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Abstract. A k-dense corridor through a finite set, S, of n points in the plane is
the open region of the plane that is bounded by two parallel lines that intersect
the convex hull of S and such that the region contains k points of S. The problem
of finding a widest k-dense corridor arises in robot motion-planning. In this paper,
efficient solutions are presented for several versions of this problem. Results include:
two algorithms for finding widest k-dense corridors for any k, an algorithm to
dynamically maintain a widest empty corridor under online insertions and deletions
in S, an algorithm to find a widest (n − 1)-dense closed corridor, and a widest
empty corridor algorithm for polygonal obstacles. The techniques used are based
on geometric duality and on efficient searching in the convex layers of a point-set.
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1. Introduction

Let S be a set of n points in the Euclidean plane. A corridor through S
is the open region of the plane that is bounded by two parallel straight
lines that intersect the convex hull, CH(S), of S. The width of a corridor is
the distance between the bounding lines. A corridor is called k-dense if it
contains k points of S, where 0 ≤ k ≤ n−2. (As we will see later, each of the
bounding lines must contain at least one point of S, and hence k ≤ n−2.) A
widest k-dense corridor through S is a k-dense corridor of maximum width.

The problem of constructing a widest k-dense corridor arises in robot
motion-planning. Houle and Maciel [6] gave an O(n2)-time and O(n)-space
algorithm to compute a widest empty (i.e., 0-dense) corridor. Subsequently,
Chattopadhyay and Das [1] showed how to compute a widest k-dense corri-
dor, 0 < k ≤ n − 2, in O(n2 log n) time and O(n2) space. In this paper, we
present efficient algorithms for several versions of the widest k-dense corridor
problem. Our results include:
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(1) A simple sweepline algorithm to compute a widest k-dense corridor
through S in O(n2 log n) time and O(n) space, where 0 ≤ k ≤ n − 2.
This improves upon the space bound in [1]. Moreover, using this ap-
proach we can (i) compute a widest k-dense corridor for each k, where
k = 0, 1, . . . , n− 2, in O(n3) time and O(n) space and (ii) compute in
O(n2 log n) time and O(n) space a minimum-density corridor of width
at least w for any given real number w (provided such a corridor exists
for the given w).

(2) An algorithm to dynamically maintain a widest empty corridor in
O(n log n) time per update and O(n2) space as points are inserted
and deleted online in S. This is considerably more efficient than re-
computing a widest empty corridor from scratch after each update.

(3) An algorithm to compute a widest empty corridor through a set of
polygonal obstacles in the plane in O(n2) time and O(n) space, where
n now is the total number of edges of the polygons.

(4) An O(kn2)-time and O(kn2)-space algorithm for computing a widest
k-dense corridor through S, 0 < k ≤ n − 2. This algorithm is faster
than our algorithm in 1 above for small k, i.e., when k = o(log n);
however, it uses more space.

(5) Let a k-dense closed corridor through S be the closed region of the
plane that is bounded by two parallel lines that intersect CH(S) and
which contains k points of S, where 2 ≤ k ≤ n. For 2 ≤ k ≤ n−2, our
algorithms in 1 and 4 above (as well as the algorithm of [1]) can be
modified easily to compute widest k-dense closed corridors, without
affecting their time and space bounds. As observed in [1], a widest
n-dense closed corridor is determined by a diametral pair of S and
hence can be computed in O(n log n) time and O(n) space [7]. Here
we show how to also compute a widest (n − 1)-dense closed corridor
within the same bounds.

Our approach in results 1–4 is based on geometric duality, which trans-
forms the corridor problem to an equivalent problem on a set of lines. Re-
sult 5 is based primarily on a technique for searching efficiently in the convex
layers of a planar point-set.

2. Geometric preliminaries

Throughout the paper we assume that no three points of S are collinear and
no four points form the vertices of a trapezoid. These assumptions simplify
the exposition and can be removed easily. Moreover, we will assume that
no widest k-dense corridor is vertical since such a corridor can be computed
easily in O(n log n) time by sorting the points by x-coordinate.

