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Abstract. We extend the concept of polynomial time approximation algorithms to
apply to problems for hierarchically specified graphs, many of which are PSPACE-
complete. We present polynomial time approximation algorithms for several stan-
dard PSPACE-hard problems considered in the literature. In contrast, we prove
that finding ε-approximations for any ε > 0, for several other problems when the
instances are specified hierarchically, is PSPACE-hard. We present polynomial time
approximation algorithms for the following problems when the graphs are specified
hierarchically:

minimum vertex cover, maximum 3SAT, weighted max cut, minimum maximal
matching, and bounded degree maximum independent set.
In contrast, we show that for any ε > 0, obtaining ε-approximations for the

following problems when the instances are specified hierarchically is PSPACE-hard:
the number of true gates in a monotone acyclic circuit when all input values are
specified and the optimal value of the objective function of a linear program.

It is also shown that obtaining a performance guarantee of less than 2 is PSPACE-
hard for the following problems when the instances are specified hierarchically:

high degree subgraph, k-vertex connected subgraph and k-edge connected subgraph.

Key words: hierarchical specifications, approximation algorithms, computational
complexity, algorithms and data structures

1. Introduction

Hierarchical system design is becoming increasingly important with the de-
velopment of VLSI technology [11, 31]. At present, a number of VLSI cir-
cuits already have over a million transistors. (For example the Intel i860
chip has about 2.5 million transistors.) Although VLSI circuits can have
millions of transistors, they usually have highly regular structures. These
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regular structures often make them amenable to hierarchical design, spec-
ification and analysis. Other applications of hierarchical specification and
consequently of hierarchically specified graphs are in the areas of finite ele-
ment analysis [18], software engineering [7], material requirement planning
and manufacturing resource planning in a multistage production system [26]
and processing hierarchical Datalog queries [37].

Over the last decade, several theoretical models have been put forward to
succinctly represent objects hierarchically [2, 5, 15, 19, 22, 35]. Here, we use
the model defined by Lengauer in [11, 16, 19, 21] to describe graphs. Using
this model, Lengauer et al. [20, 17, 19] have given efficient algorithms to
solve several graph theoretic problems including minimum spanning forests,
planarity testing, etc.

Here we extend the concept of polynomial time approximation algorithms
so as to apply to problems for hierarchically specified graphs including
PSPACE-complete such problems. We characterize the existence or nonex-
istence (assuming P 6= PSPACE) of polynomial time approximation algo-
rithms, for several standard graph problems. Both positive and negative
results are obtained (see Tables I and II). Our study of approximation al-
gorithms for hierarchically specified problems is motivated by the following
two facts:

1. Θ(n) size hierarchical specifications can specify 2Ω(n) size graphs.

2. Many basic graph theoretic properties are PSPACE-complete [9, 21,
30, 25], rather than NP-complete.

For these reasons, the known approximation algorithms in the literature
are not directly applicable to graph problems, when graphs are specified
hierarchically.

What we mean by a polynomial time approximation algorithm for a graph
problem, when the graph is specified hierarchically, can be best understood
by means of an example.

Example. Consider the minimum vertex cover problem, where the input
is a hierarchical specification of a graph G. We provide efficient algorithms
for the following versions of the problem.

1. The Approximation Problem: Compute the size of a near-min-
imum vertex cover of G.

2. The Query problem: Given any vertex v of G and the path from the
root to the node in the hierarchy tree (see Section 2 for the definition
of hierarchy tree) in which v occurs, determine whether v belongs to
the approximate vertex cover so computed.

3. The Construction Problem: Output a hierarchical specification of
the set of vertices in the approximate vertex cover.

4. The Output Problem: Output the approximate vertex cover com-
puted.
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Table I: Performance Guarantees1

Problem Performance guarantee Best known guarantee
in hierarchical case in flat case

MAX 3SAT 2 4/3
MIN Vertex

2 2
Cover

MIN Maximal
2 2

Matching
Bounded Degree (B)

B B
MAX Independent Set

MAX CUT 2 2

Table II: Hardness Results2

Problem Hierarchical Flat Case
Case

Maximum Number PSPACE-hard Log-hard for
of True Gates to approximate P to approximate
in a circuit for any ε for any ε

Optimal Value of PSPACE-hard Log-hard for
Objective Function for P to approximate
of a Linear Program any ε for any ε

High Degree PSPACE-hard Log-hard for
Subgraph for P to approximate

ε < 2 for ε < 2
k− Vertex PSPACE-hard Log-hard for

Connectivity for P to approximate
ε < 2 for ε < 2

k− Edge PSPACE-hard Log-hard for
Connectivity for P to approximate

ε < 2 for ε < 2

Our algorithms for (1), (2) and (3) above run in time polynomial in the
size of the hierarchical specification rather than in the size of the graph
obtained by expanding the specification. Our algorithm for (4) runs in time
linear in the size of the expanded graph but uses space which is linear in the
size of the hierarchical specification.

This is a natural extension of the definition of approximation algorithms
in the flat (i.e. non-hierarchical) case. This can be seen as follows. In the
flat case, the number of vertices is polynomial in the size of the description.
Given this, any polynomial time algorithm to determine if a vertex v of G

1 The results mentioned in the last column of the table can be found in [6, 38].
2 The results mentioned in the last column of the table can be found in [1, 14, 33]. For
the sake of uniformity, performance guarantees are assumed to be ≥ 1.



278 M. V. MARATHE, H. B. HUNT III, S. S. RAVI

is in the approximate minimum vertex cover can be modified easily into a
polynomial time algorithm that lists all the vertices of G in the approximate
minimum vertex cover. For an optimization problem or a query problem,
our algorithms use space and time which are low degree polynomials in the
size of the hierarchical specification and thus O(poly log η) in the size of the
specified graph, when the size η of the graph is exponential in the size of
the specification. Moreover, when we need to output the subset of vertices,
subset of edges, etc. corresponding to a vertex cover, maximal matching,
etc., in the expanded graph, our algorithms take essentially the same time
but less space than algorithms that work directly on the expanded graph.
It is important to design algorithms which work directly on the hierarchical
specification by exploiting the regular structure of the underlying graphs,
because, graphs resulting from expansions of given hierarchical descriptions
are frequently too large to fit into the main memory of a computer [16].
This results in a large number of page faults while executing the known
algorithms on the expanded graph. Hence, standard algorithms designed
for flat graphs are often impractical for hierarchically specified graphs.

We believe that this is the first time efficient approximation algorithms
with good performance guarantees have been provided both for hierarchi-
cally specified problems and for PSPACE-complete problems.3 Thus by
providing algorithms which exploit the underlying structure, we extend the
range of applicability of standard algorithms so as to apply to a much larger
set of instances. Tables I and II summarize our results.

2. Definitions and Description of the Model

The following two definitions are from Lengauer [20].

Definition 2.1. A hierarchical specification Γ = (G1, ..., Gn) of a graph is
a sequence of undirected simple graphs Gi called cells. The graph Gi has
mi edges and ni vertices. pi of the vertices are distinguished and are called
pins. The other (ni − pi) vertices are called inner vertices. ri of the inner
vertices are distinguished and are called nonterminals. The (ni−ri) vertices
are called terminals.

Note that there are ni − pi − ri vertices defined explicitly in Gi. We call
these explicit vertices. Each pin of Gi has a unique label, its name. The
pins are assumed to be numbered from 1 to pi. Each nonterminal in Gi has
two labels, a name and a type. The type is a symbol from G1, ..., Gi−1. If
a nonterminal vertex v is of the type Gj , then the terminal vertices which
are the neighbors of Gj are in one-to-one correspondence with the pins of
Gj . (Note that all the neighbors of a nonterminal vertex must be terminals.
Also, a terminal vertex may be a neighbor of several nonterminal vertices.)

3 Independently, Condon et al. [3, 4] have investigated the approximability of other
PSPACE-complete problems.
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The size of Γ, denoted by size(Γ), is N + M , where the vertex number
N =

∑

1≤i≤n ni, and the edge number M =
∑

1≤i≤nmi.

Definition 2.2. Let Γ = (G1, ..., Gn) be a hierarchical specification of a
graph G. The expansion E(Γ) (i.e. the graph associated with Γ) of the
hierarchical specification Γ is done as follows:
k = 1 : E(Γ) = G1.
k > 1 : Repeat the following step for each nonterminal v of Gk, say of the
type Gj: delete v and the edges incident on v. Insert a copy of E(Γj) by
identifying the lth pin of E(Γj) with the node in Gk that is labeled (v, l).
The inserted copy of E(Γj) is called the subcell of Gk.

Observe that, in general, the expanded graph can have multi-edges (i.e.,
more than one edge between a pair of vertices) although none of the Gi have
multi-edges. Here however, we only consider simple graphs; i.e., there is
at most one edge between any pair of vertices.

The expansion E(Γ) is the graph associated with the hierarchical definition
Γ. Note that the total number of nodes in E(Γ) can be 2Ω(N). For 1 ≤ i ≤ n,
Γi = (G1, ..., Gi) is the hierarchical specification of the graph E(Γi). Given
a hierarchical specification Γ, one can associate a natural tree structure
depicting the sequence of calls made by the successive levels. We call it the
hierarchy tree and denote it by HT (Γ). A vertex in E(Γ) is identified by a
sequence of nonterminals on the path from the root to the nonterminal in
which the vertex is explicitly defined. For the query problems considered in
the paper, we assume that a vertex is specified in the above manner.

Without loss of generality we assume that there are no useless cells in Γ.

Example. Fig. 1 shows an example of a hierarchically specified graph and
its corresponding hierarchy tree. For simplicity, the labels on the vertices
and the numbering of the pins are omitted and the 1-1 correspondence be-
tween the pins of Gj and the neighbors of a nonterminal of type Gj in the
cell Gi is clear by the positions of the vertices in the figure. Fig. 2 shows
the underlying graph E(G). We note again that our approximation algo-
rithms answer query problems without explicitly expanding the hierarchical
specification.

Definition 2.3. A hierarchical graph specification Γ = (G1, ..., Gn) of a
graph G is 1-level-restricted if for all (u, v) ∈ E, one of the following
conditions holds :

1. u and v are explicit vertices in the same instance of
cell Gi (1 ≤ i ≤ n).

2. u is an explicit vertex in an instance of cell Gi and v is a explicit vertex
in an instance of cell Gj and the instance of cell Gi directly calls the
instance of cell Gj (1 ≤ j < i ≤ n).



280 M. V. MARATHE, H. B. HUNT III, S. S. RAVI

γ

β

b

a

α

explicit    vertices non-terminalspins

2G
1G

3G HT(Tree Hierarchy

11

3

11

2

2 e

dc

5

432

1

GG

G

G

GG

GG1 1G

G1

1G

G 3 )

Fig. 1: A hierarchically specified graph, and the corresponding hierarchy tree.
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A hierarchical graph specification Γ = (G1, ..., Gn) of a graph G is
strongly 1-level-restricted if it is 1-level-restricted, and in addition, for
2 ≤ i ≤ n, the only nonterminals called in Gi are of the type Gi−1.

