
Nordic Journal of Computing 1(1994), 173–201.

ON FINDING MINIMUM-DIAMETER CLIQUE

TREES ∗

JEAN R. S. BLAIR
Department of Electrical

Engineering and Computer Science
United States Military Academy

West Point, NY 10996-5000
U.S.A.

blair@eecs1.eecs.usma.edu

BARRY W. PEYTON
Mathematical Sciences Section
Oak Ridge National Laboratory

P.O. Box 2008, Bldg. 6012
Oak Ridge, TN 37831-6367

U.S.A.
peyton@msr.epm.ornl.gov

Abstract. A clique-tree representation of a chordal graph often reduces the size
of the data structure needed to store the graph, permitting the use of extremely
efficient algorithms that take advantage of the compactness of the representation.
Since some chordal graphs have many distinct clique-tree representations, it is in-
teresting to consider which one is most desirable under various circumstances. A
clique tree of minimum diameter (or height) is sometimes a natural candidate when
choosing clique trees to be processed in a parallel-computing environment. This pa-
per introduces a linear-time algorithm for computing a minimum-diameter clique
tree.

ACM CCS Categories and Subject Descriptors: F.2.2, G.2.2

Key words: chordal graphs, clique trees, acyclic hypergraphs, parallel computing

1. Introduction

Chordal graphs arise in several application areas including data-base man-
agement systems [1, 10, 25], knowledge-based systems [9, 17, 18], and the
solution of sparse symmetric linear systems of equations [14, 19, 21, 22, 23].
A clique-tree representation of a chordal graph often reduces the size of the
data structure needed to store the graph, permitting the use of extremely
efficient algorithms that take advantage of the compactness of the represen-
tation [18, 19, 25]. However, using a clique tree to represent a chordal graph
is an ambiguous proposition in the sense that there may be more than one
clique tree for a given chordal graph. In fact, Gavril, Ho, and Lee [13, 16]
have shown that a tight upper bound on the number of distinct clique trees
is exponential in the number of nodes in the graph. It is interesting from a

∗Research supported by the Applied Mathematical Sciences Research Program, Office
of Energy Research, U.S. Department of Energy under contract DE-AC05-84OR21400
with Martin Marietta Energy Systems Inc.

Received November 1993. Accepted March 1994.

174 JEAN R. S. BLAIR, BARRY W. PEYTON

theoretical point of view and potentially beneficial from a practical stand-
point to consider how one clique-tree representation may be better than
another in a given context.

The algorithm presented in this paper is motivated primarily by the fol-
lowing question: Which clique trees are most suitable as input for parallel
algorithms in various application areas? In at least some cases, a clique
tree of minimum diameter (or, equivalently, minimum height) is a natural
candidate. In particular this is the case when the parallel algorithm in ques-
tion has a leading term in its time complexity that grows with the height of
the clique tree. For the last two application areas mentioned above, we are
aware of parallel algorithms under study for which this holds.

This paper introduces a linear-time algorithm for computing a minimum-
diameter clique tree. The essential character of the algorithm is very simple.
Consider the problem of selecting a root that minimizes the height of a tree
T . One way to solve this problem is a simple greedy algorithm that repeats
the following major step until there are no nodes remaining in the tree:
determine the leaf nodes (i.e., nodes of degree one) in the current tree,
and eliminate each of these nodes and the single edge incident on it. The
last major step eliminates either one or two nodes, and the height of T is
minimized by rooting it at one of these nodes. The algorithm presented here
for finding a minimum-diameter clique tree is an analogue of this algorithm:
it eliminates a large set of “leaf cliques” from the current chordal graph at
each major step.

The paper is organized as follows. Section 2 introduces some terminology
and provides background results on clique trees. Section 3 contains a char-
acterization of leaf cliques and also discusses clique trees that have as many
leaves as possible. The new algorithm and its proof of correctness are found
in Section 4. Section 5 presents a detailed version of our algorithm and
presents other material needed to verify the linear time-complexity of the
algorithm. The concluding remarks in Section 6 include a brief discussion
of the two application areas where a minimum-diameter clique tree should
prove useful.

2. Clique trees: background

We assume the reader is familiar with standard graph terminology (see,
for example, Golumbic [15]). For easy reference we have included, in an
appendix, a table of informal definitions for most of the notation introduced
here and in later sections of the paper. Each item in our notation will use
(as needed) a subscript to identify which chordal graph or clique tree it
pertains to. This subscript is suppressed where the relevant graph is known
by context.

MINIMUM-DIAMETER CLIQUE TREES 175

2.1 Definition of clique trees

A graph is chordal (triangulated, rigid circuit) if every cycle of length ≥ 4
contains a chord , i.e., an edge joining two non-adjacent nodes in the cycle.
Let G = (V,E) be a chordal graph, and let KG = {K1,K2, . . . ,Km} be the
set containing the maximal cliques in G. Throughout this paper the term
clique always refers to a maximal clique, and the term maximal clique is
used only where emphasis on maximality seems warranted. The graph G

is assumed to be connected; that all definitions and results generalize to
disconnected chordal graphs should be readily apparent.

Various characterizations of clique trees (also called acyclic hypergraphs
or join trees) have appeared in the literature [1, 2, 4, 12, 24, 26]. We define
clique trees here using the following theorem, which is easily derived from a
more general result due to Buneman [4], Gavril [12], and Walter [26].

Theorem 1. A graph G = (V,E) is chordal if and only if there exists a tree
T = (KG, E) that satisfies the following property: for every pair of distinct
cliques K,K ′ ∈ KG, the intersection K ∩K ′ is contained in every clique on
the path connecting K and K ′ in T .

For any chordal graph G, we shall let TG denote the set of all trees T =
(KG, E) that satisfy this property, and we shall refer to any member of TG

as a clique tree of the underlying chordal graph G.

The reader may verify that the tree in Figure 2 is a clique tree of the
chordal graph shown in Figure 1. The graph in Figure 1 will be used through-
out this paper to illustrate results and key points. For convenience we shall
refer to the nodes of this graph as v1, v2, . . . , v10; e.g., the node labeled “6”
will be referred to as v6.

Associated with each chordal graph G is a clique-intersection graph defined
as follows. The node set of the clique-intersection graph is the set of cliques
KG. Two distinct cliques K and K ′ are joined by an edge if and only if their
intersection is nonempty; moreover, each such edge {K,K ′} is assigned a
positive weight given by |K ∩K ′|. Bernstein, Goodman, and Gavril [2, 13]
have shown that, for any chordal graph G, the set of clique trees TG is
precisely the set of maximum-weight spanning trees of the clique-intersection
graph associated with G.

Theorem 2. (Bernstein and Goodman [2]) A tree T = (KG, E) is a
clique tree of a chordal graph G if and only if it is a maximum-weight span-
ning tree of the clique-intersection graph of G.

The reader may verify that the weighted graph shown in Figure 3 is the
clique-intersection graph of the graph shown in Figure 1, and that the clique
tree shown in Figure 2 is a maximum-weight spanning tree of the clique-
intersection graph.

176 JEAN R. S. BLAIR, BARRY W. PEYTON

1
K

2
K 3

K

4
K

5
K

6
K

1

2

9

8

10

5

6

3

4

7
K
7

Fig. 1: A chordal graph.

1
K

2
K

4
K

3
K

6
K

K
75

K

Fig. 2: A clique tree of the graph in Figure 1.

1
K

2
2

1

1

1

1

1 1

1

1

6
K

4
K

3
K

2
K

K
75

K

Fig. 3: The clique-intersection graph associated with the graph in Figure 1. Each edge
weight appears beside the edge to which it is assigned.

2.2 Clique-tree edges and graph separators

A node separator S ⊂ V for two nodes a and b is any node set whose
removal from G results in a graph in which a and b are in distinct connected
components. If no proper subset of S has this property, then S is said to be
a minimal a-b separator. When the pair of nodes remains unspecified, we
call S a minimal node-pair separator.

For any clique tree T = (KG, E) ∈ TG, consider the multiset given by

MT :=
{
K ∩K ′

∣∣∣ {K,K ′} ∈ E
}
.

Ho and Lee [16] showed that every member of MT is a minimal node-

MINIMUM-DIAMETER CLIQUE TREES 177

pair separator; they further showed that for each minimal node-pair sep-
arator S of G, MT contains a number of copies of S that is invariant
over all clique trees T ∈ TG. Consequently, we have MT = MT ′ for
all T, T ′ ∈ TG. For brevity, we will refer to each member of MT as a
separator. Henceforth, let MG denote the multiset of separators associ-
ated with each clique tree in TG. For the graph in Figure 1, we have
MG = {{v5, v6}, {v9}, {v10}, {v7, v10}, {v7}, {v7}}.

For any set of nodes S ⊆ V , the set of cliques containing S, denoted K(S),
is given by

K(S) := {K ∈ KG | S ⊆ K}.

In this paper the set S will always be a separator taken from MG. It is
worth emphasizing that every separator S ∈ MG is contained in at least
two cliques [i.e., |K(S)| ≥ 2].

