
Nordic Journal of Computing 1(1994), 317–331.

POLYNOMIALLY BOUNDED MINIMIZATION
PROBLEMS THAT ARE HARD TO APPROXIMATE

VIGGO KANN
Department of Numerical Analysis and Computing Science

Royal Institute of Technology
S-100 44 Stockholm, Sweden

viggo@nada.kth.se

Abstract. Min PB is the class of minimization problems whose objective func-
tions are bounded by a polynomial in the size of the input. We show that there
exist several problems that are Min PB-complete with respect to an approximation
preserving reduction. These problems are very hard to approximate; in polynomial
time they cannot be approximated within nε for some ε > 0, where n is the size of
the input, provided that P 6= NP. In particular, the problem of finding the min-
imum independent dominating set in a graph, the problem of satisfying a 3-SAT
formula setting the least number of variables to one, and the minimum bounded
0 − 1 programming problem are shown to be Min PB-complete.

We also present a new type of approximation preserving reduction that is designed
for problems whose approximability is expressed as a function of some size param-
eter. Using this reduction we obtain good lower bounds on the approximability of
the treated problems.

CR Classification: F.1.3, F.2.2, G.2.2

Key words: approximation, reducibility, completeness, graph problems

1. Introduction

Approximation of NP-complete optimization problems is a very interesting
and active area of research. Since all NP-complete problems are reducible
to each other one could suspect that they should have similar approximation
properties, but this is not at all the case.

For example the TSP (Travelling Salesperson Problem) with triangular
inequality can be solved approximately within a factor 3/2, i.e. one can in
polynomial time find a trip of length at most 3/2 times the shortest trip
possible [Christofides 1976], while the general TSP cannot be approximated
within any constant factor if P 6= NP [Garey and Johnson 1979].

The range of approximability of NP-complete problems stretches from
problems that can be approximated within every constant in polynomial
time, e.g. the knapsack problem [Ibarra and Kim 1975], to problems that
cannot be approximated within nε for some ε > 0, where n is the size of the
input instance, unless P = NP. A problem that is this hard to approximate

Received July 1993. Accepted October 1994.

318 VIGGO KANN

is the minimum independent dominating set problem (minimum maximal
independence number) [Irving 1991] and [Halldórsson 1993].

Even optimization problems whose objective function is bounded by a
polynomial in the size of the input may be hard to approximate. Krentel
[1988] defined a class of optimization problems called OptP[log n], that con-
sists of all NP optimization problems that are polynomially bounded. This
class, which we will call NPO PB, can be divided into two classes, Max PB

and Min PB, containing maximization and minimization problems respec-
tively [Kolaitis and Thakur 1993]. Berman and Schnitger [1992] started to
investigate the approximability of Max PB problems and proved that there
are Max PB-complete problems, i.e. Max PB problems to which every
Max PB problem can be reduced using an approximation preserving re-
duction. Several problems are now known to be Max PB-complete [Kann
1992].

In this paper we investigate if there, in the same manner, exist prob-
lems that are Min PB-complete. We show that Shortest Computa-

tion is a generic Min PB-complete problem and find reductions to several
other Min PB problems, for example Min independent dominating set

and Min PB 0 − 1 Programming, thereby proving them to be Min PB-
complete. If a problem is Min PB-complete (or Max PB-complete) it can-
not be approximated within nε for some ε > 0, where n is the size of the
input, provided that P 6= NP.

Recently Crescenzi et al. [1994] showed that the Max PB-complete prob-
lem Longest Induced Path can be reduced to Min PB 0 − 1 Pro-

gramming using an approximation preserving reduction similar to the ones
defined in this article. From this follows that every Min PB-complete prob-
lem will also be NPO PB-complete. Thus the reductions presented in this
article do not just imply Min PB-completeness for several problems, but
NPO PB-completeness.

The longest and shortest path with forbidden pairs problems were defined
and shown to be NP-complete by Gabow et al. [1976]. Irving [1991] proved
that the minimum independent dominating set problem cannot be approx-
imated within any constant unless P = NP. Halldórsson [1993] improved
this result by showing that the problem cannot be approximated within n1−ε

for any ε > 0, where n is the number of nodes in the input graph. Thus our
results give another way of showing the nonapproximability of this problem,
but the most important conclusion is the structural result that every poly-
nomially bounded minimization problem can be reduced to the minimum
independent dominating set problem, and, using the result by Crescenzi
et al. [1994], that every polynomially bounded NP optimization problem
can be reduced to this problem. A convenient way to establish NPO PB-
completess results for other minimization problems is therefore to reduce
from minimum independent dominating set.

POL. BOUNDED MINIMIZATION PROBLEMS 319

2. Definitions

Definition 1. [Crescenzi and Panconesi 1991] An NPO problem (over an
alphabet Σ) is a four-tuple F = (IF , SF ,mF , optF) where

◦ IF ⊆ Σ∗ is the space of input instances. It is recognizable in polynomial
time.

