
Nordic Journal of Computing 1(1994), 389–401.

A NEW ALGORITHM FOR THE CONSTRUCTION
OF OPTIMAL B-TREES

PETER BECKER
Wilhelm-Schickard-Institut für Informatik,

Universität Tübingen
Sand 13, 72076 Tübingen, Germany

becker@informatik.uni-tuebingen.de
Fax: +49 7071 / 295958

Abstract. In this paper the construction of optimal B-trees for n keys, n key
weights, and n+1 gap weights, is investigated. The best algorithms up to now have
running time O(k n3 log n), where k is the order of the B-tree. These algorithms are
based on dynamic programming and use step by step construction of larger trees
from optimal smaller trees. We present a new algorithm, which has running time
O(k nα), with α = 2 + log 2/ log(k + 1). This is a substantial improvement to the
former algorithms. The improvement is achieved by applying a different dynamic
programming paradigm. Instead of step by step construction from smaller subtrees
a decision model is used, where the keys are placed by a sequential decision process
in such a way into the tree, that the costs become optimal and the B-tree constraints
are valid.

CR Classification: E.1, H.2.2, I.2.8

Key words: B-Tree, optimization, dynamic programming

1. Introduction

In this article the problem of constructing an optimal B-tree for n keys, n key
weights, and n+1 gap weights is considered. The best algorithms up to now
have running time O(k n3 log n), where k is the order of the B-tree, see [7, 3].
These algorithms are adaptations of the well known algorithm of Knuth [4]
for the construction of optimal binary search trees with n key weights and
n + 1 gap weights. Furthermore, in [7, 2] algorithms for the construction of
optimal multiway trees of order t are presented. These algorithms also adapt
Knuth’s dynamic programming scheme and have running time O(t n3). All
these algorithms use step by step construction of larger trees from optimal
smaller trees, that means an optimal tree for the set {ki, . . . , kj} is con-
structed from optimal trees for {ki, . . . , kb−1} and {kb+1, . . . , kj} for some b
(i ≤ b ≤ j, i 6= j).

In this article a new algorithm for the problem of constructing an optimal
B-tree is presented. The improvement is achieved by applying a different
dynamic programming paradigm. Instead of step by step construction from

Received May 1994. Accepted September 1994.

390 PETER BECKER

smaller subtrees a decision model is used, where the keys are placed by a
sequential decision process in such a way into the tree, that the search costs
become optimal and the B-tree constraints are valid. This new approach
results in a running time of O(k nα) with α = 2 + log 2/ log(k + 1), which
is a substantial improvement to the former algorithms, especially for k of
realistic size. Common values of k in database applications are between 20
and 50. This implies values of 2.23 resp. 2.18 for the exponent α.

The rest of the paper is structured in the following way: in Section 2
a formal description of the problem is given. Section 3 reviews the best
algorithms up to now. In Section 4 the new approach is presented: the
decision model is explained, the attached dynamic program is formulated
and the solution algorithm is stated. Section 5 gives the complexity results
and Section 6 presents some ideas about further improvements.

2. The problem

First, we review the definition of a B-tree, cf. [1].

Definition 1. A B-tree of order k is a multiway search tree that satisfies
the following conditions:

(1) Each node has at most 2k keys.

(2) Each node, except the root, has at least k keys.

(3) The root has at least one key.

(4) A nonleaf node with d keys has exactly d + 1 children.

(5) All leaves are on the same level.

