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Abstract. This paper investigates the computational complexity of several clus-
tering problems with special objective functions for point sets in the Euclidean
plane. Our strongest negative result is that clustering a set of 3k points in the
plane into k triangles with minimum total circumference is NP-hard. On the other
hand, we identify several special cases that are solvable in polynomial time due
to the special structure of their optimal solutions: The clustering of points on a
convex hull into triangles; the clustering into equal–sized subsets of points on a line
or on a circle with special objective functions; the clustering with minimal cluster-
distances. Furthermore, we investigate clustering of planar point sets into convex
quadrilaterals.

ACM CCS Categories and Subject Descriptors: F.2.2

1. Introduction

Problem statement.

Let P be a set of points in the plane. A partitioning of P into k disjoint
(possibly empty) sets C1, C2, . . . , Ck is called a clustering, and the individual
sets Ci are called its clusters. In cluster analysis, the points represent prop-
erties (data) of real-world objects, and the aim is usually to collect “similar”
objects (points which are close to each other) in the same cluster, and to
put objects which are very “different” into different clusters.

The definition of “similarity” of objects is crucial for every clustering pro-
cess. In a general setup we let W be some weight function that assigns a real
weight to any set of finite point sets C1, . . . , Ck in the plane (Examples for
W are the maximum diameter of all Ci or the sum of the circumferences of
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the convex hulls of all Ci or the distances between all pairs of points in the
same point set). Intuitively, W is a measure of the quality of the clustering
C1, . . . , Ck. Then the planar clustering problem for W is defined as follows.

INSTANCE: A set P of m points in the plane; integers k, nl

and nu; a rational number d.
QUESTION: Is there a clustering for P into k sets C1, C2, . . . ,
Ck such that nl ≤ |Ci| ≤ nu and such that W (C1, C2, . . . , Ck) ≤
d holds?

Clearly, this problem could be defined in higher dimensions, but we confine
our interest to the plane. Usually, not all of the numbers k, nl and nu

are specified; sometimes they are specified but not as part of the input.
Sometimes there are additional restrictions on the clusters (e.g. the convex
hulls are required to be pairwise disjoint). The special case where nl = nu =
|P |/k (i.e. all clusters contain the same number of points) occurs frequently
in practical problems and is called balanced clustering.

Related results.

In general, the above problem is NP-complete. Supowit [16] has shown the
NP-completeness if W assigns the maximum diameter of all Ci and if k is
part of the input. The related problem of minimizing the maximum radius,
which is also known as the k-center problem in the area of location problems,
is also NP-complete (Megiddo and Supowit [11]). NP-completeness can also
be shown for minimizing the maximum cluster area and for minimizing the
sum of all cluster areas, as follows from a result of Megiddo and Tamir [12]
that it is NP-complete to decide whether a set of points can be covered by
a given number of lines. Some special cases that are solvable in polynomial
time can be found in [1, 3, 13]. For more information, the reader is referred
to Johnson’s NP-Completeness Column [9] and to the article by Brucker [2].

Our results.

A problem where one could expect to find some useful characterization of
optimal clusterings, is the partitioning of points into triangles. However, this
special case of balanced clustering of m = 3k points into clusters Ci, i =
1 . . . k of size three with a minimal sum of all triangle circumferences turns
out to be NP-complete in general. On the other hand, we get a polynomial
algorithm for finding the optimal clustering if the set of points is restricted
to the boundary of a convex set.

A property which is often discussed in the treatment of geometric cluster-
ing problems is the “convex separability” of clusters in an optimal solution,
which means that the convex hulls of each two optimal clusters can be sep-
arated by a line. In this context the partitioning of points on a line and on
a sphere was investigated by Boros and Hammer [1]. For the case of a bal-
anced clustering which minimizes the sum of all euclidean distances between
points in the same cluster we show that points on a line can be clustered
optimally such that the convex hulls of the clusters are disjoint. The same
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does not hold for arbitrary point sets in the plane as can be shown by a
simple counterexample. Hence, we try to find layouts of points narrowing
the “gap” between these two setups. We show that points on a circle can in
fact be separated in a way similar to points on a line for a special objective
function. The case of points on the boundary of a convex set remains open.

A rather different and more general clustering problem which minimizes
the sum of all distances between points in different clusters which is equiv-
alent to maximizing the sum of distances of points in the same cluster can
be solved quite easily in any metric space due to the special structure of the
optimal solution.

Extending the inspection of clusters of size three (triangles) we also discuss
clusters of size four (quadrilaterals), especially convex quadrilaterals. In this
case an existence result can be given, namely that every set of 4k points in
the plane can be clustered into at least k − 1 convex quadrilaterals.

