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Abstract. Many algorithms exist in literature to manage replicated database
objects. Some of these are dynamic and attempt to adapt to changing network
configurations due to failures, particularly due to network partitioning. This paper
presents a new dynamic algorithm for replication control with several desirable
features: not only does it enhance the availability of read and write operations in
failure conditions but also achieves this at a relatively low cost. This algorithm
is based on the concept of views introduced originally by El Abbadi, Skeen and
Cristian and improves on the dynamic voting ideas developed by many authors.

ACM CCS Categories and Subject Descriptors: D.4.3, H.2.4

1. Introduction

Replication is a well-known technique for improving the availability of ob-
jects in distributed operating systems and in distributed database systems:
more than one copy of an object is stored in the system so that the object
may be available in spite of failure of some sites. Of course, the physical
availability of a copy does not necessarily guarantee that transactions can
use it for reading/writing, owing to the consistency requirements. Replica
control algorithms attempt to maintain mutual consistency among copies
of an object. While it is relatively easy to design replica control algorithms
that guarantee mutual consistency when no failures are allowed in the model,
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algorithms tolerant to failure are harder to design and analyze. Generally
two types of failures are considered: site failures and network partitioning.
Site failures are assumed to be benign: failed sites simply stop executing
their protocol and do not exhibit any malicious behavior. Network parti-
tioning occurs when the network gets fragmented into non-communicating
groups of operational sites. Arbitrary, undetected network partitions are
much harder to handle than site failures and thus algorithms handling both
site failures and network partitioning are significantly more complex than
failure-sensitive algorithms [8].

Two general approaches are taken in the literature to deal with network
partitioning: the pessimistic and the optimistic approaches. The algorithms
based on the pessimistic approach (e.g., [2, 3, 7, 12, 13, 18]) share the phi-
losophy that mutual consistency is of greater importance than availability.
Such a philosophy is appropriate in situations where temporary inconsis-
tencies among replicated objects cannot be tolerated or where semantics of
operations on objects are complex and inconsistencies in the copies of an ob-
ject are difficult to detect and resolve. In contrast, the optimistic algorithms
(e.g., [5, 8, 15, 16]) take the approach that the database must be available
even when network partitions. Conflicting transactions are detected and
rolled back when partitions are reunited. Since this is a very difficult task,
these algorithms are useful in situations in which the number of database
objects is large and the probability of conflicts is small (hence the label
optimistic).

The work reported in this paper falls under the banner of the pessimistic
approach. Thus, at most one group of a partitioned network will be allowed
to continue with transaction processing under the replica control algorithms
presented here. But what is new is that it improves the chances that one
of the groups can in fact do some useful work by adapting closely to the
topology of the network in transition towards a stable configuration. Sim-
ulatneously, it reduces the overhead due to its own execution by tightly
controlling the cost of the adaptation.

The organization of the paper is as follows: next section motivates the
derivation of the new algorithm by describing in detail two existing algo-
rithms that form the basis for the new algorithm and pointing out their
strengths and weaknesses. Section 3 presents and proves the correctness of
the new algorithm. Finally, Section 4 concludes the paper.

2. Motivation for the New Algorithm

For the sake of simplicity and without loss of generality, we make the fol-
lowing assumptions:

◦ there is a single object x in the system,

◦ there are n sites in the system that have copies of x,

◦ arbitrary site failures and network partitioning are allowed, and

◦ the failures are only benign.
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Following is the general structure of most pessimistic replica control al-
gorithms. When failures are detected or suspected, some sites attempt to
determine the composition of the groups that they belong to.1 Then they
try to ascertain whether or not their group is the distinguished group that
can proceed with normal transaction processing. If the group is identified as
the distinguished group, then reads and writes on the object can take place
within that group. If on the other hand it is not a distinguished group, then
the sites simply wait for a reconfiguration and the procedure is repeated.

Thus there are basically four issues that a replica control algorithm ad-
dresses and should provide answers for:

(a) how do sites determine the composition of their group,

(b) what makes a distinguished group,

(c) how do sites check if they form a distinguished group, and

(d) how are reads and writes performed in a distinguished group.