The following well known theorem (cf. [1]) is crucial for our complexity
results in Section 5:

Theorem 1. Let hu be the maximum height of a B-tree of order k with n
keys and let hl be its minimum height. For the height h of a B-tree of order
k with n keys the following equation is valid:

hl =

⌈

log(n + 1)

log(2k + 1)

⌉

≤ h ≤

⌊

1 + log(
n + 1

2
)/ log(k + 1)

⌋

= hu

Now we give the problem formulation. We have keys k1 < k2 . . . < kn,
an order k and positive weights q0, p1, q1, p2, . . . , pn, qn. pi are the key
weights and qj are the gap weights. We define the sum of all weights as
w :=

∑n
i=1 pi +

∑n
i=0 qj. We may interpret the value αi := pi/w as the

probability that key ki is requested and the value βj := qj/w as the prob-
ability, that a search is made for a key d with kj < d < kj+1. We as-
sume that we have artificial keys k0 = −∞ and kn+1 = ∞. We define
pq(i, j) := (qi, pi+1, qi+1, . . . , pj, qj) as the sequence of gap and key weights

CONSTRUCTION OF OPTIMAL B-TREES 391

B
B
B
B
B
B
BBN

S
S

S
S

S
S

SSw

�
�

�
�

�
�

��/

� -

Tree A . . .

Tree B

. . .

c(b, j, l − 1, h)

l − 1l th

kb

optimal subtree for {ki+1, . . . , kb−1} optimal tree for {kb+1, . . . , kj}

c̄(i, b − 1, h − 1)

Fig. 1: Construction principle for optimal trees

from i to j and w(i, j) :=
∑j

ν=i qν +
∑j

ν=i+1 pν is the weight of such a se-
quence. For a B-tree b with n keys and height h we define the weighted path
length wpl(b) by

wpl(b) :=

n
∑

i=1

pi level(ki) + h

n
∑

i=0

qi

where level(ki) is the level of the node which contains key ki. The level
of the root is defined to be one. The weighted path length is the expected
number of visits in a search multiplied by w. The problem is now to find
a B-tree b of order k for n keys, that minimizes the weighted path length
wpl(b). Such a tree is defined to be an optimal B-tree.

3. Review of existing algorithms

The best algorithms known so far for the problem defined in Section 2 are
adaptations of the corresponding algorithms to construct optimal multiway
search trees, cf. [7, 2]. These algorithms themselves are extensions of Knuth’s
algorithm for the construction of optimal binary search trees.

Figure 1 shows the basic principle underlying all these algorithms. Trees
for larger sets of keys are constructed by joining trees for smaller sets. An
optimal tree for the set {ki, . . . , kj} with exactly l keys in the root is con-

392 PETER BECKER

structed by joining an optimal tree for the set {kb+1, . . . , kj} with exactly
l − 1 keys in the root and an optimal tree for the set {ki, . . . , kb−1} in an
optimal way. That means we have to find a value for b that minimizes the
weighted path length of the resulting tree.

If we want to use this principle for B-trees, we have to notice some addi-
tional constraints. First, subtrees of any node must have the same height.
This leads to the following restriction: if tree B of Figure 1 has height h we
can use for tree A only trees of height h − 1. Second, optimal B-trees may
not have a fully occupied root in contrast to multiway trees. For them it can
be proven that there always exists an optimal tree that has a fully occupied
root. Third, an optimal B-tree does not necessarily have minimal height. So
we have to take into consideration every possible height of a B-tree of order
k with n keys, that means every possible value between hl and hu.

Taking the basic principle shown in Figure 1 and paying attention to
the additional constraints leads to the following recursive formulas. With
c(i, j, l, h) we denote the weighted path length of an optimal B-tree for the
set {ki+1, . . . , kj} that has height h and exactly l keys in the root. This is the
weighted path length for the sequence pq(i, j). c̄(i, j, h) is the weighted path
length of an optimal subtree with height h for {ki+1, . . . , kj}. Subtrees must
have at least k keys in their root, see point (2) in Definition 1. We define
ĉ(h) as the weighted path length of an optimal B-tree for {k1, . . . , kn} with
height h. c̃ is the weighted path length of an optimal B-tree for {k1, . . . , kn}.
We have the following formulas (cf. [7]):