Relation to cut problems.

Clustering problems are in a general way related to cut problems. The extent
of this relationship is determined by the nature of the weight function W .
In fact, if we define W as

W (C1, . . . , Ck) :=
∑

p,q∈C1

d(p, q) + . . . +
∑

p,q∈Ck

d(p, q)

i.e. the sum of all distances between points in the same cluster as we do in
Sections 2 and 3, we get a clustering problem equivalent to the well–known
max–cut problem. Its purpose is to maximize the sum of all distances of
points in different clusters, points whose connection lines cross the “cut”
dividing the clusters from each other. References and applications can be
found in the book of Lengauer [10].

The objective function in the mentioned case of minimization of distances
between different clusters defines a clustering problem equivalent to a min–
cut problem. This problem can be solved in the general case, where the “dis-
tances” are arbitrary “edge weights”, by an algorithm due to Goldschmidt
and Hochbaum [8] in O(mk2

) time. Many approximation algorithms (e.g.
Saran and Vazirani [15]) and identifications of special cases are known for
this problem.

Organization of the paper.

In Section 2 we deal with the partitioning of points into triangles minimizing
the sum of circumferences. Other balanced clustering problems are treated
in Sections 3 and 4 minimizing the sum of distances of points in the same
cluster for points on a line in the former and minimizing the sum of the
circumferences of the convex hulls of the clusters for points on a circle in
the latter.

The distances between clusters are minimized for general point sets in
Section 5. Clusterings whose subsets are convex quadrilaterals are discussed
together with some combinatorial results in Section 6. We close the paper
with a short discussion and remarks in Section 7.
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2. Clustering into Triangles

In this section, we investigate the problem of clustering a planar set P of m =
3k points into k triangles such that the sum of all triangle circumferences
is minimized. We will show that this problem is NP-complete in general.
However, if we restrict P to be a set of points lying on the boundary of a
convex set, the optimum clustering can be found in polynomial time, O(m4).

Example 1. Consider the following set of six points a, b, c, a′, b′, and c′:
Points a, b and c form an equilateral triangle of side length 1. Points a′, b′,
c′ are at distance ε < 1/100 from the center of the line segment ab. a′ is
inside and b′ and c′ are outside of the triangle ∆abc. It is easily checked that
the optimum sum of circumferences clustering into two triangles consists of
the clusters {a, b, c} and {a′, b′, c′}, for ε sufficiently small.

Since the convex hulls of these two clusters intersect, this example demon-
strates that the optimum clustering is not necessarily crossingfree. This is
surprising since most geometric minimization problems have crossingfree op-
timum solutions, e.g. Minimum Matching, the shortest Traveling Salesman
Tour, Minimum Maximum Diameter Clustering etc.

Next, we will give our NP-completeness result. We will make use of rec-
tilinear planar layouts of planar graphs. A rectilinear planar layout of a
planar graph G = (V,E) maps the vertices in V to horizontal line segments
and the edges of G to vertical line segments, with all endpoints of segments
at positive integer coordinates. Two horizontal segments are connected by
a vertical segment if and only if the corresponding vertices are adjacent in
the graph. The following proposition is due to Rosenstiehl and Tarjan [14].

Proposition 1. Given a planar graph G = (V,E), a rectilinear planar
layout of G can be computed in time polynomial in the size of G. Moreover,
the height and the width of the layout are both linear in the size of G. W.l.o.g.
we may assume that all horizontal segments are at different (integer) heights.

2

Our NP-completeness proof will be done by a reduction from the following
very special version of the exact cover problem that was shown to be NP-
complete by Dyer and Frieze [5].

Planar Exact Cover by 3-Sets (Planar X3C)

Input. A set Q with |Q| = 3q; a set T of triples from Q×Q×Q
such that (i) every element of Q occurs in at most three triples
and such that (ii) the induced graph G is planar. (This induced
graph G is defined as follows: It contains a vertex for every ele-
ment of Q and for every triple in T . There is an edge connecting
a triple to an element if and only if the element is a member of
the triple. Clearly, G is bipartite with vertex bipartition Q and
T ).
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Fig. 1: A chain of diamonds connecting ti to qi

Question. Does there exist a subset of q triples in T which
contains all the elements of Q ?

Hence, let Q and T ⊂ Q × Q × Q constitute an instance of planar X3C.
We will construct a point set P (Q,T ) of 3k points (the exact value of k
will be determined later) that allows a clustering into triangles with total
circumference at most 12k if and only if the planar X3C instance has a
solution.

In a first step, we compute a rectilinear planar layout for the underlying
undirected graph of G according to Proposition 1. Then we multiply all
coordinates by a factor of 1000 in order to ensure that points on distinct
horizontal (vertical) segments are sufficiently far away from each other.