The following theorem states a key property of widest k-dense corridors.
(As noted in [1], this theorem follows immediately from [6].)
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Theorem 2.1. ([1, 6]) Let C? be a widest k-dense corridor through S, with
bounding lines `′ and `′′. Then one of the following conditions must hold:

(a) One of the lines, say `′, passes through two points pi and pj of S and
`′′ passes through a point ph of S, or

(b) there are points pi and pj of S such that `′ passes through pi, `′′ passes
through pj, and `′ and `′′ are perpendicular to the line passing through
pi and pj. 2

Thus, we can restrict our search for a widest k-dense corridor to those
k-dense corridors, C, that satisfy one of these conditions. We will call a k-
dense corridor C which satisfies condition (a) (resp. condition (b)) a type-(a)
(resp. type-(b)) corridor.

Let us reinterpret conditions (a) and (b) in the dual plane, under the
duality transform F , which maps a point p = (a, b) to the line F(p) : y =
ax − b and the non-vertical line ` : y = mx − c to the point F(`) = (m, c).
Note that F(F(p)) = p and F(F(`)) = `, that parallel lines are mapped to
points with the same abscissa, and p lies below (resp., on, above) ` if and
only if F(p) lies above (resp. on, below) F(`).

Let H be the set of lines {`i = F(pi) | pi ∈ S}. Let A be their arrangement,
i.e., the subdivision of the plane induced by H. Let vij = `i ∩ `j be any
vertex of A and x(vij) its abscissa.1 The following is easily shown:

If C is a type-(a) corridor, then F(`′) = vij and F(`′′) is the point where
the vertical line through vij intersects `h. If C is a type-(b) corridor, then
F(`′) and F(`′′) are points on `i and `j, respectively, where both points have
abscissa −1/x(vij) (because `′ and `′′ are perpendicular to the line passing
through pi and pj and the slope of this line is x(vij)). Moreover, if C is
of type-(a) (resp. type-(b)) and ` is any line that is parallel to `′ and `′′

and contained in C, then x(F(`)) = x(vij) (resp. x(F(`)) = −1/x(vij)) and
y(F(`′)) < y(F(`)) < y(F(`′′)).

Thus, in either case, the dual of C, which we denote by F(C), is the open
vertical line segment bounded by F(`′) and F(`′′).2 Moreover, C is a k-
dense corridor through S if and only if F(C) intersects k lines of H. Also,

the width of C is |y(F(`′)) − y(F(`′′))|/
√

1 + x(F(C))2.
We can now compute C? as follows: We consider each vertex vij of A in

turn, find the (k + 1)st line vertically above it (if it exists), and compute
the corresponding type-(a) k-dense corridor. Similarly for the (k + 1)st line
vertically below vij . Also, if at abscissa −1/x(vij), there are exactly k lines
between `i and `j (excluding `i and `j) then we compute the corresponding
type-(b) k-dense corridor. At the end, we output the overall widest corridor
found.

1 In general, we will use x(p) and y(p) to denote, respectively, the abscissa and the ordinate
of a point p. Also, we use x(s) to denote the abscissa of a vertical line segment s.
2 Using F(C) to denote the dual of C is a minor, but convenient, abuse of notation. For
convenience, we call F(`′) and F(`′′) the endpoints of F(C) even though they do not
belong to F(C).
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3. A general algorithm for widest k-dense corridors

We give a simple sweepline algorithm to compute a widest k-dense corridor
C? in O(n2 log n) time and O(n) space. Our algorithm sweeps over the dual
lines but does not maintain the entire arrangement in storage. A similar
approach was used by Edelsbrunner and Welzl [5] for a different problem.

We use two sweeplines: a master sweepline, V , to find type-(a) corridors
and a slave sweepline, V ′, to find type-(b) corridors. As V sweeps from
x = −∞ through x = 0 to x = ∞, V ′ moves from x = 0 to x = ∞ and then
from x = −∞ to x = 0.

Consider the master sweep. Associated with V are an array, D, and a
priority queue, Q, organized as a min-heap.3 These structures satisfy the
following invariants: D stores the dual lines in the order in which they
intersect V , from bottom to top. Q stores vfg, with key x(vfg), if `f and `g

are adjacent in D and intersect to the right of V . We store with `f and `g

in D a pointer to vfg in Q and also store with vfg in Q a pointer to `f and
to `g in D.