◦ SF (x) ⊆ Σ∗ is the space of feasible solutions on input x ∈ IF . The only
requirement on SF is that there exist a polynomial q and a polynomial time
computable predicate π such that for all x in IF , SF can be expressed as
SF (x) = {y : |y| ≤ q(|x|) ∧ π(x, y)} where q and π only depend on F .

◦ mF : IF × Σ∗ →
�
, the objective function, is a polynomial time com-

putable function. mF (x, y) is defined only when y ∈ SF (x).

◦ optF ∈ {max,min} tells if F is a maximization or a minimization prob-
lem.

Solving an optimization problem F given the input x ∈ IF means finding
a y ∈ SF (x) such that mF (x, y) is optimum, that is as big as possible if
optF = max and as small as possible if optF = min. Let optF (x) denote
this optimal value.

Approximating an optimization problem F given the input x ∈ IF means
finding any y′ ∈ SF (x). How good the approximation is depends on the
relation between mF (x, y′) and optF (x).

We often demand that there exists a trivial solution trivF (x) for each in-
put x so that we can ensure that an approximation algorithm always finds
a feasible solution. The trivial solution should be given in the definition of
the problem and does not need to be an ordinary feasible solution. The set
of formal feasible solutions is really the union of {trivF (x)} and the ordi-
nary feasible solutions SF (x). A typical trivial solution to a maximization
problem is the empty set. For a minimization problem trivF (x) is usually
a special solution with mF (x, trivF (x)) ≥ maxy∈SF (x) mF (x, y). The trivial
solution is only defined for technical reasons. It is not important in practice.

Definition 2. The relative error of a feasible solution with respect to the
optimum of an NPO problem F is defined as

Er
F (x, y) =

|optF (x) − mF (x, y)|

optF (x)

where y ∈ SF (x). In order to avoid division by zero we may either de-
fine the problems so that the optimal value is always positive or change the
denominator in the definition of the relative error to optF (x) + 1.

Definition 3. The performance ratio of a feasible solution with respect to
the optimum of an NPO problem F is defined as

RF (x, y) =

{

optF (x)/mF (x, y) if optF = max,
mF (x, y)/optF (x) if optF = min,

where x ∈ IF and y ∈ SF (x).

320 VIGGO KANN

Definition 4. We say that an optimization problem F can be approxi-
mated within p(n) for a function p : � + → � + if there exists a polynomial
time algorithm A such that for every n ∈ � + and for all instances x ∈ IF

with |x| = n we have that A(x) ∈ SF (x) and RF (x,A(x)) ≤ p(n).

In order to relate optimization problems we need an approximation pre-
serving reduction. The following reduction is generalized variant of the
L-reduction defined by Papadimitriou and Yannakakis [1991].

Definition 5. Given two NPO problems F and G, a linear reduction from
F to G is a triple f = (t1, t2, c) such that

(1) t1, t2 are polynomial time computable functions and c ∈ � +.

(2) t1 : IF → IG and ∀x ∈ IF and ∀y ∈ SG(t1(x)), t2(x, y) ∈ SF (x).

(3) ∀x ∈ IF , ∀y ∈ SG(t1(x)), ∀ε > 0,

Er
G(t1(x), y) ≤ c · ε ⇒ Er

F (x, t2(x, y)) ≤ ε.

If there is a linear reduction from F to G we write F ≤ G.

Definition 6. Formal definitions of the NP optimization problems treated
in the text.

Shortest computation
I = {〈M,x〉 : M nondeterministic Turing machine, x binary string},
S(〈M,x〉) = {c : |c| < |x|} where c is a computation of M on input x and
|c| denotes the length of c,
triv(〈M,x〉) = 1|x|,
m(〈M,x〉 , c) = |c|,
opt = min.

Shortest path with forbidden pairs
I = {G = 〈V,E〉 : G is a graph, s ∈ V, f ∈ V, P ⊂ V × V },
S(〈V,E, s, f, P 〉) = {(v1, . . . , vk) a sequence of k different nodes in V s.t.
v1 = s, vk = f , ∀i ∈ [1..k − 1] ((vi, vi+1) ∈ E ∧ ∀j ∈ [i + 1..k](vi, vj) /∈ P)},
triv(〈V,E, s, f, P 〉) = V ,
m(〈V,E, s, f, P 〉 , (v1, . . . , vk)) = k,
opt = min.