Next, we define the point set P (Q,T ). Our main tool is the right-angled
triangle ∆0 with side lengths 3, 4 and 5; it will allow us to keep all points
in P (Q,T ) at integer coordinates. For every element of Q, P (Q,T ) will
contain a so-called element point . For every triple in T , P (Q,T ) contains
three so-called triple points forming a so-called triple triangle. The triple
triangles are copies of ∆0 such that the two sides of lengths 3 and 4 are axes-
parallel. The element points and the triple triangles are placed somewhere
at the corresponding line segments in the rectilinear layout (because of our
multiplication, there is ample space to place them).

In the next step, we consider some triple t = (q1, q2, q3) in T and the
corresponding three triple points t1, t2 and t3 that form a triangle ∆0. For
1 ≤ i ≤ 3, the point ti is connected to the point qi by a chain of diamonds
as depicted in Figure 1. A diamond consists of two copies of ∆0 that are
glued together either by their sides of length 5 (rectangular diamond) or
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Fig. 2: Placement of diamonds around an element point qi

by their sides of length 3 (triangular diamond). All diamonds are placed
in such a way that the two shorter sides of the triangles are axes-parallel.
No two rectangular diamonds occur consecutively in a chain. The chains
of diamonds (roughly) follow the line segments corresponding to the two
vertices ti and qi and to the connecting edge in the graph G.

There are two problems we have to be careful with. (1) The first problem is
that we do not want to produce other triangles of circumference 12 outside of
these chains of diamonds (e.g. if two distinct chains come very close to each
other). Again, because of our multiplications in the beginning, there are
sufficiently many degrees of freedom to route the chains far away from each
other. Since every element occurs in at most three triples, it is also possible
to keep the chains sufficiently far from each other if they meet in an element
point (see Figure 2). The same holds for triple points. (2) The other problem
is that it is not a priori clear that triple and element points can indeed be
connected by such chains of diamonds: Triangular shaped diamonds shift
the path by ±8 units in x-direction and 0 units in y-direction (or 0 units in
x-direction and ±8 units in y-direction); rectangular shaped diamonds shift
the path by a vector of (±3,±4) or (±4,±3). Once more, our multiplication
in the beginning of the construction removes this problem. The main idea
is to use only a small number of rectangular shaped diamonds in order
to reach the correct remainders for the shift if divided by 8, and to use
many triangular shaped diamonds for the long distances. As the distances
are sufficiently large, we can mix rectangular shaped and triangular shaped
diamonds without ending up in problem (1).

Connecting every triple triangle to its corresponding three element trian-
gles completes the construction of the point set P (Q,T ). It is easy to check
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that |P (Q,T )| is divisible by three, say |P (Q,T )| = 3k and that the con-
struction can be performed in polynomial time. It remains to prove that
P (Q,T ) can be partitioned into triangles of total circumference at most 12k
if and only if the exact cover problem allows a solution.

(If) Assume that a clustering of total length ≤ 12k exists. By our con-
struction, no three points in P (Q,T ) form a triangle with circumference
< 12; consequently, the clustering must consist of k triangles all with cir-
cumference exactly 12. We claim that the subset T ′ of T that contains all
triples for which the corresponding triple points form a cluster constitutes
a solution to the planar X3C instance.

Consider some element qi ∈ Q. The corresponding element point is con-
tained in exactly one cluster, and this cluster belongs to a chain of diamonds.
In this chain of diamonds, every other triangle must form a cluster; there-
fore, the corresponding point ti on the other end of the chain cannot be
covered by any triangle cluster in the chain, and the corresponding three
triangle points must form another cluster. The clusters in the other (one or
two) chains going away from qi cover the corresponding triangle points, and
these triangle points cannot form a cluster in the clustering.

This way we may assign to each qi ∈ Q a unique triple in T . On the other
hand, if we assign one qi to some triple, the other two elements in this triple
must be assigned to this triple, too. Clearly, this yields a solution to the
X3C.

(Only if) Now assume that the planar X3C has a solution T ′ ⊆ T . We
construct a clustering as follows. All triangles corresponding to triples in
T ′ are clusters, all triangles in T \ T ′ are not. This completely determines
which triangles on the chains have to be used in the clustering. Since T ′ is
a solution of X3C, every element point is in exactly one cluster.

Summarizing, we have proved the following theorem.