The master sweep is initialized by inserting the lines into D in increasing
order of the ordinates of their intersections with the line x = −∞.

In a general step, the next event point vij is obtained by deleting the item
with minimum key in Q. To the immediate left of vij , let `i be above `j,
let `a be the line above `i, and let `b be the line below `j. The following
actions are performed at vij : (1) `i and `j are interchanged in D. (2) If via

is to the right of V , then it is deleted from Q. Similarly for vjb. (3) If vib

is to the right of V , then it is inserted into Q. Similarly, for vja. (4) If `j

is now in D[t], then the (k + 1)st line above vij is in D[t + k + 1] (provided
t + k + 1 ≤ n) and the (k + 1)st line below vij is in D[t − k − 2] (provided
t− k − 2 ≥ 1). The corresponding type-(a) k-dense corridors are computed.

Now consider the slave sweep. The data structures, D ′ and Q′, associated
with V ′ are analogous to D and Q. With each line in D we store a pointer
to the line in D′ and vice versa. The slave sweep is initialized at x = 0,
by starting V ′ at x = −∞ and sweeping up to x = 0, performing steps
analogous to 1–3 above on D′ and Q′.

Subsequently, suppose that V is at event point vij. Then V ′ advances to
the rightmost vertex u such that x(u) ≤ −1/x(vij), performing steps 1–3
above on D′ and Q′ at each vertex (including u) that is encountered. (The
desired event point for V ′ is actually x = −1/x(vij). However, the status
of D′ and Q′ just after u is processed is the same as their status at x =
−1/x(vij).) The final step (step 4) is as follows: Suppose that `i is in D′[b]
and `j is in D′[c]. If |b− c| − 1 = k, then there are k lines between `i and `j

at abscissa −1/x(vij) and so the corresponding type-(b) k-dense corridor is
computed.

Once V reaches x = 0, V ′ is re-initialized at x = −∞ and the two sweeps

3 We call Q a priority queue with the understanding of course that elements of lower
priority can also be deleted in logarithmic time (given their position).
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are continued until Q becomes empty, i.e., V reaches x = ∞.

It is clear that the algorithm is correct and uses O(n) space. The running
time is dominated by the O(log n) time for the priority queue operations at
O(n2) arrangement vertices.

Theorem 3.1. A widest k-dense corridor (0 ≤ k ≤ n− 2) through n points
in the plane can be computed in O(n2 log n) time using O(n) space. 2

3.1 Extensions of the general algorithm

Suppose that we want to compute a widest k-dense corridor for each k,
where k = 0, 1, . . . , n−2. At each master event point vij, we have a type-(a)
k-dense corridor for each k for which the (k+1)st line above (and, similarly,
below) vij exists. At the corresponding slave event point, there will be k
lines between `i and `j , for some k, thus yielding a type-(b) k-dense corridor.
For each k, we maintain the widest k-dense corridor found so far. The time
per event point now becomes O(n), which gives:

Corollary 3.1. For k = 0, 1, . . . , n−2, the set of widest k-dense corridors
through n points in the plane can be computed in O(n3) total time using O(n)
space. 2

For any real number w, call a corridor through S a (≥ w)-wide corridor if
its width is at least w. Suppose that we want to find a (≥ w)-wide corridor
through S of minimum density. W.l.o.g., we may assume that w is no larger
than the diameter of S since, otherwise, a (≥ w)-wide corridor cannot exist.

Clearly, if there is a (≥ w)-wide minimum-density corridor C, then there
is a (≥ w)-wide minimum-density corridor which satisfies one of the con-
ditions (a) or (b) of Theorem 2.1. Thus, the only change to the sweepline
algorithm is in step 4 of the master and slave sweeps. For any abscissa x, let
∆y(x) = w

√
1 + x2. Let vij be the current event point in the master sweep.