For any clique K, the set of separators belonging to K, denoted S(K), is
given by

S(K) := {S ∈MG | S ⊂ K}.

Note that S(K) contains one copy of each member of the multisetMG that
is contained in K. The set S(K) contains each separator from S(K) that
is maximal with respect to set inclusion among the members of S(K). In
other words, S(K) is given by

S(K) := {S ∈ S(K) | S is properly contained in no separator S ′ ∈ S(K)}.

Consider again the graph shown in Figure 1. Table I shows the sets S(K)
and S(K) for each clique in the graph.

Clique K S(K) S(K)

K1 = {v1, v5, v6} {v5, v6} {v5, v6}

K2 = {v2, v7, v10} {v7}, {v7, v10}, {v10} {v7, v10}

K3 = {v3, v7} {v7} {v7}

K4 = {v4, v7} {v7} {v7}

K5 = {v5, v6, v9} {v5, v6}, {v9} {v5, v6}, {v9}

K6 = {v7, v8, v10} {v7}, {v7, v10}, {v10} {v7, v10}

K7 = {v9, v10} {v9}, {v10} {v9}, {v10}

Table I: Sets of separators for each clique in the graph shown in Figure 1.

Loosely speaking, the following simple lemma states that in any clique
tree the members of S(K) must be “used” by at least one of the tree edges
incident on K.

178 JEAN R. S. BLAIR, BARRY W. PEYTON

Lemma 1. Let K ∈ KG and T ∈ TG. Then for every separator S ∈ S(K)
there is at least one edge {K,K ′} in T for which K ∩K ′ = S.

Proof. Choose a separator S ∈ S(K), and choose P ∈ K(S) − {K}.
(Throughout this paper the binary set difference operator is “−”.) Consider
the path K = K1,K2, . . . ,Kr = P from K to P in T . It follows from
Theorem 1 that S ⊆ Ki for 1 ≤ i ≤ r, and hence S ⊆ K ∩K2. From the
maximality of S among the separators in S(K) we have K ∩K2 = S, which
proves the result. 2

3. Leaf cliques

For any clique tree T ∈ TG, let LT be the set containing the leaves in T

(i.e., the members of KG with degree one in T). We then let LG, the leaf
cliques in G, be the set containing every clique that is a leaf in at least
one clique tree T ∈ TG. Section 3.1 contains a simple characterization of
LG. With LG in hand, the minimum-diameter clique tree algorithm must
then compute a set of leaf cliques Lmax ⊆ LG such that Lmax = LT for a
clique tree T ∈ TG, and moreover |LT | ≥ |LT ′ | for every clique tree T ′ ∈ TG
(see Section 4.2 for proof). Section 3.2 contains a characterization of these
maximum-cardinality leaf sets Lmax ⊆ LG.

3.1 A characterization of leaf cliques

The next lemma gives a sufficient condition for membership in LG. The
proof of this lemma and the specific clique tree T ′ constructed in the proof
play an important role in the next section. Lemma 3 confirms that the
condition in Lemma 2 is necessary as well as sufficient.

Lemma 2. If |S(K)| = 1, then K is a leaf in some clique tree T ′ ∈ TG.

Proof. Let S be the sole member of S(K), and suppose that K is not a
leaf in T ∈ TG [see Figure 4(a)]. Choose P ∈ K(S) − {K}. It follows from
Theorem 1 that S ⊂ P ′, where P ′ is the clique adjacent to K on the path
from K to P in T (possibly P ′ = P). Consider a clique C 6= P ′ that is also
adjacent to K in T . By Theorem 1, C∩P ⊆ C∩K. Furthermore, since S is
the only member of S(K), we have C∩K ⊆ S ⊂ P ; whence C∩K ⊆ C ∩P .
It follows that C ∩ K = C ∩ P , and hence the edges {C,K} and {C,P}
have the same weight. Thus, by Theorem 2, the tree obtained from T by
removing the edge {C,K} and adding the edge {C,P} is also a clique tree.
Repeating this process for every clique Ci 6= P ′ that is adjacent to K in T ,
we obtain a new clique tree T ′ in which K is a leaf [see Figure 4(b)], and
this concludes the proof. 2

The specific operation that transformed the clique tree T (in which K

is not a leaf) into the clique tree T ′ (in which K is a leaf) will be used

MINIMUM-DIAMETER CLIQUE TREES 179

C

C’

K P’ P

C’

C

K P’ P

(a) T. (b) T’.

Fig. 4: Transformation of T into T ′ in which K is a leaf, as discussed in the proof of
Lemma 2.

in subsequent proofs. We note here that the parameters required for this
operation are a clique tree T , a leaf clique K ∈ LG − LT and any clique
P 6= K that contains the sole separator S found in S(K). Whenever P is not
adjacent to K in T , these two cliques determine a third clique of interest,
namely the clique P ′ adjacent to K on the path in T connecting K and P .
Since by Theorem 1, S ⊂ P ′, clearly P ′ can play the role of P , as will be
the case in a key application of this operation in Section 4.

The next lemma completes the characterization of LG.

Lemma 3. K ∈ LG if and only if |S(K)| = 1.

Proof. Sufficiency for membership in LG follows immediately from
Lemma 2. To prove necessity, choose K ∈ LG and let T ∈ TG be a clique
tree in which K is a leaf. Let P ′ be the single clique adjacent to K in T .
Since K ∩P ′ is the only separator associated with an edge incident on K in
T , it follows from Lemma 1 that K ∩ P ′ is the only member of S(K). 2

A node in an ordinary tree is a leaf if it has only one neighbor. Lemma 3
is an analogue of this property for leaf cliques in a chordal graph. That
is, a clique K is a leaf clique in G if it has only one member of S(K)
through which it can be joined to neighbors in a clique tree. Applying
Lemma 3 to the example (refer to the last column in Table I), we see that
LG = {K1,K2,K3,K4,K6}.

3.2 Maximum-cardinality leaf sets

In this section we give a useful characterization of the leaf sets LT for which
T ∈ TG and |LT | ≥ |LT ′ | for every T ′ ∈ TG. We have shown in Lemma 3
that each leaf clique K ∈ LG has associated with it a unique separator
S ∈ MG that contains every separator that lies within K. For every such
leaf separator S, let L(S) be the subset of LG given by

L(S) :=
{
K ∈ LG

∣∣∣ S(K) = {S}
}
.

180 JEAN R. S. BLAIR, BARRY W. PEYTON

More informally, L(S) contains the “cohort” of leaf cliques clustered around
the leaf separator S. It is important to note that L(S) may be a proper
subset of the set of leaf cliques that contain S. For two leaf separators S

and S′, where S ⊂ S ′, any clique K ∈ L(S ′) contains both leaf separators
S and S′. In this case, however, we observe that K 6∈ L(S) even though
K ∈ K(S).

Remark 1. Each leaf belongs to precisely one leaf-cohort set, and therefore
the collection of leaf-cohort sets forms a partition of LG.

Lemma 4. Assume |KG| ≥ 3. For a leaf separator S there exists a clique tree
T ∈ TG for which L(S) ⊆ LT if and only if L(S) ⊂ K(S) [i.e., K(S)−L(S) 6=
∅].

Proof. Choose a leaf separator S and assume that L(S) ⊆ LT for some
clique tree T ∈ TG. It follows from Theorem 1 that K(S) induces a subtree
of T . Since |KG| ≥ 3 and |K(S)| ≥ 2, K(S) contains an interior clique P

of T (i.e., P ∈ K(S) − LT). Since L(S) ⊆ LT , we have P ∈ K(S) − L(S),
completing the first half of the proof.

To prove the converse assume that K(S)−L(S) 6= ∅, and let P ∈ K(S)−
L(S). Let T ∈ TG, and suppose that there exists a clique K ∈ L(S) − LT .
As in the proof of Lemma 2 (see Figure 4), we can replace each edge {C,K}
incident on K (except {K,P ′}) with the corresponding edge {C,P} to obtain
a clique tree T ′ in which K is a leaf. Repeating this operation for each clique
in L(S)−LT transforms T into a clique tree T ′ for which L(S) ⊆ LT ′ , giving
the desired result. 2

Lemma 5. Assume |KG| ≥ 3 and T ∈ TG. Then |LT | ≥ |LT ′ | for every
T ′ ∈ TG if and only if for each leaf separator S:

(1) if L(S) ⊂ K(S) then L(S) ⊆ LT .

(2) if L(S) = K(S) then |L(S)−LT | = 1.

Proof. Suppose Properties 1 and 2 hold. By Lemma 4, if L(S) = K(S),
then for every clique tree T ∈ TG at least one member of L(S) is excluded
from LT . It follows that no clique tree can have more leaves than one that
possesses Properties 1 and 2.