Theorem 1. For a set P of 3k points with integer coordinates in the plane
and an integer d, it is NP-hard to decide whether P can be clustered into k
triangles with total circumference at most d. 2

Remark. Since we do not know whether the above clustering problem is
in NP, we only could prove an NP-hardness result. However, if we use
discretized distances and circumferences (i.e. the circumference of ∆xyz is
defined by dxye + dxze + dyze), then the discretized clustering problem
clearly is in NP. All ‘important’ triangles in our construction above have
integer side lengths. Therefore, it follows that the discretized clustering
problem into triangles is NP-complete.

Remark. Our construction also shows that finding a clustering into trian-
gles that minimizes the largest cluster circumference is NP-hard.



SOME GEOMETRIC CLUSTERING PROBLEMS 253

��
��

@
@

@
@

A
AA
�

���
�
�
�
� ��

��Q
Q
QQhhhh

hhhh

�
�
�
�
��
�
�
�
�

   
    C

C
C
C
CHH

HH
HH

HH
aaaaaaa!!!!!!!

a b c

   
    

�
��
�

�
��

@
@
@
@

Q
Q

QQ

Fig. 3: All different situations with triangles of 6 convex points: Thick lines show the
original triangles, thin lines the added edges.

Next, we consider the restriction where the set P consists of points on
the boundary of a convex set. We will show that this restriction makes the
problem easy.

Lemma 1. Let P be a set of six points in convex position. Then the clus-
tering into two triangles with minimum total circumference is crossingfree.

Proof. Given 6 points in convex position, there are only three combina-
torially distinct ways to construct two triangles (confer to Figure 3).

We only have to show that Cases b and c are not optimal. By applying
the quadrangle inequality twice in both cases as indicated in the picture,
one easily constructs a pair of non-intersecting triangles with smaller total
circumference. 2

Theorem 2. For a set P of 3k points on the boundary of a convex set in
the plane a clustering into k triangles with minimum total circumference can
be found in O(k4) time.

Proof. Lemma 1 implies that the optimum clustering is crossingfree.
Hence, we may apply a dynamic programming approach to find the optimum
clustering in the following way.

Let p1, p2, . . . , p3k denote the points of P sorted clockwise around the
convex set. We introduce a two-dimensional array Tri[i, j], 1 ≤ i, j ≤ 3k.
The entry Tri[i, j] concerns the subset Pij of P that lies between pi and pj

in clockwise direction on the convex boundary (inclusively the points pi and
pj). In case |Pij | is divisible by three, Tri[i, j] contains the length of the
shortest clustering of Pij into triangles. Otherwise, Tri[i, j] = ∞.

We show how to compute all entries of Tri[∗, ∗] in O(k4) overall time. This
is done in a bottom-up fashion. First, we set all Tri[i, j] = ∞ for which
|Pij | is not divisible by three. Then we go through k rounds. In round x, we
compute Tri[i, j] for the sets Pij containing exactly 3x points. Round 1 is
easy: Pij contains three points, and the clustering is unique. For x ≥ 2, we
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test all possible triangles in Pij containing the point pi and combine them
with the already calculated optimum values for the rest of Pij .

Tri[i, j] = minpa,pb∈Pij
{ papb + pbpi + pipa + Tri[i + 1, a − 1]

+ Tri[a + 1, b − 1] + Tri[b + 1, j] }

If we implement the above equation, we have to take care that a 6= b holds,
and in case some of pi, pa, pb and pj are neighbors on the convex boundary
(e.g. pa and pb), then the corresponding term (e.g. Tri[a + 1, b − 1]) must
not be considered in the sum. Clearly, the computation of every entry
in Tri[∗, ∗] takes at most O(k2) time; this gives the claimed overall time
complexity of O(k4). 2

3. Balanced Clustering of Points on a Line

It is shown that the clustering of m = nk points on a line into k clusters of
equal size, i.e. a balanced clustering, with a minimum sum of all distances
between points of the same subset consists of k disjoint segments of the
line each containing n points. The same problem without restrictions to
the size of the clusters was treated by Boros and Hammer [1], who showed
that every optimal clustering is nested i.e. ∀i 6= j Ci ∩ (conv Cj) = ∅ or
Cj ∩ (conv Ci) = ∅.

Theorem 3. Let P = {p1, . . . , p2n} be a set of points on a line. The bal-
anced clustering of P into two sets, which minimizes

W (C1, C2) :=
∑

p,q∈C1

d(p, q) +
∑

p,q∈C2

d(p, q)

consists of the first n points detected by scanning the line starting from one
endpoint and the remaining n points nearer to the other endpoint of the line.

Proof. Let C = (C1, C2) be an arbitrary balanced clustering of P . We
choose an arbitrary point z 6∈ P such that there are exactly n points of P to
the right of z and exactly n points of P to the left of z. We represent each
pi by its distance from the left endpoint. Hence we have d(pi, pj) = |pi−pj|.