(i) c(i, i, l, 1) =∞, 0 ≤ i ≤ n, 1 ≤ l ≤ 2k

(ii) c(i, j, l, 1) =

{

w(i, j) if l = j − i
∞ otherwise

0 ≤ i < j ≤ n, 1 ≤ l ≤ 2k

(iii) c̄(i, j, h) = min
k≤l≤2k

c(i, j, l, h) + w(i, j), 0 ≤ i < j ≤ n, 1 ≤ h ≤ hu

(iv) c(i, j, 1, h) = min
i<b<j

(c̄(i, b − 1, h − 1) + pb + c̄(b, j, h − 1)),

0 ≤ i < j ≤ n, 2 ≤ h ≤ hu

(v) c(i, j, l, h) = min
i<b<j

(c̄(i, b− 1, h− 1) + pb + c(b, j, l − 1, h)),

0 ≤ i < j ≤ n, 2 ≤ l ≤ 2k

(vi) ĉ(h) = min
1≤l≤2k

c(0, n, l, h), 1 ≤ h ≤ hu

(vii) c̃ = min
hl≤h≤hu

ĉ(h)

Formulas (i) and (ii) initialize the recursion. Formulas (iv) and (v) state
the construction principle. Formula (iii) computes the weighted path length
of an optimal subtree for {ki, . . . , kj}. We have to add w(i, j), because the
level of each key and gap weight in the subtree will be increased by one,
if we use an optimal tree as subtree of another tree. (vi) and (vii) are the
definitions of ĉ and c̃. To get the minimum weighted path length in (vii),
we have to examine all possible heights between hl and hu.

Now we give the algorithm (cf. [7, 3]):

CONSTRUCTION OF OPTIMAL B-TREES 393

Algorithm 1:

for i← 1 to n do

w(i, i) ← qi

c(i, i, l, 1) ←∞
for j ← i + 1 to n do

w(i, j) ← w(i, j − 1) + pj + qj

for l← 1 to 2k do

if l = j − i then

c(i, j, l, 1) ← w(i, j)
r[i, j, l, 1]← i + 1

else

c(i, j, l, 1) ←∞
ĉ(1)← min1≤l≤2k c(0, n, l, 1)
hu ← 1 + log((n + 1)/2)/ log(k + 1)
for h← 2 to hu do

for i← n downto 0 do

for j ← i to n do

c̄(i, j, h − 1)← mink≤l≤2k c(i, j, l, h − 1) + w(i, j)
forall i < b < j do

compute b̄ which minimizes
c̄(i, b− 1, h − 1) + pb + c̄(b, j, h − 1)

r[i, j, 1, h] ← b̄
for l← 2 to 2k do

forall i < b < j do

compute b̄ which minimizes
c̄(i, b− 1, h − 1) + pb + c(b, j, l − 1, h)

c(i, j, l, h) ← c̄(i, b̄− 1, h) + pb̄ + c(b, j, l − 1, h)
r[i, j, l, h]← b̄

ĉ(h)← min1≤l≤2k c(0, n, l, h)
c̃← minhl≤h≤hu

ĉ(h)

After the termination of the algorithm the multidimensional array r con-
tains the information to construct the optimal B-tree. r[i, j, l, h] defines the
leftmost key in the root of an optimal tree of height h for {ki+1, . . . , kj} with
exactly l keys in the root. From the nesting of the loops it is clear that the
algorithm has a time complexity of O(k n3 log n).

4. The new approach

As mentioned before the construction principle underlying the algorithm
of the last section has originally been used for optimal multiway trees. In
contrast to multiway trees the height of B-trees is bounded by O(log n) and
their structure is much more restricted than the structure of multiway trees.
These aspects are not considered by Algorithm 1. We present a sequential
decision approach where keys are placed directly on some level l(1 ≤ l ≤ hu)

394 PETER BECKER

of the tree. Using this approach yields a linear iteration over the keys instead
of a cubic one (i, j, b) as in Algorithm 1. The crucial question is whether the
number of trees that have to be examined for an optimal assignment of ki

is bounded drastically enough by the B-tree restrictions, so that overall we
get an improved running time.

