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C.P. 1250, succ.”B”, Hull, Québec J8X 3X7, Canada

Abstract. Broadcasting concerns transmitting information from a node of a
communication network to all other nodes. We consider this problem assuming
that links and nodes of the network fail independently with given probabilities
p < 1 and q < 1, respectively. For a positive constant ε, broadcasting in an n-node
network is said to be ε-safe, if source information is transmitted to all fault-free
nodes with probability at least 1 − n−ε. For any p < 1, q < 1 and ε > 0 we show
a class of n-node networks with maximum degree O(log n) and ε-safe broadcasting
algorithms for such networks working in logarithmic time.

1. Introduction

Broadcasting concerns transmitting information from a node of a commu-
nication network to all other nodes. It is closely related to gossiping where
each node of a network holds a piece of information and all nodes need
to learn the total information. Messages may be directly transmitted to
adjacent nodes only, and every node may communicate with at most one
neighbor in a unit of time.

The following are two important parameters of a broadcasting or gos-
siping algorithm: the total time used and the total number of two-party
transmissions (”phone calls“). Many papers have been devoted to the study
of algorithms optimizing one or both of these parameters. An extensive
bibliography can be found in [10].

Recently a lot of attention has been devoted to broadcasting and gossiping
in the presence of faulty links [2–8]. Two alternative assumptions about
faults are usually made: either an upper bound k on the total number of
faults is supposed [2, 7, 8] or it is assumed that links fail independently with
fixed probability p [3–6]. If an upper bound is imposed and the worst case
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is considered, the maximum number of faults that can be tolerated must be
smaller than the connectivity of the network. Thus, for large networks, the
stochastic approach seems to be more realistic.

In the presence of faults two ways of constructing a broadcasting algorithm
are possible. One way is non-adaptive, that is, all calls have to be prede-
termined by specifying in advance which pairs of nodes communicate in a
given time unit, without the possibility of modifying the sequence of calls
depending on which calls succeeded and which failed. Mostly this approach
has been studied in literature [2, 3, 6, 7, 8]. (In [8] it was called static). An-
other way of broadcasting in the presence of faults is adaptive, that is, every
node can decide which node it should call in a given time unit, depending
on the outcome of previous calls. However, in making this decision, a node
can only take advantage of the information currently available to it, that is,
no existence of a central monitor supervising the execution of the scheme is
assumed. Adaptive algorithms were studied in [4, 5].

If random faults are assumed, we cannot expect to perform broadcast-
ing with absolute certainty and thus we look for highly reliable algorithms.
Let ε be a positive constant. A broadcasting algorithm working for an n-
node network is called ε-safe if the probability of broadcasting information
throughout the network is at least 1 − n−ε.

Efficient ε-safe broadcasting algorithms working under assumption of ran-
dom link failures and fault-free nodes were studied in [3–5, 11]. Bienstock [3]
constructed n-node networks with O(n log n) links for which a non-adaptive
ε-safe broadcasting algorithm could be shown to work in logarithmic time.
His construction, however, is quite involved.

In this paper we study ε-safe broadcasting algorithms working under a
more general assumption: both links and nodes fail independently with given
probabilities p < 1 and q < 1, respectively. Under this scenario the aim of
the algorithm is to transmit information to all fault-free nodes. For any p,
q < 1 and ε > 0 we construct simple n-node networks with maximum degree
O(log n); for those networks we show a non-adaptive ε-safe broadcasting
algorithm working in logarithmic time. The algorithm uses O(n log n) calls.
Thus, using a simpler construction we get the same performance as in [3]
under a more general fault model. Although we consider only permanent
faults, our non-adaptive algorithm works also for other types of failures,
such as fail-stop faults. We also construct an adaptive ε-safe broadcasting
algorithm working in worst case logarithmic time and using an expected
linear number of calls. Finally, in case of fault-free nodes (q = 0), we
construct an adaptive ε-safe broadcasting algorithm working in worst case
logarithmic time and using a linear number of calls in the worst case. All
these characteristics are of minimal possible order of magnitude.

The paper is organized as follows: in section 2 we give a precise description
of the communication model used in this paper, in section 3 we construct
the family of sparse networks supporting our broadcasting algorithms, in
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section 4 we describe the algorithms, and in section 5 their reliability and
efficiency are analyzed. Section 6 contains conclusions.

We use the following notation. For any random event E, E denotes it
complement. For a set X, |X| denotes its size. For any positive number x,
we write log x instead of log2 x.