Let CL
1 = {a1, . . . , ak}, CL

2 = {bk+1, . . . , bn} such that p − z < 0 ∀ p ∈
{CL

1 ∪CL
2 } and CR

2 = {b1, . . . , bk}, CR
1 = {ak+1, . . . , an} such that q−z > 0

∀ q ∈ {CR
1 ∪ CR

2 }.
The distance between two sets is defined by d(A,B) :=

∑

a∈A

∑

b∈B d(a, b).
We have to show that the clustering (CL

1 ∪ CL
2 , CR

1 ∪ CR
2 ) yields a smaller

value of W than C:

d(CL
1 , CR

1 ) + d(CL
2 , CR

2 ) ≥ d(CL
1 , CL

2 ) + d(CR
1 , CR

2 ) (1)
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Inequality (1) can be written as

(n − k)
k
∑

i=1

|ai − z| + k
n
∑

j=k+1

|z − aj|

+ k
n
∑

i=k+1

|bi − z| + (n − k)
k
∑

j=1

|z − bj|

≥
k
∑

i=1

n
∑

j=k+1

|ai − bj | +
n
∑

i=k+1

k
∑

j=1

|ai − bj | (2)

Using elementary inequalities like ||a| − |b|| ≤ |a − b| we get

k
∑

i=1

n
∑

j=k+1

(|ai − bj| − |ai − z|) +
n
∑

i=k+1

k
∑

j=1

(|ai − bj | − |bj − z|) ≤

k
∑

i=1

n
∑

j=k+1

∣

∣

∣|ai − bj | − |ai − z|
∣

∣

∣+
n
∑

i=k+1

k
∑

j=1

∣

∣

∣|ai − bj| − |bj − z|
∣

∣

∣ ≤

k
∑

i=1

n
∑

j=k+1

|z − bj | +
n
∑

i=k+1

k
∑

j=1

|ai − z| =

k
n
∑

j=k+1

|z − bj| + k
n
∑

i=k+1

|ai − z|

Moving terms around yields inequality (2). 2

Corollary 1. With the conditions of Theorem 3 the balanced clustering
of nk points on a line into k clusters consists of sets C1, . . . , Ck such that
int(conv Ci) ∩ int(conv Cj) = ∅ for all i, j ∈ {1, . . . , k}, i 6= j.

Proof. Let C1, . . . , Ck be an arbitrary balanced clustering. If for any pair
Ci, Cj int(conv Ci)∩ int(conv Cj) 6= ∅ holds we can decrease the value W of
the clustering by exchanging elements of Ci and Cj according to Theorem 3.
Successive modification of all overlapping pairs of sets yields our statement.

2

Remark. Obviously, the computation of an optimal clustering with respect
to the conditions given above can be done in O(m log m) time by sorting
the points and scanning the line.
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4. Balanced Clustering of Points on a Circle with

Minimal Circumference

It is shown that the balanced clustering of m = nk points on a circle
into k clusters with a minimum sum of circumferences consists of k non–
intersecting segments each containing n points. The circumference of a set
of points is the circumference of its convex hull.

Theorem 4. Let P = {p1, . . . , p2n} be a set of points on a circle of arbitrary
radius. If P is partitioned into two sets of equal size such that the sum of
their circumferences is minimized then the two sets can be separated by a
line i.e. their convex hulls are disjoint.

Proof. See Appendix. 2

Corollary 2. A balanced clustering of nk points on a circle minimizing

W (C1, . . . , Ck) :=
k
∑

i=1

circumference (Ci)

consists of sets C1, . . . , Ck such that int(conv Ci) ∩ int(conv Cj) = ∅ for all
i, j ∈ {1, . . . , k}, i 6= j.

Proof. Let C1, . . . , Ck be an arbitrary balanced clustering. If for any
pair Ci, Cj int(conv Ci) ∩ int(conv Cj) 6= ∅ holds we can diminish the sum
of the circumferences by exchanging elements of Ci and Cj according to
Theorem 4. Successive modification of all intersecting pairs of sets yields
our statement. 2

Remark. An optimal clustering can be found by applying dynamic pro-
gramming as in the proof of Theorem 2. This yields an O(mn+1) algorithm
which is polynomial for every fixed n.

5. Clustering with Minimal Clusterdistances

We treat the general problem of finding an arbitrary clustering of m points in
any metric space into non–empty subsets minimizing the sum of all distances
between points of different subsets. Hence, our objective is to minimize

W̃ (C1, . . . , Ck) :=
k
∑

i,j=1

i6=j

∑

p∈Ci
q∈Cj

d(p, q).