The above definition can be extended to define k-level restricted specifica-
tions, for any fixed k ≥ 1. Such descriptions still can lead to exponentially
large graphs. Moreover, many practically occurring hierarchical descriptions
(see [15, 16, 17]) are k-level restricted for small values of k. We note that our
PSPACE-hardness results hold for strongly 1-level-restricted specifications,
while all our approximation algorithms hold for arbitrary specifications.

Definition 2.4. Let Γ = (G1, ..., Gn) be a hierarchical specification. Γ is
said to be simple if, for each Gi, 1 ≤ i ≤ n, there are no edges between pins
defined in an instance of cell Gi.

Consider a hierarchical specification Γ. Let (u, v) be an edge in E(Γ),
such that u ∈ Gi and v ∈ Gj . Furthermore, let Gi be an ancestor of Gj and
let the path from Gi to Gj in HT (Γ) consist of non-terminals Gi1 , . . . , Gik .
Since (u, v) is an edge in E(Γ), by Definitions 2.1 and 2.2 we have that
the vertex u ∈ Gi is represented by a sequence of pins pi1 , . . . , pik , where
pij ∈ Gij . In such a case we say that the edge (u, v) passes through pins
pi1 , . . . , pik . From the above discussion, we observe the following for simple
1-level-restricted specifications.

Observation 2.1. Consider any edge (u, v) in a simple 1-level-restricted
hierarchical specification of a graph G. Then the path from u to v in the
hierarchy tree passes through at most one pin.

For the rest of the discussion, given a problem Π we denote by ΠHG the
same problem when the instance is specified hierarchically. So for example,
we use MAX CUTHG to denote the MAX CUT problem when the graph
is specified hierarchically. Also, we sometimes use the phrase hierarchical
graphs to mean hierarchically specified graphs.

Finally, we give additional definitions used in the paper.

Definition 2.5. The Monotone Circuit Value Problem (MVCP ) is
defined as follows: Given an acyclic graph G (called the circuit) with one
distinguished vertex (output), the sources (inputs) labeled with {0, 1} and all
other vertices labeled with symbols from {∨,∧}, the decision version of the
problem asks if the output of G is 1. The optimization version of MCV P
denoted by MTG asks for the number of gates which are set to 1.

We assume that the reader is familiar with the problem 3SAT. The prob-
lem 3SATHG is defined as follows:

Definition 2.6. An instance F = (F1(X
1), . . . , Fn−1(X

n−1), Fn(Xn)) of
3SATHG is of the form

Fi(X
i) = (

∧

1≤j≤li

Fij (X
i
j , Z

i
j))

∧

fi(X
i, Zi)
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for 1 ≤ i ≤ n where fi are 3CNF formulae, Xn = φ, X i, Xi
j , Z

i, Zi
j , 1 ≤

i ≤ n − 1, are vectors of boolean variables such that X i
j ⊆ Xi, Zi

j ⊆ Zi ,
0 ≤ ij < i. (Thus, F1 is just a 3CNF formula.) An instance of 3SATHG

specifies a 3CNF formula E(F ), that is obtained by expanding the Fj, 2 ≤
j ≤ n, as macros where the variables Z’s introduced in any expansion are
considered distinct. The problem 3SATHG is to decide whether the formula
E(F ) specified by F is satisfiable. The optimization problem denoted by
MAX 3SATHG is to find an assignment to the variables of E(F ) satisfying
the maximum number of clauses in E(F ).

Let ni be the total number of variables used in Fi (i.e. |X i|+ |Z i|) and let
mi be the total number of clauses in Fi. The size of F , denoted by size(F ),
is equal to

∑

1≤i≤n(mi + ni).

Example. Let F = (F1(x1, x2), F2(x3, x4), F3) be an instance of 3SATHG

where each Fi is defined as follows:

F1(x1, x2) = (x1 ∨ x2 ∨ z1) ∧ (z2 ∨ z3)

F2(x3, x4) = F1(x3, z4) ∧ F1(z4, z5) ∧ (z4 ∨ z5 ∨ x4)

F3 = F2(z8, z7) ∧ F1(z7, z6)

By substituting F1 in the definition of F2 we get

E(F2(x3, x4)) = (x3∨z4∨z
1
1)∧(z1

2∨z
1
3)∧(z4∨z5∨z

2
1)∧(z2

2∨z
2
3)∧(z4∨z5∨x4)

Using this, it can be seen that the formula E(F ) denoted by F is (z7 ∨ z6 ∨
z1
1)∧(z1

2 ∨z
1
3)∧(z8∨z4∨z

2
1)∧(z2

2∨z
2
3)∧ (z4∨z5∨z

3
1)∧(z3

2∨z
3
3)∧(z4∨z5∨z7).

Definition 2.7. Let F be an instance of the problem 3SAT with set of
variables V and set of clauses C.

1. The bipartite graph of F , denoted BG(f), is the bipartite graph
(V ∪ C,E), where e = (c, v) ∈ E iff variable v occurs in clause c.

2. F is said to be planar iff the graph BG(f) is planar.

Definition 2.8. An instance
F = (F1(X

1), . . . , Fn−1(X
n−1), Fn(Xn)) (∆1, . . . ,∆n−1,∆n)

of a Hierarchical Linear Program (LPHG) is of the form

Fi(X
i) = (

⋃

1≤ij≤i

Fij (X
i
j , Z

i
j))

⋃

fi(X
i, Zi)

∆i =
∑

ij

dij · ∆ij +
∑

zj∈Zi

cj · zj
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for 1 ≤ i ≤ n where fi is a set of linear inequalities, Xn = φ, Xj, X
i
j,

Zi,Zi
j, 1 ≤ i ≤ n− 1, are vectors of variables such that X i

j ⊆ Xi, Zi
j ⊆ Zi,

1 ≤ ij ≤ i, Fi is a set of linear inequalities and ∆i is a linear objective
function over the variables in E(Fi). Thus F1 is just a set of linear inequal-
ities. An instance of LPHG defines a hierarchically specified linear program
E(F ) obtained after expanding Fj (1 ≤ j ≤ n) as macros where the Z’s in
different expansions are considered distinct and a linear objective function
∆n obtained after expanding ∆′

js as macros.

Let ni be the total number of variables used in Fi ∪ ∆i and let mi be the
total number of inequalities in Fi. Then, the size of F denoted by size(F )
is equal to

∑

1≤i≤n(mi + ni).
The LP feasibility problem is to determine whether there exists an as-

signment to the variables (over the reals) used in the LP such that all the
inequalities are satisfied. In the case of the LPHG optimization problem,
one is given a linear objective function and linear inequalities both defined
hierarchically as above. The aim is to find an assignment to the variables
so as to maximize the value of the objective function subject to the inequal-
ity constraints. Using Lengauer’s definition of hierarchical graphs, one can
represent a LPHG graphically by associating a node with each variable and
with each inequality. Further, a variable node has an edge to an inequality
node iff the corresponding variable occurs in the inequality.

Linear programming has been extensively studied in literature. In [8] it
is shown how linear programs can be used to model many graph theoretic
problems. In [8] it was also shown that for the class of perfect graphs, poly-
nomial time algorithms can be devised to compute an optimal vertex color-
ing, maximum independent set and several other important graph theoretic
parameters. When graphs are represented hierarchically, the correspond-
ing linear program will be hierarchical. But as will be shown (Section 7),
computing the optimal value of the objective function of a hierarchically
specified linear program is PSPACE-hard; further, it is also PSPACE-hard
to compute an approximate value of the objective function.

Next, we recall the definitions of high degree subgraph and high vertex
(edge) connectivity problems.

Definition 2.9. The High Degree Subgraph Problem (k-HDSP) is
defined as follows: Given a graph G = (V,E), and an integer k ≥ 3, does
G have a nonempty vertex induced subgraph in which each node has degree
at least k? The optimization problem of k-HDSP, denoted by MAX HDSP,
asks for the maximum k such that there is a vertex induced subgraph of G
in which each node has a degree of at least k.

Let HDSP∗ denote the largest k such that there is an induced subgraph of
minimum degree k. An approximate solution to this problem is a subgraph
in which each node has degree at least d, where HDSP∗ ≥ d ≥ HDSP∗/c, for
some fixed c > 1. For all k ≥ 3, k-HDSP was shown to be log-complete for
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P in [1]. Furthermore, unless P = NC, it was shown that no NC approx-
imation algorithm for MAX HDSP could provide a performance guarantee
better than 2. A polynomial time algorithm for k-HDSP for flat graphs is
given in [1]. We show that k-HDSPHG is PSPACE-complete and further-
more unless P = PSPACE, MAX HDSPHG cannot be approximated with a
factor c < 2 in polynomial time (See Section 7). The high degree subgraph
problem contrasts with the related maximum clique problem (MCP) which
is NP-complete for both flat [6] and hierarchically specified graphs [21].

Next we recall the definitions of the high-vertex and edge connectivity
problems from [14].

Definition 2.10. The vertex connectivity κ(G) (edge connectivity λ(G))
of an undirected graph G is the minimum number of vertices (edges) whose
removal results in a disconnected or a trivial graph.4 A graph is m-vertex-
connected (m-edge-connected) if κ(G) ≥ m (λ(G) ≥ m).

Definition 2.11. The High Vertex Connectivity Problem (κ-HVCP)
(High Edge Connectivity Problem (κ-HECP)) is defined as follows:
For all integers κ ≥ 3, given a graph G = (V,E), does G contain an induced
subgraph of vertex connectivity (edge connectivity) at least κ? The optimiza-
tion versions of these problems denoted by MAX HVCP (MAX HECP) ask
for the largest κ for such that there is an induced subgraph of vertex(edge)
connectivity κ.

Let HVCP∗ (HECP∗) denote the largest κ such that there is an induced
subgraph of vertex(edge) connectivity κ. An approximate solution to this
problem is a subgraph whose vertex (edge) connectivity is at least d, where
HVCP∗ (HECP∗) ≥ d ≥HVCP∗/c (HECP∗/c), for some fixed c > 1. It was
shown in [14] that for all κ ≥ 3, κ-HVCP and κ-HECP are log-complete for
P . Furthermore, they showed that

Theorem 2.1. (Kirousis, Serna, Spirakis [14])
Unless P = NC, MAX HVCP and MAX HECP cannot be approximated to
within a factor c < 2 of the optimal in NC.

Here, we show that for all κ ≥ 3, the problems κ-HVCPHG and κ-
HECPHG are PSPACE-complete and furthermore unless P = PSPACE,
MAX HVCPHG and MAX HECPHG cannot be approximated within a fac-
tor c < 2 in polynomial time (See Section 7).