In step 4 of the master sweep, we do a binary search in D for the first
line, `, above (and, similarly, below) vij such that the vertical line segment
bounded by ` and vij has length at least ∆y(x(vij)). If ` exists, then we have
a (≥ w)-wide corridor of type-(a). In step 4 of the slave sweep, we check
whether the vertical line segment with abscissa −1/x(vij) and bounded by `i

and `j has length at least ∆y(−1/x(vij)). If so, then we have a (≥ w)-wide
corridor of type-(b). We conclude:

Corollary 3.2. Let S be a set of n points in the plane. Given a real
number w (assumed to be no larger than the diameter of S), a corridor
through S of width at least w and of minimum density can be computed in
O(n2 log n) time and O(n) space. 2
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4. Widest empty corridors

4.1 Widest empty corridor through a planar point-set

We give an O(n2)-time and O(n)-space algorithm to compute a widest empty
corridor C?. Except for minor differences, the algorithm is analogous to the
one given by Houle and Maciel [6]. We present it here for completeness since
our results in later sections use some of the ideas.

Let C be an empty corridor. Since k = 0, it follows that both endpoints of
F(C) lie on the boundary of the same face, f , of A. Thus the search for C ?

can be restricted to the faces of A. We first give an O(n2)-time and -space
algorithm to compute C?.

We first construct the arrangement A. This takes O(n2) time and space
using, for instance, the algorithm of [2], and yields a standard planar graph
representation of A in which the edges incident to each vertex are available
in sorted order around the vertex and the boundary of each face f can be
traversed in time O(|f |).

We determine the empty type-(a) corridors, C, corresponding to f , as
follows: f is convex and its boundary can be decomposed into a lower chain,
L, and an upper chain, U , whose endpoints are the leftmost and rightmost
vertices of f . For each internal (i.e., non-endpoint) vertex on U , we need to
find the first line vertically below it. This line must contain an edge of L.
We can find this edge for each vertex of U as follows:

We consider the interior vertices of U in turn, from left to right. For the
leftmost internal vertex of U , we scan L from left to right and stop as soon
as we find an edge vertically below the vertex. For each subsequent interior
vertex of U , the scan of L can be resumed from where it had stopped for the
previous vertex (since f is convex). Thus the total time is O(|L| + |U |) =
O(|f |). We can symmetrically compute for each interior vertex of L the first
line vertically above it.

We determine the empty type-(b) corridors corresponding to f as follows:
Consider the sorted list of abscissae of the vertices of f and let I be some
open interval defined by consecutive abscissas in the list. With I we can
associate two lines, `i and `j, where `i contains an edge of U and `j contains
an edge of L, such that for any abscissa in I, `i is the first line vertically
above `j and `j is the first line vertically below `i. (See Figure 1.) Thus we
only need to check whether −1/x(vij) ∈ I, which can be done in constant
time given `i and `j .

The pairs of lines associated with each interval can be determined in time
O(|f |) as follows: We scan f from left to right and merge the vertices of
L and U into a list v1, v2, . . . , v|f |, sorted by x-coordinate. If v1 is the
intersection of lines `p and `q, where `p is above `q to the immediate right
of v1, then the lines associated with the interval (x(v1), x(v2)) are `p and `q.
Now v2 must be the intersection of one of `p and `q, say `p, with a new line
`r. Thus the lines associated with the interval (x(v2), x(v3)) are `q and `r.
And so on.
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Fig. 1: Partitioning the x-span of face f into open intervals. With each interval, I, can
be associated two bounding lines, `i`j , of f such that anywhere inside I, `i (resp. `j) is
the line that is immediately above (resp. below) `j (resp. `i).

Clearly, when all faces have been thus processed, the widest empty corridor
through S will have been found. The time to process all faces of A is
O(

∑

f∈A |f |) = O(n2), since A is a planar graph with O(n2) vertices. Thus,

inclusive of the time to compute A, the algorithm takes O(n2) time. The
space used is O(n2) since the entire arrangement is stored.