Of the four, (b) is the most critical issue and what most distinguishes dif-
ferent algorithms. Observe that the answer to this issue forms the crux
of a replica control algorithm since it ensures that more than one distin-
guished group cannot coexist and thus enforces a serial order among the
distinguished groups forming during the period of network transition which
in turn enforces the mutual consistency when proper rules are devised. Is-
sues (a) and (c) are relatively simple and in fact are answered identically by
many algorithms. Issue (d) directly depends on the answer to issue (b), as
explained above.

For example, consider the primary copy approach where one of the copies
of the object is identified as the primary copy and all writes are first per-
formed on it [4]. Under this replica control algorithm, any group that con-
tains the site with the primary copy is distinguished. Clearly then there
can be at most one such group in the system at any time. Operations in
such a group are performed by writing to the primary copy first and then
propagating the new value to the other copies and reading from any of the
copies when stale values are acceptable and from the primary copy when
the most recent value is needed.

A second example is the majority approach [9, 19]. Here, a group is dis-
tinguished if it has a majority of copies of the object. Under this approach,
each copy of the object usually has an associated indicator representing how
recent the value is. A fundamental property of the indicator is that its
values are distinct and totally ordered. Examples of indicators are global
time-stamps and version numbers. In a distinguished group, the most recent
copy of the object is identified and read (this is possible due to the distinct-
ness and total ordering of the indicator values) and a write is performed on
all copies in the group, and the indicator is properly recorded atomically
with the write.
1 Since the failures are in general unpredictable and are also usually temporary, a site’s
belief on the composition of the group it is in does not have to reflect the reality. Nor do
all sites in a group have to believe the same composition.
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Examples presented above represent static algorithms that behave the
same independent of the network configuration. There are several dynamic
algorithms that have appeared recently in the literature. Of these, dynamic
voting with linearly ordered copies, hereafter referred to as dynamic-linear,
by Jajodia and Mutchler [12] and accessibility thresholds protocol by El Ab-
badi and Toueg [3] are particularly attractive. Each enjoys many virtues
not found in other dynamic schemes; however, each suffers from some de-
ficiencies as well. The present work introduces a new dynamic algorithm
which attempts to retain the virtues of both algorithms, eliminating their
disadvantages at the same time. More specifically,

◦ Like dynamic-linear, the write quorum for an object x in the new
algorithm depends on the number of up-to-date copies in existence
at the time of the update. On the other hand, the write quorum
for x in accessibility thresholds protocol cannot be less than a value
determined by the total number of copies of x (i.e., the write threshold
of x).

◦ Like accessibility thresholds protocol, the new algorithm utilizes the
view mechanism which permits a site to determine if it can read or
write an object by consulting the view information available locally.
Without such a mechanism, dynamic-linear requires much message
passing to accomplish this.

◦ Like dynamic-linear, the new algorithm allows more flexibility in the
selection of distinguished partitions than the accessibility thresholds
protocol, resulting in greater read and write availability.

We now describe these two algorithms.

2.1 The Dynamic Linear Algorithm (DLA)

In this section, we provide an informal description of the dynamic-linear
algorithm. Each copy under this algorithm has three variables (in addition to
the value of the object) associated to it: a version number (V N), an update
sites cardinality (SC), and a distinguished site (p). A group is distinguished
if the number of sites in the group with the most recent version number
V N is a majority of the corresponding SC if SC is odd; and is SC/2 if it
includes the distinguished site and SC is even. The SC of the most recent
version number in a distinguished group is also referred to as the group’s
update sites cardinality.

A site receiving a request (read or write), first determines if it is in a
distinguished group. For this, it sends messages to all other sites, receives
responses and applying the above criterion checks if they form a distin-
guished group. If they do then the request is serviced and all sites in the
group are informed. What is more important and interesting is that a dis-
tinguished group can decide the criterion for the next distinguished group.
For instance, it can install a new (higher) version number on a proper subset
of the sites in the group and set SC and p accordingly. Or, when a write
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is performed, a new version number and the corresponding SC and p may
be installed. Since this is done atomically at all sites in the group, it is
guaranteed that at most one distinguished group exists at any time.