We end this section with a few comments regarding our approximation
algorithms for the problems MAX-CUT, MAX 3SAT and Bounded-degree
Independent set when instances are specified hierarchically. Consider the
MAX CUT problem. For any graph G(V,E), there is always a cut contain-
ing at least |E|/2 edges. Therefore, by merely counting the number of edges
in a hierarchically specified graph, one can always compute a number which

4 A trivial graph consists solely of isolated vertices.
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is within a factor of 2 of an optimal cut. However our approximation algo-
rithm for the MAX CUT problem actually finds a hierarchical representation
of a cut containing at least |E|/2 edges. Similar comments apply to our ap-
proximation algorithms for the problems MAX 3SAT and Bounded-degree
Independent set when instances are specified hierarchically.

3. Approximation Algorithms

In this section we discuss our approximation algorithms for the problems
given in Table I. We first outline the basic technique used to efficiently
obtain approximation algorithms with good performance guarantee.

3.1 The Basic Technique: Approximate Burning

Our approximation algorithms are based on a new technique which we call
approximate burning. This is an extension of the Bottom Up method
for processing hierarchical graphs discussed in [17, 19, 20] and [36] for de-
signing efficient algorithms for hierarchically specified graphs. The bottom
up method aims at finding a small graph Gb

i called the burnt graph which
can replace E(Γi) (recall that Γi = (G1, . . . , Gi)) at any place in such a way
that E(Γi) and Gb

i behave identically with respect to the problem under
consideration. The bottom up method should produce such burnt graphs
efficiently. Since the problems we are dealing with are PSPACE-hard, we
cannot hope to find in polynomial time such burnt graphs which can replace
original graphs without altering its characteristics with respect to the prob-
lem. Therefore, we resort to approximate burning. In approximate burning,
given an approximation algorithm for non-hierarchical instances of the prob-
lem, we wish to find small burnt graphs Gb

i which can be used to replace
the graphs E(Γi) in such a way that the performance guarantee provided
by the algorithm is not affected by the replacement. All our approximation
algorithms use approximate burning.

In summary, to obtain polynomial time near-optimal solutions for a prob-
lem specified hierarchically, the bottom up procedure should have the fol-
lowing properties:

1. Each burnt graph should have a size which is polynomial in the size
of the hierarchical specification.

2. The burning procedure should run in time which is polynomial in the
size of the hierarchical specification.

3. The burnt graphs should be replaceable with respect to the problem
Π and the approximation algorithm AΠ.

Given a hierarchical specification Γ = (G1, ..., Gn) in which there are edges
between pins defined in a given Gi, it is easy to construct in polynomial time
a new hierarchical specification Γ1 = (H1, ...,Hn) such that

1. size(Γ1) is polynomial in size(Γ).

2. Γ1 can be constructed in polynomial time.
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3. E(Γ) = E(Γ1).

4. For each Hi, 1 ≤ i ≤ n, there are no edges between pins defined in Hi.

In view of the above observation, we assume that in the input to all our
approximation algorithms is a simple hierarchical specification (i.e. there
is no edge between two pins which are defined in the same cell). The run-
ning times of our approximation algorithms are with respect to such simple
specifications.

3.2 Approximation Algorithm for Vertex Cover

We now discuss our heuristic for computing the size of a near-optimal vertex
cover for a hierarchically specified graph. The problem of computing the size
of a minimum vertex cover for hierarchically specified graphs was shown
to be PSPACE-hard by Lengauer [21] (actually, they prove the hardness
for maximum independent set; the hardness of minimum vertex cover is
therefore directly implied). Our heuristic builds on the well known vertex
cover heuristic for the flat (non-hierarchical) case, where one computes a
maximal matching and returns all the vertices involved in the matching as
an approximate vertex cover. The algorithm in the non-hierarchical case
has a performance guarantee of 2 [6].

We note that the straightforward greedy approach for obtaining a maximal
matching in a flat graph cannot be directly extended to the hierarchical
case. Two reasons for this are as follows. First, the degree of a vertex in
a hierarchical graph can be exponential in the size of the description, and
so it is not possible to keep track of the neighbors of a node explicitly in
polynomial time. Secondly, an edge between a pair of nodes can pass through
several pins, and thus need not be explicitly present at any level. Therefore
edges cannot be handled as simply as in the flat case. This complicates our
heuristic since we can keep track of only a polynomial amount of information
at each level.

Before we present the heuristic we give some notation which we use
throughout this section. Given a graph G, MM(G) denotes a maximal
matching in the subgraph induced by the explicit vertices in G (i.e. no pins
and no nonterminals). V (MM(G)) denotes the vertices in the subgraph
induced by MM(G). MxM(G) denotes a maximum matching of G and
V (MxM(G)) denotes the vertices in the subgraph induced by MxM(G).
We use ψ(Gi) to denote the size of an approximate vertex cover for E(Gi)
(i.e. expanded version of Gi). We also use EM(Gi) to denote the set of
edges implicitly chosen by the heuristic from E(Gi).

Fig. 3 gives the details of our approximation algorithm for minimum ver-
tex cover. The heuristic computes both a hierarchical representation of an
approximate vertex cover as well its cardinality. Even though the latter can
be computed from the hierarchical representation, we have included it for
the sake of completeness.
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Heuristic HVC

Input: A simple hierarchical specification Γ = (G1, ..., Gn) of a graph G.
Output: The size and a hierarchical description of an approximate vertex cover for G.

1. Repeat the following steps for 1 ≤ i ≤ n.

(a) Compute MM(Gi).
Remark: Recall that MM(Gi) is a maximal matching on the subgraph of Gi

induced on the explicit vertices in Gi.
(b) Compute V l

i , where V l
i denotes the explicit vertices in Gi not in V (MM(Gi)).

Also let Gi call non-terminals (if any) Gi1 , ..., Gik
in its definition. (Recall that

ij < i, j = 1, 2, · · · , k.)
Remark: Vertices in V l

i which are connected to pins in Gi1 , ..., Gik
are the

endpoints of those edges that have their other endpoints in one of Gij
where

1 ≤ ij < i.
(c) For each vertex v ∈ V l

i do

If v is not adjacent to any nonterminals in Gi then delete v from V l
i else

Let v be adjacent to pir ∈ Gb
ir

, such that Gir is called in Gi.
i. If there exists a marked edge incident on any of the pir , 1 ≤ r ≤ k, then

match v with xv such that (xv, pir ) is a marked edge and delete v from V l
i

and xv from this copy of Gb
ir

.
else

ii. Choose a vertex yv such that (yv, pir ) is an edge in Gb
ir

. Delete v from V l
i

and yv from this copy of Gb
ir

.

(d) Let

V
i

x = {w | w ∈ V
l

i and w is matched in step 1(c)}

V
i

y = {w | w ∈ V (Gb
ij

) and w is matched in step 1(c)}

(e) For the bipartite graph G1
i induced by the vertices left over in Gi including those

in Gb
i1
, ..., Gb

ik
, and the pins in Gi, construct MxM(G1

i ). G
b
i for Gi is the vertex

induced subgraph of MxM(G1
i ). The edges in MxM(G1

i ) are marked in Gb
i .

(f) ψ(Gi) = |V (MM(Gi))| + |V i
x | + |V i

y | +
k

∑

j=1

ψ(Gij
).

Remark: Let CMi = {(u, v)|u ∈ V i
x , v ∈ V i

y and u and v get matched up in

Step 1(c) }. EM(Gi) = MM(Gi) ∪ CMi ∪

k
⋃

j=1

EM(Gij
). Note that EM(Gi)

is only needed in the proof; it is not explicitly computed. Further, ψ(Gi) =
2 × |EM(Gi)|.

(g) Construct Hi as follows: The explicit vertices in Hi are the vertices in the set
V (MM(Gi))∪ V

i
x ∪V i

y . Their names are the same as those of the vertices in the

sets V (MM(Gi)) ∪ V
i

x ∪ V i
y . If Gi calls a non-terminal Gj , j < i, then Hi calls

a copy of Hj .
Remark: The Hi created has the following property.
Given a vertex v ∈ E(Gi) as a path in the hierarchy tree, it is easy to check if v
occurs in E(Hi) by simply following the same path. It is clear that if v is in the
approximate vertex cover then it will occur in a non-terminal on the path from
the root to the non-terminal in which v is defined.

2. Output ψ(Gn) and the hierarchical specification H = (H1, ..., Hn).

Fig. 3: Details of Vertex Cover Heuristic
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3.3 Proof of Correctness and Performance Guarantee

We first state and prove a lemma that recalls known properties of a maxi-
mum matching in a bipartite graph.

Lemma 3.1. Let G = (S, T,E) be a bipartite graph and let MxM(G) denote
a maximum matching for G. Let V S

1 and V T
1 denote the set of vertices in S

and T included in V (MxM(G)). Let V S
2 and V T

2 denote the set of vertices
in S and T not included in V (MxM(G)). Then the following statements
hold:

1. For all α ∈ V S
2 and β ∈ V T

2 , (α, β) 6∈ E.

2. For all vx ∈ V S
1 , vy ∈ V T

1 , vz ∈ V S
2 and vw ∈ V T

2 , if (vx, vy) ∈
MxM(G) and (vy, vz) ∈ E then (vx, vw) 6∈ E.

Proof.

1. If (α, β) ∈ E, then {(α, β)}∪MxM(G) is also a feasible matching. This
contradicts the assumption that MxM(G) is a maximum matching for
G.

2. Suppose (vx, vy) ∈ MxM(G), (vy, vz) ∈ E, and (vx, vw) ∈ E. Then
the matching (MxM(G) − {(vx, vy)}) ∪ {(vy , vz), (vx, vw)} contains
more edges than MxM(G), violating the assumption that MxM(G)
is a maximum matching. 2

We now show that the above algorithm implicitly computes a maximal
matching for E(Gn).

Lemma 3.2. EM(Gn) is a valid matching.

Proof. We need to show that every vertex u is in at most one edge in
EM(Gn).
Case 1: Vertex u is matched with a vertex v such that both u and v are
explicitly defined in Gi, for some i, 1 ≤ i < n. This implies that in Step
1(b), the edge (u, v) was chosen as an member of MM(Gi). In Step 1(c) we
do not consider any vertices which were in V (MM(Gi). Hence u is not an
endpoint of any other edge in EM(Gn).
Case 2: Vertex u is matched with a vertex v such that u ∈ Gj and v ∈ Gi.
Without loss of generality assume that j < i. In this case, u was a part of
the burnt graph Gb

j and Gi calls Gj . By Step 1(c), no edge incident on u
has been chosen in MM(Gi). Once (u, v) is chosen then in Step 1(c) we do
not consider the vertices u and v anymore. 2

Lemma 3.3. The matching EM(Gn) is maximal.

Proof. We need to prove that each edge in the expanded graph E(Γ) has
at least one of its endpoints in EM(Gn). The proof consists of an exhaustive
case analysis. Consider an edge e ∈ E(T ). There are two cases.
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Fig. 4: Figure showing the position of Gi and Gj in the hierarchy tree.

Case 1: Both endpoints of e are explicit vertices in the definition of a cell
Gi.

The proof for this case follows directly from Step 1(a) of the heuristic and
the definition of MM(Gi).

