

1..wk

x_v
x_w

B_i

A_i...

...
1 2 q

1..q−1 1..q−1 1..q−1

}

}
u_i v_i w_i

Fig. 1: Gadgets Gi, Gu, Gv, Gw for the triple ti = {u, v, w} with q ≥ 3.

Theorem 1. The decision problems ∃[ρ≥q, σ0] are NP -complete for all q ∈
{2, 3, ...}.

Proof. We give a reduction from X3C to ∃[ρ≥q, σ0] for any q ∈ {2, 3, ...}.
Given an instance (U, T) of X3C we construct a graph G such that ∃T ′ ⊆ T
with T ′ a partition of U if and only if G has a [ρ≥q, σ0]-set S. Let T =
{t1, ..., t|T |}. For each u ∈ U , let Tu = {t ∈ T : u ∈ t} = {tu1, tu2, ..., tuk} be
the triples containing u. For each u ∈ U the graph G will contain a subgraph
Gu consisting of a complete graph on vertices {xu, uu1, uu2, ..., uuk} and q−1
leaves Lu, each adjacent only to xu. For each ti ∈ T with ti = {u, v, w}
we construct a subgraph Gi sharing the vertices ui, vi, wi with Gu, Gv , Gw,
respectively, as follows: (case q = 2) Gi is a 6-cycle on vertices Ai ∪ Bi

such that Ai = {ui, vi, wi} are mutually non-adjacent; (case q ≥ 3) Gi is a
complete bipartite graph Kq,q with partition (Ai, Bi) and with {ui, vi, wi} ⊆
Ai. This completes the description of G, see Figure 1.

Let S be a [ρ≥q, σ0]-set of G. Note that every leaf in Lu must be in S, since
ρ0 and ρ1 are not legal vertex states. In turn, their common neighbor xu

cannot be in S since σ1 is not legal. Since |Lu| = q − 1 and ρq−1 is not legal
at least one other neighbor of xu, besides its Lu-neighbors, must be in S, i.e.
|{uu1, uu2, ..., uuk} ∩S| ≥ 1. But {uu1, uu2, ..., uuk} induce a complete graph
in G, and σ0 is the only legal σ-state, so exactly one of these vertices must
be in S. Let ui ∈ S with ti = {u, v, w}. We would want ti to cover u, v, w
and show that indeed we must have {ui, vi, wi} ⊆ S. Note that these three
vertices are all in the same partition Ai of the bipartite graph Gi. We argue

162 JAN ARNE TELLE

u_u1

u_u2

u_u3

u_i v_i

w_i

u_i v_i

w_i

not in S

in S
either

x_u

Fig. 2: NP -completeness of Dominating Induced Matchings. Left: Gadget Gu with
uk = 3 and uu2 ∈ S. Middle: Gadget Gi for triple ti = {u, v, w} and ui, vi, wi ∈ S. Right:
The only other possibility for Gi is ui, vi, wi 6∈ S.

first the case q ≥ 3. No vertex in partition Bi can be in S since already
ui ∈ S and σ0 is the only legal σ-state. Moreover, since the neighborhood
of any vertex in Bi is exactly Ai and |Ai| = q we must have Ai ⊆ S since
ρk is not legal for any k < q. If q = 2 we have Gi a cycle and ui ∈ S again
forces Ai ⊆ S. With this in mind, we have that T ′ = {ti : Ai ⊆ S} must be
an exact 3-cover of U .

For the other direction, if T ′ ⊆ T is an exact 3-cover of U , it is easy to check
that S = {v : v ∈ Lu ∧u ∈ U}∪{v : v ∈ Ai ∧ ti ∈ T ′}∪{v : v ∈ Bi ∧ ti 6∈ T ′}
is a [ρ≥q, σ0]-set of G. NP -completeness of the ∃[ρ≥q, σ0] problem follows,
since in polynomial time it is easy to verify a [ρ≥q, σ0]-set and compute the
transformation. 2

In contrast to [ρ≥1, σ0]-sets (Independent Dominating sets) which are easily
found using a greedy algorithm, our next result shows that [ρ≥1, σ1]-sets,
which we call Dominating Induced Matchings, are difficult to find.

Theorem 2. The decision problem ∃[ρ≥1, σ1] (Dominating Induced Match-
ing) is NP -complete.