Minimum independent dominating set
I = {G = 〈V,E〉 : G is a graph},
S(〈V,E〉) = {V ′ ⊆ V : (∀v1 ∈ V − V ′ ∃v2 ∈ V ′ : (v1, v2) ∈ E)∧

∧ (∀v1 ∈ V ′ 6 ∃v2 ∈ V ′ : (v1, v2) ∈ E)},
triv(〈V,E〉) = V ,
m(〈V,E〉 , V ′) = |V ′|,
opt = min.

POL. BOUNDED MINIMIZATION PROBLEMS 321

Minimum number of distinguished ones (Min Dones)
I = {〈X,Z,C〉 : X and Z finite set of variables, C set of disjunctive clauses,
each involving at most 3 literals},
S(〈X,Z,C〉) = {〈X ′, Z ′〉 : X ′ ⊆ X ∧ Z ′ ⊆ Z∧ every clause in C is satisfied
when the variables in X ′ and Z ′ are set to 1 and the variables in X − X ′

and Z − Z ′ are set to 0},
triv(〈X,Z,C〉) = 〈∅, Z〉,
m(〈X,Z,C〉 , 〈X ′, Z ′〉) = |Z ′|,
opt = min.

Minimum number of ones (Min Ones)
I = {〈U,F 〉 : U finite set of variables, F boolean formula in 3CNF},
S(〈U,F 〉) = {U ′ ⊆ U : F is satisfied when the variables in U ′ are set to 1
and the variables in U − U ′ are set to 0},
triv(〈U,F 〉) = U ,
m(〈U,F 〉 , U ′) = |U ′|,
opt = min.

Minimum number of satisfiable formulas (Min # Sat)
I = {〈U,Z〉 : U finite set of variables, Z set of 3CNF formulas},
S(〈U,Z〉) = {U ′ ⊆ U},
m(〈U,Z〉 , U ′) =| {F ∈ Z : F is satisfied when the variables in U ′ are set to
1 and the variables in U − U ′ are set to 0}|,
m(〈U,Z〉 , triv(〈U,Z〉)) = |Z|,
opt = min.

Minimum bounded 0 − 1 programming (Min PB 0 − 1 Programming)
I = {A ∈ {−1, 0, 1}m·n integer m × n-matrix, b ∈ {−1, 0, 1}m integer m-
vector}
S(〈A, b〉) = {x ∈ {0, 1}n : Ax ≥ b}

triv(〈A, b〉) = 1n, m(〈A, b〉 , x) =

n
∑

i=1

xi, opt = min.

Definition 7. An NPO problem F is polynomially bounded if there is a
polynomial p such that ∀x ∈ IF ∀y ∈ SF (x), mF (x, y) ≤ p(|x|). The class of
all polynomially bounded NPO problems is called NPO PB. This class was
called OptP[log n] by Krentel [1988].

All problems defined in Definition 6 are included in NPO PB. The travelling
salesperson problem and integer programming are examples of problems not
in NPO PB.

Definition 8. [Kolaitis and Thakur 1993] Let Max PB be the maximiza-
tion problems that have polynomially bounded objective function, that is

Max PB = {F ∈ NPO PB : optF = max},

322 VIGGO KANN

and Min PB be the minimization problems that have polynomially bounded
objective function, that is

Min PB = {F ∈ NPO PB : optF = min}.

Thus NPO PB = Max PB ∪ Min PB.

Definition 9. Given an NPO problem F and a class C. We say that F is
C-complete if F ∈ C and G ≤ F for all G ∈ C. We say that F is C-hard if
G ≤ F for all G ∈ C.

3. Min PB-Complete Problems

In this section we will prove that some problems are Min PB-complete with
respect to the linear reduction. These problems are very hard to approxi-
mate. It is in fact easy to show that a Min PB-complete problem cannot
be approximated within nε for some ε > 0, where n is the size of the input,
provided that P 6= NP.

We consider an NP-complete language {x : ∃y R(x, y)} and we assume,
without loss of generality, that R(x, y) ⇒ |x| = |y|. Define a Min PB

problem F with the same input instances, with SF (x) = {y : R(x, y)},
mF (x, y) = 1 if R(x, y) and mF (x, y) = |x| + 1 otherwise.

If this problem could be approximated within n = |x|, then we would have
a polynomial algorithm that could solve the original NP-complete problem,
and thus P = NP.

If F cannot be approximated within n, then any Min PB-complete prob-
lem G cannot be approximated within nε for some ε > 0, since there is a
linear reduction from F to G.

Crescenzi et al. [1994] recently showed that every Min PB-complete prob-
lem will also be NPO PB-complete. Thus we just have to show that a
problem is Min PB-complete to establish that it is NPO PB-complete.

The proofs of the Min PB-completeness of Shortest Computation and
Shortest Path with Forbidden Pairs below are inspired by Berman
and Schnitger [1992].

Theorem 1. Shortest Computation is complete for Min PB.