Case 2: Let (vi, vj) denote the edge e such that vi is in Gi and vj is in
Gj , where j < i. This edge e passes through a sequence of pins pir ∈ Gir ,
1 ≤ r ≤ p, where the path in the hierarchy tree from Gi to Gj consists of
Gip , · · · , Gi1 (see Fig. 4). By the definition of hierarchical specification it is
clear that for each pin in a nonterminal Gk called in Gt, we have exactly
one terminal in Gt which is adjacent to the pin. We have two subcases to
consider.

Case 2.1: vi ∈ V (MM(Gi)) or vj ∈ V (MM(Gj)). Here the proof follows
from the definition of maximal matching.

Case 2.2: vi 6∈ V (MM(Gi)) and vj 6∈ V (MM(Gj)). We have two subcases
again.

Case 2.2.1: vj ∈ V (MxM(Gb
j)).

In this case we know that vj was matched with one of the pins. We have
to consider two subcases depending on whether the vertex vj was a part of
the burnt graph for all the non-terminal nodes on the path from Gj to Gi

in the hierarchy tree, or it was a part of burnt graphs for some non-terminal
and subsequently got dropped.
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Case 2.2.1.1: ∀m such that 1 ≤ m ≤ p, vj ∈ V (Gb
im

). (Informally, this
means that the vertex vj was a part of the burnt graph for every non-terminal
which is on the path from Gi to Gj .)
In this case when we process the cell Gi either vi or vj get matched up in
Step 1(c). Hence the edge (vi, vj) is covered.
Case 2.2.1.2: ∃m (1 ≤ m < p) such that vj ∈ V (Gb

im−1
) and vj 6∈ V (Gb

im
).

(Informally, vj was not part of the burnt graph for cell Gim , and Gim is on
the path from Gi to Gj in the hierarchy tree.)
In this case, if vj gets matched with some other vertex, we are done. So,
assume that vj is dropped (i.e. vj is not a part of the burnt graph). Now
we need to show that vi gets a matching partner when it is picked up for
processing. This case is more complicated and the proof uses the following
lemmas (which, in turn, are proven using Lemma 3.1).

Lemma 3.4. Let vj be adjacent to pins pim
i1
, pim

i2
, · · · , pim

ik
in Gim and let vj 6∈

V (Gb
im

) (i.e. vj was not picked up as a matching partner for any of the
pins). Then the following statements hold:

1. Each pin pim
il

is matched with a distinct vertex vim
il

, 1 ≤ l ≤ k.

2. ∀l, 1 ≤ l ≤ k, vim
il

is not adjacent to any pin pim
r such that pim

r does

not have a matching partner in Gb
im

.

Proof.

(1) Follows from the fact that we computed a maximum matching in Step
1(e) and (1) of Lemma 3.1.

(2) Follows from (2) of Lemma 3.1. 2

Call a vertex vim
il

a private partner of a pin pim
il

in Gim , if vim
il

is matched

up with pim
il

and is not adjacent to any pin pim
r in Gim which does not have

a matching partner. The following lemma says that if vj gets dropped off
at stage Gim , each of the subsequent pins which are on the path from vj to
vi has a private partner.

Lemma 3.5. Let vj ∈ V (Gb
im−1

) and vj 6∈ V (Gb
im

). Let pim
x be a pin in Gim ,

which is adjacent to vj and terminates at vi. Then each of the pins pim
1 (=

pim
x ), p

im+1

2 , · · · , p
ip
p−m+1 on the path from pim

1 to vi has a private partner in

Gb
iq
, m ≤ q ≤ p.

Proof. By induction on the length of the path from Gi to Gj in the
hierarchy tree HT (Γi).
Basis: The path is of length 1. By (1) and (2) of Lemma 3.4 it follows that
pim
1 has a private partner.

Induction: Assume that the Lemma holds for all paths of length λ. Now
consider a path of length λ + 1. Again by Lemma 3.4, pim

1 is matched up
with say vk. By (1) and (2) of Lemma 3.4, we know that vk is the private
partner of pim

1 . We therefore have only two cases to consider.



THE COMPLEXITY OF APPROXIMATING . . . 291

Case 1: vk gets matched up with p
im+1

2 .
In this case we can use our induction hypothesis and we are done.

Case 2: vk gets dropped.

By (1) and (2) of Lemma 3.4, we know that the pin p
im+1

2 will get some
other private partner. Now, by Induction hypothesis we are done. 2

We now continue the proof of Case 2.2.1.2. By Lemma 3.5 it follows that

when Gi is processed, pin p
ip
p−m+1 ∈ Gip has a private partner. Therefore,

when we process vi, vi is sure to get matched up, because the private partner

of p
ip
p−m+1 which is adjacent to vi cannot be used as matching partner by

any other vertex in Gi. So that the edge (vi, vj) is covered by the vertex vi.

Case 2.2.2: vj 6∈ V (MxM(Gb
j)). The argument is similar to that of Case

2.2.1.2 because vj gets dropped at the very first stage. 2

Theorem 3.1. Given a hierarchical graph G, the above approximation algo-
rithm computes an approximate vertex cover within factor of 2 of the optimal
value.

Proof. Follows from Lemmas 3.2 and 3.3. 2

3.4 Query Problem

We can easily modify our algorithm to answer the query problem. For this,
we can use the hierarchical representation of the solution obtained.

Lemma 3.6. Given any vertex v as a path in the hierarchy tree, we can
determine in O(N+M) if v is in the approximate vertex cover so computed.

Proof. Observe that the hierarchy tree for H is identical to the hierarchy
tree for Γ except that the nodes in HT (H) are labeled by Hi, whenever the
corresponding node in HT (Γ) is labeled Gi. This means, that the sequence
of nonterminals used to identify the query vertex v can be used to to check
if v is in the approximate vertex cover computed. For this, note that if v is
in the approximate vertex cover, then it lies on the path from the root of
HT (H) to a nonterminal Hi such that v is in the corresponding Gi in the
original graph G. 2

The hierarchical specification can be used to output the approximate so-
lution computed. For this, we do a simple preorder traversal of the nodes
in the hierarchy tree HT (H) and output the explicit nodes in each cell. Its
easy to see that we can output the solution in O(N) space (since the depth
of HT (H) no more than n and each node on a path from root to a leaf is
labeled with a distinct cell) and time linear in the size of E(Γ).
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3.5 Time Complexity

Theorem 3.2. HVC runs in time O(N 3.5).

Proof. We compute a maximum matching at each level. It is well
known that a maximum matching for a graph G(V,E) can be found in time
O(|V |2.5) [28]. Thus computing a maximum matching while processing Gi

takes O((ni+
∑k

l=1 pil)
2.5) time where pi1 , ..., pik are respectively the number

of pins in cells Gi1 , ..., Gik which are called in the definition of Gi. We also
compute a maximal matching while processing each Gi and the time for this
is O(ni + ei), where ei is the number of edges in the level i. Therefore, the

total time complexity is bounded by
∑n

i=1(O((ni+
∑k

l=1 pil)
2.5)+O(ni+ei))

which is bounded by O(N 3.5). 2

Corollary 3.1. Given a hierarchical specification of a graph G, we can
compute in time polynomial in the size of the specification, the size of an
approximate minimum maximal matching which is within a factor of 2 of
the optimal.

Proof. Follows from the fact that any maximal matching is within a
factor of 2 of the optimal minimum maximal matching. 2

4. Approximating Weighted Max Cut

Given an undirected graph G(V,E), the goal of the simple max cut problem
is to partition the set V into two sets V1 and V2 such that the number of
edges in E having one end point in V1 and the other in V2 is maximized [6].

In [9, 30], it is shown that MAX CUTHG is PSPACE-hard. In this sec-
tion, we show that given a hierarchical specification of a graph G, we can
compute an approximate max cut which is within 2 times the optimum and
a hierarchical specification of the vertices in one of the sets in the partition.
Our algorithm computes the number of edges in the approximate cut in
time polynomial in the size of the hierarchical description. An algorithm for
weighted max cut can be devised along the same lines and is omitted. Since
a graph obtained by expanding a hierarchical specification can in general
be a multigraph, our approximation algorithms treat copies of an edge as
distinct edges.

We begin with a brief overview of the algorithm. First, we recall the idea
behind the known heuristic for computing a near optimal weighted max cut
in the flat (non-hierarchical) case. That heuristic (referred to as FMAX-
CUT in the following discussion) processes the nodes in arbitrary order,
and assigns each node v either to V1 or to V2 depending upon which of
these sets has edges of least total cost to v. As in the case of the vertex
cover algorithm, our approximation algorithm for MAX CUTHG processes
the input specification in a bottom up fashion. At each level, we construct a
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Heuristic HMAX-CUT

Input: A simple hierarchical specification Γ = (G1, ..., Gn) of a graph G.
Output: A hierarchical specification H = (H1 · · ·Hn) of the vertices in the set V n

1 and
En the number of edges in the approximate max cut computed.

1. For 1 ≤ i ≤ n do

(a) Use Algorithm FMAX-CUT to partition Ai into sets Xi
1 and Xi

2. (Note that we
do not consider any edges which are from these explicit vertices to the pins.)

(b) Ei
1 = number of edges (u, v) such that u ∈ X i

1 and v ∈ Xi
2.

(c) Let Gi call nonterminals Gi1 , · · · , Gim in its definition. Let Bi denote the set
of all the explicit vertices remaining after Step 1(a). (Note that each of these
explicit vertices is adjacent to at least one nonterminal in the definition of Gi.)
We consider the vertices in Bi one at a time. Let Y i

1 = Y i
2 = φ.

For each vertex v ∈ Bi do

i. Compute sets V v

Xi
1

and V v

Xi
2

defined by

V v

Xi
1

= {w|w ∈ Xi
1 and w is adjacent to v} and

V v

Xi
2

= {w|w ∈ Xi
2 and w is adjacent to v}

ii. If Gi calls no nonterminals then

Countv(V i
1 ) = |V v

Xi
1

| and Countv(V i
2 ) = |V v

Xi
2

|

else

Let v be adjacent to pins pv,il
∈ Gil

, 1 ≤ l ≤ m.

Let wt(V
il
1 , pv,il

) denote the weight of the edge between the super vertex

V
il
1 and pin pv,il

. Then, let

Countv(V i
1 ) = |V v

Xi
1

| +
∑

1≤l≤m

wt(V
il
1 , pv,il

)

Countv(V i
2 ) = |V v

Xi
2

| +
∑

1≤l≤m

wt(V il
2 , pv,il

)

iii. If (Countv(V i
1 ) ≥ Countv(V i

2 )) then

Y i
2 = Y i

2 ∪ {v} and Ei
2 = E2 +Countv(V i

1 )
else Y i

1 = Y i
1 ∪ {v} and Ei

2 = E2 + Countv(V i
2 )

(d) Construct the burnt graph Gb
i as follows: The pins in Gb

i are the same as the pins
in Gi, and we have two super vertices V i

1 and V i
2 which implicitly represent the

partition constructed so far. Let Gi have mi pins in its definition. These pins
will be connected to explicit vertices defined in Gi and to pins in Gir , where Gir

is called in the definition of Gi. Let pin p ∈ Gi be connected to pin pir in Gir .
The weight of an edge (p, V i

j ), 1 ≤ r ≤ m, 1 ≤ j ≤ 2, is calculated as follows:

wt(p, V i
j ) = |Exj(Gi)| +

∑

ir

wt(pir , V
ir

j )

where Exj(Gi) ⊆ Xi
j ∪ Y i

j denotes the set of explicit nodes in Gi that are con-

nected to p and are added to V i
j in Steps 1(a) and 1(c).