It is shown that the optimal solution is achieved by a partition into k − 1
sets of only one point and one set containing all other m − k + 1 points.
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Theorem 5. Let M be a metric space and P = {p1, . . . , pm} a set of points
in M . If P is partitioned into two subsets such that W̃ is minimized then
the resulting clustering consists of one single point p̃ ∈ P defined by

p̃ = arg min
pi

{
m
∑

j=1

d(pi, pj)}

and the set of all other points P \ {p̃}.

Proof. Let C = (C1, C2) be an arbitrary clustering of P with |C1| ≤ |C2|.
We show that there exists a single point p̄ ∈ C1 such that the value of the
clustering K = (p̄, P \ {p̄}) is less than or equal to W̃ (C1, C2). Obviously p̃
is the best possible selection for any p̄ and we are done.

Let C1 = {p1, . . . , pk} and C2 = {pk+1, . . . , pm} with k ≤ m/2. We denote
the distance of pi and pj by d(pi, pj) =: d(i, j). Changing from clustering
C to clustering Ki = (pi, P \ {pi}) the distances between pi and all other
points in C1 are added to the value of W̃ (C) and we will denote this amount
by

Ai :=
k
∑

j=1

d(i, j).

All distances between C1 \ {pi} and C2 are deleted from W̃ (C) denoted by

Di :=
k
∑

j=1

j 6=i

m
∑

`=k+1

d(j, `).

We will show that
∑k

i=1 Ai ≤
∑k

i=1 Di and therefore there exists some j such
that Aj ≤ Dj . Choosing p̄ = pj satisfies our claim.

k
∑

i=1

Ai =
k
∑

i=1

k
∑

j=1

j 6=i

d(i, j) ≤
k
∑

i=1

k
∑

j=1

j 6=i

(d(i, k + j) + d(k + j, j)) .

Multiplying the first term by k − 1 and evaluating the second term yields

k
∑

i=1

Ai ≤ (k − 1)
k
∑

i=1

k
∑

j=1

j 6=i

d(i, k + j) + (k − 1)
k
∑

j=1

d(j, k + j) =

(k − 1)
k
∑

i=1

k
∑

j=1

d(i, k + j) =
k
∑

i=1

k
∑

j=1

j 6=i

2k
∑

`=k+1

d(j, `) ≤
k
∑

i=1

Di.

2
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Corollary 3. With the conditions of Theorem 5 the clustering into k sub-
sets minimizing W̃ consists of k − 1 single points pi1 , . . . , pik−1

and the set
of the remaining m − k + 1 points.

Proof. Let C1, . . . , Ck be an arbitrary clustering. Obviously, in an optimal
clustering any pair (Ci, Cj), i, j ∈ {1, . . . , k} has to be an optimal partition

of P̂ := Ci ∪ Cj into two sets. Applying Theorem 5 successively yields our
statement. 2

Remark. The computation of p̃ by a straight forward algorithm takes
O(m2) time. Iterative application of this selection process yields an O(km2)
algorithm.

6. Clusterings into Convex Parts

In this section, we deal with clusterings into convex parts. Among several
related results we will show that any set P of 4k points in the plane can
be clustered into k convex quadrilaterals if it has at least five points on its
convex hull.

Let us define φ(n), n ≥ 4, to be the smallest number φ such that any set of
m = kn points in the Euclidean plane with at least φ points on the convex
hull can be partitioned into k convex clusters C1, . . . , Ck, each of cardinality
n. (We will assume that all point sets treated in this section are in general
position i.e. they have no three collinear points). The numbers φ(n) are
closely related to the Erdős-Szekeres numbers ES(n). ES(n) is defined as
the smallest integer number e such that every planar set of e points or more
contains a convex n-gon as subset. It is known (see Erdős and Szekeres [6])
that ES(4) = 5, ES(5) = 9 and that

2n−2 + 1 ≤ ES(n) ≤

(

2n − 4

n − 2

)

+ 1.

In what follows, we will show that the numbers φ(n) exist for all n ≥ 4
and that there are positive reals c1, c2 such that

c1ES(n)/n ≤ φ(n) ≤ c2nES(n)

holds. For n = 4 we give the exact value φ(4) = 5. This leaves open the
nice possibility of φ(n) ≡ ES(n).

First we will give the general bounds on φ(n) in terms of ES(n).

Theorem 6. For n ≥ 4, b(ES(n) − n − 1)/(n − 1)c < φ(n) ≤
(n − 2)d(ES(n) − 1)/2e + n + 1 holds.