To reduce the space to O(n) we compute only the portions of A that are
relevant at any given time. Towards this end, we use the topological sweep
paradigm of Edelsbrunner and Guibas [3]. They showed that by using a
sweepline that is tailored to the topology of the arrangement being swept,
it is possible to visit the vertices, edges, and faces of an arrangement in a
systematic way in O(n2) time and O(n) space. Moreover, they showed that
as soon as a face f is reached in the sweep, its vertices and edges can be
extracted in O(1) time apiece from the supporting data structures. Thus,
we can extract and process f in O(|f |) = O(n) time and space and then
reuse the space for the next face. We conclude:

Theorem 4.1. ([6]) A widest empty corridor through a set of n points in
the plane can be computed in O(n2) time and O(n) space. 2

4.2 Dynamic maintenance of a widest empty corridor

We now describe how the widest empty corridor through S can be efficiently
updated online as points are inserted into or deleted from S. Let n be the
current size of S. Our approach is based on the following easily-verified
properties:

(1) When a point p is inserted into S, an empty corridor C is destroyed
only if the endpoints of F(C) lie on the boundary of a face of A that
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is intersected by F(p). Moreover, if A′ is the arrangement resulting
from the insertion of F(p), then the search for new empty corridors
can be restricted to those faces of A′ to which F(p) contributes an
edge. Symmetrically for deletions.

(2) In an arrangement of n lines, the sum of the sizes of the faces inter-
sected by any line is O(n) (see [2] for a proof). This implies that the
number of empty corridors affected by an update is O(n).

In addition to A, we also maintain a priority queue, Q. For each empty
corridor of S, with bounding lines `′ and `′′ and width w, there is an entry
in Q consisting of `′, `′′, and w. Q is organized as a max-heap on the w’s;
thus the widest empty corridor can be retrieved in O(1) time following an
update.

With each vertex vij of A, up to three empty corridors can be associated,
namely, two type-(a) corridors and one type-(b) corridor. We store with vij

a pointer to each of the three associated corridors in Q. With this setup,
if one of the corridors associated with vij is to be deleted, its position in
Q can be determined in O(1) time. Clearly, Q has size O(n2). Thus it
supports insertions and arbitrary deletions (given the position of the entry
to be deleted) in O(log n) time.

Consider the insertion of a point p. Starting with the leftmost intersection
of F(p) with A, we successively traverse the boundaries of the faces inter-
sected by F(p) and update A by adding the edges and vertices induced by
the intersection of F(p) with A. During the traversal, we also do the fol-
lowing: Suppose that F(p) splits a face f into faces f1 and f2. We find (as
in Section 4.1) the corridors whose duals have both their endpoints on the
boundary of f , and delete from Q those corridors for which one endpoint of
the dual is on the boundary of f1 and the other endpoint is on the boundary
of f2. We then find the corridors whose duals have both their endpoints on
the boundary of f1 (and similarly for f2) and insert these into Q. All this
takes O(|f | log n) time, which when summed up over all faces f intersected
by F(p) yields a time bound of O(n log n), by Property 2 above.

Deletion of a point p is essentially the reverse.

Theorem 4.2. A widest empty corridor through a planar point-set S can
be maintained dynamically, under online insertions and deletions in S, in
O(n log n) time and O(n2) space, where n is the current size of S. 2

4.3 Widest empty corridor through polygonal obstacles

Let P be a set of polygonal obstacles in the plane with a total of n edges.
An empty corridor, C, through P is the open region of the plane that is
enclosed by two parallel straight lines that intersect the convex hull of the
vertices of the polygons in P and such that the region does not intersect
any polygon in P . (Note that for a given P no empty corridor may exist.)
It is easy to prove that if C? is a widest empty corridor through P , with
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bounding lines ` and `′, then one of the conditions (a) or (b) of Theorem 2.1
must hold, where pi, pj, and ph are now vertices of polygons in P .

Let T be the set of edges of the polygons. Under F , a segment t ∈ T , with
endpoints p and p′, is mapped to the doublewedge, W (t), formed by F(p)
and F(p′) and not containing the vertical line through the point F(p)∩F(p′).
Furthermore, a line ` intersects t if and only if F(`) lies in W (t).

Let A be the arrangement of the lines bounding the doublewedges W (t)
for t ∈ T . It is well-known that lines `1 and `2 intersect the same segments
of T (hence the same number of segments) if and only if F(`1) and F(`2)
lie in the same face, f , of A. Let count(f) be the number of segments of T
intersected by any line whose dual point falls in f . Clearly, an open vertical
line segment whose endpoints lie on the boundary of a face f such that
count(f) = 0 is the dual of an empty corridor through P .