Read and write quorums2 can be incorporated easily within each distin-
guished group as follows. For a distinguished group P with SC as the update
sites cardinality, the read quorum qr[P ] and the write quorum qw[P ] can be
defined independently, and must satisfy the following equations:

qr[P ] + qw[P ] > SC (1)

2qw[P ] > SC (2)

Dynamic-linear has several very desirable properties:

◦ it has a simple statement that permits a clear correctness proof,

◦ it is easy to implement, and

◦ the availability afforded by the DLA is greater than the availability
due to any static algorithm if the object is replicated at four or more
sites in the network [12].

Furthermore, enough expertise can be imparted into an implementation of
the algorithm to make its behavior truly reflective of the network configura-
tion. Thus the algorithm can be effectively dynamic: directly dependent on
the initial network topology as well as any factors that effect the availability
of the system.

Conversely, there are several areas of DLA that warrant improvement too:

◦ Each request has a large message cost associated with it since the
criterion for a distinguished group is asserted with each request. Thus,
many messages may be wasteful during a transitional period.

◦ A two-phase protocol is employed in servicing requests: all sites re-
ceiving a message from a site attempting to service a request lock their
copies of the object before responding and hold the locks until they
receive another message from the site saying whether they are in a dis-
tinguished group (in which case the request is serviced and the effects
are committed at all sites) or not (in which case the locks are released
without any effect on the object). Clearly, in addition to the message
overhead, this requirement potentially reduces the availability of the
object.

We now describe the accessibility threshold algorithm which uses views
that can be formed in a single phase.

2.2 The Accessibility Thresholds Algorithm (ATA)

In this section, we briefly describe the accessibility thresholds algorithm [3]
which is a view-based algorithm. Under this algorithm, each site s maintains
a list variable vs known as the view of s. At any time, vs lists the set of

2 These specify the number of copies that must be read or written within a group.
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sites that s believes to be in the same group as s at that time. Associated
to an object are two integers: read accessibility threshold Ar and write
accessibility threshold Aw. In addition each object in a view is associated
with a read quorum qr[vs] and a write quorum qw[vs].

3 Let n[vs] be the
number of copies of the object in the view vs. The following relationships
dictate bounds on the values of these variables. (In [1] and [2], the write
accessibility threshold was bound by an additional constraint 2Aw > n. This
is removed in [3].)

Ar + Aw > n (3)

qr[vs] + qw[vs] > n[vs] (4)

2qw[vs] > n[vs] (5)

1 ≤ qr[vs] ≤ n[vs] (6)

Aw ≤ qw[vs] ≤ n[vs] (7)

As in the case of the weighted voting approach [6, 9], there can be separate
distinguished groups for reads and writes under ATA: a distinguished view
for a read is one that has at least Ar copies in it and a distinguished view
for a write is one with at least Aw copies in it. In a distinguished view vs

for a read, qr[vs] copies are read and the most recent version among them
is taken as the value. Similarly, qw[vs] copies are atomically updated in a
distinguished view for a write. Creation of a new view (corresponding to
issue (a) listed in the motivation section) can be initiated by any site at
any time, one possibility being when it detects that it cannot communicate
with a site in its current view. View numbers (or identifiers) must be totally
ordered globally and thus a site initiating a new view chooses a view number
larger than any it has known previously and the set of sites it believes to
constitute the new view. It then accesses Ar copies of the object (in general,
as many copies as are required by the accessibility threshold for each object
it has a copy of) from sites within the new view and updates its local copy
to the most recent among the Ar read.4 The messages sent to read the
copies also double as invitations to other sites to join the new view. A site
receiving such a message may choose to accept the invitation if the proposed
view number is larger than any it has known (and/or several other possible
factors, as discussed in [3]). In case it decides to accept the invitation, it
updates the local copy of the object by accessing the appropriate number of
copies within the new view and installs the new view.

There are at least three features of ATA that are highly impressive:

◦ The view formation can be achieved in a single phase: a site installing
a new view (either by initiating the new view or after receiving an
invitation from another site) does so at its own pace and convenience.
No synchronization across sites is necessary.