(e) Ei = Ei
1 +Ei

2 +
∑

ir
Eir

(f) Hi has no pins. The explicit vertices are in 1-1 correspondence with the vertices
in the set Xi

1 ∪ Y i
1 . Furthermore, Hi calls a non-terminal of type Hi1 · · ·Him

corresponding to the nonterminals Gi1 · · ·Gim called in Gi.

Remark: Let V i
1 = Xi

1 ∪ Y i
1 ∪

⋃

ij
V

ij

1 and V i
2 = Xi

2 ∪ Y i
2 ∪

⋃

ij
V

ij

2 , where Gij

(ij < i), 1 ≤ j ≤ m appears in the definition of Gi.

2. Output En and the hierarchical specification H = (H1 · · ·Hn).

Fig. 5: Details of MAX-CUT Heuristic
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burnt graph Gb
i starting from the original description of the cell Gi. We use

the heuristic FMAX-CUT to partition the explicit vertices at each stage.
The burnt graph Gb

i for Gi then consists of two super nodes denoting an
implicit partition of all the vertices defined in levels below. The edges go
from a super node to the pins in Gi. Each edge has a weight associated with
it. The edge weight is the number of edges the explicit vertex represented
by the pin has to the vertices in that partition. In the following description,
Ai denotes the set consisting of all the explicit vertices in Gi which are
not adjacent to any nonterminals in the definition of Gi. Further, let G(Ai)
denote the subgraph induced on the nodes in Ai. The sets V i

1 and V i
2 denote

the partition of the vertices of E(Gi). Let Ei denote the number of edges in
the near optimal cut of E(Gi). Also, for any vertex v, let Countv(V

i
j ) denote

the number of edges having one endpoint as v and the other endpoint in the
set V i

j . Throughout this section, the reader should bear in mind that as
a consequence of the definition of hierarchical specification, a terminal (an
explicit vertex or a pin) defined in Gi can be adjacent to at most one pin in
each nonterminal called in Gi. The details of the approximation algorithm
HMAX-CUT appear in Fig. 5.

Example. Fig. 6 illustrates the execution of the algorithm for the hierar-
chical specification given in Fig. 1. The figure consists of 3 columns. The
first column corresponds to Gi. The second column denotes the burnt graph
Gb

i of Gi. As mentioned before, the weights on the edges denote the number
of vertices in V i

j that are adjacent to the pin. The third column shows the
hierarchical representation H being obtained level by level.

4.1 Proof of Correctness

We now prove that the algorithm indeed produces a valid implicit partition
of vertices.

Theorem 4.1. Given a hierarchical specification Γ, the heuristic HMAX-
CUT computes a partition of the given vertex set.

Proof. Induction on the number of non-terminals in the definition of Γ.
Basis: When Γ = (G1). In this case the theorem follows by the correctness
of FMAX-CUT.
Induction Step: Assume that the theorem holds for all specifications with
at most (n−1) non-terminals. Consider the case when Γ = (G1, G2, · · ·Gn).
Let Gn call non-terminals Gn1

, Gn2
, · · · , Gnk

. By the induction hypothesis,
we know that the the vertices in the hierarchy tree rooted at Gnk

are par-
titioned into two sets. The explicit vertices of Gn are clearly partitioned
into two sets Xn

1 ∪ Y n
1 and Xn

2 ∪ Y n
2 . Moreover, V n

r = Xn
r ∪ Y n

r ∪
⋃

nj
V

nj
r ,

1 ≤ r ≤ 2. Therefore, it follows that the algorithm partitions the vertices
into two sets. 2
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Fig. 6: Figure showing the execution of heuristic HMAX-CUT on the specification given
in Fig. 1.

4.2 Performance Guarantee

We first prove that the weights on the edges in the burnt graph from super
nodes to the pins actually represent the number of nodes represented by the
super node that are adjacent to the pin.

Lemma 4.1. Let Γ be a hierarchical specification of a graph G constructed
by HMAX-CUT. Consider the burnt graph Gb

i corresponding to the non-
terminal Gi in the hierarchical specification. Then the weight of an edge
from a pin p ∈ Gi to a super vertex V i

j , 1 ≤ j ≤ 2, is equal to the total

number of edges from p to the vertices in the set represented by V i
j .

Proof. We prove the theorem for V i
1 . The proof for V i

2 is similar. The
proof is by induction on the number of nonterminals in the definition of Γ.
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Basis: When Γ = (G1). In this case the lemma follows by fact that the
weights were calculated by counting the number of explicit vertices in G1

that are adjacent to the pin.
Induction Step: Assume that the lemma holds for all specifications which
have no more than (n − 1) non-terminals. Consider the case when Γ =
(G1, G2, · · · , Gn). Let Gn call Gi1 , Gi2 , · · · , Gim . By the induction hypoth-
esis, we know that the lemma holds for the burnt graphs corresponding
to the non-terminals Gi1 , Gi2 , · · · , Gim . Consider the non-terminal Gn. In
Steps 1(a) and 1(c) the explicit vertices are partitioned into two sets Xn

1 ∪Y
n
1

and Xn
2 ∪ Y n

2 . Consider a pin p in Gn. Clearly, the total number of edges
from p to the vertices in the set V i

j is equal to |Ex1(Gn)|+
∑

ik
Edgesp(Gik),

where, 1 ≤ k ≤ m and Ex1(Gn) ⊆ Xn
1 ∪ Y n

1 represents the explicit vertices
in Gn that are adjacent to the pin p, and Edges(Gik ) represents the number
of edges which have one endpoint in Gik and are incident on the pin p.
Note that the edges incident on the pin p with one end point in Gik , (1 ≤
k ≤ m) pass through the pins in the definition of Gik . By the induction
hypothesis, the weight represents the number of edges from the pin to the
explicit vertices defined in the graph E(Gik ). The lemma now follows. 2

We are now ready to prove that the heuristic computes a near-optimal
maximum cut.

Lemma 4.2. Let Γ be a hierarchical specification of a graph G. Let Ξj denote
the number of edges which are explicitly defined in E(Gj). Then, Ξn ≤ 2En.

Proof. The proof is by induction on the number of non-terminals in the
hierarchical specification.
Basis: When there is only one non-terminal, the result follows by the cor-
rectness of the procedure FMAX-CUT.
Induction Step: Assume that the theorem holds for all hierarchical spec-
ifications which have no more than (n− 1) non-terminals in their definition.
Consider the hierarchical specification Γ = (G1, G2, · · ·Gn). Consider the
definition of the non-terminal Gn. Let Gn call Gi1 , Gi2 , · · · , Gik . The edges
in E(Gn) can be divided into three different categories.

1. Type 1 edges which have both the end points explicitly defined in one
of the hierarchy trees rooted at Gir , 1 ≤ r ≤ k.

2. Type 2 edges which have both the endpoints explicitly defined in the
definition of Gn.

3. Type 3 edges which have one endpoint defined explicitly in Gn and the
other endpoint defined in a non-terminal occurring in one of hierarchy
tree HT (Gir) rooted at Gir , 1 ≤ r ≤ k.

Also let Expj denote the number of edges which occur explicitly in the
definition of Gj . Then clearly the total number of edges Ξn equals,

Ξn =
∑

ir

Ξir +Expn +Crossn
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where Crossn denotes the set of Type 3 edges. By induction hypothesis, we
know that the vertices in the hierarchy tree rooted at Gik are partitioned
into two sets such that the number of edges crossing the cut is at least 1/2
of the total number of edges. Therefore, ∀ir, Ξir ≤ 2Eir . By Step 1(c),
explicit vertices in Gn which are not adjacent to any pins are partitioned in
such a way that the at least half of the of edges in the subgraph induced by
these vertices are cut. Each remaining explicit vertex in Gn is added to the
set V n

1 or V n
2 depending on which set has fewer vertices adjacent to it. By

Lemma 4.1, the weights on the edges from the pins to the super nodes by
give the number of nodes that the pin is adjacent to in the hierarchy tree
rooted at that non-terminal. Therefore, Expn +Crossn ≤ 2(En

1 +En
2 ), and

hence

Ξn =
∑

ir

Ξir +Expn + Crossn ≤ 2En. 2

Theorem 4.2. Let Γ be a hierarchical specification of a graph G.
Let OPT (G) denote a maximum cut in E(G). Then |OPT (G)| ≤ 2En.

Proof. The theorem follows from the above lemma and the fact that
|OPT (G)| ≤ Ξn. 2

4.3 Query Problem

Using the above hierarchical specification of the set of vertices in V n
1 , we

can answer the question of which set a given vertex belongs. As mentioned
earlier, we assume that a vertex v is specified as a sequence of nonterminals
which occur on the path from the root to the nonterminal in which v occurs.
The proof of the following lemma is similar to the proof Lemma 3.6 and is
therefore omitted.

Lemma 4.3. Let Γ be a hierarchical specification of a graph G with N ver-
tices. Given any vertex v in the graph G, we can determine in O(N) time,
the set to which v belongs.

As in the case of vertex cover problem, the hierarchical specification H
obtained can be used to output the V n

1 . For this, we do a simple preorder
traversal of the nodes in the hierarchy tree HT (H) and output the explicit
nodes in each cell. This takes O(N) space and time linear in the size of
E(Γ).

4.4 Time Complexity

Theorem 4.3. The algorithm HMAX-CUT runs in time O(N + M) and
constructs a hierarchical specification of size O(N) of the set V n

1 .
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Proof. Consider the time taken to process Gi. Step 1 (a) takes O(ni +
mi) time. Steps 1 (c) and 1 (d) take O(dj) + O(1) time to process each
terminal of degree dj in Gi. Therefore, the total running time of Steps 1
(c) and (d) is O(ni +mi). Hence the total running time of the algorithm is
∑

1≤i≤nO(ni +mi) = O(N +M). Size of each Hi is no more than ni, the
number of vertices in Gi. Hence the size of H is

∑

iO(ni) = O(N). 2

5. Approximating Bounded Degree Maximum Independent Set

Our heuristic for obtaining a near-optimal solution to the maximum inde-
pendent set problem on bounded degree hierarchically specified graphs is
based on a well known heuristic in the flat case. The heuristic in the flat
case (referred to FIND-SET in the subsequent discussion) is the following.
We pick and add an arbitrary node v to the approximate independent set
and delete v and all the nodes which are adjacent to v. This step is repeated
until no nodes are left. It is easy to see that for a graph in which each node
has degree at most B, the independent set produced by the heuristic is
within a factor B of the optimal value. We now show how to extend this
heuristic to the hierarchical case. Throughout this section, we use Vj to de-
note the set of vertices from E(Gj) that are in the approximate independent
set produced by the algorithm. The details of the heuristic HIND-SET are
given in Fig. 7.