Proof. (Lower bound). Define f1(n) = b(ES(n)−n− 1)/(n− 1)c and let
P1 be a set of (n − 1)f1(n) + n < ES(n) points in the plane that does not
contain any convex n-gon as subset. Put a scaled copy of P1 into the unit
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circle and choose a set P2 of f1(n) equidistant points on the unit cycle. Then
the set P1∪P2 is not partitionable into convex n-gons: Otherwise, there exist
f1(n) + 1 convex n-gons and at least one of them must be contained in P1,
a contradiction.

(Upper bound). Define f2(n) = (n − 2)d(ES(n) − 1)/2e + n + 1 and let
P3 be any planar point set with h ≥ f2(n) points on the convex hull and
i points in the interior of the hull, h + i = kn. We assume that P3 is not
partitionable into k convex n-gons and derive a contradiction.

First, we repeatedly produce convex n-gons in the interior of the convex
hull until the number of interior points is less than ES(n). Then we consider
any pair of interior points x and y. The line going through x and y divides
the points on the convex hull into two parts, one of them containing at least
n−2 points. These n−2 points together with x and y form a convex n-gon.
Repeating this procedure we derive a feasible partition. 2

Theorem 7. φ(4) = 5 = ES(4) holds.

Proof. (reductio ad absurdum) We will assume that there exists a set
P of 4k points which has at least five points on its convex hull and which
is not partitionable into convex quadrilaterals (we will call such point sets
bad point sets); from this we will derive a contradiction. Indeed, assume
bad point sets exist and consider some bad point set P4 with the minimum
number of points.

We observe that P4 cannot contain more than 9 points: Otherwise, we
could select a subset P5 ⊆ P4 consisting of 5 points such that in P4\P5 there
remain at least 5 hullpoints. Using ES(4) = 5, we find a convex quadrilateral
in P5. If we remove this convex quadrilateral from P4, we end up with a
smaller bad set, a contradiction.

Therefore, P4 contains at most 9 and at least 5 points; this implies |P4| = 8.
We will distinguish whether the convex hull of P4 consists of eight, seven,
six or five points and we will find a feasible partition in each case.

8. There is nothing to show, any partition will do.

7. Consider any line through the only inner point x of P4. The line divides
the convex hull into two parts, one of these two parts contains three
points of P4. The point x together with these three points gives one
convex quadrilateral, the remaining four points form the other one.

6. Similarly as in case (7), we consider the line through the inner points
x and y. One of the originating parts contains at least two points,
and these two points together with x and y give a feasible convex
quadrilateral.

5. In this case, we consider the three lines determined by the three inner
points x, y and z. They partition the plane into one finite and six
infinite regions (see Figure 4). Three of the infinite regions are wedges,
three of them are three-sided. All hullpoints lie in these six infinite
regions.
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Fig. 4: Partitions of the plane by three lines

A hull point in one of the three-sided regions can be used to form a
feasible convex quadrilateral with a, b and c. Three hullpoints in one
wedge can be put together with the nearest inner point to produce
a feasible quadrilateral (see Figure 4a). It remains to treat configu-
rations of the form in Figure 4b. But here we simply combine two
points in a wedge with the two farthest inner points and again we
find a feasible partition. Consequently, P4 is partitionable into convex
quadrilaterals.

To complete the proof of Theorem 7, we must show that φ(4) > 4. To see
this we consider a set P6 of eight points lying on the two branches of some
hyperbola. Let one branch contain three and the other branch contain five
points of P6. Then the convex hull of P6 consists of exactly four points, and
obviously P6 is not partitionable into two convex quadrilaterals. 2

Corollary 4. Every planar point set of 4k points in general position can
be clustered into k clusters of cardinality four in such a way that at least
k − 1 of the clusters are convex quadrilaterals. 2

Summarizing, five points on the convex hull are sufficient to make a point
set partitionable into convex quadrilaterals. We do not know an easy char-
acterization for partitionable point sets with only three or four points on the
convex hull. The problem remains open to find a polynomial time algorithm
for solving this problem.

7. Discussion

In this paper we treated various cases of the general geometric clustering
problem. On one hand we showed that it is NP-complete to find a partition-
ing of 3k points in the plane into k triangles with a minimal sum of circum-
ferences or a minimal largest cluster circumference. On the other hand we
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gave a polynomial algorithm for solving the same problem for points lying
on the boundary of a convex set.

Identifying reasonable special cases of the balanced clustering problem,
whose optimal solution can be characterized in such a way that its compu-
tation is more or less easy, we showed that the convex hulls of the optimal
clusters are disjoint in the case of points on a line (minimizing the sum of
distances of points in the same cluster) and of points on a circle (minimiz-
ing the sum of circumferences of the clusters). Other versions of objective
functions and special positions of points remain to be considered, especially
points in convex position.