3 Values of these quorums depend upon the objects but we do not explicitly show that
dependence here since we assume a single object.
4 The installation of the view and the updates of all copies form a locally atomic operation.
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◦ A site s where a transaction request to read/write arrives can, based on
the locally available list vs, makes a preliminary decision on whether it
can service the request or not. In other words, determining whether or
not the group a site (thinks) is in a distinguished group for a given op-
eration can be done locally with no message passing. Message passing
is required only if it believes that the request can be serviced. Thus,
if the view of the site coincides or closely approximates the reality,
then none of the messages used in an attempt to service a request are
wasted.

◦ The quorums for read/write operations within a view can be dynam-
ically determined by the members of the view. No global decision-
making involving sites outside the view is needed.

Note that the dynamic aspect of ATA is in the ability to choose quorums
dynamically within each view. The distinguished groups themselves are
statically determined through the values of Aw and Ar. Clearly, this is an
area for a possible improvement. There is another somewhat subtle but more
serious issue about ATA that warrants improvement. Following proposition
brings this issue out.

Proposition 1. Under the ATA, if an object has read and write access
thresholds in a view vs, then the write quorum in vs must satisfy the follow-
ing inequality:

qw[vs] ≥

⌈

n + 3

4

⌉

(8)

Proof. Since x is updatable in vs,

n[vs] ≥ max{Ar, Aw} (9)

From Equations (3) and (9),

n[vs] ≥

⌈

n + 1

2

⌉

(10)

From Equation (5),

qw[vs] ≥

⌈

n[vs] + 1

2

⌉

(11)

The assertion now clearly follows from (10) and (11). 2

Therefore, even if the write accessibility threshold Aw is quite small, the
write quorum qw[vs] cannot be less than a value determined by n, the total
number of copies of the object. As an example, if the object is replicated
at 100 (=n) sites, to write the object (in a view v), 26 or more (when
qw[vs] > 26) physical copies will need to be accessed.

In the next section we develop a new algorithm that combines the virtues
of both the algorithms described above while trying to avoid the pitfalls to
the extent possible.
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3. The New Algorithm

The replication control algorithm proposed in this section attempts to com-
bine the advantages of both the dynamic and the view-based algorithms.
More specifically, the objectives of the algorithm are as follows:

(1) It must not be necessary to exchange any messages in a relatively
stable partition to determine the accessibility of an object.

(2) The number of copies needed in a partition to update an object must
not depend on the total number of copies of the object (making the
algorithm truly dynamic).

(3) Only single phase protocols must be run whenever possible, to guar-
antee the sustained availability of resources.

The first objective is realized by using the view mechanism in the groups
while the second is realized by using ideas from dynamic-linear. Finally,
effort is made to minimize the need for a two-phase protocol by eliminating
the need for synchronization among sites whenever possible.

3.1 View Creation/Installation

The notion of a view used here is the same as that of [3]. Thus it is a logical
partition (i.e., a set of sites) as viewed by some sites. A site s with a view
vs believes that it is in a group consisting of sites listed in vs. This may or
may not be the reality. But if a group is relatively stable and the number
of read/write operations in the partition is sufficiently high, then the views
of the sites in the partition can be expected to be identical to the physical
partition. The process of view creation and installation in our algorithm
is more flexible than that of [3], as we shall see below. In our algorithm
also, any site can initiate the creation of a new view whenever it chooses
to do so. A site s initiating a new view sends creation requests to some
sites (determined in any way - all sites being an extreme case). A creation
request consists of the following: a proposed view number that is larger than
its current view number, and the proposed view (i.e., the list of sites). A
site receiving a creation request either responds with a reject or does not
respond at all if its own current view number is larger than the proposed
view number. If on the other hand its current view number is smaller, then
it may either choose to reject or to accept or not to respond.5

The initiating site may thus receive some rejects and some accepts in re-
sponse to its creation requests. In fact many of the sites it has sent the
requests to may not even respond (either because they chose not to or due
to failures). Thus the initiating site uses a (local) time-out mechanism to
decide when to make a decision on installing the view.6 At that time, it