5.1 Performance Guarantee and Proof of Correctness

We now show that the approximate independent set computed is within a
factor of B of the optimal independent set.

Lemma 5.1. The set Vn produced by HIND-SET is a maximal independent
set.

Proof. The proof follows by an easy induction on the number of non-
terminals in the hierarchical specification Γ. 2

Lemma 5.2. Let OPT (G) denote the size of an optimal independent set in

G(= E(Γ)). Then |Vn| ≥
OPT (G)

B
.

Proof. Follows from the fact that every time we choose a vertex, we
delete (mark) no more than B terminals (explicit vertices and pins). 2

5.2 Query Problem

As in the case of max cut problem, the hierarchy tree of H is identical to the
hierarchy tree HT (Γ) of Γ, except that the corresponding nodes are labeled
by Hi instead of Gi. The proof of the following lemma is similar to the proof
of Lemma 3.6 and is omitted.
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Heuristic HIND-SET

Input: A simple hierarchical specification Γ = (G1, ..., Gn) of a graph G. Each node of
G has a degree of at most B, where B is a constant.
Output: A hierarchical specification H = (H1, ..., Hn) of the approximate independent
set and |Vn|, the size of the approximate independent set.

1. Repeat the following steps for 1 ≤ i ≤ n.

(a) Let Ai denote the set of all the explicit vertices in Gi. Starting from the set Ai,
we create a new set Bi as follows. For each vertex v ∈ Ai, we place it in the set
Bi iff v is not adjacent to any of the pins marked removed in the burnt graphs
of Gj , where Gj , j < i, appears in the definition of Gi. Let G(Bi) denote the
subgraph induced on the nodes in Bi.
Remark: A vertex v is placed in the set Bi iff none of its neighbors in Gj , j < i,
have been placed in Vj .

(b) Use Algorithm FIND-SET on G(Bi) to obtain the independent set Xi.
Remark: We do not consider any edges which are from these explicit vertices
to the pins.

(c) Let |Vi| = |Xi| +
∑

j

|Vj | where Gj , j < i, appears in the definition of Gi.

Remark: Vi = Xi ∪
⋃

j

Vj where Gj , j < i appears in the definition of Gi.

(Observe that the set is created implicitly.)
(d) Now construct the burnt graph Gb

i for Gi as follows: The pins in Gb
i are the same

as the pins in Gi. A pin in Gi is marked removed iff the pin is either adjacent
to one of vertices in the set Xi or it is adjacent to one of the pins in Gj (j < i),
which is marked removed.

(e) Construct Hi as follows: The explicit vertices in Hi are the vertices in the set
Xi. If Gi calls a non-terminal Gj , j < i, then Hi calls Hj .

2. Output |Vn| as the size of approximate independent set and H = (H1, ..., Hn) as
the hierarchical specification of the approximate independent set.

Fig. 7: Details of Heuristic for Maximum Independent Set

Lemma 5.3. Let Γ be a hierarchical specification of a graph G. Given any
vertex v in the graph G, we can determine in O(N) time, if v belongs to the
approximate independent set obtained.

As in the case of previous algorithms, we can output the solution in O(N)
space and time linear in the size of E(Γ). This can be done by a preorder
traversal of the hierarchy tree HT (H).

5.3 Time Complexity

Lemma 5.4. The algorithm HIND-SET runs in time O(N + M) and con-
structs an O(N) size hierarchical specification for the approximate indepen-
dent set.

Proof. The proof follows by observing that HIND-SET processes each of
the Gi in O(ni +mi) time. 2

Summarizing the above results, we have:
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Algorithm FMAX 3SAT

Input: A 3SAT formula F and its associated bipartite graph.

1. Transform the bipartite graph G corresponding to F into a new bipartite graph G′

in which the we have one vertex for each variable, one vertex for each clause and if
a clause ci = (x ∨ y ∨ z) then we have an edge from vertex corresponding to ci to
the vertex corresponding to x.

Remark: Step 1 intuitively breaks the original bipartite graph into stars with a
variable node as the center of each star.

2. For each variable xi, 1 ≤ i ≤ n do

Begin

(a) Compute the sets PV xi and NV xi defined as

PV
xi = {w | w is a clause node adjacent to xi in G

′ and xi appears

unnegated in w}

NV
xi = {w | w is a clause node adjacent to xi in G

′ and xi appears

negated in w}

(b) If |PV xi | ≥ |NV xi | then set xi to true else set xi to false.

End

3. Output: The satisfying assignment to the variables of F .

Fig. 8: A Heuristic for Non-hierarchical Instances of MAX 3SAT

Theorem 5.1. Let Γ be a hierarchical specification of a graph G with max-
imum node degree B. Then we can compute in time O(N +M) (the size of
the specification), an approximate independent set which is within a factor
B of the size of a maximum independent set.

6. Approximating Weighted MAX 3SAT

We now consider the problem of finding a truth assignment to the variables
of a hierarchically specified instance of 3SAT so as to maximize the number
of clauses that can be simultaneously set to true. We first outline a heuristic
(see Fig. 8) with performance guarantee 2, which works for non-hierarchical
specifications of MAX 3SAT instances. The heuristic is a variant of a heuris-
tic for MAX 3SAT in [12].

We first observe that the approximation algorithm given in Fig. 8 has a
performance guarantee of 2.

Lemma 6.1. Let |C| denote the number of clauses in F . Let Heu(F ) denote
the number of clauses set true by FMAX 3SAT. Then Heu(F ) ≥ |C|/2.

Proof. Let Cxi
denote the number of clauses in the star centered around

xi. We know that the value assigned to xi in Step 2(b) satisfies at least
Cxi

/2 clauses. Given that
∑

xi
Cxi

= |C|, the lemma follows. 2
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Procedure TFORM

Input: An instance F = (F1(X
1), . . . , Fn−1(X

n−1), Fn) of 3SATHG.
Output: The hierarchical specification BG(F ) = (G1, . . . , Gn) of the bipartite graph
associated with F .

1. n = 1 : G1 is the bipartite graph (S1, E1), where S1 = V1 ∪ P1 ∪ T1, and,

◦ V1 is the set of explicit vertices which are in 1-1 correspondence with the variables
Z1.

◦ P1 is the set of pins which are in 1-1 correspondence with the variables in X1.
◦ T1 is the set of explicit vertices which are in 1-1 correspondence with the clauses

in f1.
◦ (u, v) ∈ E, u ∈ S1, v ∈ T1 iff the variable corresponding to u appears in the

clause corresponding to v.

2. n > 1 : Let Fi(X
i) = (

∧

1≤j≤li
Fij

(Xi
j , Z

i
j))

∧

fi(X
i, Zi). Then,

(a) First construct the hierarchical graph Gij
corresponding to Fij

, 1 ≤ j ≤ li.
(b) Gi is the bipartite graph (Si, Ei), where Si = Vi ∪ Pi ∪Ni ∪ Ti, and

◦ Vi are the set of explicit vertices which are in 1-1 correspondence with the
variables Z1.

◦ Pi is the set of pins which are in 1-1 correspondence with the variables in X i.

◦ Ti is the set of explicit vertices which are in 1-1 correspondence with the clauses
in fi.

◦ The non-terminals Ni in Gi are in 1-1 correspondence with Fij
, such that if

Fij
is called in Fi then we have a non-terminal of type Gij

, which represents
the bipartite graph corresponding to Fij

. Furthermore, the pins in Gij
are in

1-1 correspondence with the vertices representing X i
j ⊆ Xi, and Zi

j ⊆ Zi.

◦ (u, v) ∈ Ei, u ∈ Si, v ∈ Ti iff the variable corresponding to u appears in the
clause corresponding to v.

Fig. 9: Producing the Bipartite Graph of a Hierarchical 3SAT Formula

Next we show how, given a hierarchical specification of a 3SAT formula
f we can construct a hierarchical specification of the bipartite graph corre-
sponding to f . The transformation is given in Fig. 9.

It is easy to see that the transformation given in Fig. 9 constructs a hierar-
chical specification of the bipartite graph associated with the 3SAT formula
f . Thus we have:

Lemma 6.2. Given an instance F = (F1(X
1), . . . , Fn−1(X

n−1), Fn) of
3SATHG. Procedure TFORM constructs a hierarchical specification
BG(F ) = (G1, . . . , Gn) such that

1. size of BG(F ) is O(size(F )).

2. BG(F ) can be constructed in O(size(F )) time.

3. E(BG(F )) is the bipartite graph associated with the formula E(F ).

The basic idea of the approximation algorithm for the hierarchical case is
to mimic the flat case algorithm FMAX 3SAT. The approximation algorithm
is fairly simple, and its details appear in Fig. 10.
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In the rest of the section, we let Ai be the set consisting of all variables
in Fi which are not adjacent to any nonterminals in the definition of Fi.
Further, let F (Ai) denote the subgraph induced on the nodes in Ai. The
details of the heuristic HMAX-3SAT appear in Fig. 10.

6.1 Proof of Correctness and Performance Guarantee

The proof of the fact that the above algorithm guarantees a solution which
is within 2 of the optimal value is easy and follows by verifying the following
two lemmas which can easily be proven by an induction on the number of
nonterminals in the definition of Γ.

Lemma 6.3. Each variable in the 3SAT formula F specified by Γ is assigned
a unique truth value.

Lemma 6.4. Let Γ = (F1, F2, · · · , Fn) be a hierarchical specification of a
3SAT formula F . Consider the burnt graph corresponding to a non-terminal
Fi in the hierarchical specification. Then the weight of an edge from a pin
pi to the super vertex Pi (Ni) represents the total number clauses in which
the variable represented by pi occurs un-negated (negated) in the expanded
formula denoted by E(Fi).

By an easy induction on the number of nonterminals in the definition of
Γ and using the above lemmas we can prove that

Theorem 6.1. Heuristic HMAX 3SAT has a performance guarantee of 2.

6.2 Query Problem

We show that the algorithm given above can in fact be used to give a hier-
archical description of the truth assignments to the variables of the 3SAT
formula F .

Lemma 6.5. Let Γ be a hierarchical specification of a 3SAT formula F .
Given a variable v in the 3SAT formula we can tell in O(N) time, the truth
assignment to the variable v.

Proof. Similar to the proof of Lemma 3.6. 2

6.3 Time Complexity

Theorem 6.2. Given a hierarchical specification of a 3SAT formula f , the
algorithm HMAX-3SAT runs in time

∑

1≤i≤nO(ni +mi) and constructs a
hierarchical specification of size

∑

1≤i≤nO(ni) of the satisfying assignment
to the variables in f , such that at least 1/2 total number of clauses in E(Γ)
are satisfied.
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Heuristic HMAX-3SAT

Input: A hierarchical specification Γ = (F1, ..., Fn) of a 3SAT instance F . (The input is
specified as bipartite graph associated with F .)
Output: A hierarchical specification H = (H1, ..., Hn) of a truth assignment to the vari-
ables of F such that the truth assignment satisfies at least half the clauses in F .