2. The Model

The communication network is represented as a simple undirected graph
whose vertices are nodes of the network and edges are communication links.
Information to be broadcasted is initially stored in a node called the source.
It will be referred to as source information. Links fail with fixed probability
p < 1 and nodes other than the source fail with fixed probability q < 1.
All failures are stochastically independent and the fault status of all compo-
nents is permanent, that is, it does not change during the execution of the
algorithm. The source is assumed fault-free.

We consider only synchronous algorithms. A basic step of a broadcasting
algorithm is an attempt made by a node v to communicate with its neighbor
w. Such an attempt takes a unit of time and we say in this case that v
calls w. In our algorithms a node v can call at most one neighbor or be
called by at most one neighbor in a unit of time, these two possibilities
being exclusive. A call from v to w is successful if v, w and the joining
link are fault-free. During such a call, the node which already has source
information, transmits it to the other node and some control messages can
also be exchanged between v and w. When a call from a fault-free node
v to w does not succeed, v becomes aware of it but it does not know the
reason of failure (faulty link, faulty destination node or both). In this case
no information is transmitted. Faulty nodes do not make calls: if a call from
a faulty node is scheduled by an algorithm, it is not executed.

We consider two types of broadcasting algorithms: non-adaptive, in which
the sequence of calls made by every node is given in advance, and adaptive,
in which each fault-free node can decide which node to call in a given time
unit using information currently available to it.

We say that a broadcasting algorithm is successful if upon its completion
all fault-free nodes get the source information. Let ε be a positive constant.
A broadcasting algorithm working for an n-node network is called ε-safe, if
it succeeds with probability at least 1 − n−ε. Two complexity measures of
a broadcasting algorithm are considered in this paper: the number of time
units used by the algorithm and the total number of calls (both successful
and not) made during its execution. For non-adaptive algorithms these
parameters are fixed in advance, while for adaptive algorithms there are
two natural ways of measuring complexity: counting worst case or expected
value of running time and of the number of calls.
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3. Construction of Networks

In this section we describe n-node networks with maximum degree O(log n)
for which efficient ε-safe broadcasting algorithms will be presented later.

Let c ≥ 2 be a positive integer defined later. For each n ≥ 2c we define
an n-node network Gn(c). Let d = cblog nc and bs = n/dc. For clarity of
presentation we assume that d divides n and s = 2h+1 − 1, for some h ≥ 0.
Partition the set of all nodes into groups S1, . . . , Ss, each of size d. In every
group Si, 1 ≤ i ≤ s, enumerate consecutive nodes from 0 to d − 1. For
any i = 1, . . . , s and j = 0, . . . , d − 1, assign label (i,j) to the j-th node
in the i-th group. We assume (1,0) to be the source of broadcasting. We
will later indicate easy modifications of our algorithms allowing to drop this
assumption. Arithmetic operations on the second integers forming labels
are performed modulo d. Arrange all groups Si into complete binary tree T
with h + 1 levels enumerated 0, 1, . . . , h, starting from the level containing
the root. The group S1 is the root of T . For every 1 ≤ i ≤ bs/2c, S2i is the
left child of Si and S2i+1 is the right child of Si in the tree T . For every
1 < i ≤ s, the group Sbi/2c is the parent of the group Si. If Si is a parent or
a child of Sj we say that these groups are adjacent in T .

The set of edges of Gn(c) is defined as follows. If groups Si and Sj are
adjacent in T , there is an edge in Gn(c) between every node from Si and
every node from Sj. There are no other edges in Gn(c). Notice that Gn(c)
has the following properties:

◦ for every 1 ≤ i ≤ s, |Si| ∈ O(log n);

◦ Gn(c) has maximum degree O(log n);

◦ the height h of the tree T is less than log n.

4. Broadcasting Algorithms

In this section we construct non-adaptive and adaptive ε-safe broadcasting
algorithms working for graph Gn(c) defined in section 3. We first describe
three procedures used in these algorithms.