5 When it chooses to accept, it will have to send the value of the object and its version
number. We shall discuss this issue in detail in section 3.2.
6 While a site can in principle create a new view consisting of any set of sites, it is not
desirable that the view does not help to process any requests. Thus, as a practical matter,
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records the new view as consisting of itself and the sites that have accepted
its request. Then it sends that view to all the sites that have accepted it.
Notice that theses two actions (local recording of a view and transmitting
this information) do not have to be atomic (thus, there may be a view known
only to the initiator). But since the intent of creating views is to make all
sites in a stable partition to converge towards identical views, it is desirable
that all sites accepting a view are notified as soon as possible on the compo-
sition of that view. A site receiving the new view installs it locally provided
it has not already installed a view with a larger view number. In the latter
case, it may choose to initiate a new view. But a site does not treat itself
as being in a new view until it knows the view’s composition.

3.2 Updates to Objects at View Creation

In addition to having the same view, the sites in a stable group should have
the most up-to-date information on the values of the object in that view.
To this end, we first introduce a concept needed for applying the ideas from
the DLA: we associate with each view vs a write access set WA[vs]. The
next section defines and shows how it evolves but for now it is sufficient to
say that such a variable exists.

The site initiating a view requests the version numbers and the write access
sets (WA) from each of the sites. Notice that the sites could send this
information as part of the accept messages themselves. We have separated
out these two aspects since they are logically distinct functions. The value
with the maximum version number is taken and the local copy is updated.
The corresponding WA is also recorded atomically with this update. Then
these values are passed on to all the other sites in the view. Notice again that
it is possible that even within a view the information associated with a view
could be different at different sites. (Once again, no atomicity requirement is
imposed across the sites in a view.) But if they can communicate physically,
then eventually they will have identical values.

Finally, each view has to determine the read and write quorums for its
object. This is the critical information to be used by a site to make a
preliminary assessment of whether or not an object can be read/updated
in the view. Thus consistency is clearly needed on this information. It is
not relevant how the quorums are chosen. Any of a multitude of possible
strategies can be used. But it is important that all sites that believe to be
in a particular view have the same quorum information. Thus we have two
options:

(i) atomically implement the two operations - installation of a view and
recording the quorums for each object, and

(ii) allow the possibility of a site having many views, where a set of objects
is associated with a view.

a site must refrain from creating views in which no requests can be serviced. Later we
discuss when the requests can be serviced in a view. Those criteria can be applied at the
view creation time itself to decide whether or not to create a new view.
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In the second option, some objects may have newer views than others.
Again, we choose the second option, following the objective (3) listed at
the beginning of Section 3. It is noted though that choosing the first option
may reduce the complexity of the replication control algorithm while the
cost of a commit protocol to implement atomicity will be incurred.

The following points are consequences of the above decision:

◦ each object (copy) at each site has an associated view number and
version number, and

◦ different copies of an object within the same view may have different
view numbers at a given time.

This flexibility we have allowed during the view creation/installation time
implies that we must be careful in installing reads/writes. These issues are
treated next.

3.3 Update Algorithm

First we define the concept of write access sets introduced in the previous
section. Since the concept is expected to facilitate the dynamic determina-
tion of distinguished views (or groups), it is natural that it directly relate to
the update algorithm, as we shall see now. When a view v ′

s
is created from

a view vs (that is, the site s has a view vs immediately before installing the
view v′

s
) then the initial value of WA(v′

s
) is the set of all sites in the view

vs. This value of WA(v′
s
) is retained until the successful execution of the

first write operation in v′
s
. At the end of the first successful write operation,

WA(v′
s
) is changed to the set of sites in v′

s
. Thus, our algorithm explicitly

distinguishes between the first write and the later writes in a view.
Now consider the first write in a view vs. At least a majority of sites in

the write access set WA(vs) are accessed for this purpose. This may be
implemented as follows: the locally available view information is first used
as an approximation to predict the chances of success of the update in the
view vs (in other words, to determine whether or not the current group is a
distinguished group); a choice of whether or not to proceed with contacting
the other sites can be made based on the predicted chance of success. Recall
that the most recent value of the object is determined at the view installation
time and that each site installing the new view installs the most recent value
as well. Thus the site receiving the write request invites other sites in the
view to update the value of the object to the new value. The largest version
number among them is incremented and used as the new version number.
The write operation is deemed successful only if at least a majority of WA
sites participate in the update (this is to be implemented atomically). In
other words, the view is considered distinguished in this case. During the
write, the WA set is modified to the set of copies in view vs at each of the
sites making the update (also atomically with the update). Observe that it
does not matter which sites in view vs has initiated the update.