Proof. We again reduce from X3C and adopt all the notation from
the proof of Theorem 1, constructing gadgets Gu and Gi sharing a vertex
ui if u ∈ ti ∈ T . Gu will consist of a complete graph on the vertices
{xu, uu1, uu2, ..., uuk} and for each pair ui, uj , i 6= j we add three new vertices
and edges forming a 5-path from ui through the new vertices to uj . See
Figure 2 which also shows the gadget Gi for ti = {u, v, w}. Let S be a
[ρ≥1, σ1]-set in the graph G thus constructed from an instance of X3C. We
note right away that for any any vertex v ∈ V (G) we have N(v) ∩ S 6= ∅
since S is a dominating set and v ∈ S ⇔ state(v) = σ1 so a neighbor of

COMPLEXITY OF DOMINATION-TYPE PROBLEMS IN GRAPHS 163

v must be in S. Employing this argument to xu of the gadget Gu shows
that |{uu1, uu2, ..., uuk} ∩ S| ≥ 1. Moreover, we cannot have ui, uj ∈ S for
i 6= j since the middle vertex on the 5-path from ui to uj would have no
S-neighbors. Hence, |{uu1, uu2, ..., uuk} ∩ S| = 1. The gadget Gi for a triple
ti = {u, v, w} forces either ui, vi, wi ∈ S or ui, vi, wi 6∈ S, see Figure 2. Thus,
if we let T ′ be the triples ti which have the shared vertices of Gi selected
then T ′ must be an Exact 3-Cover of U . For the other direction of the proof,
it is not hard to see from Figure 2 that an Exact 3-Cover of the instance
(U, T) likewise gives rise to a [ρ≥1, σ1]-set in G. 2

The ∃[L] problem has trivially the affirmative answer if ρ0 ∈ L. If L
contains no ρ-states the ∃[L]-problem on G is solved by checking whether
for each vertex v we have σdegG(v) ∈ L. If L contains no σ-states the ∃[L]-
problem on G is solved by checking whether ρ0 ∈ L. In light of this, our
next theorem gives a complete characterization, up to P vs. NP , of the
complexity of ∃[L] problems when L has a finite number of states. The
reduction given is a generalization of a reduction used in [14].

Theorem 3. The ∃[L] problem is NP -complete if ρ0 6∈ L and L contains a
finite positive number of both ρ-states and σ-states.

Proof. Let L = {ρp1
, ρp2

, ..., ρpm , σq1
, σq2

, ..., σqn}, where n,m ≥ 1 and
pi, qi non-negative integers satisfying 0 < p1 < p2 < ... < pm and q1 < q2 <
... < qn. We reduce from X3C. Given an instance (U, T) of X3C we want
a graph G such that G has an [L]-set S ⊆ V (G) if and only if ∃T ′ ⊆ T ,
a partition of U . The gadget for ui ∈ U is simply the vertex ui, which
will be shared by gadgets Gt for all triples t with ui ∈ t ∈ T . The graph
G will be defined by describing the gadgets Gt, one for each t ∈ T . For
all t = {ut1, ut2, ut3} ∈ T we construct a graph Gt with private vertices Pt

and shared vertices ut1, ut2, ut3, i.e. V (Gt) = Pt ∪ {ut1, ut2, ut3}, having the
property:

In the graph Gt, all S ⊆ V (Gt) that assign ∀v ∈ Pt a state stateS(v) ∈ L
assigns to ut1, ut2, ut3 either

(i) stateS(ut1) = stateS(ut2) = stateS(ut3) = ρ0 or
(ii) stateS(ut1) = stateS(ut2) = stateS(ut3) = ρpm .
Moreover, sets of type (i) and sets of type (ii) should exist for Gt.

Assuming we can construct such Gt, the theorem will follow:
Claim1: G = ∪t∈T Gt has [L]-set S ⊆ V (G) ⇔ ∃T ′ ⊆ T , a partition of U .
(⇐:) Note the parts Gt of the graph G share only the vertices representing

U . For each t ∈ T ′ choose a set St ⊆ V (Gt) of type (ii) for Gt. For each
t 6∈ T ′ choose a set St ⊆ V (Gt) of type (i) for Gt. Let S = ∪t∈T St.

(⇒:) For any [L]-set S of G we must have S ∩ V (Gt) be either a set of
type (i) or a set of type (ii) for Gt. This since only Gt contains the vertices
Pt, and also {w : w ∈ N(v) ∧ v ∈ Pt} ⊆ V (Gt). Since ρ0 6∈ L, and since
a vertex u 6∈ S can have at most pm neighbors in S, we must have that
T ′ = {t : V (Gt) ∩ S is a set of type (ii) for Gt} is a partition of U .