Proof. First we note that Shortest Computation is included in
Min PB (it is indeed a minimization problem where the objective func-
tion is bounded by the length of the input and where each feasible solution
is a computation of bounded length and therefore can be recognized in poly-
nomial time).

In order to prove that Shortest Computation is Min PB-complete we
will describe a linear reduction from any Min PB problem to Shortest

Computation.

POL. BOUNDED MINIMIZATION PROBLEMS 323

Let F = (IF , SF ,mF ,min) be a Min PB problem and p(|x|) be a polyno-
mial that bounds both the size of the feasible solutions and the size of the
objective function, i.e. for all x ∈ IF ,

y ∈ SF (x) ⇒ |y| ≤ p(|x|) ∧ mF (x, y) ≤ p(|x|).

Construct a Turing machine M that first nondeterministically chooses
a solution y (of size at most p(|x|)) and then deterministically checks if
y ∈ SF (x). In that case M computes mF (x, y). We can assume that M
so far has computed at most (|x| + 1)k steps where k is a sufficiently large
integer. If y was feasible then M proceeds to compute until a total of
mF (x, y)(|x| + 1)k steps is reached. If y was not feasible then M proceeds
to compute until it has computed at least as many steps as the length of
the input to M . We see that the input to M must contain p(|x|) and x, and
must be longer than p(|x|)(|x| + 1)k.

Let x′ denote the word resulting from x by replacing each 0 by 01 and

each 1 by 10. Let the input to the Turing machine be 1p(|x|)0x′0p(|x|)(|x|+1)k

.

Let t1 = (M, 1p(|x|)0x′0p(|x|)(|x|+1)k

) and let t2 = y if y was feasible and
t2 = trivF (x) otherwise. The reduction from any Min PB problem to a
Shortest Computation problem described by t1 and t2 is a linear reduc-
tion since for every y ∈ SG(t1(x)), Er

F (x, t2(x, y)) ≤ Er
G(t1(x), y). 2

Theorem 2. Shortest Path with Forbidden Pairs is complete for
Min PB.

Proof. We consider a Turing machine M and an input x = (x1, . . . , xn).
Without loss of generality we can assume that M is a 1-tape, 1-head Turing
machine with oblivious head movement and that M does not write and move
in the same step, that is, starts in state q0 and halts in state qh [Berman
and Schnitger 1992] and [Pippenger and Fischer 1979]. Since M is oblivious
there is a function h(t) that for every step number t gives the position of
the head.

From M and x we will construct a graph G = 〈V,E〉, a start node s, a
final node f and a set of forbidden pairs P such that legal paths from s to
f correspond to computations of M .

We label the nodes V by (a, q, t) where a is a tape symbol of M , q is a
state in M and t is a step number (0 ≤ t ≤ n). Let the start node s be
(x1, q0, 0).

There is an edge between (a, q, t) and (b, r, t + 1) if M can change its
state from q to r after reading a. If it is a writing step we demand that
b is the written tape symbol. If the tape head is not moved by the step
(i.e. h(t) = h(t + 1)) we demand that b = a. If the tape head is moved
and it is the first time M visits the new tape square (i.e. h(t + 1) > h(τ)
and 0 ≤ τ ≤ t) we demand that b is the initial content of this square (i.e.
b = xh(t+1)).

324 VIGGO KANN

Moreover, there is a special final node f and edges between every node of
the form (a, qh, t) and f .

Every pair of nodes labelled by the same step number t is included in P ,
together with every pair of the form {(a, q, t1), (b, r, t2)} such that a 6= b,
and that during step t1 the tape head leaves a tape square and t2 is the
next step when the head revisits the same square (i.e. h(t1) = h(t2) and
h(t1) 6= h(τ) and t1 < τ < t2).

Thus the constructed problem instance consists of O(n) nodes, O(n) edges
and O(n) forbidden pairs.

We can see that every path of length k + 1 from s to f without forbidden
pairs corresponds to a computation of M on input x running in time k and,
in the opposite direction, that every computation corresponds to a path
from s to f without forbidden pairs.

Therefore this reduction is a linear reduction. Since Shortest Path

with Forbidden Pairs is a polynomially bounded minimization problem
we conclude that it is Min PB-complete. 2

We are now ready to state our main theorem.

Theorem 3. The problem Min Independent Dominating Set is com-
plete for Min PB.

Proof. We will show that Min Independent Dominating Set is
Min PB-hard by reducing from Shortest Path with Forbidden Pairs.
Suppose we have an instance 〈V,E, s, f, P 〉 of Shortest Path with For-

bidden Pairs and that V = {v1, . . . , vn} where v1 = s and vn = f .
We construct a graph G′ = 〈V ′, E′〉 as follows. Let m be a large positive

integer whose value will be specified later. V ′ consists of n + 2 parts which
we call A,K1,K2, . . . ,Kn, and B. Let A = {a1, . . . , am}, B = {b1, . . . , bm}

and for each j ∈ [1..n], Kj = {vj
1, . . . , v

j
n, wj

1, . . . , w
j
m}. We will call these

four types of nodes a-, b-, v- and w-nodes. Thus V ′ contains a total of
2m + n(n + m) nodes.