1. Procedure Multicall (Si, Sj , k)

The aim of this procedure is communication between nodes of group Si

and nodes of group Sj. Sj is a child of Si in the tree T . The procedure uses
one time unit.

procedure Multicall (Si, Sj, k);
begin

for all 0 ≤ r < d in parallel do

(i,r) calls (j, r + k)
end;
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2. Procedure One To All ((i,r), Sj)

The aim of the procedure is communication between a node of group Si

and all nodes of group Sj. Groups Si and Sj are adjacent in the tree T . The
procedure uses d time units.

procedure One To All ((i,r), Sj);
begin

for k := 0 to d − 1 do

(i,r) calls (j,k)
end;

3. Procedure Adaptive Multicalls (Si, Sj)

This procedure is adaptive. For groups Si and Sj adjacent in the tree T ,
nodes from Si call consecutive nodes from Sj. A fault-free node u from Si

is called active if u does not have yet the source information; as soon as
it gets it, it stops being active. Calls are made only by active nodes. The
procedure uses d time units.

procedure Adaptive Multicalls (Si, Sj);
begin

for k := 0 to d − 1 do

for all 0 ≤ r < d in parallel do

if (i,r) is active then

(i,r) calls (j, k + r)
end;

We are now ready to describe the main broadcasting algorithms.

The Non-adaptive Broadcasting Algorithm (NBA)

The algorithm consists of 3 identical stages. The aim of the first stage is to
disseminate source information originally stored in node (1,0) (the source)
belonging to group S1 (the root of T ) down the tree T in such a way that
at least one fault-free node in each group gets the information with high
probability. Nodes which get information in the first stage are called leaders
of their respective groups. Every group may have many leaders. In stages 2
and 3 leaders transmit information to other fault-free nodes in their group.
In order to do that a leader of group Si transmits source information to nodes
of an adjacent group Sj in stage 2 and subsequently these nodes transmit
source information to other nodes of group Si in stage 3.
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Algorithm NBA;
begin

for stage := 1 to 3 do

for step := 0 to d − 1 do

begin

for each Si on an even level in T , less than h do

begin

MultiCall (Si, S2i, step);
MultiCall (Si, S2i+1, step);

end;
for each Si on an odd level in T , less than h do

begin

MultiCall (Si, S2i, step);
MultiCall (Si, S2i+1, step);

end

end

end;

Since the algorithm NBA contains 3 stages, each consisting of d steps
taking 4 time units each, it works in time O(log n). Clearly every node is
involved in at most one call in a unit of time.

The Adaptive Broadcasting Algorithm (ABA)

The idea of the adaptive algorithm is fairly similar to the above. However,
in the present case we need to avoid making too many calls on average, since
NBA used Θ(n log n) calls and our present goal is the expected number of
O(n) calls. As before, the algorithm consists of 3 stages. This time they are
not identical but their role in the broadcasting process is similar as in the
non-adaptive case.

A node u in group Si is called a left sender (right sender) if 1 ≤ i ≤ bs/2c,
and u has source information but it has not yet transmitted it to any node
from S2i (S2i+1 ). Notice that at the beginning only node (1,0) (the source)
is a left and right sender.

Stage 1

begin

for step := 0 to d − 1 do

begin

for each Si on an even level in T do

begin

if (i,r) is a left sender in Si then

(i,r) calls (2i, r + step);
if (i,r) is a right sender in Si then

(i,r) calls (2i + 1, r + step)
end;
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for each Si on an odd level in T do

begin

if (i,r) is a left sender in Si then

(i,r) calls (2i, r + step);
if (i,r) is a right sender in Si then

(i,r) calls (2i + 1, r + step)
end

end

end;

Stage 1 of ABA takes 4d time units. Every group Si can have at most one
leader upon completion of this stage. When a node u becomes the leader of
Si (that is, it has obtained the source information from the leader of Sbi/2c)
and 2i ≤ s(2i + 1 ≤ s) then u becomes a left sender (right sender). If Si

is the left child (right child) of Sbi/2c then the leader of Sbi/2c stops being a
left sender (right sender) at this point. A left sender (right sender) from Si

calls different nodes from S2i (S2i+1).
In the second stage the leader of every group Si, 1 < i ≤ s, calls all nodes

from Sbi/2c. The leader of S1 calls all nodes from S2.

Stage 2

begin

for each leader (i,r) such that
Si is on an even level in T and it is
the left child of its parent do

One To All ((i,r), Sbi/2c);
for each leader (i,r) such that

Si is on an even level in T and it is
the right child of its parent do

One To All ((i,r), Sbi/2c);
for each leader (i,r) such that

Si is on an odd level in T and it is
the left child of its parent do

One To All ((i,r), Sbi/2c);
for each leader (i,r) such that

Si is on an odd level in T and it is
the right child of its parent do

One To All ((i,r), Sbi/2c);
One to All ((1,0), S2)

end;

Stage 2 uses 5d time units.