Thus, to find C?, we use the topological-sweep-based algorithm described
in Section 4.1, but perform corridor computations only for the faces f of A
for which count(f) = 0. To identify these faces during the sweep, we use
a technique of Edelsbrunner and Guibas [3, page 182] to compute count(f)
in O(1) time for each face f of A when it is first encountered in the sweep.
We conclude:

Theorem 4.3. A widest empty corridor through a set of polygonal obstacles
in the plane can be computed in O(n2) time and O(n) space, where n is the
total number of edges of the polygons. 2

5. A faster widest k-dense corridor algorithm for small k

We show how to compute a widest k-dense corridor, in O(kn2) time and
O(kn2) space, where k > 0. As in Section 4.1, we process A face-by-face,
determining for each vertex on the upper chain of a face the (k +1)st line, if
any, that is vertically below it. Similarly, in a second face-by-face pass, we
determine the (k + 1)st line vertically above each vertex. In a third pass,
we determine type-(b) corridors.

However, unlike Section 4.1, the (k + 1)st lines below and above a vertex
do not lie on faces containing the vertex but are instead several faces away,
and so the processing involves cutting across face boundaries. To do this
efficiently and systematically, we process the faces according to the following
total order [4].

For distinct faces f and g of A, say that f � g if there is a vertical
line that intersects both f and g, f above g. It is well-known [4] that the
relation � is acyclic. Consider the subset � of � consisting of those pairs
(f, g) that share an edge. We can compute � in O(n2) time by traversing
the boundary of each face of A. The relation � has cardinality O(n2) and,
moreover, its transitive closure coincides with that of �. The desired total
order is obtained by performing a topological sort on �, which takes O(n2)
time.
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Let f1, f2, . . . , fs be the faces of A under this total order, where f1 (resp.
fs) is the topmost (resp. bottommost) face of A. With the exception of
these two faces, each fi can be decomposed into a lower chain Li and an
upper chain Ui; faces f1 and fs consist of only a lower chain L1 and an upper
chain Us, respectively.

We begin with face f2 and, as in Section 4.1, proceed to map each ar-
rangement vertex on U2 to a point vertically below it on L2. In general, let
fi be the face to be processed next. The set, Pi, of points on Ui that must
be resolved (i.e., mapped to points vertically below on Li) consists of (i) ar-
rangement vertices lying on Ui and (ii) downward projections of arrangement
vertices lying on upper chains Uj, where j < i. With each such point p ∈ Pi,
we associate a pointer, vert(p), to the arrangement vertex that projects to
p and a level number, level(p), where level(p) = h implies that vert(p) has
been projected vertically downwards h times, where 0 ≤ h ≤ k + 1. In
particular, if p is an arrangement vertex lying on Ui, then vert(p) = p and
level(p) = 0.

To resolve Pi, we scan the boundary of Ui and the boundary of Li simul-
taneously and for each point p ∈ Pi we do the following: If level(p) = k + 1
then the open vertical line segment with endpoints p and vert(p) intersects
k lines and thus is the dual of a type-(a) corridor. We compute this corridor
and then discard p. If, however, level(p) < k + 1, then we reset p to the
point vertically below it on Li and increment level(p). Figure 2 illustrates
the flow of the algorithm.

The first pass terminates once fs−1 has been processed. To compute the
(k + 1)st line vertically above each vertex of A, we perform a symmetric
second pass, processing faces in the reverse order. In addition, we determine
for each vertex of A the kth line vertically above it. The reason for this will
become clear in the sequel.

The idea behind finding type-(b) corridors is similar to that of Section 4.1
but somewhat more involved. We perform a third face-by-face pass, from f1

to fs, which simulates the first pass but, in addition, also does the following:
Let fi be the current face and let Qi = p1, p2, . . . , pq be the left–to–right
sequence of points consisting of the arrangement vertices on Li and of the
points that have been projected down from Ui, where p1 is the leftmost
arrangement vertex on Li. Let p1 be the intersection of lines `x and `y,
where `x supports an edge of Ui and `y supports an edge of Li. Let `z be
the kth line above p1 (recall that `z was computed in the second pass). Now,
for any abscissa in a sufficiently small neighborhood to the right of p1, there
are k lines between `y and `z. This is because at x(p1), there are k − 1 lines
between p1 and `z and just to the right of p1, `x contributes one to this
count.