Suppose Property 1 does not hold for some clique tree T ∈ TG. Then for
some leaf separator S for which L(S) ⊂ K(S) we have a clique K ∈ L(S)
that is not a leaf in T . Since |KG| ≥ 3 and |K(S)| ≥ 2, we can choose an
interior clique P ∈ K(S) − LT . As in the proof of Lemma 2 (see Figure 4),
we can replace each edge {C,K} incident on K (except {K,P ′}) with the
corresponding edge {C,P} to obtain a clique tree T ′ in which K is a leaf.
Note that P is the only clique in T ′ with more neighbors than it had in T .
Since P is not a leaf in T and all leaves in T remain leaves in T ′, it follows
that T ′ has one more leaf than T . This suffices to show that Property 1
holds for any clique tree that has the maximum number of leaves.

MINIMUM-DIAMETER CLIQUE TREES 181

A similar argument can be used to verify Property 2, as follows. Suppose
Property 2 does not hold for some clique tree T ∈ TG. Then |L(S)−LT | 6= 1
for some leaf separator S for which L(S) = K(S). From Lemma 4 we know
that |L(S) − LT | 6= 0; thus, we have two or more cliques in L(S) that are
not leaves in T . Let K and P be two such cliques. From this point the
argument runs the same course as the argument in the previous paragraph,
completing the proof. 2

Lemma 5 and Remark 1 characterize a maximum-cardinality leaf set Lmax:
Lmax includes the elements of L(S) for every L(S) ⊂ K(S), and includes all
but one (any one) of the elements of L(S) for every L(S) = K(S).

Returning to our example, we have three leaf separators: {v5, v6}, {v7, v10},
and {v7}. Table II shows L(S) and K(S) for each of the leaf separators. Note
that by Lemma 5 any Lmax for the example graph must contain K1, exactly
one of K2 and K6, and both K3 and K4.

Leaf separator S L(S) K(S)

S1 = {v5, v6} K1 K1, K5

S2 = {v7, v10} K2, K6 K2, K6

S3 = {v7} K3, K4 K2, K3, K4, K6

Table II: Cohorts of leaf cliques for each leaf separator in the graph in Figure 1.

4. The minimum-diameter clique tree algorithm

The characterization of maximum-cardinality leaf sets given in the previous
section provides the basis for an algorithm that generates minimum-diameter
clique trees. Section 4.1 gives a high-level description of the new algorithm
and proves that it generates a clique tree. Section 4.2 proves that the re-
sulting clique tree has minimum diameter.

4.1 Computing the clique tree

A simplicial node in G is any node whose adjacency set is a clique in G. It is
trivial to show that a node is simplicial if and only if it belongs to precisely
one maximal clique, and we will make extensive use of this observation
throughout the remainder of the paper. It is well known that any chordal
graph can be reduced to the null graph by successive removal of simplicial
nodes [6, 11, 15, 23]. The order in which the simplicial nodes are removed
is known as a perfect elimination ordering. Our algorithm eliminates the
nodes of the graph in a perfect elimination ordering; more specifically, each
major step eliminates the cliques belonging to a maximum-cardinality leaf
set by removing from the graph all simplicial nodes lying in these cliques.

182 JEAN R. S. BLAIR, BARRY W. PEYTON

A node v ∈ K belongs to two or more cliques in G if and only if it
belongs to a separator in S(K). It follows from Lemma 3 and the preceding
observation that any leaf clique K ∈ LG can be partitioned into two sets

K = Sim(K) ∪ Sep(K),

where Sim(K) contains the simplicial nodes in K and Sep(K) contains the
nodes that constitute the leaf separator associated with K. For K ∈ LG, let
G \Sim(K) denote the graph obtained by eliminating from G the simplicial
nodes in Sim(K) and their incident edges. In other words, G \ Sim(K) is
the subgraph of G induced by V − Sim(K). Since Sep(K), which contains
the nodes of K remaining in G \ Sim(K), is contained in at least one other
maximal clique P of G, it follows that K disappears from G \ Sim(K) as a
maximal clique, and can be viewed as “absorbed” by P . Moreover, since the
nodes in Sim(K) belong to no other maximal clique in G, the other maximal
cliques in G remain unchanged in G\Sim(K). Thus, G\Sim(K) is precisely
the chordal graph whose set of maximal cliques is given by KG − {K}.

Our algorithm for computing a minimum-diameter clique tree is shown in
Figure 5. At the beginning of each major step (i.e., each iteration of the

Emin ← ∅ ;
H ← G ; H ′ ← G ;
while |KH | ≥ 3 do

Choose a maximum-cardinality leaf set Lmax ⊆ LH ;
for K ∈ Lmax do

Choose P ∈ KH − Lmax for which Sep
H

(K) ⊂ P ;
Emin← Emin ∪ {K, P} ;
H ′ ← H ′ \ SimH(K) ;

end for ;
H ← H ′ ;

end while ;
if |KH | = 2 do

Emin ← Emin ∪ {K, P}, where {K, P} = KH ;
end if ;

Fig. 5: Algorithm for generating a minimum-diameter clique tree.

while loop), H is the remaining chordal graph from which a maximum-
cardinality leaf set Lmax will be removed. After Lmax has been selected, the
for loop processes the leaf cliques one at a time. For each leaf clique in Lmax

it finds a parent clique and eliminates the clique from the graph.
As an illustration, consider again the graph shown in Figure 1. Let Lmax =
{K1,K2,K3,K4} in the first iteration through the while loop. Then the
only possible parent for K1 is K5, because K5 is the only clique in KH −
Lmax that contains K1’s leaf separator. Similarly, K6 must be the parent of
K2,K3, and K4 (see Figure 6). Eliminating the simplicial nodes from the

MINIMUM-DIAMETER CLIQUE TREES 183

1
K

2
K

4
K

3
K

6
K K

75
K

Fig. 6: Partially constructed clique tree of the graph in Figure 1, after the first major
step of the algorithm in Figure 5. Cliques shown below the dotted line are eliminated
from the graph; cliques shown above the dotted line remain in the reduced graph.

leaf cliques in Lmax results in the reduced graph shown in Figure 7, with
separators and leaf cohort sets shown in the tables. The second iteration
through the while loop completes the algorithm by choosing K7 as the
parent to both leaf cliques of the reduced graph (see Figure 8).

Recall that for each major step in the algorithm, the elimination of the
leaf set Lmax involves the elimination of the members of Lmax one at a time
in some arbitrary order. Clearly, this approach is based on the assumption
that elimination of K ∈ Lmax by an iteration of the for loop causes none of
the uneliminated cliques in Lmax to become a non-leaf in the reduced graph.
The following simple lemma will be used to address this and other closely
related issues associated with our algorithm.

Lemma 6. Assume |KG| ≥ 3. Let T ∈ TH and K ∈ LT , and consider
T ′ = T \ {K} and H ′ = H \ SimH(K). The following properties hold for H,
T , H ′ and T ′:

(1) T ′ ∈ TH′.

(2) LT − {K} ⊆ LT ′ ⊆ LH′.

(3) For each K ′ ∈ LT − {K}, we have SimH′(K ′) = SimH(K ′) and
SepH′(K ′) = SepH(K ′).

Proof. Let K ′,K ′′ ∈ KH′ = KH −{K}. From the definition of T and T ′,
it follows that the path connecting K ′ and K ′′ in T ′ is identical to the one
connecting the pair in T . Thus, by Theorem 1 (applied to T ∈ TH) we have
T ′ ∈ TH′ .

Clearly, any leaf in LT − {K} remains a leaf in T ′, and thus LT − {K} ⊆
LT ′ ⊆ LH′ .

Choose K ′ ∈ LT −{K} and let {K ′, P} be the single edge incident on K ′

in T . Since |KG| ≥ 3, we know that P 6= K. Since {K ′, P} is the single edge
incident on K ′ in T ′, it follows from Lemma 1 that K ′ ∩ P = SepH′(K ′) =
SepH(K ′). Furthermore, since K ′ is a leaf clique in both H and H ′, we have

SepH′(K ′) ∪ SimH′(K ′) = K ′ = SepH(K ′) ∪ SimH(K ′),

whence SimH′(K ′) = SimH(K ′). 2

184 JEAN R. S. BLAIR, BARRY W. PEYTON

5
K

6
K

9

8

10

5

6

7
K
7

Separators within each clique

Clique K S(K) S(K)

K5 = {v5, v6, v9} {v9} {v9}

K6 = {v7, v8, v10} {v10} {v10}

K7 = {v9, v10} {v9}, {v10} {v9}, {v10}

Cohorts clustered around leaf separators

Leaf separator S L(S) K(S)

S4 = {v9} K5 K5, K7

S5 = {v10} K6 K6, K7

Fig. 7: The reduced graph after the first major step of the algorithm in Figure 5. Sets of
separators for each clique and cohorts of leaf cliques for each leaf separator are given in
the tables.

Let Lmax ⊆ LH be the leaf set chosen for elimination during a major step
of the algorithm in Figure 5. Applying Lemmas 5 and 6, we justify several
details found in the inner loop with the following remarks.

Remark 2. The algorithm assumes the existence of an appropriate “par-
ent” P ∈ KH−Lmax for each leaf K ∈ Lmax; Lemma 5 ensures the existence
of such a clique.