In stage 3 those nodes from group Si, 1 < i ≤ s, which do not have yet
source information, call nodes from Sbi/2c in order to obtain this information
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transmitted there in stage 2 by the leader of Si. Nodes from S1 call nodes
from S2.

Stage 3

begin

Adaptive Multicalls (S1, S2);
for each Si such that
1 < i ≤ s, Si is on an even level in T and it is
the left child of its parent do

Adaptive Multicalls (Si, Sbi/2c);
for each Si such that
1 < i ≤ s, Si is on an even level in T and it is
the right child of its parent do

Adaptive Multicalls (Si, Sbi/2c);
for each Si such that
1 < i ≤ s, Si is on an odd level in T and it is
the left child of its parent do

Adaptive Multicalls (Si, Sbi/2c);
for each Si such that
1 < i ≤ s, Si is on an odd level in T and it is
the right child of its parent do

Adaptive Multicalls (Si, Sbi/2c)
end;

Stage 3 uses less than 5d time units. Hence the entire algorithm ABA
works in (worst case) logarithmic time. Clearly every node is involved in at
most one call in a unit of time.

Call Saving Adaptive Broadcasting Algorithm (ABA*)

Our last algorithm is an adaptive broadcasting algorithm working in worst
case logarithmic time and using a linear number of calls in worst case. How-
ever, it will be proved ε-safe only under the additional assumption that all
nodes are fault-free (i.e. q = 0). The algorithm ABA* works in two stages.
Stage 1 is exactly the same as in ABA. Upon its completion every group Si

has at most one leader: a node knowing the source information. Let (i, ri) be
the leader in Si. In Stage 2 every leader (i, ri) tries to transmit source infor-
mation to all nodes in its group. This is done using intermediary nodes from
group Sj, where j = bi/2c for i ≥ 2 and j = 2 for i = 1. The leader (i, ri)
tries to inform consecutive nodes (i, ri + k), for k = 1, . . . , d− 1. The total
number of transmission attempts made by a leader cannot exceed cd. A
leader attempts to inform node (i, s + 1) only after having informed node
(i,s). Transmission attempts are executed using consecutive intermediaries
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from group Sj . Every attempt consists of three consecutive calls:

◦ between the leader and the current intermediary,

◦ between the intermediary and the target node,

◦ between the leader and the intermediary.

The aim of the last call is to inform the leader if the second call has been
successful, i.e. if the link between the intermediary and the target node is
fault-free. If both links used in an attempt are fault-free, the target node
has been informed and the leader starts attempts to inform the next node
from its group; otherwise it tries to inform the same node using consecutive
intermediaries. Broadcasting source information to nodes in group Si is
executed using procedure Group Broadcast (Si, Sj).

procedure Group Broadcast (Si, Sj);
begin

t := 0; current := ri + 1
while (t < cd) and (current 6= ri) do

begin

(i, ri) calls (j, ri + t)
(j, ri + t) calls (i, current)
(j, ri + t) calls (i, ri)
if all calls were successful
then current := current + 1
t := t + 1

end

end

Stage 2 of the algorithm can be now formally written as follows

Stage 2

begin

Group Broadcast (S1, S2)
for all S2i on odd levels in T in parallel do

Group Broadcast (S2i, Si)
for all S2i+1 on odd levels in T in parallel do

Group Broadcast (S2i+1, Si)
for all S2i on even positive levels in T in parallel do

Group Broadcast (S2i, Si)
for all S2i+1 on even positive levels in T in parallel do

Group Broadcast (S2i+1, Si)
end

Stage 2 works in worst case time O(d) and uses O(n) calls in worst case.
Since complexity of Stage 1 is the same, the entire algorithm ABA* works
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in worst case logarithmic time and uses a linear number of calls in the worst
case. Clearly every node is involved in at most one call in a unit of time.

Note that the algorithms can be easily adapted to work with any binary
tree formed with groups of nodes, it was merely convenient and efficient to
assume a complete tree. Hence, one can take any group Si to be the root
and any node (i, j) to be the source. Such a modification at most doubles
the height of the tree and the running time of the algorithms.

5. Reliability and Complexity of Broadcasting Algorithms

In this section we estimate the probability that the broadcasting algorithms
described in section 4 are successful. We also discuss their complexity. The
first result is:

Theorem 1. Let p < 1 be the link failure probability and q < 1 be the node
failure probability. For every ε > 0 there exist integers c, n0 > 0 such that
for every n ≥ n0, each of the algorithms NBA and ABA working for the
network Gn(c) is ε-safe.