The subsequent updates access any sites forming a write quorum in the
view. The most recent copy is determined as before through the maximum
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version number, that the version number is incremented, and the new value
and the new version number are written at at least a write-quorum number
of copies atomically. WA remains unaltered.

3.4 Read Algorithm

A transaction may request to read any object available in a view vs. Since
the reads usually far out-number updates in most practical environments,
we intend to make reading as efficient as possible. In order to execute a read
request in view vs, at least a read quorum in vs is to be accessed. (Unlike
in the case of the first write, there is no need to use the view information
here.) The copy with the largest version number among them is selected
as the value of the object. Observe that the first read in a view needs no
special treatment since all copies are updated to the most recent version as
part of the view installation process itself.

3.5 View Creation revisited

During the discussion on view creation, we mentioned that a site should
create a new view only if it is possible to perform some useful transaction
processing in the new view. From the above description of update and read
algorithms, it is clear that the write operation can be performed only if at
least a majority of sites from the current distinguished view can be obtained
from a new view. On the other hand, read-only transactions willing to use
potentially stale data do not require such stringent criteria. It is sufficient
in this case that a (read-only) transaction completely execute in the same
view.

3.6 Correctness of the algorithm

Observe that the responsibility of a replication control algorithm is to order
the accesses (reads and updates) to a single replicated object properly while
the concurrency control mechanism is expected to order the transactions
accessing several objects properly. Thus we shall restrict ourselves to proving
that the replication control algorithm orders the accesses to any replicated
data object correctly. Specifically, we show the following:

(a) any update to an object x is made to the (globally) most recent copy,
and

(b) reads are properly ordered with respect to updates in that a read r
from an update w precedes all updates after w (in the order given by
(a)) and succeeds all updates preceding w (in the same order).

It is not difficult to show that any standard concurrency control mecha-
nism on non-replicated databases (i.e., one that guarantees the acyclicity of
the serializability graphs) together with our replication control algorithms
produces only 1-copy serializable executions, once these two assertions are
proven. In fact, this is the essence of the rather involved proof of [3]. Since
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filling in those details would be almost exactly like in [3], we shall omit them
and refer the interested reader to the original work.

Proposition 2. There is a total order among all updates made to x.

Proof. Observe that

(a) there is a total order among all updates (to x) within a view v, for any
v, and

(b) there is a total order among all view numbers.

We show that these two together form the total order among all updates to
x. Let v, v′ be two views created from the same view u such that there is
an update in u and let v < v′. Assume further that x is updated in both
v and v′. Let w be the last update in v and w′ the first update in v′. We
show that w must precede w′.

Let w′′ be the first update in v. By the algorithm, w′′ must have updated
x at a majority of sites in u. Thus v must have at least a majority of
sites from u. Similarly, the write access set before w ′ is identical to u.
Thus w′ must have updated a majority of sites in u too. This could not
have happened unless one of v, v′ follows the other since the updates are
implemented atomically. Furthermore, v could not have followed v ′ since the
sites common to v and v′ would not accept a view number less than their
current view number. Hence v′ must follow v. The same argument applies
even if no updates were made in u except that the write access set then is
the sites in a view that has most recently updated x before u. Similarly, if
there is no update in one of v, v′ then again the descendent of (say v) where
an update is made takes the place of v in the above argument.

Thus v′ must have been derived from v, after the first update in v. But
then the write access set of v′ before any update takes place in v′ is v, not
u (since the write access set is updated in v atomically with the update to
x and its value after w′′ is v). On the other hand, the write access set in
v at the time of w (which is a non-first update) is also v (recall that the
write access set is changed only once in an updating view, at the time of
first update). Then again w, w′ cannot take place concurrently and hence
there must be an order among them. Again since v < v ′, w must precede
w′. 2

Proposition 3. Let r be a read (of x) from the update w. Then there is
an ordering in which r precedes all updates after w in the total order given
in Proposition 2 and succeeds all updates before w in the same order.