The idea is to include at most one node in each Ki in the solution, and
the fact that vi

j is included should correspond to node vj being the ith node
in a valid path in G.

We include edges in E ′ in the following way.

∀i, j, k ∈ [1..n], i 6= k ⇒ (vj
i , v

j
k) ∈ E′ (1)

∀i, j ∈ [1..n], ∀k ∈ [1..m], (vj
i , w

j
k) ∈ E′ (2)

∀k ∈ [1..m], (ak, v1
1) ∈ E′ (3)

∀j ∈ [1..n], ∀k ∈ [1..m], (vj
n, bk) ∈ E′ (4)

∀j, k, l ∈ [1..n], l > j ⇒ (vj
n, vl

k) ∈ E′ (5)

∀j, l ∈ [1..n], ∀k ∈ [1..m], l > j ⇒ (vj
n, wl

k) ∈ E′ (6)

∀i, k ∈ [1..n], ∀j ∈ [1..n−1], (vi, vk) /∈ E ⇒ (vj
i , v

j+1
k) ∈ E′ (7)

∀i, j, k, l ∈ [1..n], (vi, vk) ∈ P ⇒ (vj
i , v

l
k) ∈ E′ (8)

∀i, j, l ∈ [1..n], j 6= l ⇒ (vj
i , v

l
i) ∈ E′ (9)

POL. BOUNDED MINIMIZATION PROBLEMS 325

. . .

.

.

.

. . .

A

B

K1

K2

K3

Kn

v
1
1

v
1
n

v
2
1

v
2
n

v
3
1

v
3
n

v
n
1

v
n
n

Fig. 1: The constructed instance of Min Independent Dominating Set in the reduction
from Shortest Path with Forbidden Pairs. Only some of the edges are shown in the
figure. In each Ki only two nodes are shown, but Ki contains a total of n v-nodes and m

w-nodes.

In words this means that each Kj is an n-clique of v-nodes [Eq. (1)] extended
by m w-nodes that are connected to each v-node [Eq. (2)]. Each node in A
is connected to v1

1, i.e. the first v-node in K1 [Eq. (3)]. The last v-node in
each Kj is connected to all nodes below it in Fig. 1 [Eq. (4, 5, 6)]. Node vi

in Kj and node vk in Kj+1 are connected whenever there is no edge between
vi and vk in the original graph G [Eq. (7)]. Node vi in Kj and node vk in
Kl are connected whenever (vi, vk) is a forbidden pair [Eq. (8)]. Finally all
v-nodes with the same number in different Kj parts are connected [Eq. (9)].
The constructed graph consists of (2+n+m)n nodes and O((n+m+|P |)n2)
edges.

Suppose that (vL1
, vL2

, . . . , vLp) where L1 = 1 and Lp = n is a path in G

without forbidden pairs. We will now show that S = {v1
L1

, v2
L2

, . . . , vp
Lp
} is

an independent dominating set.
The set S is independent because

◦ no two nodes from S are included in the same Kj [Eq. (1)],

◦ S does not contain any a-, b- or w-node [Eq. (2, 3, 4, 6)],

◦ vLi
6= vn for i < p [Eq. (5)],

◦ (vLi
, vLi+1

) is an edge in E [Eq. (7)],

◦ S contains no forbidden pair [Eq. (8)],

◦ the same node does not occur twice in S [Eq. (9)].

326 VIGGO KANN

The set S dominates V ′ because

◦ for 1 ≤ j ≤ p, Kj is dominated by vj
Lj

[Eq. (1, 2)],

◦ A is dominated by v1
L1

[Eq. (3)],

◦ B is dominated by vp
Lp

[Eq. (4)],

◦ for p < j ≤ n, Kj is dominated by vp
Lp

[Eq. (5, 6)].

Thus every solution of the Shortest Path with Forbidden Pairs

instance corresponds to a solution of the constructed Min Independent

Dominating Set instance of the same size.
Now suppose that we are given an arbitrary independent dominating set

S with |S| ≤ n. We immediately see that in each Kj , at most one v-node
may be included in S.

We would like to prevent any w-node from occurring in S. If a w-node
does occur in S, then all w-nodes in the same Kj must be included in order
to dominate Kj (because otherwise some v-node in Kj must be included,
which is forbidden since S must be independent), which means that we need
m nodes to dominate just one Kj. Since |S| ≤ n this will be impossible if
we choose m ≥ n.

The same argument can be used to show that there cannot be any a-node
or b-node in S. Thus S consists solely of v-nodes, at most one from each
Kj.