Remark 3. Select a clique tree T ∈ TH for which LT is identical to the
maximum-cardinality leaf set Lmax chosen by the algorithm. Repeated ap-
plication of Properties 1 and 2 of Lemma 6 ensure that after the removal of
a leaf clique in the inner loop, the uneliminated members of Lmax remain
leaves in the reduced graph, as required during subsequent iterations of the
inner loop.

MINIMUM-DIAMETER CLIQUE TREES 185

1
K

2
K

4
K

3
K

K
7

6
K

5
K

Fig. 8: The clique tree produced by the algorithm in Figure 5 applied to the graph in
Figure 1. Dotted lines separate the maximum cardinality leaf sets chosen in each of the
two iterations through the while loop.

Remark 4. Similarly, repeated application of Properties 1 and 3 of
Lemma 6 ensure that SepH′(K) = SepH(K) and SimH′(K) = SimH(K)
for each leaf clique K ∈ Lmax in the current reduced chordal graph H ′. In
other words, not only do the leaves in Lmax remain leaves as the inner loop
progresses through the elimination steps, they also retain the same separa-
tor and simplicial-node sets that they had when chosen for elimination at
the beginning of the major step. The invariance of these two sets is used
explicitly in the first and last lines inside the for loop.

Let T \ LT be the tree obtained by pruning the set of leaves LT from
T ∈ TH . We let SimH(LT) be the union of all simplicial node sets SimH(K)
where K ∈ LT . The following lemma shows that the algorithm in Figure 5
generates a clique tree. The lemma also plays a key role in our proof that
any clique tree generated by the algorithm has minimum diameter.

Lemma 7. The algorithm in Figure 5 generates a clique tree T for which
LT is the maximum-cardinality leaf set eliminated by the first major step of
the algorithm.

Proof. It is easy to show that the set Emin generated by the algorithm
is the edge set of a tree T , and we leave it for the reader to verify this. We
first show that LT = Lmax, where Lmax is the maximum-cardinality leaf set
eliminated by the first major step of the algorithm. As each clique K ∈ Lmax

is processed in the inner loop, the algorithm adds to Emin an edge incident
on K and on some clique P ∈ KG \ Lmax. Clearly, the algorithm adds no
further edges incident on K after its elimination. Since each parent is taken
from KG \ Lmax, no step prior to that eliminating K adds an edge incident
on K. It follows that each clique in Lmax is adjacent to only one clique in

186 JEAN R. S. BLAIR, BARRY W. PEYTON

T , and thus Lmax ⊆ LT . Since Lmax is a maximum-cardinality leaf set, it
will follow from the fact that T ∈ TG (proven next) that LT = Lmax.

The proof that T is indeed a clique tree is by induction on the number of
major steps taken by the algorithm. The base step (no iterations through
the while loop) is trivial. For the induction step, let G be a chordal graph
for which the algorithm goes through k ≥ 1 major steps, and suppose that
the algorithm generates a clique tree for any chordal graph requiring fewer
than k major steps of the algorithm.

Let T ′ = T \Lmax. Clearly, T ′ is the tree generated by the subsequent k−1
major steps of the algorithm. Moreover, these k−1 major steps are precisely
the same as applying the algorithm directly to the graph G \ SimG(Lmax)
with no prior elimination step. It follows from the induction hypothesis
that T ′ is a clique tree of the chordal graph G \ SimG(Lmax). Consequently,
Theorem 1 holds in T for every pair of cliques taken from KG − Lmax. All
that remains to be shown is that for every pair of cliques K ∈ Lmax and
K ′ ∈ KG−{K}, the intersection K ∩K ′ is contained in every clique on the
path connecting K and K ′ in T .

Let K and P be, respectively, a leaf clique eliminated during the first major
step and the parent clique of K chosen by the algorithm, so that {K,P} is
an edge added to Emin during the first major step. Let K ′ ∈ KG − {K}.
Since K ∈ Lmax ⊆ LG and SepG(K) ⊂ P , we have

K ∩K ′ ⊆ SepG(K) ∩K ′ ⊆ P ∩K ′. (1)

If K ′ ∈ KG−Lmax, then by the induction hypothesis P ∩K ′ is contained in
every clique on the path connecting P with K ′, which proves the result in
this case. Suppose however that K ′ ∈ Lmax−{K}, and let P ′ be the parent
clique of K ′ chosen by the algorithm. Again, since K ′ ∈ Lmax ⊆ LG and
SepG(K ′) ⊂ P ′, we have

K ′ ∩ P ⊆ SepG(K ′) ∩ P ⊆ P ′ ∩ P. (2)

Combining (1) and (2) we see that K ∩ K ′ ⊆ P ′ ∩ P . Moreover, by the
induction hypothesis, P ′ ∩ P is contained in every clique on the path con-
necting P with P ′, and this, in conjunction with K ∩K ′ ⊆ P ′ ∩ P , suffices
to prove that T is a clique tree. 2

4.2 Proof of minimum diameter

For a clique tree T ∈ TG and any pair of cliques K,K ′ ∈ KG, let dist(K,K ′)
be the distance from K to K ′ along the single path connecting the pair in
T . The diameter of T is given by diam(T) := max {dist(K,K ′)}, where K

and K ′ range over every distinct pair of leaves taken from LT .
We are now ready to prove that the algorithm in Figure 5 finds a clique

tree Tmin that minimizes diam(T) over all clique trees T ∈ TG. To proceed,
we show in Lemma 8 that whenever P = P ′ in the proof of Lemma 2

MINIMUM-DIAMETER CLIQUE TREES 187

(see Figure 4), the diameter of the new tree is no more than the diameter
of the original tree. We then show that for any maximum-cardinality leaf
set Lmax, there exists a minimum-diameter clique tree Tmin ∈ TG for which
LTmin

= Lmax. The main result then follows by a simple induction argument.

Lemma 8. Assume |KG| ≥ 3. Let K ∈ L(S) and suppose K is not a leaf in
some clique tree T ∈ TG. Let P be any neighbor of K in T such that S ⊂ P .
There exists then a clique tree T ′ ∈ TG for which the following properties
hold:

(1) K is a leaf in T ′.

(2) The sole difference between T and T ′ is that each edge {C,K} incident
on K in T , with the exception {P,K}, has been replaced with the edge
{C,P} in T ′.

(3) diam(T ′) ≤ diam(T).

Proof. First, note that the existence of a neighbor P of K in T for which
S ⊂ P is ensured by Theorem 1. Now consider the restructured clique tree
T ′ produced in the proof of Lemma 2 when P = P ′ (see Figure 9). That

(b) T’.

CK’

C’

K P

(a) T.

C’

C

K P

K’

Fig. 9: Transformation of T into T ′ in which K is a leaf and for which diam(T ′) ≤
diam(T), as discussed in the proof of Lemma 8.

the first two properties hold for T and T ′ follows directly from the proof of
Lemma 2. To verify the third property, first note that the only paths whose
lengths are longer in T ′ than they are in T are those connecting K to a node
K ′ in one of the moved subtrees. The path connecting K and K ′ in the
restructured tree is, however, no longer than the path connecting K ′ and P

in the original tree. It follows that making all the neighbors of K (except
P) neighbors of P cannot increase the diameter. 2

Lemma 9. Assume |KG| ≥ 3, and let T ∈ TG be any clique tree for which
|LT | ≥ |LT ′ | for all T ′ ∈ TG. There exists then a minimum-diameter clique
tree Tmin ∈ TG such that LTmin

= LT .

Proof. Let T ∈ TG be chosen as in the premise. Choose a minimum-
diameter clique tree Tmin ∈ TG for which LTmin

contains as many of the leaf

188 JEAN R. S. BLAIR, BARRY W. PEYTON

cliques belonging to LT as possible. By way of contradiction, assume that
LTmin

6= LT . By Lemma 5, since |LT | ≥ |LTmin
|, there exists a leaf clique

K ∈ LT − LTmin
. Suppose that K ∈ L(S). Since |KG| ≥ 3 and |K(S)| ≥ 2,

at least one clique K ′ ∈ K(S) is not a leaf in T . Now consider the subtree
of Tmin induced by K(S). Let P ∈ K(S) be the clique adjacent to K along
the path from K to K ′ in the subtree of Tmin induced by K(S) (possibly
P = K ′). Observe that if P = K ′, then P is not a leaf in T , and if P 6= K ′,
then P is not a leaf in Tmin. It follows that P is not one of the leaf cliques
that T and Tmin have in common. Thus, using Lemma 8 to restructure
Tmin results in a clique tree also of minimum diameter, but with one more
leaf clique K in common with T than originally possessed by Tmin. This
contradicts our assumption about Tmin, thereby proving the result. 2

Remark 5. Some clique trees of minimum diameter do not have maximum-
cardinality leaf sets; some clique trees that have maximum-cardinality leaf
sets are not of minimum diameter. We leave it for the reader to supply
examples that confirm these statements.

Theorem 3. The algorithm in Figure 5 generates a clique tree of minimum
diameter.