Proof. We give the proof only for algorithm NBA. The adaptive case is
similar. Let

c = max

(⌈

−4(1 + ε]

log(1 − (1 − p)2(1 − q))

⌉

,

⌈

8(1 + 2ε)

(1 − p)(1 − q) log e

⌉)

and

n0 = max

(

min

{

n :
n

cblog nc
≥ 2

}

, min{n : nε ≥ 2}

)

.

Let E denote the event that NBA is successful. Consider the following
events:

E1 upon completion of the first stage at least one node in every group Si

obtains source information (every group has a leader).

E2 between every pair of nodes in the same group there exists a path of
length 2 whose both links and the intermediate node are fault-free.

First notice that E1 ∩ E2 ⊂ E. Indeed, in view of E1, every group has
a leader. In the second stage a leader u of group Si transmits source in-
formation to all its fault-free neighbors, provided that the joining links are
fault-free. In the third stage these neighbors transmit information to every
fault-free node v in Si, provided that respective joining links are fault-free.
By E2 there is a path of length 2 between u and v without faulty components
and consequently v obtains source information upon completion of the third
phase.

We will show that Pr(E1) ≤ n−2ε and Pr(E2) ≤ n−2ε, thus Pr(E) ≤ n−ε,
for sufficiently large n. The event E1 implies that during the first stage
of NBA source information has not been passed along some branch of the
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tree T (that is, some group of this branch does not have a leader). Fix
such a branch B = (Si0 , Si1 , . . . , Sih), where Si0 = S1, and estimate the
probability of the event P that information has not been passed along this
branch. Every fault-free node from group Sij calls different nodes from group
Sij+1

in d consecutive steps. These attempts are independent and they have
success probability r1 = (1 − p)(1 − q) (both the destination node and the
joining link must be fault-free). Upon a successful call from a leader of Sij ,
some node of Sij+1

becomes a leader and information can be passed further
along branch B. Hence Pr(P ) does not exceed the probability of at most h
successes in d Bernoulli trials with success probability r1.

Since h < blog nc, Pr(P ) does not exceed the probability of at most blog nc
successes in a series of d trials with success probability r1. Consider such a
series of trials and let X be the number of successes. By Chernoff bound
(cf. [1, 9] ) we get Pr(X ≤ (1 − λ)r1d) ≤ e−λ2r1d/2, for any 0 < λ < 1.
Since c > 1/r1, we have

0 < λ =
r1c − 1

r1c
< 1

and

(1 − λ)r1d =
1

r1c
· r1cblog nc = blog nc,

hence
Pr(P ) ≤ Pr(X ≤ blog nc) ≤ e−λ2r1cblog nc/2 .

Since there are less than n branches in the tree T , we get (for n ≥ 2)

Pr(E1) ≤ nPr(P ) ≤ n e−λ2r1c log n/4

= n · n−λ2r1c log e/4 = n
1−(r1c−2+ 1

r1c
) log e/4

≤ n1−r1c log e/8,

because c ≥

⌈

8(1 + 2ε)

r1 log e

⌉

≥ d4/r1e implies

r1c − 2 +
1

r1c
≥

r1c

2
.

Since r1 c log e/8 ≥ 1 + 2ε, we finally get

Pr(E1) ≤ n−2ε.

Next, we estimate Pr(E2). Every group contains at least d nodes. In view
of n/d ≥ 2 there are at least two groups. Between every pair of nodes in a
group there exist at least d disjoint paths of length 2. The probability that
in a single path u-w-v the intermediate node or one of the links are faulty is
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r2 = 1−(1−p)2(1−q). Consider two fault-free nodes u, v in a group and fix
d disjoint paths of length 2 between them. Since the events that these paths
contain a faulty component are independent, the probability that each of
them does, is rd

2 . Since there are less than n2 pairs of nodes in the network,
we get

Pr(E2) ≤ n2rd
2 ≤ n2r

c log n/2
2 , for n ≥ 2

and since c log r2 ≤ −4(1 + ε), we obtain

Pr(E2) ≤ n2 · nc log r2/2 ≤ n2 · n−(2+2ε) = n−2ε.