The fact that A ∩ S = ∅ must be due to that v1
1 ∈ S, because v1

1 is the
only v-node that has edges to any a-node. Since B ∩ S = ∅ we must have
that vp

n ∈ S for some p. Suppose that vp
n ∈ S for a fixed p, then Kj ∩ S = ∅

for all j > p by [Eq. (5)].
We cannot have that Kj ∩S = ∅ for some j < p, because then Kj must be

dominated by some vk
n with k < j < p, which is impossible since (vk

n, vp
n) ∈

E′.
Apparently there must be exactly one v-node from each Kj with 1 ≤

j ≤ p included in S and these are the only nodes in S. Hence we can
skip the superscripts of the nodes in S, read from top to bottom and write
(vL1

, vL2
, . . . , vLp) where L1 = 1 and Lp = n.

Now we use that S is independent to show that

◦ for all 1 ≤ i < p, (vLi
, vLi+1

) ∈ E [Eq. (7)],

◦ for all 1 ≤ i < j ≤ p, (vLi
, vLj

) is not a forbidden pair [Eq. (8)],

◦ for all 1 ≤ i < j ≤ p, Li 6= Lj [Eq. (9)].

Thus S describes a path from s to f in G without forbidden pairs, i.e. a
feasible solution to the problem. Moreover this solution is of the same size
as S.

If we are given an independent dominating set S of size greater than n we
can directly choose the trivial solution of Shortest Path with Forbidden

Pairs.
We have shown that the described reduction from Shortest Path with

Forbidden Pairs to Min Independent Dominating Set is a linear re-
duction. Since Min Independent Dominating Set is included in Min PB

POL. BOUNDED MINIMIZATION PROBLEMS 327

we can conclude that Min Independent Dominating Set is Min PB-
complete. 2

The following theorem was independently of us obtained by Höffgen et al.

[1992]. It is easy to prove it using Theorem 3.

Theorem 4. Min Dones is complete for Min PB.

Proof. We will describe a linear reduction from Min Independent

Dominating Set to Min Dones. Given an instance 〈V,E〉 of Min Inde-

pendent Dominating Set, let Z = {z1, . . . , z|V |} be a set of |V | boolean
variables, one for each node in V . We would like a node to be included in
a dominating independent set if and only if the corresponding variable is
true. In order to obtain this we describe the independence and domination
properties using a CNF formula F .

For every edge 〈vi, vj〉 ∈ E we add the clause zi ∨ zj in order to assure the
independence. For every node vi with its neighbours vi1 , vi2 , . . . , vik we add
the clause zi ∨ zi1 ∨ zi2 ∨ · · · ∨ zik , thus assuring that vi is dominated.

This gives us |E| + |V | clauses, some of which may consist of more than
three literals. We use the standard transformation to obtain only clauses
with at most three literals: each clause z0∨z1∨· · ·∨zk transforms into k−1
clauses

(z0 ∨ z1 ∨ x1) ∧ (x1 ∨ z2 ∨ x2) ∧ · · · ∧ (xk−2 ∨ zk−1 ∨ zk)

where x1, . . . , xk−2 are new variables (different for each original clause). Let
X be the set of new variables. We can see that X consists of less than
2E variables and that we have increased the number of clauses with |X| to
|E| + |V | + |X| < 3 |E| + |V |.

Now we have a Min Dones problem 〈X,Z,C〉 that exactly corresponds
to the original Min Independent Dominating Set problem. Even the
objective values agree. 2

Theorem 5. Min Ones is complete for Min PB.

Proof. This is a sketch of the proof. We reduce Min Dones to Min

Ones. The reduction is based on the reduction between the corresponding
maximization problems Max Dones and Max Ones by Panconesi and
Ranjan [1993].

The idea is to make a lot of copies of the distinguished variables to make
each such variable more valuable than all the nondistinguished variables to-
gether. If there are k distinguished variables and l nondistinguished variables
we introduce, for each distinguished variable z, 2l new variables z1, . . . , z2l

and 2l pairs of clauses (zi∨zi+1)∧ (zi∨zi+1) to assure that z = z1 = · · · = z2l.
A solution of this Min Ones problem with objective value m can be trans-
formed to a solution of the original Min Dones problem with objective
value bm/(2l + 1)c. The reduction is a linear reduction. 2

328 VIGGO KANN

Theorem 6. Min # Sat is complete for Min PB.

Proof. We reduce from Min Dones. Let 〈X,Z,C〉 be an input instance
of this problem. Construct |Z| 3CNF formulas such that the ith formula
is zi ∨ ¬C. This means that the number of true distinguished variables
in an assignment satisfying C is equal to the number of satisfied formulas
zi ∨¬C using the same assignment. A Min # Sat assignment must satisfy
C, otherwise every formula is satisfied and the objective value is |Z|.