Let j > 1 be the smallest index such that vert(pj) is the intersection of
one of `y and `z, say `y, with a new line `w. (Note that j exists and is, at
worst, equal to q.) Then, for any abscissa in the interval (x(p1), x(pj)), there
are k lines between `y and `z. Let vyz be the arrangement vertex defined by
the intersection of `y and `z. If −1/x(vyz) ∈ (x(p1), x(pj)), then a k-dense
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Fig. 2: Flow of control in the first pass of the O(kn2) algorithm. (Solid circles denote
arrangement vertices and crosses denote downward projections of arrangement vertices
belonging to already-processed faces.) Among the faces fi, fj , fl, fm, face fm is processed
last. The points on the upper chain, Um = e1e2e3, of fm that must be projected downward
can be retrieved in sorted order along Um by concatenating the lists of such points on the
edges of Um.

type-(b) corridor has been found.
Again, for any abscissa in a sufficiently small neighborhood to the right

of pj, there are k lines between `z and `w and so we find the interval
(x(pj), x(pj′)) for which this property holds. The processing of fi in the
third pass ends once pq is reached.

Figure 3 illustrates the third pass for k = 2. Here Qi = p1, p2, . . . , p10.
The second line above p1 is `z = D, and we have `x = A and `y = B. Point
pj is found to be p2, which is the intersection of lines B and `w = C. Thus,
within (x(p1), x(p2)), there are two lines between lines B and D. Proceeding
with D and C, we find that pj′ = p4, the intersection of lines D and A (we
skip p3 since it involves neither D nor C). Thus, within (x(p2), x(p4)), there
are two lines between C and D. And so on until pq = p10 is reached.

The running time of the algorithm is dominated by the time to project
vertices. Since each vertex is projected at most k times, a simple charging
argument shows that the total time is O(kn2). The space is also O(kn2)
since this many points (projections and vertices) can be active at the same
time.
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Fig. 3: Third pass of the O(kn2) algorithm. The lower chain, Li, of face fi is shown
in bold. The figure illustrates, for k = 2, how the x-span of fi is partitioned into open
intervals such that with each interval two lines can be associated that have k other lines
between them at any abscissa within the interval.

Theorem 5.1. A widest k-dense corridor through a set of n points in the
plane can be computed in O(kn2) time and O(kn2) space, where 0 < k ≤
n − 2. 2

6. Computing a widest (n − 1)-dense closed corridor efficiently

Since any (n−1)-dense closed corridor through S excludes exactly one point
of S, the excluded point must be a vertex of the convex hull, CH(S), of S.
Let p0, p1, . . . , ph−1 be the vertices of CH(S), taken clockwise. One strategy
is to delete each hull vertex pi in turn and compute a widest (n − 1)-dense
closed corridor through Si = S − {pi}. This corridor is determined by a
diametral pair and hence is computable in linear time, given CH(Si).

However, this approach will take at least quadratic time. Fortunately,
there is enough coherence in the successively considered collections of points
that a substantially more efficient algorithm can be developed.

Our algorithm uses the two outermost convex layers of S [7], namely,
L0 = CH(S) and L1 = CH(S − L0). When pi is deleted, CH(Si) can be
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obtained by simply attaching between pi−1 and pi+1 a suitable subchain,
H(pi), of L1. (Throughout, indices are taken modulo h.) H(pi) is defined
as follows: If the line segment pi−1pi+1 does not intersect L1, then H(pi)
is simply this line segment. Otherwise, the first (resp. last) edge of H(pi),
going clockwise, is the line segment pi−1p′ (resp. pi+1p′′) which supports
L1 at the vertex p′ (resp. p′′) of L1. Of the two possible such supporting
segments from pi−1 (resp. pi+1) to L1, we take the one that makes the
smaller interior angle with edge pi−1pi (resp. pi+1pi). See Figure 4.