Proof. That the algorithm generates a clique tree was proven in Lemma 7.
We prove by induction on m = |KG| that the clique tree has minimum
diameter. The base steps m = 1 and m = 2 are trivial. Let G be a chordal
graph with m ≥ 3 cliques, and assume that the algorithm minimizes clique-
tree diameter for any chordal graph with fewer cliques. Let Talg be a clique
tree generated by the algorithm.

By Lemma 7, LTalg
is the maximum-cardinality leaf set Lmax ⊆ LG chosen

for elimination during the first major step of the algorithm. Remarks 3 and 4
imply that the first major step eliminates the nodes in SimG(LTalg

). Clearly,
Talg \LTalg

is the tree generated by subsequent major steps of the algorithm.
Moreover, these subsequent steps are precisely the same as applying the
algorithm directly to the graph G \ SimG(LTalg

) with no prior elimination
step. It follows from the induction hypothesis that Talg \LTalg

is a minimum-
diameter clique tree of the chordal graph G \ SimG(LTalg

).
By Lemma 9, there exists a minimum-diameter clique tree Tmin ∈ TG such

that LTmin
= LTalg

= Lmax. Thus, Talg \ LTalg
and Tmin \ LTmin

are both
clique trees of G \ SimG(LTalg

). It follows from the induction hypothesis
that diam(Talg \ LTalg

) ≤ diam(Tmin \ LTmin
). Note that whenever m ≥ 3,

elimination of all leaves of any clique tree results in a tree whose diameter
has been reduced by two. Thus, we have

diam(Talg) = diam(Talg \ LTalg
) + 2

≤ diam(Tmin \ LTmin
) + 2

= diam(Tmin),

which proves the result. 2

MINIMUM-DIAMETER CLIQUE TREES 189

Note that the clique tree constructed by applying the algorithm to the
graph in Figure 1 has diameter four (see Figure 8), whereas the clique tree
that is a path has diameter six (see Figure 2). Moreover, it follows from
Theorem 3 that four is the minimum diameter over all clique trees for this
graph.

5. A linear-time implementation

The key step in the algorithm in Figure 5 is the selection of a maximum-
cardinality leaf set Lmax ⊆ LH ; the other lines in the main loop merely
remove the cliques in Lmax and collect the edges of the minimum-diameter
clique tree. Section 5.1 introduces a simple algorithm which combines the
selection and elimination of the cliques in Lmax into a single process. In
Section 5.2 we use the new algorithm for computing Lmax to obtain a detailed
version of the algorithm in Figure 5. Finally, Section 5.3 shows how a linear-
time implementation of the detailed algorithm can be achieved.

5.1 Generating a maximum-cardinality leaf set

This section introduces a practical algorithm for generating and removing a
maximum-cardinality leaf set Lmax. To describe the algorithm we need the
following parameters associated with each clique in the graph. For K ∈ KG,
we define the parameter ρ(K) to be the number of simplicial nodes contained
in K, and we define σ(K) to be the size of the largest separator in S(K).
Lemma 10 gives a useful formula for σ(K).

Lemma 10. For K ∈ KG, we have

σ(K) = max
{
|K ∩K ′|, where K ′ ∈ KG − {K}

}
.

Proof. Choose two distinct cliques K,K ′ ∈ KG. Applying Theorem 1 to
any clique tree T ∈ TG, we have K ∩K ′ ⊆ S for some separator S ∈ S(K);
hence, σ(K) ≥ |K ∩K ′|. The definition of σ(K) implies that there exists
K ′′ ∈ KG − {K} such that σ(K) = |K ∩K ′′|, and this completes the proof.

2

The algorithm to calculate Lmax, shown in Figure 10, processes the mem-
bers of LH in some arbitrary order. (Computing LH will be discussed in
Section 5.2.) To test K ∈ LH for inclusion in Lmax, the algorithm checks
to see if there has been no change in the parameter σ(K). [That is, does
σH′(K) = σH(K)?] The remainder of this subsection is devoted to prov-
ing that this test can be used to obtain a maximum-cardinality leaf set
Lmax ⊆ LH . First, Lemma 11 gives a useful condition that holds if and only
if σH′(K) = σH(K), and then Theorem 4 proves the algorithm in Figure 10
correct.

190 JEAN R. S. BLAIR, BARRY W. PEYTON

H ′ ← H ;
Lmax ← ∅ ;
for K ∈ LH do

if σH′(K) = σH(K) do

Lmax ← Lmax ∪ {K} ;
H ′ ← H ′ \ SimH(K) ;

end if ;
end for ;

Fig. 10: Algorithm for generating a maximum-cardinality leaf set.

Lemma 11. For some leaf separator S, choose K ∈ LH(S) ⊆ LH . When
the algorithm in Figure 10 tests K for inclusion in Lmax, we have σH′(K) =
σH(K) if and only if |KH′(S)| ≥ 2.

Proof. Let K ∈ LH(S) ⊆ LH , and consider the iteration of the algorithm
that processes K. Since SH(K) = {S}, clearly σH(K) = |S|.

If |KH′(S)| ≥ 2, then by Lemma 10, σH′(K) ≥ |S|. Since KH′ ⊆ KH ,
it follows from Lemma 10 that σH′(K) ≤ σH(K) = |S|. Thus, σH′(K) =
σH(K).

If σH′(K) = σH(K), then |K ∩K ′| = |S| for some clique K ′ ∈ KH′ −{K}.
From Theorem 1 we have K ∩ K ′′ ⊆ S for every clique K ′′ ∈ KH − {K}.
Consequently, K ∩K ′ = S, and therefore K,K ′ ∈ KH′(S), which proves the
result. 2

Theorem 4. The algorithm in Figure 10 computes a maximum-cardinality
leaf set Lmax.

Proof. Consider the partition of LH into leaf-cohort sets LH(S) where S

ranges over the set of distinct leaf separators. Lemma 5 gives the two con-
ditions that must be satisfied by Lmax: 1) whenever LH(S) ⊂ KH(S), every
clique in LH(S) must be included in Lmax, and 2) whenever LH(S) = KH(S),
precisely one clique in LH(S) must be excluded from Lmax. Consider an ar-
bitrary leaf-cohort set LH(S) = {K1,K2, . . . ,Kt} ⊆ LH , with the cliques
listed in the order in which the algorithm processes them. (That cliques from
other leaf-cohort sets may be processed between two neighboring cliques in
the list will have no bearing on the argument.)

First, note that |KH′(S)| ≥ 2 when the algorithm processes Ki, 1 ≤ i ≤
t − 1. Therefore, by Lemma 11, σH′(Ki) = σH(Ki), and Ki is included in
Lmax. We now consider whether or not the algorithm includes Kt in Lmax.
There are two cases to consider. First, suppose LH(S) = KH(S). It follows
that KH′(S) = {Kt} when the algorithm finally examines Kt. Consequently,
by Lemma 11, σH′(Kt) 6= σH(Kt), and Kt is therefore excluded from Lmax,
as required.

MINIMUM-DIAMETER CLIQUE TREES 191

Now, suppose LH(S) ⊂ KH(S) and consider the following two subcases.
First, assume KH(S) 6⊆ LH . In this case, |KH′(S)| ≥ 2 when the algorithm
examines Kt, and by Lemma 11, Kt is included in Lmax, as required. Now,
assume KH(S) ⊆ LH . Let K ′ ∈ LH be chosen so that K ′ ∈ KH(S)−LH(S).
It follows that K ′ ∈ LH(S′) where S ⊂ S ′. The key idea is to choose K ′

that maximizes |S ′| among all the leaf separators S ′ for which S ⊂ S ′.
Since S ⊂ S ′, we have KH(S′) ⊆ KH(S) ⊆ LH . It suffices to show that
KH(S′) = LH(S′), for we have shown in the previous paragraph that if
this were true, the last member of LH(S′) to be processed by the algorithm
would be excluded from Lmax, and thus retained in the graph H ′ when
Kt is examined. Consequently, we would have |KH′(S)| ≥ 2, and thus Kt

would be included in Lmax, as required. To verify that LH(S′) = KH(S′),
assume that K ′′ ∈ KH(S′) − LH(S′). Since KH(S′) ⊆ LH , it follows that
K ′′ ∈ LH(S′′) where S′ ⊂ S′′, contrary to the maximality of |S ′|. Thus, we
have KH(S′) = LH(S′), which concludes the proof. 2

5.2 Detailed algorithm

In this subsection we incorporate the algorithm for removing a maximum-
cardinality leaf set, shown in Figure 10, into the high-level minimum-dia-
meter clique tree algorithm shown in Figure 5. Figure 11 details an algorithm
based on this approach. Proceeding through the algorithm from beginning to
end, we discuss the key implementation issues connected with this approach.

5.2.1 Implementing the maximum-cardinality leaf set algorithm

The initialization loop uses the parameters introduced in the previous sub-
section to compute LH . The following result ensures that LH is computed
correctly.

Lemma 12. K ∈ LH if and only if σH(K) + ρH(K) = |K|.