1. Repeat the following steps for 1 ≤ i ≤ n.

(a) Transform the bipartite graph Fi into a new bipartite graph F 1
i in which the

we have one vertex for each variable, one vertex for each clause and if a clause
cj = (x ∨ y ∨ z) then we have an edge from vertex corresponding to cj to the
vertex corresponding to x.
Remark: The variable x may be an explicit vertex or a pin.

(b) For each explicit variable x ∈ Fi do

i. Compute the sets PV x and NV x defined as

PV
x

i = {w | w is a clause adjacent to x in F 1
i and x appears

unnegated in w}

NV
x

i = {w | w is a clause adjacent to x in F 1
i and x appears

negated in w}

ii. If Fi contains no nonterminals then Px(Fi) = |PV x
i | and Nx(Fi) = |NV x

i |
else

Let Fi call the non-terminals Fi1 , · · ·Fim in its definition. Let x be adjacent
to pin px,ir ∈ Fir , 1 ≤ r ≤ m. Let

Px(Fi) = |PV x
i | +

∑

1≤r≤m

wt(Pir , px,ir )

Nx(Fi) = |NV x
i | +

∑

1≤r≤m

wt(Nir , px,ir )

iii. If (Nx(Fi) ≥ Px(Fi)) then set x to false else set x to true.
(c) Now construct the burnt graph F b

i as follows: The pins in F b
i are the same as

the pins in Fi. For each pin pj , we create super vertices Pj and Nj attached to
pin pj . The pins in Fi will be connected to some explicit clauses in Fi and to
clauses in Fir through pins in Fir where Fir is called in the definition of Fi. Let
pin pj ∈ Gi be connected to pins pir in Fir . The weight of edges (pj , Pj), and
(pj , Nj), are calculated as follows:

wt(pj , Pj) = |ExP (F 1
i )| +

∑

1≤r≤m

wt(Pir , pir )

wt(pj , Nj) = |ExN (F 1
i )| +

∑

1≤r≤m

wt(Px,ir , px,ir )

where ExP (F 1
i ) and ExN (F 1

i ) denote the set of clauses in F 1
i having an edge to

pj and occurring un-negated and negated respectively.

2. The hierarchical specification of the solution is almost same as the hierarchical
specification of the problem instance without any clauses in it. The only difference
is that each variable node is now labeled with either true or false depending on the
value assigned to the variable.

Fig. 10: Details of the Heuristic for MAX 3SATHG
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Proof. Consider the time to process a cell Fi. If a vertex corresponding
to a variable vj has degree dj in the definition of Fi, then it takes O(dj) time
to find a truth assignment to vj . Therefore, the total running time of Steps
1 (b) and (c) is O(ni +mi). Hence the total running time of the algorithm
is

∑

1≤i≤nO(ni +mi). Size of each Hi is ni, the number of vertices in Gi.
Hence the size of H is

∑

iO(ni). 2

7. Non-Approximability Results

In this section we discuss our results on the non-approximability of several
natural problems studied in the literature, when instances are specified hi-
erarchically. We show that approximating the number of true gates in a
hierarchically specified monotone acyclic circuit is PSPACE-hard. We then
show that unless P = PSPACE the optimization versions of the high de-
gree subgraph problem and the high vertex and edge connectivity problems
cannot be approximated to within a factor c < 2.

Intuitively, problems proven to be P-hard by a local reduction (i.e. a
reduction where each gate is replaced by a corresponding subgraph or gad-
get of fixed size), by a log-space reduction from MCVP, can be shown to
PSPACE-hard by a polynomial time reduction from MCVPHG. Such a re-
duction, transforms the given hierarchical specification of a monotone acyclic
circuit bottom up and level by level to obtain a hierarchical specification
of the original problem instance. The proofs for the non-approximability
of the optimization versions of the circuit value problem, high degree sub-
graph problem and the high-vertex and edge connectivity problems in the
non-hierarchical case are examples of such local reductions from MCVP. This
property of local reduction allows us to lift these reductions to the case when
the inputs are specified hierarchically.

7.1 Approximating Number of True Gates in MVCP

The Monotone circuit value problem is known to be PSPACE-hard when the
circuit is specified hierarchically [21, 31]. We first observe that the problem is
PSPACE-hard even for strongly 1-level-restricted hierarchical specifications.

Lemma 7.1. The problem MCVPHG is PSPACE hard even for strongly
1-level-restricted specifications in which a non-terminal Ci calls exactly 2
copies of Ci−1.

Proof. Follows from the fact that the instance of MCVPHG obtained by
[21] in their reduction from QBF is of the required form. 2

Before we give the PSPACE-hardness proof for MTGHG, it is instructive
to recall the proof by Serna [33], showing that MTG is P-complete. The
proof consists of a log-space reduction from MCVP. Given an instance C of
MCVP with n gates, the instance C ′ of MTG consists of the same circuit C
along with dn

ε
e additional AND gates forming a chain, with the first element



THE COMPLEXITY OF APPROXIMATING . . . 305

of the chain being connected to the output gate of C and the last element
of the chain serving as the output for C ′. As the circuit added to C only
propagates the value of output of C it follows that

1. If C outputs 0, then OPT (MTG) < n;

2. If C outputs 1, then OPT (MTG) ≥ dn
ε
e.

It is clear that the reduction can be done in log-space. As discussed in [33],
the result holds even when instances are restricted to be planar.

We extend this result and show that MTGHG cannot be approximated to
within any exponential function of the optimal. To show this, the basic idea
is to construct a chain of exponential number of AND gates using a simple
specification, and join this chain in series to the output of an instance of
MCVPHG.

Theorem 7.1. Unless P=PSPACE, no polynomial time algorithm can ap-
proximate the maximum number of true gates in MCV PHG to within any
ηε (ε > 0) factor of the optimal, even for simple strongly 1-level restricted
hierarchical specifications, where η denotes the size of the hierarchical spec-
ification.

Proof. Let C = {C1, C2, ..., Cn} be an instance of a simple hierarchi-
cal specification of MCV PHG in which each Ci calls exactly two copies of
Ci−1. Let m denote the number of gates in C and N denote the size of
C. We construct an instance D = {D1, D2, ..., Dn} of a simple hierarchical

specification ofMV CPHG with m+ 2N2

gates such that,

1. If C outputs 0, then OPT (D) < 2N ;

2. If C outputs 1, then OPT (D) ≥ 2cN2

, for some 0 < c ≤ 1.

We now discuss the construction of the instance D.
Circuit D1: The Circuit D1 consists of two disjoint circuits D1,1 and D1,2.
D1,2 is identical to C1. The circuit D1,1 has AND gates connected in series.
The input of the first AND gate is connected to two pins. Similarly, the
output of the last AND gate is connected to two pins. D1,3 consists of a
series of AND gates such that the total number of AND gates in D1,1, D1,2,
D1,3 equals N · n1. Fig. 11 gives a schematic of the above construction.
Circuit Di, 2 ≤ i ≤ n−1: The Circuit Di consists of five circuits Di,1, Di,2,
Di,3, Di,4 and Di,5. Di,4 and Di,5 are identical to Di−1. The circuits Di,1

and Di,2 each consists of a single AND gate. The AND gate corresponding
to Di,1 gets its input from two pins and its output is connected to the partial
chain of AND gates in Di,4. The AND gate corresponding to Di,2 gets its
input from the partial chain of AND gates inDi,5 and its output is connected
to a set of pins. Di,3 consists of a series of AND gates and joins the partial
chains of AND gates in the two copies of Di−1. The total number of AND
gates in Di,1, Di,2, Di,3 equals N · ni. Fig. 11 shows the schematic diagram
of Di.
Construction of Dn: As in Dn−1, Dn consists of five circuits Dn,1, Dn,2,
Dn,3, Dn,4 and Dn,5. Dn,4 and Dn,5 are identical to Dn−1. Dn,3 consists of
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C C

C1

i-1 i-1

D D

D

i-1 i-1

1

Fig. 11: Construction of Di, 1 ≤ i < n

a series of AND gates and joins the partial chains of AND gates in the two
copies of Dn−1. The circuits Dn,1 and Dn,2 each consists of a single AND
gate. The input port of the AND gate corresponding to Dn,1 is joined to
the output port of C and the output port feeds into the partial chain of the
AND gates in Dn,4. The output of the AND gate corresponding to Dn,3 is
designated as the output of D, and the input ports of Dn,3 are joined to the
partial chain of AND gates in Dn,5. Dn,3 consists of a series of AND gates
such that the total number of AND gates in Dn,1, Dn,2, Dn,3 equals N · nn.
The construction is depicted in Fig. 12.

Note that the size of D denoted by η is O(N 2). Now, observe that the
above construction specifies a circuit in which the output of the circuit
corresponding to C is connected to a exponentially long chain of AND gates.
Given this observation it is not difficult to verify that the following lemma
holds:
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C C

D D

n-1

n-1 n-1

nC

Output  port of C

Outport port of D

n-1

Fig. 12: Construction of Dn

Lemma 7.2. If the output of C is 1, at least 2cN2

AND gates will output a
1; otherwise, less than 2N of those gates will output a 1.

Given Lemma 7.2 and the fact that the above construction of D can be
done in polynomial time the theorem follows. 2

7.2 Approximating the Objective Function of a Linear Program

We now discuss our result concerning the nonapproximability of optimiz-
ing the objective function of a hierarchically specified linear program. The
PSPACE-hardness proof consists of lifting the proof in [33] showing that
approximating the objective function of a linear program is log-complete for
P .

Theorem 7.2. Unless P=PSPACE, no polynomial time algorithm can ap-
proximate the objective function of an HLP to within any ηε of the optimum,
even for strongly 1-level restricted simple specifications. Here η denotes the
size of the specification.

Proof. The reduction is from an instance of strongly 1-level-restricted
simple hierarchical specification D = {D1, D2, ..., Dn} of the problem
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MTGHG. We construct an instance of LPHG F = {F1, F2, ..., Fn}, bottom
up level by level as follows.
Construction of Fi, 1 ≤ i ≤ n: Recall that the formula Fi is of the form

Fi(X
i) = (

⋃

1≤ij≤i

Fij (X
i
j , Z

i
j))

⋃

fi(X
i, Zi)

.
∆i =

∑

ij

dij · ∆ij +
∑

zj∈Zi

cj · zj

where, ∆i is the objective function. We now describe each of the components
in the above definition of Fi.

1. The set of dummy variables X i is in 1-1 correspondence with the pins
of Fi. (Note that this implies that Xn = φ.)

2. Z i = Ai ∪Bi, where

◦ Ai = ∪irAir where the variables in Air are in 1-1 correspondence
with the edges incident on the non-terminal Dir called in Di.

◦ The set Bi consists of variables which are in 1-1 correspondence
with the explicitly defined gates in Di and the 0 1 input ports of the
circuit.

