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Let S be a set of n sites in the Euclidean plane. Informally, the Voronoi
diagram is a subdivision of the plane into regions such that each point of a
region has the same closest site. Aurenhammer [3] discusses the importance
of Voronoi diagrams to computer scientists and presents a survey of the
Voronoi diagram and its variants, including mathematical properties and
algorithms. The variant that we are interested in here is the kth order
Voronoi diagram, denoted by Vk(S). The kth order Voronoi diagram is a
partition of the plane into regions such that points in each region have the
same k closest sites. There are many deterministic algorithms to compute
Vk(S) [7, 5, 4, 2]. Lee, Chazelle and Edelsbrunner [7, 4] describe many
properties of Vk(S). In this paper we are not concerned with algorithms to
compute Vk(S), instead, we will prove some properties about the number of
segments of a bisector of two sites that are used in Vk(S) .

Most algorithms for Voronoi diagrams and variants of Voronoi diagrams
assume non-degeneracy: no four sites are cocircular. For our purposes, this
also implies no three sites lie on the same line. We will first make this
assumption and then state what happens when we have degeneracies.

In order to prove some facts about the kth order Voronoi diagram, we will
transform the diagram to a three dimensional arrangement of planes using
the standard lifting projection [4, 6]. That is, a site pi with coordinates
(x1, x2) is mapped to the plane Hi tangent to the paraboloid x3 = x2

1 + x2
2

at the point (x1, x2, x
2
1 +x2

2). The arrangement of these planes is denoted by
A(H).

There is a one-to-one correspondence between the edges in Vk(S) and the
edges e in A(H) with k − 1 planes above e. Corresponding to the perpen-
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dicular bisector of the segment pipj, where pi, pj ∈ S, is the intersection lij
between Hi and Hj. The other planes break up lij into segments, two of
these segments are rays. We will soon need the following simple lemma.

Lemma 1. With the non-degeneracy assumption, each plane Hm, with m 6=
i and m 6= j, intersects lij.

Proof. The non-degeneracy assumption implies that for each pm ∈ S,
the circumsphere of pi, pj and pm exists. The center of the circumsphere is
a Voronoi vertex in Vk(S) for some k. Thus, the perpendicular bisector of
segment pipm intersects the perpendicular bisector of pipj for each pm ∈ S.
Therefore, each plane Hm intersects lij . 2

We now define a directed graph G that we will use to prove our facts about
the number of segments of a bisector in a kth order Voronoi diagram. Each
vertex in G has a value and G is determined by two parameters, the value
of the source s and n. An example of such a graph G with source value r−1
is shown in Figure 1. The graph has vertices on a rectangular lattice that
has s+1 columns and n− 1− s rows. The source is the upper left vertex of
the lattice. Each internal vertex v of G has outdegree 2, a right edge and a
down edge. The right edge leads to a vertex with value v − 1 and the down
edge leads to a vertex of value v + 1. Vertices on the boundary have either
a right edge or a down edge similarly defined. The lower right vertex, called
the sink, has outdegree 0 and has value n − 2 − s. We will assume that the
value of the source is less than or equal to the value of the sink. If not,
we can construct a new graph by reversing the direction of the edges. The
value of the source in this graph will be less than the value of the sink.

We now look at the relation of graph G to a traversal of line lij as we move
along lij from −∞ to ∞.

Suppose one ray of lij has r − 1 planes above it and thus corresponds
to an infinite edge in Vr(S). Lemma 1 states that each of the other n − 2
planes intersects lij and because of our non-degeneracy assumption, no two
intersect at the same point. Along lij the number of planes above changes
by exactly one at each intersection point. In particular, at the other infinite
segment, each of the r−1 “above”-planes have changed into “below”-planes
and vice versa. Hence, there are n − 2 − (r − 1) = n − r − 1 planes above
this ray and so its projection appears in Vn−r(S). It is now easy to see that
traveling along lij corresponds to a path of length n − 2 from the source to
the sink of G. Using this graph, we can easily prove several results about
the bisector segments used in a kth order Voronoi diagram.

Fact 1. At most min(k, n−k) segments of any bisector can appear in Vk(S).