Proof. Suppose K ∈ LH and let S be the single separator in SH(K).
From Theorem 1 and the fact that SH(K) = {S}, we have K ∩ K ′ ⊆ S

for every clique K ′ ∈ KH − {K}. Hence, any node v ∈ K − S belongs to
no other clique in the graph. Thus, we have ρH(K) ≥ |K − S|, and since
|KH(S)| ≥ 2, none of the nodes in S is simplicial. Hence ρH(K) = |K − S|,
which along with σH(K) = |S|, proves necessity.

To prove sufficiency, suppose σH(K) + ρH(K) = |K|. Choose S ∈ SH(K)
such that |S| = σH(K). Since ρH(K) = |K| − σH(K) and none of the
nodes in S are simplicial, every node in K − S is simplicial. Since each
simplicial node belongs to only one clique, it can belong to no separator in
MH . Consequently, SH(K) = {S}, and by Lemma 3, K ∈ LH . 2

Because the high-level algorithm in Figure 5 selects Lmax before any clique
in Lmax is eliminated, it easily identifies a set of clique-tree edges to be
added by the major step. The detailed algorithm in Figure 11 differs from

192 JEAN R. S. BLAIR, BARRY W. PEYTON

[Initialization]
01 Emin ← ∅ ;
02 H ′ ← H ← G ; LH ← ∅ ;
03 for K ∈ KH do

04 σH(K)← σH′(K)← σG(K) ; ρH(K)← ρH′(K)← ρG(K) ;
05 if σH(K) + ρH(K) = |K| then LH ← LH ∪ {K} ;
06 end for ;
07 Set up empty parent-child data structure ;

08 while |KH | ≥ 3 do

[Compute and eliminate Lmax]
09 for K ∈ LH do

10 if σH′(K) = σH(K) do

11 Choose P ∈ KH′ − {K} for which Sep
H

(K) ⊂ P ;
12 Use K and P to update parent-child data structure ;
13 H ′ ← H ′ \ SimH(K) ;
14 Compute new values for σH′ (P) and ρH′(P) ;
15 end if ;
16 end for ;

[Prepare for next iteration of while]
17 H ← H ′ ; LH ← ∅ ;
18 for each parent clique P in the parent-child data structure
19 σH(P)← σH′(P) ; ρH(K)← ρH′(K) ;
20 if σH(P) + ρH(P) = |P | then LH ← LH ∪ {P} ;
21 end for ;
22 Extract edges from parent-child data structure and add to Emin ;
23 Set up empty parent-child data structure ;

24 end while ;

25 if |KH | = 2 do

26 Emin ← Emin ∪ {K, P} where {K, P} = KH ;
27 end if ;

Fig. 11: Detailed algorithm for generating a minimum-diameter clique tree.

the high-level algorithm in this regard; it uses the algorithm in Figure 10
to both compute and eliminate a maximum-cardinality leaf set. (See the
first for loop inside the while loop in Figure 11.) With Lmax not known in
advance, the detailed algorithm can add edges to Emin only after this for loop
has completed the computation of Lmax. This is achieved by maintaining a
parent-child data structure that stores the cliques in Lmax and the required
edges upon completion of the for loop. In line 12, the leaf clique K and its
“candidate” parent P (chosen in line 11) are incorporated into the parent-
child data structure. The edges are extracted from the data structure and
added to Emin in line 22.

MINIMUM-DIAMETER CLIQUE TREES 193

5.2.2 The parent-child data structure

The parent-child data structure comprises a set P of current “parent” cliques,
along with a nonempty set C(P) of current “children” for each parent P ∈ P.
Upon entry into the loop, all of these sets are empty (lines 7 and 23). For
each leaf clique K that passes the test for membership in Lmax, a candi-
date parent clique P ∈ KH′ \ {K} for which SepH(K) ⊂ P is found. (How
to locate this candidate parent clique in constant time will be discussed in
Section 5.3.1.) Given K and P , the following lines of code implement the
parent-child data structure update in line 12.

P ← P ∪ {P} ;
if K ∈ P then P ← P − {K} ;
C(P)← C(P) ∪ {K} ∪ C(K) ;
C(K)← ∅ ;

To prove that the data structure ultimately stores the edges needed by
Emin, it suffices to show that three properties hold upon completion of the
data structure (i.e., upon completion of the for loop). The first two are
trivial; we leave it for the reader to confirm that

(1) P ⊆ KH′ , and

(2) the union of the disjoint sets C(P), where P ∈ P , is a maximum-
cardinality leaf set Lmax of H.

The following lemma provides the third required property.

Lemma 13. Upon completion of the parent-child data structure, we have
SepH(K) ⊂ P for every clique K ∈ C(P), where P ∈ P.

Proof. The following simple induction argument suffices. The result
holds vacuously before the first iteration of the loop is begun. We now
assume that it holds as an iteration of the loop begins, and will show that
it holds when the iteration is completed. Let H ′ be the graph remaining
as the iteration begins, K the member of LH chosen for elimination, and P

the selected clique in KH′ \ {K} for which SepH(K) ⊂ P . Upon completion
of the iteration, there is a new version of C(P) containing K, C(K), and
those cliques belonging to C(P) at the beginning of the iteration. By the
induction hypothesis, the property continues to hold for those cliques that
were contained in C(P) at the beginning of the iteration. The algorithm
explicitly chose P so that the property holds for K (line 11). Now, choose
C ∈ C(K). Note that C ∈ LH . By induction we have SepH(C) ⊆ K.
Moreover, since K ∈ LH , we have SepH(C) ⊆ SepH(K), which, in turn,
is properly contained in P . Consequently, SepH(C) ⊂ P , and thus the
result holds for the new version of C(P). Finally, by induction the property
continues to hold for the sets C(P ′), P ′ ∈ P − {P}, none of which are
modified during the iteration. 2

It follows from Lemma 13 and the discussion preceding it that the edges
represented by the sets P and C(P), where P ∈ P , are precisely the edges

194 JEAN R. S. BLAIR, BARRY W. PEYTON

that should be added to Emin. These edges moreover are added to Emin in
line 22.

5.2.3 Preparation for the next major step

Next we show why σH′(P) and ρH′(P) in line 14 are the only parameters
that might require updating after a graph reduction step in line 13. More
specifically, we show that after a graph reduction step, the only clique K ′ ∈
KH′ for which the values of σH′(K ′) or ρH′(K ′) may have changed is the
candidate parent P .

Lemma 14. Let K ∈ LH(S) and H ′ = H \ SimH(K). If σH′(P) 6= σH(P)
or ρH′(P) 6= ρH(P) for a clique P ∈ KH′ , then KH(S) = {K,P}.

Proof. Assume σH′(P) 6= σH(P). Since KH′ = KH \{K}, it follows from
Lemma 10 that σH′(P) ≤ σH(P); whence σH′(P) < σH(P). It follows that
any separator S ′ ∈ SH(P) for which σH(P) = |S′| is not a member ofMH′ .
From Property 1 of Lemma 6, the multiset of separators of the reduced graph
H ′ = H \ SimH(K) is given byMH − {S}. It follows that S ′ is unique and
moreover S ′ = S; thus σH(P) = |S| and {K,P} ⊆ KH(S). Now, were it
the case that |KH′(S)| ≥ 2, we would have σH′(P) ≥ |S| = σH(P), which is
impossible since σH′(P) < σH(P).

Now assume ρH′(P) 6= ρH(P). Since SimH(P) ⊆ SimH′(P), the assump-
tion implies that there is a new simplicial node in P , i.e., SimH(P) ⊂
SimH′(P). Note that the nodes in H ′ that belong to fewer cliques than
they did in H are precisely those in S, and they belong to exactly one less
clique (due to the removal of K). As a result, the new simplicial nodes in P

must come from S. If |KH(S)| ≥ 3, then removal of K from H would result
in no new simplicial nodes at all. Consequently, |KH(S)| = 2. Since a new
simplicial node appears in P , it follows that P must be the other clique in
H that contains S, and thus KH(S) = {K,P}. 2

The second for loop inside the while loop initializes data for the next pass
through the while loop. From Lemma 14 we know that the only cliques for
which σH′(K) 6= σH(K) or ρH′(K) 6= ρH(K) upon entry into the loop are
the cliques belonging to P . It is therefore sufficient to record for each clique
K ∈ P new values σH(K) and ρH(K) to be used in the next major step. In
the next result we show that the leaf cliques LH are also found among the
parent cliques recorded in P (line 20).

Lemma 15. Upon entering the for loop that prepares for the next major
step of the algorithm in Figure 11, we have LH′ ⊆ P.