164 JAN ARNE TELLE

B A

Z

X Y

u_t1

u_t2

u_t3

c

Fig. 3: A rough sketch of the components of Gt where the absence of a line between two
components reflects the absence of an edge in Gt connecting any two vertices from those
two components.

Construction of Gt: Let V (Gt) = A∪B∪X ∪Y ∪Z ∪{c}∪{ut1, ut2, ut3}.
See Figure 3 for a rough sketch of how these components are connected
together. As a preview, we mention that {A ∪ Y } will be a selected set
of type (ii) and {B ∪ Y } a selected set of type (i) for Gt. X and Y will
be such that a selected set must contain all vertices from Y but cannot
contain any vertex from X. The vertex c, which cannot be selected, will
be connected to enough vertices of Y so that none of its other neighbors,
namely Z ∪ {ut1, ut2, ut3}, can be selected. The vertices Z will ensure that
either all or none of the neighbors of utk are selected.

Let A = A1
.
∪ ...∪Apm and B = B1∪...∪Bpm with Ai = {ai

1, ..., a
i
q1+1} and

Bi = {bi
1, ..., b

i
q1+1}, and let G[Ai], G[Bi],∀i be complete graphs on q1 + 1

vertices, with no other edges between As or between Bs. Edges connecting
vertices of A with vertices of B are restricted to (ai

k, b
j
k),∀i, j, k. Edges

incident with {ut1, ut2, ut3} in Gt are restricted to (c, utk) and (ai
1, utk),∀i, k.

We describe edges between X-vertices and Y -vertices. Let β = max{pm, qn}

> 0 and α = d β
(p1(qn+1))e > 0. Let Y = Y 1 ∪ ...∪ Y p1α and G[Y i],∀i, a com-

plete graph on qn +1 vertices. Let X = {x1, x2, ..., x(qn+1)(β+1)α} with G[X]
containing no edges. We add edges connecting X-vertices with Y -vertices
such that each vertex of X gets p1 neighbors in Y and each vertex of Y gets
β + 1 neighbors in X. This can be done since |X| = α(qn + 1)(β + 1) and
|Y | = α(qn + 1)p1.

The vertex c is connected to pm vertices of Y , note |Y | ≥ pm > 0, and c
is also connected to every vertex of Z ∪ {ut1, ut2, ut3}.

It remains to describe the vertices and edges contributed by Z. Let Z =
Z1 ∪ Z2 ∪ Z3 ∪ {z′} with Zk = {zk

1 , ..., zk
pm

} for k ∈ {1, 2, 3}. The vertex

z1
i ,∀i, is connected to a1

1 and to bi
1 and also has p1 − 1 neighbors in Y . The

vertex z2
i ,∀i, is connected to a1

1 and to bi
1 and also has pm − 1 neighbors

in Y . The vertex z3
i ,∀i, is connected to ai

1 and to bi
1 and also has p1 − 1

neighbors in Y . The vertex z ′ is connected to {a1
1, ..., a

pm

1 , b1
1, ..., b

pm

1 }. This

COMPLEXITY OF DOMINATION-TYPE PROBLEMS IN GRAPHS 165

completes the description of Gt.

Claim2: A ∪ Y is a set of type (ii) and B ∪ Y is a set of type (i) for Gt.
Proof of claim: We consider A∪Y first. G[A∪Y] is a collection of pm copies

of Kq1+1 for the As and p1α copies of Kqn+1 for the Y s, so stateA∪Y (a) =
σq1

,∀a ∈ A and stateA∪Y (y) = σqm ,∀y ∈ Y . Moreover, ∀x ∈ X we have
N(x) ⊆ Y and |N(x)| = p1 so stateA∪Y (x) = ρp1

. For the vertex c we have
N(c) ⊆ Y ∪ Z ∪ {ut1, ut2, ut3} and |N(c) ∩ Y | = pm, so stateA∪Y (c) = ρpm .
The vertices z ∈ Z1 ∪Z3 have |N(z)∩{A∪Y }| = p1, so stateA∪Y (z) = ρp1

.
Similarly, ∀z ∈ Z2 we have |N(z) ∩ {A ∪ Y }| = pm, so stateA∪Y (z) = ρpm .
The vertex z′ has N(z′) ⊆ A∪B and |N(z)∩A| = pm, so stateA∪Y (z′) = ρpm .
So far, the argument for B ∪ Y being a set of type (i) can be obtained from
the above by replacing B for A and vice-versa.