L0 L1

pi−1

pi

pi+1

p′

p′′

ti+1

ti−1

e0

e1
e2

e3

e4

bay b

region r

Fig. 4: Chain H(pi) consists of the edges e0 through e4. Here ti−1 and ti+1 are, respec-
tively, the supporting segments from pi−1 and pi+1 to L1. Bay b is the region bounded by
the edges e1, e2, e3 and the upward-facing wedge formed by ti−1 and ti+1. Region r is the
region bounded by the downward-facing wedge formed by ti−1 and ti+1.

For future use, we now establish that, for i 6= j, H(pi) and H(pj) are
edge-disjoint. Clearly, it suffices to show that H(pi) and H(pi+1) have this
property. From Figure 4, note that pi must lie in the region r facing bay b
for otherwise L0 intersects L1. Thus the supporting line from pi to L1 (the
one which contains the first clockwise edge of H(pi+1)) cannot meet L1 at
any interior vertex of H(pi) ∩ L1. This establishes the claim.

For any vertex pi ∈ CH(S), a diametral pair of CH(Si) is one of the
antipodal pairs of vertices of CH(Si), i.e., a pair of vertices through which
parallel lines supporting CH(Si) can be drawn [7]. Clearly, the (n−1)-dense
closed corridors through S that exclude pi correspond to those antipodal
pairs of CH(Si) that are not also antipodal pairs of CH(S). Thus, each
(n−1)-dense closed corridor through S can be associated with an antipodal
pair of some CH(Si), 0 ≤ i ≤ h − 1.

We note the following about antipodal pairs. Given any planar point-set
S′, for each edge e ∈ CH(S ′) there is a (generally unique) vertex α(e) of
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CH(S′), not belonging to e, such that the line through α(e) and parallel to e
does not intersect the interior of CH(S ′). It is then immediate that if e′ and
e′′ are clockwise consecutive edges on CH(S ′), then the vertices clockwise
from α(e′) to α(e′′) are exactly those forming antipodal pairs with the vertex
shared by e′ and e′′.

It is therefore clear that each (n− 1)-dense closed corridor through S can
be determined by generating the edge-vertex pairs (e, α(e)) of all CH(Si),
0 ≤ i ≤ h − 1. Moreover, for each CH(Si), we need only consider edges e
that belong to H(pi). For each such e, α(e) is a vertex of CH(S).

The preceding discussion suggests a rotating caliper algorithm [7, 8]. Let e?

denote the edge for which α(e?) is currently being sought. Initializing e? as
the first clockwise edge of H(p0), we determine α(e?). Next we let e? march
clockwise along H(p0) while α(e?) marches clockwise along L0, thus finding
all antipodal pairs of CH(S0) and determining the widest (n − 1)-dense
closed corridors through S that exclude p0. Upon reaching p1, we repeat
the process for H(p1), starting with the first clockwise edge of H(p1). And
so on until we process H(ph−1).

L0 and L1 can be computed easily in O(n log n) time. Computing H(pi)
essentially involves finding the two supporting lines to L1, which can be done
in O(log n) time. Thus the time to construct all the H(pi) is O(n log n).
In the rotating caliper stage, the caliper moves monotonically clockwise
because, as shown earlier, for i 6= j, H(pi) and H(pj) are edge-disjoint,
so that the caliper is never forced to back up. For each edge e, the cost
of determining α(e) is proportional to the number of vertices of CH(S)
scanned and so can be charged as O(1) per such vertex. Each such vertex
is charged only O(1) times because, as can be seen from Figure 4, for any i
the supporting line from pi to L1 (which contains the first clockwise edge of
H(pi+1)) forms a clockwise positive angle with ti+1 (which contains the last
clockwise edge of H(pi)). It follows that the rotating caliper stage runs in
O(n) time. We conclude:

Theorem 6.1. A widest (n− 1)-dense closed corridor through a set S of n
points in the plane can be computed in O(n log n) time and O(n) space. 2

7. Conclusions and open problems

We have given efficient algorithms for several widest k-dense corridor prob-
lems, based on geometric duality and on efficient searching in convex layers.
Open problems include: (i) computing a widest empty corridor in o(n2)
time, (ii) computing a widest k-dense corridor in O(n2) time for any k > 0,
and (iii) devising efficient algorithms to dynamically maintain widest k-
dense corridors and to compute widest k-dense corridors through polygonal
obstacles for any k > 0.
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