Proof. Assume the algorithm is entering the loop, and let K ∈ LH′ .
If K ∈ LH′ − LH , then it follows from Lemma 12 that σH′(K) 6= σH(K)
or ρH′(K) 6= ρH(K), and by Lemma 14 we have K ∈ P . Now assume
K ∈ LH′∩LH . It follows that the algorithm excluded K from Lmax, because
σH′(K) 6= σH(K) in line 10 when K was considered for inclusion in Lmax.
So again, by Lemma 14, we have K ∈ P . 2

MINIMUM-DIAMETER CLIQUE TREES 195

5.3 Complexity

To facilitate our discussion of the algorithm’s time complexity, let n := |V |,
e := |E|, m := |KG|, and q :=

∑
m

i=1 |Ki|. It is well known that m ≤ n and
q ≤ e [11]. In this section we will show that the algorithm in Figure 11 can be
implemented to run in O(n+e) time. Below we analyze the time complexity
for most of the operations performed by the algorithm, postponing two less
obvious complexity issues to be addressed in two subsections which conclude
this one.

Clearly, the algorithm requires as input the set of cliques KG and the pa-
rameters σG(K) and ρG(K), for K ∈ KG. A clique tree T = (KG, E) ∈ TG
can be computed in O(n + e) time by applying a slightly modified ver-
sion of the maximum-cardinality-search algorithm to the underlying chordal
graph [3, 22, 25]. It is straightforward to compute the parameters σG(K)
and ρG(K) from T in O(m + q) time, and thus the required input can be
obtained in O(n + e) time.

Next, we verify that the body of each for loop is executed a total of O(m)
times. The body of the initialization loop clearly is executed m times. It
follows directly from Lemma 5 that for each major step we have |LH | ≤
2|Lmax|; hence, the body of the loop that computes and eliminates Lmax is
executed no more than 2m times. Finally, since |P| ≤ |Lmax|, the body of
the loop that prepares for the next major step is executed no more than m

times.

We now determine the total cost associated with individual operations
within the for loops. Each assignment statement involving the σ’s and the
ρ’s is clearly a constant time operation. Similarly, the cost of evaluating
each if expression involving the σ’s and the ρ’s is constant. Implementing
the leaf sets LH as singly-linked lists restricts each operation associated with
these sets to constant time. Thus, the total time required to execute the
first and last for loops is O(m).

The parent-child data structure can be implemented so that the total cost
of all operations associated with it is O(m): the set P should be imple-
mented as a doubly-linked list to enable insertion and deletion of members
in constant time; the sets C(P), where P ∈ P , can be implemented as singly-
linked lists, with a pointer to the tail of each list to enable performance of
the “child merging” in constant time.

With the exception of lines 11 and 14, the above arguments suffice to show
that the algorithm in Figure 11 can be implemented in O(n + e) time. Sub-
section 5.3.1 below discusses use of a particular clique tree representation of
the reduced graph to allow efficient computation of candidate parent cliques
in line 11. Subsection 5.3.2 describes how a variant of the σH′ parameters
can be substituted for the original σH′ parameters throughout the algorithm
in order to allow efficient implementation of line 14.

196 JEAN R. S. BLAIR, BARRY W. PEYTON

5.3.1 Using a clique-tree representation of each reduced graph

The algorithm maintains SimH(K) for each clique K ∈ KH by keeping count
of the number of cliques to which each node belongs. Initially, those mem-
bers of K ∈ KH that belong to no other clique are placed in SimH(K). For
each leaf clique K ∈ LH those members of K that are not in SimH(K) im-
plicitly form the set SepH(K). Whenever the algorithm performs the graph
elimination step H ′ ← H ′ \ SimH(K), it decrements the “clique count” for
each node in SepH(K), and places any new simplicial nodes in SimH′(P),
where P was chosen in line 11. This can be done using a clique tree to rep-
resent G and each subsequent reduced graph H ′ [19, 25]. Using techniques
described in these papers the total work required for these tasks is O(n+q).

Now consider the task of determining the candidate parent P for which
SepH(K) ⊂ P . Maintaining the clique-tree representation T ′ ∈ TH′ enables
efficient implementation of this step. It follows from Lemma 1 that a can-
didate parent P can be found among the neighbors of K in T ′. Note that
restricting the search to all neighbors of K in T ′ is not sufficient to obtain a
linear-time algorithm: we need access to P in constant time. We now briefly
discuss a data structure used to represent clique trees in Lewis et al. [19],
which provides this capability.

The initial data structure is a rooted clique tree T ∈ TG with the nodes in
each clique listed in ascending order by some perfect elimination ordering of
the underlying chordal graph. (Such an ordering can be obtained from the
maximum-cardinality-search algorithm used to construct the input.) The
data structure initially has the children of each parent listed in descending
order by the size of the separator each shares with the parent. Sorting the
nodes in the cliques can be done in O(q) total time, and sorting the children
in their lists can be done in O(n) total time, both by careful application of
a bucket sort.

Let T ′ ∈ TH′ be a clique-tree representation of H ′ obtained using the
techniques described in Lewis et al. [19]. Due to the initial ordering of
the children and the rules governing the “child-list” updating, we have the
following: For each K ∈ KH′ − LT ′ and its “first child” C1, the separator
K ∩C1 is maximal among the separators in K; that is,

C1 ∩K ∈ SH′(K), where C1 is the first child of K. (3)

Let K ∈ LH′(S), where S = SepH′(K). If K has no children in T ′, then K

has a parent K ′ in T ′, which is the only clique adjacent to K in T ′. It follows
from Lemma 1 that SepH′(K) ⊂ K ′; hence K ′ may serve as the candidate
parent in line 11 of the algorithm. If, on the other hand, K has a child in
T ′, it then follows from Equation (3) and the fact that |SH′(K)| = 1 that
the first child C1 may serve as the candidate parent P . We can therefore
locate P in constant time.

MINIMUM-DIAMETER CLIQUE TREES 197

5.3.2 Using a variant of σH′

As before, it follows from Lemma 1 that σH′(P) can be updated by examin-
ing only the neighbors of K in T ′. Since P may not be a leaf clique, it may
have several maximal separators, and hence the maximal separator shared
with its first child C1 may not be maximum. In fact, we know of no way
to compute σH′(K) in constant time, even using the clique-tree representa-
tion described in the previous subsection. We can nonetheless work around
this problem by replacing the σ parameters throughout the algorithm with
slightly different parameters, which are adequate for determining member-
ship in LH and Lmax, but can be computed more efficiently than the σ

parameters.

For any clique K ∈ KH′ , let σ̂H′(K) = |S|, where S is chosen arbitrarily
from SH′(K). Consider the algorithm obtained by replacing all the σ’s with
σ̂’s in Figure 11. The new test for inclusion in LH is σ̂H(K)+ρH(K) = |K|.
It follows from Lemma 3 that

σ̂H(K) = σH(K) for K ∈ LH . (4)

Consequently, every leaf clique is included in the set computed using the
new test. For any clique K that fails the original test for inclusion in LH ,
we have σH(K) < |K| − ρH(K). Since by definition

σ̂H(K) ≤ σH(K), (5)

it follows that the new test also excludes K from LH . In consequence, the
new test and the original test are equivalent.

Now consider the new test for inclusion in Lmax [i.e., σ̂H′(K) = σ̂H(K)].
Note that this test is performed only on cliques K ∈ LH , and for any such
clique we have that σ̂H(K) = σH(K). It follows then that that the new test
and the original test [i.e., σH′(K) = σH(K)] are equivalent. Having shown
that each of the two new tests is equivalent to the corresponding original
test, we have shown that the algorithm with the σ̂ parameters is equivalent
to the one with the σ parameters.

The reason for introducing the σ̂ parameters into the algorithm is that
they make it possible to implement it to run in linear time. Recall that the
first child C1 (in T ′) of any clique K ∈ KH′ is joined to K by a separator
in SH′(K) [see Equation (3)]. As a result, σ̂H(P) can be set to the size of
the separator shared with C1, whenever P has one or more children in T ′;
otherwise, it can be set to the size of the separator shared with its parent in
T ′. Consequently, σ̂H′(P), where P is the candidate parent chosen in line 14
of the algorithm, can be updated in constant time.

From the arguments given in this section, it follows that the modified
algorithm has O(n + q) total time complexity. This, together with the time
required to obtain the input, gives us an O(n + e)-time algorithm.

198 JEAN R. S. BLAIR, BARRY W. PEYTON

6. Concluding remarks

The primary contribution of this paper is an efficient algorithm for gener-
ating a minimum-diameter clique tree, along with an analysis of its time
complexity. The algorithm is a natural generalization of the obvious greedy
algorithm for rooting an ordinary tree in order to minimize its height, and
can be viewed as a block variant of the Jess and Kees ordering algorithm
[19, 21]. To achieve this generalization, we defined the leaf set LG to include
every clique that is a leaf in some clique tree in TG. We then introduced
characterizations of the cliques in LG that help to compute the set very
efficiently. This was followed by a characterization of maximum-cardinality
leaf sets. We then presented the obvious greedy algorithm, which repeats
the following major step until the graph has been eliminated: compute a
maximum-cardinality leaf set, eliminate these leaf cliques from the graph,
and collect an appropriate set of clique-tree edges incident on these leaves.
We then showed that this algorithm generates a minimum-diameter clique
tree.