Proof. Let w′ be an update to x that precedes w. If r, w, w′ are all in the
same view, then it is obvious that w′ must precede r (all reads are from the
most recent update within a view that makes updates, by the algorithm’s
requirement that a read quorum be read and the value with the highest
number be chosen). Assume that r, w are in the same view v but w ′ is in v′

for v′ 6= v. Then clearly view-number(v′) < view-number(v) and r cannot
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Fig. 1: Illustration for Proposition 3 when w′ succeeds w

precede w′. same argument holds even if r, w are in different views. Now
assume that w′ is an update succeeding w. Then again the assertion follows
immediately if w, w′ are in the same view. Assume that r, w, w′ are all in
different views (it is easier if r, w are in the same view) and that w ′ is in
the view v′′. Assume for simplicity but without loss of generality that w ′

immediately succeeds w (that is, there is no update between w, w ′).

The assertion is immediate if no descendent view of v ′ ever updates x.
Assume that some descendent view of v ′, say u (not necessarily distinct
from v′), updates x. By Proposition 2, and the assumption that there is
no update between w and w′, u must be a descendent of v′′. Again by
Proposition 2, this means that w′ precedes that update in u. But since r
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Fig. 2: Illustration of the Network Partitions

reads from w and not w′, this implies that logically the view v ′ precedes the
view v′′ and hence r precedes w′. (It may be useful to imagine that v′′ and
v′ have some common descendent u′ where the first update after w′ is made;
then logically, all views in the path from v ′ to u′, excluding u′, precede v′′).

2

Theorem 1. Our replication control algorithm produces only one-copy se-
rializable executions.

Proof. Follows from propositions 2 and 3. 2

3.7 Illustration

We now illustrate through an example how the proposed algorithm achieves
greater availability and efficiency than either of the two algorithms [3, 12].

Let us consider an object x with 5 copies in a database system. Let us
refer to them as 1,2,3,4, and 5. Initially, all these copies (i.e., sites that
contain them) can communicate with each other. This is referred to as
group G11 in Figure 2. This state of the network is also referred to as State
1 in this figure. Due to a network partition the five copies are split into two
non-communicating groups P21 and P22. This is referred to as State 2. The
other two states (States 3 and 4) can be similarly explained.

In this figure a circle refers to a physical partition. Similarly, a double
circle refers to a distinguished group.

In the accessibility thresholds algorithm, the availability of x is determined
by the access thresholds (Ar and Aw) and the read and write quorums



228 SUSHIL JAJODIA, RAVI MUKKAMALA, K.V.S. RAMARAO

Table I: Availability table for the Access Thresholds Algorithm

Acc. Thresh./ State 1 State 2 State 3 State 4
Quorums Read Write Read Write Read Write Read Write
Ar = 1, Aw = 5
qr = 1, qw = 5 All All All None All None All None
Ar = 2, Aw = 4
qr = 1, qw = 5 All All All None All None All None
qr = 2, qw = 4 All All All None 1,2,4,5 None 4,5 None
qr = 1, qw = 4 - - All None All None All None
Ar = 3, Aw = 3
qr = 1, qw = 5 All All All None All None All None
qr = 2, qw = 4 All All All None 1,2,4,5 None 4,5 None
qr = 1, qw = 4 - - All None All None All None
qr = 3, qw = 3 All All 1,2,3 1,2,3 None None None None
qr = 2, qw = 3 - - 1,2,3 1,2,3 1,2 None None None
qr = 1, qw = 3 - - 1,2,3 1,2,3 1,2,3 None 1,2,3 None
Ar = 4, Aw = 2
qr = 1, qw = 5 All All All None All None All None
qr = 2, qw = 4 All All All None 1,2,4,5 None 4,5 None
qr = 3, qw = 3 All All 1,2,3 1,2,3 None None None None
Ar = 5, Aw = 1
qr = 1, qw = 5 All All All None All None All None
qr = 2, qw = 4 All All All None 1,2,4,5 None 4,5 None
qr = 3, qw = 3 All All 1,2,3 1,2,3 None None None None