Since ∀b ∈ B, N(b) ⊆ A∪Z and |N(b)∩A| = pm, we have stateA∪Y (b) =
ρpm . Similarly, ∀a ∈ A we have N(a) ⊆ B ∪ Z ∪ {ut1, ut2, ut3} and |N(a) ∩
B| = pm, so stateB∪Y (a) = ρpm .

What remains is the argument for the vertices {ut1, ut2, ut3}. We have
for k ∈ {1, 2, 3}, N(utk) = {a1

1, ..., a
pm

1 }, so stateA∪Y (utk) = ρpm and
stateB∪Y (utk) = ρ0 so that A ∪ Y is a set of type (ii) and B ∪ Y is a
set of type (i), completing the proof of the claim.

Claim3: For any St ⊆ V (Gt) which assigns ∀w ∈ V (Gt) \ {ut1, ut2, ut3} a
state stateSt(w) ∈ L, we have Y ⊆ St and also (Z ∪ {ut1, ut2, ut3})∩St = ∅.

Proof of claim: ∀y ∈ Y we have |N(y)∩X| = β+1 > max{pm, qn}, so ∃x ∈
N(y) : x 6∈ St. But |N(x) ∩ Y | = p1, so stateSt(x) = ρp1

and y ∈ St. Since
|N(y) ∩ Y | = qn we must have stateSt(y) = σqn . Since |N(c) ∩ Y | = pm we
must have stateSt(c) = ρpm and (Z∪{ut1, ut2, ut3})∩St = (N(c)\Y)∩St = ∅,
completing the proof of the claim.

Claim4: For any St ⊆ V (Gt) which assigns ∀w ∈ V (Gt) \ {ut1, ut2, ut3} a
state stateSt(w) ∈ L, we have either ai

1 ∈ St, 1 ≤ i ≤ pm or ai
1 6∈ St, 1 ≤ i ≤

pm.
Proof of claim: From Claim3 we have Z ∩ St = ∅ and Y ⊆ St. In par-

ticular, stateSt(z
1
i) ∈ {ρp1

, ρp1+1}, similarly stateSt(z
2
i) ∈ {ρpm−1, ρpm} and

stateSt(z
3
i) ∈ {ρp1

, ρp1+1}. In turn, we consider the two cases a1
1 ∈ St and

a1
1 6∈ St. a1

1 ∈ St gives stateSt(z
2
i) = ρpm ,∀i, so bi

1 6∈ St,∀i. This in turn gives
stateSt(z

3
i) = ρp1

so ai
1 ∈ St,∀i, completing the first case. a1

1 6∈ St implies
bi
1 ∈ St,∀i so that stateSt(z

1
i) = ρp1

,∀i. This in turn gives stateSt(z
′) = ρpm

so ai
1 6∈ St,∀i, completing the proof of the claim.

Each of {ut1, ut2, ut3} is adjacent to exactly {a1
1, ..., a

pm

1 } and by Claim3
cannot be in St. Hence, Claim4 actually shows that any St ⊆ V (Gt) which
assigns ∀w ∈ V (Gt) \ {ut1, ut2, ut3} a state stateSt(w) ∈ L has either

(i) stateSt(ut1) = stateSt(ut2) = stateSt(ut3) = ρ0, or
(ii) stateSt(ut1) = stateSt(ut2) = stateSt(ut3) = ρpm .
Thus Gt has the claimed properties and the theorem follows. 2

As our next theorem shows, some of these decision problems are NP -
complete even for very restricted classes of graphs. The reduction we use

166 JAN ARNE TELLE

is a simple special case of the one just given, and uses the NP -complete
problem Planar 3-Dimensional Matching (P3DM). A similar reduction is
used in [8].

Definition 4. 3-Dimensional Matching (3DM)
Instance: Disjoint sets U1, U2, U3 with U = U1 ∪ U2 ∪ U3 and T ⊆ U1 ×

U2 × U3.
Question: ∃T ′ ⊆ T , where T ′ a partition of U?

With an instance I of 3DM, we associate the bipartite graph GI where
V (GI) = U ∪ T and E(GI) = {(u, t) : u ∈ U ∧ u ∈ t ∈ T}. In [7] it is
shown that the Planar 3DM problem, 3DM restricted to instances where GI

is planar, is still NP -complete.