3. For the function ∆i the coefficients are ci and di are all 1.

4. ∀ir X
ir
i = φ. (Note: This is true because the given circuit specification

is 1-level-restricted.)

5. Corresponding to each Dir , ir < i, called in Di, we have a call to Fir

and the set of variables Z ir
i ⊆ Zi passed to Fir are in 1-1 correspon-

dence with the set of explicit variables in Fi which correspond to the
explicit gates defined in Di.

We now describe the set of inequalities corresponding to fi(X
i, Zi). We

have one set of inequalities for each explicit gate in Fi. We also have an
additional set of inequalities with each pin that is connected to the output
port of an explicit gate in Di. (The inequalities are very similar to those
given in [33].)

1. If xk corresponds to an input port of the circuit, then we have the
equation xk = 1 if the corresponding input is 1 and the equation
xk = 0 if the corresponding input is 0.

2. For an AND gate, we have the inequalities xk ≤ xj, xk ≤ xi, xk ≥
xi +xj − 1, where xk is the variable denoting the AND gate and xi, xj

are the variables corresponding to the gates whose outputs serve as the
inputs for the AND gate. If the gate is connected to a nonterminal,
the variables xi and xj correspond to the variables that are associated
with the edge joining the gate to the nonterminal.

3. For an OR gate, we have the inequalities xi ≤ xk, xj ≤ xk, xk ≤
xi + xj, where xk is the variable denoting the OR gate and xi, xj are
the variables corresponding to the gates whose outputs serve as the
inputs to the OR gate.
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4. Recall that with each pin we have an associated dummy variable. Con-
sider a pin pi

j whose associated dummy variable is xi
j . If pi

j is connected

to the output port of a gate xk then we generate the equation xk = xi
j.

5. For each variable xk which denotes an edge going from an explicit gate
to a nonterminal (i.e. xk is a variable in the set Ai) and is connected
to an output port of an explicit gate, we generate the equation xk = xj

where xj denotes the variable corresponding to the gate which has an
edge corresponding to xk joined to a nonterminal.

It is easy to see that the reduction gives rise to a simple strongly 1-level
restricted specification of F , given that D was simple and strongly 1-level
restricted. Also, it is easy to see that the reduction can be done in poly-
nomial time. Next observe that the reduction gives rise to a hierarchical
specification F which represents the set of inequalities which would be pro-
duced if the specification is expanded and Serna’s construction [33] applied
on the expanded circuit. The only difference that we have some intermedi-
ate variables on edges. Let N be the size of D. The size of F , denoted by
η, is O(N 2).

Given the above observations, it is easy to verify that the value of ∆ is less
than 22N if the output of the circuit is 0 and the value of ∆ is at least 2cN2

for some 0 < c ≤ 1 if the output of the circuit is 1. The theorem follows. 2

Example. Consider the hierarchical specification D as given in Fig. 13.
The corresponding specification F is given as follows:

F1(x1, x2, x3, x4) = {(z1 = x1 ∧ x2), (z1 = x3 = x4)}
F2 = {(z2 = 0), (z3 = 1), (z4 = z2 ∧ z3)}

∪F1(a, b, c, d) ∪ F1(e, f, g, h)∪
{(z4 = a = b), (z5 = c ∨ d)}∪
{(z5 = e = f), (z6 = g ∧ h)}

Note that each equation involving an AND or an OR operator has to be
replaced by the set of inequalities as discussed earlier.

The corresponding ∆ function is also created similarly and is just a sum of
all the explicit variables. Observe that the specification obtained is strongly
1-level-restricted and simple.

7.3 Approximating Connectivity and High Degree Subgraph Problems

Next, we consider the problems κ-HVCP, κ-HECP, and k-HDSP, when in-
stances are specified hierarchically. We prove PSPACE-hardness results
for these problems when instances specified hierarchically by lifting the
known proofs showing the P-hardness of the corresponding problems in the
non-hierarchical case. We illustrate this idea by presenting the PSPACE-
hardness proof for κ-HVCP. PSPACE-hardness proofs for the other two
problems are along the same lines.
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Fig. 13: Example of a circuit represented hierarchically. E(F ) represents the actual
circuit.

The proof given in [14] showing that κ-HVCP is P-complete is a log-space
reduction from MCVP with additional restriction that outdegrees of all gates
and the input nodes is at most 2, and there is at least one input node with
whose value is 1. It can be easily shown by slightly modifying the reduction
in [21] that

Lemma 7.3. The problem MCVPHG is PSPACE-hard even for hierarchical
specifications satisfying all the following restrictions.

1. The specification is simple.

2. The specification is strongly 1-level-restricted.

3. Each Ci calls exactly two copies of Ci−1.

4. The outdegree of all gates and the input nodes is at most 2.

5. There is at least one input node with whose value is 1.

6. The inputs and the outputs all occur in the last cell.
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Fig. 14: Reduction from MCVP to HVCP

We recall the construction from [14] to show the P-completeness of the
κ-HVCP problem. Given an instance C of the MCVP with the restriction
that the outdegree of all gates and the input nodes is 2 and there is at least
one input node with whose value is 1, an instance of G 3-HVCP is created
as follows:

1. Each input node of the circuit as well as the output node is replaced
by a K2,2 graph, as depicted in Fig. 14(a).

2. Each OR gate of C is replaced by a copy of the graph depicted in
Fig. 14(e). The upper nodes are called the in-nodes and the lower
ones are referred to as the out-nodes.

3. Each AND gate of C is replaced by a copy of the graph depicted in
Fig. 14(d).

4. An additional node vnew is added and is connected to the out-nodes of
the subgraph used to replace the output gate and all the in-nodes of
the subgraphs replacing the input gates with value 1. The construction
is illustrated through an example in Fig. 15.

Using this construction it can be proven (see [14]) that the output of C
is 1 iff the G contains a 3-connected subgraph. As in the previous proof
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x y z
x y z

x = 0 ; y = 1; z = 1 ;
v new

Fig. 15: Example of the reduction from an instance of MCVP to an instance of κ-HVCP.

of PSPACE-hardness, we lift the reduction in the non-hierarchical case, to
prove the PSPACE-hardness of 3-HVCPHG.

Theorem 7.3. The problem κ-HVCPHG is PSPACE-hard for simple
strongly 1-level-restricted hierarchical specifications.

Proof. We prove the theorem for κ = 3. Given an instance C =
{C1, C2, ..., Ck} of simple hierarchical specification of MCV PHG in which
each Ci calls exactly two copies of Ci−1, we construct a simple hierarchi-
cal specification Γ = {G1, G2, ..., Gn} of a graph G such that G has a
3-connected subgraph iff the circuit corresponding to C outputs a 1.The
reduction follows the same outline as in the proof of Theorem 7.1. It is done
level by level and at each stage the gates of the circuit are replaced by a
gadget depending on whether it is an AND or an OR gate.
Graph G1: Except for a minor modification, the graph G1 is the same
as the one obtained using the construction (given above) proving the P-
completeness of the problem in the flat (non-hierarchical) case. The mod-
ification is that if a gate in C1 has its inputs connected to pins then the
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G G1 1

C

C

C C

G 1
1

1 1

C
2

x y z w o/p

x y z
w

Fig. 16: Example of the reduction from an instance of MCVPHG to an instance of
HVCHG.

corresponding in-nodes of the graph replacing the gate are also connected
to a pair of pins.
Graph Gi, 2 ≤ i ≤ n: It has two calls to Gi−1 corresponding to the two calls
to Ci−1 in Ci. For each of the explicit gates we replace it by a corresponding
subgraph depending on whether it a AND or an OR gate. Again as in G1 if
the input of the gate is connected to pins then the corresponding in-nodes
are connected to two pins.

An example of this construction appears in Fig. 16. The reader should
notice that the construction produces a hierarchical description of the graph
that would be obtained if the reduction of [14] were applied on the circuit
produced by the expansion E(C) of the hierarchical specification C.

With the above observations, it is easy to see that the following lemmas
from [14] hold:

Lemma 7.4. The output of C is 1 iff the graph G has a 3-connected sub-
graph.

Lemma 7.5. The above construction can be done in polynomial time.

The theorem now follows from the above lemmas. 2

The proofs of the following theorems also follow the same generic pattern
as the proof of Theorem 7.3 above. The proof of Theorem 7.4 lifts the
reduction in [14] showing the P-hardness of approximating connectivity and
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the proof of Theorem 7.5 lifts the reduction in [1] showing the P-hardness
of approximating the high degree subgraph problem.

Theorem 7.4. Unless P = PSPACE, the optimization version of the prob-
lem κ-HVCHG(G) and κ-HECHG(G) cannot be approximated to within a
factor of c < 2, even for simple strongly 1-level-restricted hierarchical speci-
fications of G.

Theorem 7.5. Unless P = PSPACE, the optimization version of the prob-
lem HDSPk cannot be approximated to within a factor c < 2 even for simple
strongly 1-level-restricted hierarchical specifications of G.

8. Conclusions and Related Work

We have presented polynomial time approximation algorithms with good
performance guarantees for several natural PSPACE-complete problems for
hierarchical specifications. We have also presented results concerning the
non-approximability of optimization version of the monotone circuit value
problem, linear programming and high degree vertex and edge connectiv-
ity problems. Our proofs of non-approximability can be extended so as to
apply to O(log η)-bandwidth bounded hierarchical specifications, where η is
the size of the instance obtained after expanding the given specification. The
question of whether the high degree subgraph and high connectivity prob-
lems for hierarchical specifications can be approximated to some constant
factor of the optimal is open.

In [23] we have shown that efficient approximation algorithms can be ob-
tained for hierarchically specified unit disk graphs. In [24], we consider the
complexity of finding polynomial time approximation schemes for hierar-
chically specified planar graphs. In [3, 4] Condon et al. give a character-
ization of PSPACE in terms of probabilistically checkable debate systems
and use this characterization to show that several natural PSPACE-hard
problems cannot be approximated. Intriguingly enough, all the problems
listed in Table I are known to have NC approximation algorithms when
the problem instances are specified non-hierarchically [13, 29]. Moreover,
each of the problems shown to have a polynomial time optimal solution in
[17, 19, 20, 36] (eg. minimum spanning tree, planarity testing) when the
problem is specified hierarchically, has an NC algorithm, when the problem
instance is presented non-hierarchically. In [10] we have shown that for every
problem Π in MAX SNP there is an NC approximation algorithm AΠ with
a constant performance guarantee. Many of the problems for which we have
approximation algorithms in the hierarchical case belong to MAX SNP in
the non-hierarchical case. While there are problems whose non-hierarchical
versions can be solved in NC, but their hierarchical versions are PSPACE-
hard [21], the results here and in [17, 19, 20, 36] suggest that there is a
strong relationship between a problem having an NC algorithm in the non-
hierarchical case and a polynomial time algorithm in the hierarchical case.
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Understanding this relationship may well lead to a paradigm for translating
known NC algorithms in the literature, for problems when specified non-
hierarchically, to polynomial time algorithms for the same problems when
the instances are specified hierarchically.
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