Thus the reduction is a linear reduction. 2

Theorem 7. Min PB 0 − 1 Programming is complete for Min PB.

Proof. We reduce from Min Independent Dominating Set. Given
an input instance 〈V,E〉 of Min Independent Dominating Set, first
construct the set of |E| + |V | clauses in the same way as in the proof of
Theorem 4. We represent each clause as a linear inequality in the binary
variables x1, . . . , x|V |. Each clause of the type zi ∨ zj corresponds to an
inequality −xi −xj ≥ −1 and each clause of the type zi ∨ zi1 ∨ zi2 ∨ · · · ∨ zik

corresponds to an inequality xi +xi1 + · · ·+xik ≥ 1. This is a Min PB 0−1
Programming problem with m = |E|+ |V | and n = |V | and the reduction
is a linear reduction. 2

The five original Max PB-complete problems mentioned by Berman and
Schnitger [1992], were Longest Computation, Longest Path with

Forbidden Pairs, Max PB 0 − 1 Programming, Largest induced

connected cordal subgraph and Longest Induced Path.
We have shown that the minimization problems corresponding to the first

three problems (Shortest Computation, Shortest Path with For-

bidden Pairs and Min PB 0 − 1 Programming) are Min PB-complete.
The “smallest induced connected cordal subgraph problem” is obviously un-
interesting.

A natural question would be to ask whether the shortest induced path
between two given nodes, the minimization problem corresponding to the
last problem above, is also Min PB-complete. The answer is no, because
this problem is solvable in polynomial time using for example Dijkstra’s
algorithm (since the shortest path is always an induced path).

4. A Parameter Dependent Reduction

The relative error preserving reductions, like the L-reduction and the linear
reduction, work very well when reducing to problems with bounded ap-
proximation. When analyzing approximation algorithms for problems that
cannot be approximated within a constant, like the Min PB-complete prob-
lems, one usually specifies the approximability using a one variable function
where the parameter concerns the size of the input instance. Which quantity
of the input instance to choose as the parameter depends on the problem
and the algorithm.

POL. BOUNDED MINIMIZATION PROBLEMS 329

When reducing between two such problems, say from F to G, the relative
error preserving reductions are not perfect. The trouble is that these reduc-
tions may transform an input instance of F to a much larger input instance
of G. One purpose of a reduction is to be able to use an approximation
algorithm for G to construct an equally good (within a constant) approxi-
mation algorithm for F . Because of the size amplification the constructed
algorithm will not be as good as the original algorithm.

In order to tell how the approximability, when given as a function, will be
changed by a reduction, we have to specify how the size of the input instance
will be amplified. The size of a graph may for example be the number of
nodes or the number of edges.

For every reduction we may add a statement with size amplification a(n)
in order to specify this. If the size amplification is O(n), i.e. if the size of the
constructed structure is a constant times the size of the original structure,
we say that the reduction is without amplification. Moreover we introduce a
completely new size dependent reduction that we think is well suited for re-
ductions between problems that cannot be approximated within a constant.

Definition 10. Given two NPO problems F and G, an S-reduction with
size amplification a(n) from F to G is a tuple f = (t1, t2, a, c) such that

(1) t1, t2 are polynomial time computable functions, a is a monotonously
increasing positive function and c is a positive constant.

(2) t1 : IF → IG and ∀x ∈ IF and ∀y ∈ SG(t1(x)), t2(x, y) ∈ SF (x).

(3) ∀x ∈ IF and ∀y ∈ SG(t1(x)), RF (x, t2(x, y)) ≤ c · RG(t1(x), y).

(4) ∀x ∈ IF , |t1(x)| ≤ a(|x|).

Proposition 1. Given two NPO problems F and G, if F ≤ G with size
amplification a(n) and G can be approximated within some monotonously
increasing positive function u(n) of the size of the input instance, then F
can be approximated within c · u(a(n)), which is a monotonously increasing
positive function.

Proof. For each x ∈ IF of size n we use the approximation function for
G to find a solution y ∈ SG(t1(x)) so that

RF (x, t2(x, y)) ≤ c · RG(t1(x), y) ≤ c · u(|t1(x)|) ≤ c · u(a(|x|)) = c · u(a(n))

since u is monotonously increasing and positive. 2

For constant and polylogarithmic approximable problems the S-reduction
preserves approximability within a constant for any polynomial size amplifi-
cation, since c logk(np) = pkc logk n = O(logk n). For nc approximable prob-
lems it only does this for size amplification O(n), since c · (O(n))c = O(nc).