Theorem 4. The problem of deciding whether a planar bipartite graph of
maximum degree three has any [ρ1, σ1]-set (Total Perfect Dominating Set)
is NP -complete.

Proof. Given an instance I of P3DM, we construct a graph G having
a [ρ1, σ1]-set if and only if ∃T ′ ⊆ T , a partition of U . Let G be the graph
GI augmented by adding, for each t ∈ T , the vertices at and bt, and edges
connecting at to both t and bt. Since this reduction does not distinguish
between the sets U1, U2, U3, the instance I can be viewed as an instance of
X3C, and the argument that G has a [ρ1, σ1]-set if and only if ∃T ′ ⊆ T , a
partition of U , is left out since it is in easy analogy with the argument used
for the previous theorem.

Note that GI and G are both planar bipartite graphs. We next show an
easy transformation of a graph G having a vertex of degree larger than three
to a graph G′ with the following properties:

(i) if G planar and bipartite then G′ planar and bipartite,
(ii) Σ{v:degG(v)≥4}degG(v) > Σ{v:degG′ (v)≥4}degG′(v)

(iii) G has a [ρ1, σ1]-set if and only if G′ has a [ρ1, σ1]-set.
Hence, applying such a polytime transformation repeatedly, starting with

G, until the resulting graph has no vertices of degree larger than three, yields
a graph proving the theorem.

We define the transformation by describing the resulting graph G′. Let
v be a distinguished vertex of G with NG(v) = {v1, v2, ..., vk} and k ≥ 4.
Let G′ have vertices V (G′) = V (G)∪{w, x, y, z} and edges E(G′) = E(G) \
{(v1, v), (v2, v)} ∪ {(v1, w), (v2, w), (w, x), (x, y), (y, z), (z, v)}. See Figure 4.
Note the transformation is local, with changes only to the neighborhoods of
v1, v2 and v.

We prove the stated properties of the transformation:
(i) Planarity is obviously preserved. If A,B is an appropriate bipartition

of V (G) then w.l.o.g. we must have v ∈ A, N(v) ⊆ B so that A ∪ {w, y}
and B ∪ {x, z} forms an appropriate bipartition of V (G′). (ii) The new
vertices all have degree less than 4, whereas the degree of v decreases to

COMPLEXITY OF DOMINATION-TYPE PROBLEMS IN GRAPHS 167

...

v
v_1

v_2

v_3

v_4

v_k

G

...
vv_1

v_2

v_3

v_4

v_k

w

x
y

z

G’

Fig. 4: Local transformation of G at vertex v to the graph G′, used to construct a planar
bipartite graph of maximum degree 3

k − 1. (iii) Let S and S ′ be [ρ1, σ1]-sets in G and G′, respectively. Note
that {w, x, y, z, v} induces a 5-path in G′ so there are 4 possibilities for
{w, x, y, z, v}∩S ′, namely {y, z}, {w, z, v}, {w, x, v} and {x, y}. We similarly
split the possibilities for choice of S into 4 classes, namely
|{v1, v2} ∩ S| = 1 ∧ v 6∈ S ∧ |{v3, ..., vk} ∩ S| = 0,
|{v1, v2} ∩ S| = 1 ∧ v ∈ S ∧ |{v3, ..., vk} ∩ S| = 0,
|{v1, v2} ∩ S| = 0 ∧ v ∈ S ∧ |{v3, ..., vk} ∩ S| = 1,
|{v1, v2} ∩ S| = 0 ∧ v 6∈ S ∧ |{v3, ..., vk} ∩ S| = 1.
It is easy to check that the 4 possibilities for choice of S ′ have, in the order

given, characterizations in terms of effect on v and N(v) which are identical
to those just given for S, and indeed property (iii) holds. 2

To our knowledge, the complexity of problems defined over Total Perfect
Dominating Sets in graphs, had not been studied previously [5].

Combining Lemma 1 with Theorem 4 gives the NP -completeness on pla-
nar bipartite graphs of maximum degree three of the problem max{ρ1, σ1}
[ρ≥0, σ≥0], which we call Total Efficiency. This problem arises in communi-
cation networks, if we assume that a communication round has two time-
disjoint phases, send and receive, and that a processor receives a message
whenever it has a single sending neighbor. The maximum number of pro-
cessing elements that can receive a message in one communication round is
the Total Efficiency of the graph underlying the network topology.