A result in a more general context was that a partition into k non-empty
clusters minimizing the sum of distances between points in different clusters
consists of k − 1 singleton sets and one set of all remaining points.

Exploiting the relation to cut problem, the terminal cut problem (see e.g.
Cunningham [4]) could be translated into a terminal clustering, where each
cluster has to contain a special terminal point. Hence, the clustering defines
not only a partition of all points but also a partition of k special terminal
points into k subsets. Problems of this kind occur frequently in location
theory and seem to be worth to be investigated.
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Appendix A. Proof of Theorem 4

Proof. Let C = (C1, C2) be an arbitrary balanced clustering of P . If C1

and C2 cannot be separated by a line we assume that the segment with the
smallest number of points of the same cluster is a subset of C1 and denote
it by CX

1 . Adding CX
1 to C2 and replacing it by points of C2 adjacent to C1

obviously decreases the number of intersections between the convex hulls. It
remains to be shown that thereby the sum of circumferences is not increased.

We will use an angle representation of the chords and some trigonometric
equalities. The parts of the clusters are represented by their angels a, b, . . . , k
as shown in Figure 5. W.l.o.g. we assume that a + b ≥ h + i and that the
radius of the circle r = 1/2.

There are two possible situations for intersecting clusters:
Case I int(conv C1 \ CX

1 ) ∩ int(conv C2) = ∅:
In this case sectors j and k contain only points from C1. In order to show

that a crossingfree clustering has a smaller sum of circumferences we use
|chord (α)| = 2r sin α

2 and have to prove

sin 1/2(a + b + c) + sin 1/2(e + . . . + i) + sin 1/2(c + d + e) +

sin 1/2(g) + sin 1/2(a + i + j + k) ≥ sin 1/2(a + . . . + g)

+ sin 1/2(a + g + . . . + k) + sin 1/2(c) + sin 1/2(e) + sin 1/2(i).

Inserting the terms sin 1/2(−d+h+i), sin 1/2(−d) and sin 1/2(−h) and using
the basic formulas for the summation and subtraction of the sine and cosine
function (sinx + sin y = 2 sin x+y

2 cos x−y
2 , cos x− cos y = −2 sin x+y

2 sin x−y
2 )

we get

sin 1/2(a + b + c) + sin 1/2(e + . . . + i) − sin 1/2(a + . . . + g)

− sin 1/2(−d + h + i)

+ sin 1/2(c + d + e) + sin 1/2(−d)− sin 1/2(c) − sin 1/2(e)

+ sin 1/2(a + i + j + k) + sin 1/2(g)− sin 1/2(a + g + . . . + k) − sin 1/2(−h)

+ sin 1/2(−d + h + i) + sin 1/2(−h)− sin 1/2(i)− sin 1/2(−d) =

2 sin 1/4(a + b + c + e + . . . + i)[cos 1/4(a + b + c − e . . . − i)

− cos 1/4(a + b + c + 2d + e + f + g − h − i)]

+2 sin 1/4(c + e)[cos 1/4(c + 2d + e) − cos 1/4(c− e)]

+2 sin 1/4(a + g + i + j + k)[cos 1/4(a − g + i + j + k)

− cos 1/4(a + g + 2h + i + j + k)]

+2 sin 1/4(−d + i)[cos 1/4(−d + 2h + i) − cos 1/4(d + i)] =
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Fig. 5: Intersecting clustering (Case II): CX
1 is exchanged with sector h.

4 sin 1/4(a + b + c + e + . . . + i) sin 1/4(a + b + c + d − h − i)

sin 1/4(d + e + f + g)

+4 sin 1/4(a + g + i + j + k) sin 1/4(a + h + i + j + k) sin 1/4(g + h)

−4 sin 1/4(c + e) sin 1/4(c + d) sin 1/4(d + e)

−4 sin 1/4(−d + i) sin 1/4(h + i) sin 1/4(−d + h) > 0,

because the sum of all angels is 2π and the sinus function is increasing
between 0 and π/2. The underlined expressions in the last sum mark the
angels, which are compared with the negative terms.

Case II int(conv C1 \ CX
1 ) ∩ int(conv C2) 6= ∅:

In this case we have to show

sin 1/2(a + b + c) + sin 1/2(e + . . . + i) + sin 1/2(c + d + e) +

sin 1/2(g) + sin 1/2(i + j) ≥ sin 1/2(a + . . . + g) + sin 1/2(g + . . . + j)

+ sin 1/2(c) + sin 1/2(e) + sin 1/2(i).

The same procedure as in Case I can be applied. We set k := 0 in the proof
and note that the angle a makes no difference in the final comparison.

This exchange can be performed iteratively until C1 and C2 are separable
by a line. 2