Since nε ≥ 2 for n ≥ n0, this implies

Pr(E) ≤ Pr(E1) + Pr(E2) ≤ 2n−2ε ≤ n−ε,

which concludes the proof. 2

In section 4 we noticed that both algorithms NBA and ABA work in (worst
case) logarithmic time. This order clearly cannot be decreased even without
faults. It follows that the number of calls used by NBA is O(n log n) and
the worst case number of calls used by ABA is also O(n log n). It is easy to
see that in both cases order n log n is exact. Moreover it can be proved (cf.
[5]) that every non-adaptive broadcasting algorithm using o(n log n) calls
is successful with probability converging to 0, so NBA is asymptotically
optimal among ε-safe algorithms, with respect to the number of calls. On
the other hand, in case of ABA, the average number of calls is linear. Indeed,
during the first two stages only leaders of groups make calls, and since there
are O(n/ log n) leaders, the number of calls in these phases is O(n). In stage
3 every node u which does not yet have source information calls nodes from a
group adjacent to its own group Si until it finds a node previously informed
by the leader of Si. If this leader appeared in stage 1, the expected number
of calls made by u in stage 3 is d1/((1 − p)2(1 − q))e, otherwise u makes d
calls. Hence the expected number of calls made by u in stage 3 is at most

d1/((1 − p)2(1 − q))e + cblog nc · n−ε ∈ O(1)

and consequently the total expected number of calls is linear.
Theorem 1 and the above remarks imply the following Corollary.

Corollary. Let p < 1 be the link failure probability and q < 1 the node
failure probability. There exists a family of n-node networks with maximum
degree O(log n) which support a non-adaptive ε-safe broadcasting algorithm
working in logarithmic time, as well as an adaptive ε-safe broadcasting algo-
rithm working in (worst case) logarithmic time and using an average linear
number of calls.

Our next theorem concerns the reliability of algorithm ABA* in case when
nodes are fault-free.
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Theorem 2. Let p < 1 be the link failure probability and assume that nodes
are fault-free (q = 0). For every ε > 0 there exist integers c, n0 > 0 such
that for every n ≥ n0, the algorithm ABA* working for the network Gn(c)
is ε-safe.

Proof. The proof of the theorem is an immediate consequence of the
following lemma. 2

Lemma. Assume that after Stage 1 of algorithm ABA* there is a leader in
every group Si. Then, after Stage 2 of ABA* all nodes of the network know
source information, with probability at least 1 − n−2ε.

Proof. Let c = d 8(1+2ε)
(1−p)2 log e

e and n0 = min
{

n : n
cblog nc ≥ 2

}

. Consider

blog nc consecutive nodes in Si. Let E be the event that not all of these
nodes are informed after a total of d = cblog nc attempts. Since in d con-
secutive attempts all intermediaries are distinct, Pr(E) does not exceed the
probability of at most blog nc successes in a series of d Bernoulli trials with
success probability r = (1 − p)2. All nodes in Si can be divided into c sets
of size blog nc. Hence an argument similar to that in the proof of theorem
1 shows that the probability of informing all nodes in all groups is at least
1 − n Pr(E), which is at least 1 − n−2ε if n ≥ n0 for c and n0 as above. 2

Corollary 1. Let p < 1 be link failure probability and assume that all
nodes are fault-free. There exists a family of n-node networks with max-
imum degree O(log n) which support an adaptive ε-safe broadcasting algo-
rithm working in worst case logarithmic time and using a linear number of
calls in the worst case.

6. Conclusions

We presented three broadcasting algorithms working correctly with high
probability in the presence of random faults in n-nodes networks. Two
of them tolerate both link and node failures: the non-adaptive algorithm
NBA works in logarithmic time and uses O(n log n) calls, while the adaptive
algorithm ABA works in worst case logarithmic time and uses O(n) calls on
average. In case when only links are subject to failures and all nodes are
fault-free we presented an adaptive algorithm ABA* working in worst case
logarithmic time and using O(n) calls in the worst case. It seems difficult
to obtain a similar performance in case of faulty links and nodes. In this
general case, the difficulty is to decide when an informed node should give
up attempts to inform a target node: too many unsuccessful attempts may
be a waste because the target node may be faulty and should be given up,
too few attempts risk to give up a fault-free node that must be informed.
In case of fault-free nodes there is no need to make this decision: attempts
are made until the target node is informed or until all available trials are
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exhausted. As we proved, logarithmically many trials are then enough to
inform all nodes in the group, with high probability, thus yielding a worst
case linear number of calls in the entire algorithm. In the general case,
however, the following problem remains open.

Problem. Assume that p < 1 is the link failure probability and q < 1 is
the node failure probability. Does there exist an ε-safe adaptive algorithm
working in worst case logarithmic time and using a linear number of calls in
the worst case?
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