Proof. Without loss of generality, suppose k ≤ n − k. Any bisector of
sites pi and pj corresponds to the intersection lij of two planes. In the graph
G defined above for lij the label k − 1 appears at most k times. 2

Similarly, at most k segments of a bisector can appear in Vn−k(S). Using
the graph G, we can obtain the following stronger result.
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Fig. 1: The directed graph G with source value r − 1.

Fact 2. The number of finite segments of a bisector appearing in either
Vk(S) or Vn−k(S) cannot exceed min(k, n − k).

Proof. Without loss of generality, suppose k ≤ n−k. The path of length
n − 2 in G from source to sink with source r − 1 contains n − 1 vertices.
Since vertices labeled k − 1 and those labeled n− k − 1 are at a distance of
at least n− 2k, at least n− 2k− 1 vertices of the path are used getting from
one to the other. Thus, there remain n− 1− (n− 2k− 1) = 2k unaccounted
for in the path. Now since two vertices with the same label are at distance
2 and vertices whose label differing by more than one are at least distance
2, at most k of these vertices will have the label k − 1 or n − k − 1. 2

Fact 3. If a ray of a bisector B appears in the kth order Voronoi diagram,
then at most min(k, k′, n−k) segments of B appear in the k′ thorder Voronoi
diagram.

Proof. Without loss of generality, suppose k ≤ n − k. Let B be the
bisector, then B is associated with an intersection of two planes lij with
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graph G. Because a ray of B appears in the kth order Voronoi diagram,
the source of G is labeled k − 1. Therefore, a label k ′ − 1 appears at most
min(k, k′) times in G. 2

As a direct result of this fact, any bisector with a ray in V1(S) will have
exactly one segment in Vk(S) for 1 ≤ k ≤ n − 1.

Fact 4. If a finite segment of a bisector B appears in Vk(S) there will be
at most min(k + 1, n− k + 1, k′) segments of B in Vk′(S) for 1 ≤ k′ ≤ n− 1.

Proof. Again, we will assume that k ≤ n−k. If k ≥ k ′ then from Fact 1,
there are at most k′ segments of a bisector in Vk′(S).

Now suppose k < k′ and r ≤ n − r. Let G be the graph associated with
the bisector and let it have source r − 1. We now have 2 cases.

For the first case, k < r. Because a bisector segment appears in Vk(S), a
vertex v with label k − 1 appears on the path in G from the source to the
sink. We account for one vertex of each label k − 1, k, k + 1, . . . , n − r − 1
in the parts of the path going from the source to v and from v to the sink.
Thus, n− 1 − (n − 2k + 1) = 2k − 2 vertices are unaccounted for and, as in
the proof of Fact 2, at most k−1 of these can have the same label k ′. There
is a vertex labeled k′ − 1 on the path from the source to v and another on
the path from v to the sink. Therefore, at most k + 1 vertices have label
k′ − 1.

For the second case, k ≥ r and r ≤ n− r. The length of any diagonal in G

(nodes with the same label) is at most r. Therefore, the number of segments
of the bisector in Vk′(S) is at most r, which does not exceed min(k + 1, k ′).

If r > n − r, then we can apply the same argument by constructing the
graph by traversing the line lij associated with the bisector in the opposite
direction. The effect of traversing the line in the opposite direction is that
the roles of the source and sink are reversed. 2

From this fact and Fact 2, if a finite segment of a bisector B appears in
V1(S) there will be at most 2 segments of B in Vk(S) for 2 ≤ k ≤ n− 2 and
no segment of B will appear in Vn−1(S).

If we allow degeneracies then more than three sites are cocircular or more
than two sites lie on the same line. In either case, we can still use the same
graph G with a bisector. If more than three sites are cocircular, then some
of the bisector segments will have length 0. If more than two sites lie on
the same line then the perpendicular bisectors of these sites are parallel. In
this case, a path in G from the source to the sink will be too long, because
at least one of the planes will not intersect the line lij associated with G.
Therefore, the facts hold even if we have degeneracies.

Aurenhammer [1] defines power diagrams and higher order power dia-
grams. Because the arrangement of planes for power diagrams is similar
to the arrangement of planes for a Voronoi diagram, our facts also hold for
kth order power diagrams in the plane.
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