The following strong result is due to Kratochv́ıl.

Theorem 5. [14] The problem of deciding whether a planar 3-regular graph
has a [ρ1, σ0]-set (perfect code) is NP -complete.

We state the implications of this result for some other problems admitting
our characterization.

Corollary 1. Any decision problem of the form min[L] with ρ0 6∈ L and
{ρ1, σ0} ⊆ L is NP -complete on planar 3-regular graphs.

168 JAN ARNE TELLE

u v

u_1

u_2

v_1

v_2

Fig. 5: Given G on the left, the reduction constructs G′ on the right

Proof. Let G be a planar 3-regular graph. We show that G has a perfect
code if and only if the value of min[L] on G is |V (G)|/4. Since every vertex
of G has degree 3, a perfect code of G has cardinality |V (G)|/4 and is clearly
a dominating set. Moreover, a dominating set of G which is not a perfect
code will have more than |V (G)|/4 vertices. An [L]-set in G is a dominating
set since ρ0 is not legal and it could be a perfect code since ρ1 and σ0 are
legal. The corollary follows. 2

While every graph has an Independent Dominating Set ([ρ≥1, σ0]-set), that
can be easily found by a greedy algorithm, it is well-known that both mini-
mizing and maximizing the cardinality of such a set is NP -hard. Our next
result shows another vertex subset property with this complexity classifica-
tion.

Theorem 6. The decision problems min[ρ≥1, σ≤1] and max[ρ≥1, σ≤1] are
both NP -complete, while ∃[ρ≥1, σ≤1] is easy.

Proof. Any graph has a [ρ≥1, σ≤1]-set, take for example a [ρ≥1, σ0]-
set. NP -completeness of min[ρ≥1, σ≤1] follows from Corollary 1. We show
NP -completeness of max[ρ≥1, σ≤1] by reduction from max[ρ≥1, σ0]. Given
a graph G, construct the graph G′ with V (G′) = {u1, u2 : u ∈ V (G)} and
E(G′) = {(u1, u2) : u ∈ V (G)} ∪ {(u1, v1), (u2, v2), (u1, v2), (u2, v1) :
(u, v) ∈ E(G)}, see Figure 5. Let S be a maximum-size [ρ≥1, σ0]-set in G
and let S′ be a maximum-size [ρ≥1, σ≤1]-set in G′. We show that 2|S| = |S ′|.
Let A be [ρ≥1, σ0] in G. Then A′ = {u1, u2 : u ∈ S} is [ρ≥1, σ≤1] in G′. We
have 2|A| = |A′|, so this shows that 2|S| ≤ |S ′|. Let B′ be [ρ≥1, σ≤1] in G′,
with C = {(ui, vj) ∈ E(G′) : {ui, vj} ⊆ B′}, the edges of G′[B′]. Choose
one endpoint of each edge from C and call this set of vertices D. Define
B = {v ∈ V (G) : stateB′(v1) = σ0 ∨ stateB′(v2) = σ0 ∨ v1 ∈ D ∨ v2 ∈ D}.
Since we have removed one endpoint from each edge of G′[B′] it is clear that
B is an independent set in G and 2|B| ≥ |B ′|. In our notation, B is [ρ≥0, σ0]
in G, and can be greedily augmented to a [ρ≥1, σ0]-set, which shows that
2|S| ≥ |S′|. The transformation is easily computed in polynomial time, and
the theorem follows. 2

We now turn to problems with an easy solution algorithm, and focus
our attention on optimization problems. Based on Lemma 1 such results
have as corollaries the polynomial-time solvability of the associated existence
problems.

COMPLEXITY OF DOMINATION-TYPE PROBLEMS IN GRAPHS 169

Theorem 7. The problem max[L] is solvable in polynomial time by a greedy
algorithm if σ≥k is the only σ-state in L and either (i), (ii), (iii) or (iv) holds

(i) ρ1, ρ2..., ρk−1 ∈ L
(ii) ρ0, ρ1, ..., ρk−1 6∈ L
(iii) ρ≥h is the only ρ-state in L, for some h
(iv) ρ0 and ρ≥h are the only ρ-states in L, for some h

Proof. We give two greedy algorithms, named ALG1 and ALG2, with
input a graph G and output a set achieving max[L] for G, if any [L]-set
exists. ALG2 is used in case (iv) when h ≥ 2 in which case there is a crucial
gap in the legal ρ-states while ALG1 is used in the remaining cases. The
algorithms use data structures Bσ,Bρ of type set.