To demonstrate that the new algorithm executes in O(n + e) time, we
addressed several implementation issues, the most important of which is
efficient computation of the maximum-cardinality leaf sets. An actual code
based on the detailed algorithm in Figure 11 would maintain a clique-tree
representation of the current chordal graph. (This clique tree may or may
not be of minimum diameter.) Lewis et al. [19] contains details about the
data structure used to store this sequence of clique trees and how they are
used to implement the elimination process very efficiently.

We believe that our algorithm will be useful in a number of application
areas. Of particular interest to us is its use in an efficient implementation
of a parallel sparse Cholesky factorization algorithm and also in an efficient
parallel method for calculating probability distributions in a probabilistic
knowledge-based system. The next two paragraphs briefly discuss the ap-
plication of our results in these two areas.

Gilbert and Schreiber [14] have recently implemented a fine-grained par-
allel sparse Cholesky algorithm on the Connection Machine, a massively-
parallel distributed-memory SIMD machine (Single-Instruction-Multiple-
Data). Their algorithm is a highly parallel variant of the multifrontal
method for sparse factorization [7, 20]. To improve performance they use an
elimination sequence obtained by repeating the following step until all nodes
have been eliminated: remove all simplicial nodes from the current chordal
graph. Our results can be used to demonstrate that the number of major
steps taken by their ordering algorithm, and consequently their factorization
algorithm, is the minimum possible. This is of practical importance because
between each major step (and only then) their factorization algorithm must
issue calls to the Connection Machine’s general router to accumulate results
and communicate them from one processor to another to set up the next
major step. Calls to the general router are so expensive that the height of
the clique tree, though not the dominant time-complexity term in a theo-

MINIMUM-DIAMETER CLIQUE TREES 199

retical sense, is nonetheless dominant in the practical sense. Their ordering
algorithm is based on this assessment, and the analysis in this paper can be
used to demonstrate that they have minimized the number of calls to the
router. In addition, the results in this paper possibly provide a basis for
reorganizing their factorization algorithm to improve its efficiency; however,
further study will be required to determine if substantial improvements are
indeed possible.

Lauritzen and Spiegelhalter [18] have presented a technique for calculat-
ing probability distributions in knowledge-based systems in which proba-
bilities of discrete-valued random variables are an inherent component of
the encoded knowledge. Briefly, a probabilistic knowledge-based system is a
Markov network M = (V,EM , P r). (M is a digraph with nodes V being the
system random variables, directed arcs EM taken from V × V , and proba-
bility distributions Pr corresponding to the acyclic arc-structure.) The goal
is to maintain the probability distributions Pr as they vary with time and
queries of the network. To achieve this, the directed graph M is first con-
verted into the corresponding undirected graph G, then edges are added as
needed to convert G into a chordal graph. The probability distributions can
be maintained with added efficiency by using a clique-tree representation
of G to organize the computation. Backward and forward propagation of
data in the clique tree, which in practice may require the manipulation of
large tables of probabilities, is a fundamental part of the method. England
et al. [8, 9] describe aspects of the Pr component of M that render cer-
tain sections of the data propagation computationally independent. This
data independence can be exploited to allow simultaneous execution within
as many cliques as possible in a parallel implementation. To complement
these results and allow for an even greater amount of parallelism in the so-
lution process, it would be advantageous to use a clique-tree representation
of minimum diameter.

There are several open questions worth mentioning. In light of the algo-
rithm’s possible applications, it is worthwhile to consider how to implement
it (or some variant thereof) to run efficiently on a parallel machine, par-
ticularly a fined-grained machine such as the Connection Machine. Our
algorithm finds a maximum-weight, minimum-height spanning tree of the
clique-intersection graph of a given chordal graph. Camerini et al. [5] have
shown that for general weighted graphs this problem is NP-complete. It
would be interesting to know whether or not a maximum-diameter clique
tree (or equivalently a maximum-weight, maximum-height spanning tree of
the clique-intersection graph of G) can be found in polynomial time.

Acknowledgements

We would like to thank Eduardo D’Azevedo, John Gilbert, Eric Kirsch,
Esmond Ng, and an anonymous referee for many valuable comments and
suggestions. We also would like to thank Alex Pothen for pointing out

200 JEAN R. S. BLAIR, BARRY W. PEYTON

an oversight in an earlier version of this paper, which we address here in
Section 5.3.2.

References

[1] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability of acyclic
database systems. J. Assoc. Comput. Mach., 30:479–513, 1983.

[2] P. A. Bernstein and N. Goodman. Power of natural semijoins. SIAM J. Comput.,
10:751–771, 1981.

[3] J. R. S. Blair and B. W. Peyton. An introduction to chordal graphs and clique
trees. In J. A. George, J. R. Gilbert, and J. W. H. Liu, editors, Graph Theory and

Sparse Matrix Computations, pages 1–30. Springer Verlag, 1993. IMA Volumes in
Mathematics and its Applications, Vol. 56.

[4] P. Buneman. A characterization of rigid circuit graphs. Discrete Math., 9:205–212,
1974.

[5] P. M. Camerini, G. Galbiati, and F. Maffioli. Complexity of spanning tree problems:
Part I. European Journal of Operational Research, 5:346–352, 1980.

[6] G. A. Dirac. On rigid circuit graphs. Abh. Math. Sem. Univ. Hamburg, 25:71–76,
1961.

[7] I. S. Duff and J. K. Reid. The multifrontal solution of indefinite sparse symmetric
systems of equations. ACM Trans. Math. Software, 9:302–325, 1983.

[8] R. E. England. Clique graph models for independent computations. PhD thesis, Dept.
of Computer Science, The University of Tennessee, 1989.

[9] R. E. England, J. R. S. Blair, and M. G. Thomason. Independent computations in
a probablistic knowledge-based system. Technical Report CS-90-128, Department of
Computer Science, The University of Tennessee, Knoxville, Tennessee, 1991.

[10] R. Fagin. Degrees of acyclicity for hypergraphs and relational database schemes. J.
Assoc. Comput. Mach., 30:514–550, 1983.

[11] D. R. Fulkerson and O. A. Gross. Incidence matrices and interval graphs. Pacific J.

Math., 15:835–855, 1965.
[12] F. Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs.

J. Combin. Theory Ser. B, 16:47–56, 1974.
[13] F. Gavril. Generating the maximum spanning trees of a weighted graph. J. Algo-

rithms, 8:592–597, 1987.
[14] J. R. Gilbert and R. Schreiber. Highly parallel sparse Cholesky factorization. SIAM

J. Sci. Stat. Comput., 13:1151–1172, 1992.
[15] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press,

New York, 1980.
[16] C-W. Ho and R. C. T. Lee. Counting clique trees and computing perfect elimination

schemes in parallel. Inform. Process. Lett., 31:61–68, 1989.
[17] F. V. Jensen. Junction trees and decomposable hypergraphs. Technical report,

JUDEX, Aalborg, Denmark, 1988.
[18] S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on

graphical structures and their applications to expert systems. J. Royal Statist. Soc.,

ser B, 50:157–224, 1988.
[19] J. G. Lewis, B. W. Peyton, and A. Pothen. A fast algorithm for reordering sparse

matrices for parallel factorization. SIAM J. Sci. Stat. Comput., 10:1156–1173, 1989.
[20] J. W-H. Liu. The multifrontal method for sparse matrix solution: theory and prac-

tice. SIAM Review, 34:82–109, 1992.
[21] J. W-H. Liu and A. Mirzaian. A linear reordering algorithm for parallel pivoting of

chordal graphs. SIAM J. Disc. Math., 2:100–107, 1989.
[22] B. W. Peyton. Some applications of clique trees to the solution of sparse linear

systems. PhD thesis, Dept. of Mathematical Sciences, Clemson University, 1986.
[23] D. J. Rose. A graph-theoretic study of the numerical solution of sparse positive defi-

nite systems of linear equations. In R. C. Read, editor, Graph Theory and Computing,

MINIMUM-DIAMETER CLIQUE TREES 201

pages 183–217. Academic Press, 1972.
[24] Y. Shibata. On the tree representation of chordal graphs. J. Graph Theory, 12:421–

428, 1988.
[25] R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality

of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs.
SIAM J. Comput., 13:566–579, 1984.

[26] J.R. Walter. Representations of chordal graphs as subtrees of a tree. J. Graph

Theory, 2:265–267, 1978.

Appendix A. Notation

The following table describes the key items in our notation.

G – A chordal graph; G = (V, E).

K – A maximal clique in G.
KG – The maximal cliques in G.
K(S) – The maximal cliques containing S ⊆ V .

T – A clique tree of G; T = (KG, E).
TG – The clique trees of G.

S – A minimal node-pair separator of G.
MG – The multiset of such separators of G.
S(K) – The set of such separators included in clique K.

S(K) – The set of such separators maximal among those included in K.

LT – The leaves in a clique tree T .
LG – The leaf cliques in a chordal graph G.
Lmax – A maximum-cardinality leaf set.

L(S) – The leaf cliques K ∈ LG for which S(K) = {S}.

σ(K) – The size of the largest separator in S(K).
ρ(K) – The number of simplicial nodes in clique K.