330 VIGGO KANN

Corollary 1. If P6=NP the following statements are true.

a) Min Dones cannot be approximated within n1−ε for any ε > 0, where
n is the number of distinguished variables.

b) Min Ones cannot be approximated within n0.5−ε for any ε > 0, where
n is the number of variables.

c) Min # Sat cannot be approximated within n1−ε for any ε > 0, where
n is the number of formulas.

d) Min PB 0 − 1 Programming cannot be approximated within n1−ε

for any ε > 0, where n is the number of unknown variables.

Proof. We apply Proposition 1 to the described reductions, use the fact
that Min Independent Dominating Set cannot be approximated within
n1−ε [Halldórsson 1993], and get:

a) The number of distinguished variables in the construction in Theo-
rem 4 is equal to the number of nodes in the Min Independent

Dominating Set input graph. Therefore the amplification a(n) = n
and Min Dones cannot be approximated within n1−ε for any ε > 0.

b) The number of variables in the construction in Theorem 5 is 2kl. From
Theorem 4 we obtain 2kl ≤ 4|E||V | where 〈V,E〉 is the Min Indepen-

dent Dominating Set instance. Inspection of Halldórsson’s proof
of the nonapproximability bound n1−ε of Min Independent Domi-

nating Set shows that the result is still valid if n is the input size,
i.e., the sum of the number of nodes and edges in the graph.

Therefore Min Ones cannot be approximated within m0.5−ε for any
ε > 0, where m is the number of variables.

c) The number of formulas in the construction in Theorem 6 is equal
to the number of distinguished variables in the Min Dones input
instance. Therefore the amplification a(n) = n and Min # Sat cannot
be approximated within n1−ε for any ε > 0.

d) The number of unknown variables in the construction in Theorem 7 is
equal to the number of nodes in the Min Independent Dominating

Set input graph. Therefore the amplification a(n) = n and Min PB

0 − 1 Programming cannot be approximated within n1−ε for any
ε > 0.

2

Note that all four problems can trivially be approximated within n. Thus
the lower bounds in a), c) and d) are optimal.

Acknowledgements

I would like to thank Magnús Halldórsson for asking me if Min Indepen-

dent Dominating Set is Min PB-complete. Thanks also to Johan H̊astad
and Klaus-Uwe Höffgen for discovering some unclear points in the proofs.

POL. BOUNDED MINIMIZATION PROBLEMS 331

References

Berman, P. and Schnitger, G. 1992. On the complexity of approximating the inde-

pendent set problem. Inform. and Comput. 96, 77–94.

Christofides, N. 1976. Worst-case analysis of a new heuristic for the travelling salesman
problem. Tech. report, Graduate School of Industrial Administration, Carnegie-

Mellon University, Pittsburgh.

Crescenzi, P., Kann, V., and Trevisan, L. 1994. Natural complete and intermediate

problems in approximation classes.
Crescenzi, P. and Panconesi, A. 1991. Completeness in approximation classes. Inform.

and Comput. 93, 2, 241–262.

Gabow, H. N., Maheshwari, S. N., and Osterweil, L. J. 1976. On two problems in

the generation of program test paths. IEEE Trans. on Softw. Eng. SE-2, 3, 227–231.
Garey, M. R. and Johnson, D. S. 1979. Computers and Intractability: a guide to the

theory of NP-completeness. W. H. Freeman and Company, San Francisco.

Halldórsson, M. M. 1993. Approximating the Minimum Maximal Independence Num-

ber. Inform. Process. Lett. 46, 169–172.

Höffgen, K-U., Simon, H-U., and van Horn, K. 1992. Robust Trainability of Single
Neurons. Tech. Report CS-92-9, Computer Science Department, Brigham Young

University, Provo.

Ibarra, O. H. and Kim, C. E. 1975. Fast approximation for the knapsack and sum of

subset problems. Journal of the ACM 22, 4, 463–468.
Irving, R. W. 1991. On approximating the minimum independent dominating set. In-

form. Process. Lett. 37, 197–200.

Kann, V. 1992. On the Approximability of NP-complete Optimization Problems. PhD

thesis, Department of Numerical Analysis and Computing Science, Royal Institute
of Technology, Stockholm.

Kolaitis, P. G. and Thakur, M. N. 1993. Logical definability of NP optimization

problems. Tech. Report UCSC-CRL-93-10, Board of Studies in Computer and Infor-

mation Sciences, University of California at Santa Cruz.
Krentel, M. W. 1988. The complexity of optimization problems. J. Comput. System

Sci. 36, 490–509.

Panconesi, A. and Ranjan, D. 1993. Quantifiers and approximation. Theoretical

Computer Science 107, 145–163.
Papadimitriou, C. H. and Yannakakis, M. 1991. Optimization, approximation, and

complexity classes. J. Comput. System Sci. 43, 425–440.

Pippenger, N. and Fischer, M. J. 1979. Relations among complexity measures. Journal

of the ACM 26, 2, 361–381.