ALG1(G)

Bσ, Bρ := V (G), ∅;
while (I: ∃v ∈ Bσ : |N(v) ∩ Bσ| < k) do Bσ, Bρ := Bσ \ {v}, Bρ ∪ {v};
if (∃v ∈ Bρ : stateBσ(v) 6∈ L) then output(6 ∃[L]-set) else output(Bσ);

ALG2(G)

Bσ, Bρ := V (G), ∅;
while (I: ∃v ∈ Bσ : |N(v) ∩ Bσ| < k) or (II: ∃w ∈ Bρ : |N(w) ∩ Bσ| < h) do

Case I : Bσ, Bρ := Bσ \ {v}, Bρ ∪ {v};
Case II: Bσ, Bρ := Bσ \ {N(w) ∩ Bσ}, Bρ ∪ {N(w) ∩ Bσ} \ {w};

output(Bσ);

We first prove correctness, for both algorithms, of the loop invariant: “A
vertex v 6∈ Bσ cannot be a member of any [L]-set S of G.” The loop
invariant is true initially since Bσ = V (G). Let Bσ and Bσ ′ be the values
before and after an iteration of the loop. ¿From the loop invariant we have
S ⊆ Bσ and show that S ⊆ Bσ′.

Case I (both algorithms): Bσ \Bσ′ = {v} and v ∈ Bσ : |N(v) ∩Bσ| < k.
Since σ≥k is the only σ-state in L, S ⊆ Bσ cannot contain v.

Case II (ALG2 only, i.e. ρ0 and ρ≥h the only legal ρ-states): v ∈ Bσ \Bσ′

and ∃w : v ∈ N(w) where w ∈ Bρ and |N(w) ∩ Bσ| < h. When a vertex
is added to Bρ it is also removed from the non-growing set Bσ so that
Bρ ∩ Bσ = ∅ and in particular w 6∈ S. Since ρ1, ρ2, ..., ρh−1 6∈ L we must
have stateS(w) = ρ0 so that N(w) ∩ S = ∅. Since v ∈ N(w) this completes
the proof of the loop invariant.

At termination of both algorithms all vertices in Bσ = S have at least
k neighbors in S. We first argue correctness of ALG1. At termination of
ALG1 all vertices not in S (in Bρ) have less than k neighbors in S, so if
for some v ∈ Bρ we have stateS(v) = ρi 6∈ L there cannot be any [L]-set
in G since for no j < i is ρj ∈ L. However, if such a vertex does not exist
S is a maximum-size [L]-set, proving correctness of ALG1. At termination
of ALG2 all vertices not in Bσ = S have either at least h neighbors in S

170 JAN ARNE TELLE

(these vertices are in Bρ) or no neighbors in S. Since ρ0 and ρ≥h are both
legal ρ-states we have S a maximum [L]-set, and ALG2 is correct. 2

Minimization problems of the form min[L] have the empty vertex subset
as solution if ρ0 ∈ L. Similarly, if L has no σ-states then the empty vertex
subset is the only possible solution. If L has no ρ-states then the only
possible [L]-set in a graph G is V (G) which is checked by degree computation
as described earlier. A min[L] problem where L does not satisfy any of the
above is asking for a minimum-size dominating set S of a certain kind. We
have reason to believe that finding such a set is, in general, NP -hard.

Conjecture 1. Assuming P 6= NP the decision problem min[L] is NP -
complete if and only if ρ0 6∈ L and L contains both some ρ-state and some
σ-state.

4. Conclusions

We have given a characterization of domination-type problems and investi-
gated their computational complexity. The results given are a step towards
our goal of a complete complexity classification of the problems admitting
the characterization.

The given characterization can be generalized in several ways. Vertex
weighted versions of maxM [L] problems optimize the sum of the weights
of vertices with state in M , the cardinality corresponding to unit weights.
For directed graphs we consider NG(v) as {u : 〈u, v〉 ∈ Arcs(G)} to obtain
directed versions of these domination-type properties and parameters. An
extension of this characterization will encompass also parameters related to
irredundant vertex subsets, and also to maximal and minimal versions of the
vertex subsets given here, see [15]. Another extension of the characterization
will encompass parameters related to partitioning of the vertices into several
[L]-sets, e.g. domatic number, chromatic number, H-covering, see [16].