(qr[v] and qw[v]). The relation between these parameters is described in
Equations (3)-(7). The availability information for the four states in Figure
2 is summarized in Table I. As can be seen here, the maximum flexibility
for choice of read and write quorums in a view is provided when Ar = 3 and
Aw = 3. Let us look at this part of the table. There are six choices for the
quorums. For the purpose of this example, we assume that all sites with
copies of x within a physical partition attempt to form a single view. Thus,
the last two choices are not relevant to State 1 (indicated by a “−′′ in Table I)
since they violate Equation (4). If we consider qr = 3 and qw = 3 case, then
all copies in State 1 can both be read and written. Since Ar = 3, it is
possible to form a new view in State 2 consisting of copies in P21. However,
copies in P22 cannot form a new view. Thus, copies 1,2,3 can both be read
as well as written in State 2. It is also possible to change the quorums in the
new view (this is illustrated by the next two rows in the table). Using the
same argument it may be shown that partitions in States 3 and 4 cannot
form new views, and thus cannot change the quorums.

We will now refer to Table II that describes the behavior of the dynamic-
linear algorithm with majority quorums. In State 1, the quorums are given
as qr = qw = 3 (Equations (1)-(2)). This enables all copies in P11 to be
read and written. In State 2, P21 is the distinguished group and this enables
copies 1,2,3 to be read and written. Other states can be similarly explained.

Now let us consider the new protocol. Here, we are not bound by any
accessibility thresholds to choose the quorums in views. Thus, the choice of
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Table II: Availability table for the Dynamic-linear Algorithm

Dynamic State 1 State 2 State 3 State 4
Majority Read Write Read Write Read Write Read Write
qr = 3, qw = 3 All All - - - - - -
qr = 2, qw = 2 - - 1,2,3 1,2,3 - - - -
qr = 1, qw = 2 - - - - 1,2 1,2 - -
qr = 1, qw = 1 - - - - - - 1 1

Table III: Availability table for the New protocol

Quorums State 1 State 2 State 3 State 4
Read Write Read Write Read Write Read Write

qr = 1, qw = 5 All All All None All None All None
qr = 2, qw = 4 All All All None 1,2,4,5 None 4,5 None
qr = 1, qw = 4 - - All None All None All None
qr = 3, qw = 3 All All 1,2,3 1,2,3 None None None None
qr = 2, qw = 3 - - 1,2,3 1,2,3 1,2 None None None
qr = 1, qw = 3 - - 1,2,3 1,2,3 1,2,3 None 1,2,3 None
qr = 2, qw = 2 - - 1,2,3 1,2,3 1,2 1,2 None None
qr = 1, qw = 2 - - - - 1,2 1,2 None None
qr = 1, qw = 1 - - - - - - 1 1

quorums is much larger as shown in Table III. Thus it is even possible to read
and write x when there is a single copy (as copy 1 in P41 of State 4) in a single
partition. This was not possible in the accessibility algorithm. Similarly, the
choices of the read and write quorums is much larger in the new protocol
than the dynamic-linear algorithm. In addition to the increased availability,
the proposed algorithm does not require two-phase commit to form new
views (as in dynamic-linear).

4. Conclusions

This paper has presented a new dynamic replication control algorithm. The
proposed algorithm is derived from two existing ones - the dynamic-linear
and the accessibility thresholds algorithms. Three objectives have guided
the design of the algorithm: 1) using local information to determine the
chances of success of an operation, 2) making it possible to use very few
copies (independent of the total number of copies) for reads/writes and
thus increasing the availability, and 3) not requiring atomic implementations
across a number of sites for implementing the algorithm itself.

The algorithm is tolerant to intermittent (non-malicious) failures of any
number of sites and links. Database consistency is guaranteed at all times.
The number of messages generated during the algorithm, when partitions
are stable, is no more than in any of the two original algorithms. A simple
constructive correctness proof is presented that gives clear insights into the
workings of replication control algorithms.
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