In another paper [17], we give practical algorithms on partial k-trees
(graphs of treewidth bounded by k) solving any problem admitting the
given characterization. A measure of the complexity of the resulting al-
gorithm solving a problem with legal states L is the set AL (a superset of L)
of states needed for algorithmic purposes and its syntactic size |AL|. Suffice
it to say that any problem derived from Table I (with q ≤ 2) has |AL| ≤ 4.

Theorem 8. [17] For any problem admitting the given characterization hav-
ing legal states L there is an algorithm which takes a graph G with n vertices
and a width k tree-decomposition of G as input, and gives a solution for G
in O(n|AL|

2k) steps.

Certain vertex subset properties, such as Perfect codes, have the interest-
ing feature that any such set in a graph has the same cardinality. In [15] we
give a theorem characterizing exactly those vertex subset properties having
this feature

COMPLEXITY OF DOMINATION-TYPE PROBLEMS IN GRAPHS 171

Theorem 9. [15] The statement “For any graph G, all [L]-sets have the
same cardinality” is true if and only if (i) or (ii) holds

(i) L = {ρp, σq} for some p ∈ {1, 2, ...}, q ∈ {0, 1, ...}
(ii) L has either no ρ-states or no σ-states

Acknowledgements

Thanks to my advisor Andrzej Proskurowski for many ideas and to the
referees for their useful remarks.

References

[1] D.W.Bange, A.E.Barkauskas and P.J.Slater, Efficient dominating sets in graphs, in:
Ringeisen and Roberts, eds., Applications of Discrete Mathematics, SIAM, (1988).

[2] P.J.Bernhard, S.T.Hedetniemi and D.P.Jacobs, Efficient sets in graphs, Discrete Ap-
plied Mathematics 44 (1993).

[3] J.A.Bondy and U.S.R.Murty, Graph theory with applications, 1976.
[4] K. Cameron, Induced Matchings, Discrete Applied Mathematics 24 (1989), 97-102.
[5] E.J.Cockayne, B.L.Hartnell, S.T.Hedetniemi and R.Laskar, Perfect domination in

graphs, manuscript (1992), to appear in Special issue of JCISS.
[6] E.J.Cockayne and S.T.Hedetniemi, Towards a theory of domination in graphs, Net-

works, 7 (1977), 211-219.
[7] M.E.Dyer and A.M.Frieze, Planar 3DM is NP -complete, Journal of Algorithms,

vol.7, 174-184, (1983).
[8] M.Fellows and M.Hoover, Perfect domination, Australian J. Combinatorics 3 (1991),

141-150.
[9] J.F.Finck and M.S.Jacobson, On n-domination, n-dependence and forbidden sub-

graphs, in Graph Theory with Applications to Algorithms and Computer Science,
Wiley (1984) 301-312.

[10] M.Garey and D.Johnson, Computers and Intractability, Freeman, San Fransisco,
1979.

[11] S.T.Hedetniemi and R.Laskar, Recent results and open problems in domination the-
ory, in: Ringeisen and Roberts, eds., Applications of Discrete Mathematics (SIAM,
1988).

[12] S.T.Hedetniemi and R.Laskar, Bibliography on domination in graphs and some basic
definitions of domination parameters, Discrete Mathematics 86 (1990).

[13] M.S.Jacobson, K.Peters and D.R.Fall, On n-irredundance and n-domination, Ars
Combinatoria 29B (1990) 151-160.

[14] J.Kratochv́ıl, Perfect codes in general graphs, monograph, Academia Praha (1991).
[15] J.A.Telle, Characterization of domination-type parameters in graphs, in Proceedings

24th SouthEastern Conference on Combinatorics, Graph Theory and Computing,
Congressus Numerantium vol. 94 (1993) 9-16.

[16] J.A.Telle, Vertex Partitioning Problems: Characterization, Complexity and Algo-
rithms on Partial k-Trees, PhD thesis, University of Oregon CIS Department Tech-
nical Report TR-94-18.

[17] J.A.Telle and A.Proskurowski, Practical algorithms on partial k-trees with an ap-
plication to domination-type problems, in Proceedings WADS’93, LNCS vol. 709
(1993) 610-621.

[18] J.A.Telle and A.Proskurowski, Efficient sets in partial k-trees, Discrete Applied
Mathematics 44 (1993) 109-117.