We now model the process of constructing an optimal B-tree as a decision
problem with n stages. For every key ki we have to decide, on which level
this key should be placed. Whether placing on some level is feasible, depends
on the former decisions for the keys k1 to ki−1, which define a certain state
in the decision process. Then placing the key ki on any level results in an
increasing weighted path length and a new state. The amount of increasing
as well as the new state depend on our decision.

Using this approach, the optimal B-tree is the result of a sequence of
optimal decisions starting in a unique initial state. This leads to a dynamic
program DP of the form DP = (Sν , Aν , Dν , Tν , cν , Cn+1),where n is the
number of the stages of DP , Sν is the state set of stage ν, 1 ≤ ν ≤ n+1, and
Aν is the decision set of stage ν, 1 ≤ ν ≤ n. The sets Dν ⊆ Sν×Aν define the
feasible decisions for the states of stage ν. It holds: (s, a) ∈ Dν , if and only
if a is feasible in state s on stage ν. The set Dν(s) := {a ∈ Aν |(s, a) ∈ Dν}
contains all feasible decisions for state s on stage ν. Tν : Dν → Sν+1 is the
transition function. Making decision a in state s at stage ν results in state
Tν(s, a) at stage ν + 1. cν : Dν → IR is the cost function of stage ν. cν(s, a)
gives the costs that arise if we decide to make decision a in state s on stage
ν. Cn+1 : Sn+1 → IR is the terminal cost function. Cn+1(s) gives the costs
that arise if our final state is s.

Now we have to define the components of the dynamic program in such a
way that the decision process models the construction of a B-tree.

First we give the definition of the states. For motivation take a look at
Figure 2. Suppose we have k = 2. Then we have to place the first two keys
in the first block. This results in (a) of Figure 2. Now for k3 we have two
possibilities. We may place k3 in the same block as the former keys (b) or
we may create a new root, which leads to (c). In the latter case it is not
feasible to place one of the following keys in the block of {k1, k2}. Instead
we have to place k4 and k5 in a new block on leaf level. Doing this we get
(d). Now there are again two choices for k6. On the other hand in situation
(e) we have to place k8 in the root, because the leaf already contains 2k
keys. For assigning k10 it doesn’t matter if we have tree (f) or tree (g). For
both trees we have the choices to create a new root with k10 as the first
key or to place k10 on the actual root or leaf level. The rules that we have
implicitly used in this example have led to trees that are valid B-trees with
the exception of the rightmost path. Such trees will be filtered on the last
stage (n + 1) by the terminal cost function Cn+1. For instance tree (c) gets
the terminal costs ∞ for n = 3.

From the examples above we can deduce, that for a correct placing of a
key in the partial tree only the occupation of the blocks in the rightmost
path from the root to the leaf is relevant. Due to this fact we can represent

CONSTRUCTION OF OPTIMAL B-TREES 395

?

�
�

�
�

��+

Q
Q

Q
Q

QQs

�
�

�
�

A
A
AAU

�
�

��

A
A
AAU

�
�
��

J
J
JĴ

?

�
�

�
�

�=

Z
Z

Z
Z

Z~

1 2 3

1 2 3

(a) (b)

(f)

1 2

3

2

3

2

4 7

5 6 8 9

1

1

3

1 2

(c)

1

(g)

3 7

2 4 5 6 8 9

54

(d)

(e)

4 5 6 7

Fig. 2: B-tree states in the construction process

396 PETER BECKER

a state s ∈ Sν by a vector with hs components, that means s = (s1, . . . , shs
)

with 0 ≤ si ≤ 2k resp. s ∈ INhs

2k. In the following we will use hs as the
denotation for the component number of a state. Each component si gives
the number of keys in the block of level i in the rightmost path of the tree.
For instance the state resulting from tree (d) in Figure 2 is represented by
(1, 2) and the state resulting from tree (g) by (2, 2). The set Sν is defined
to be the set of all vectors that are possible after the assignment of ν − 1
keys. A more formal definition of the state sets Sν follows below.

A decision is characterized by the level on which a key is placed. So we
define A = Aν = {0, . . . , hu}. Making decision a = 0 means creating a new
root, as in the transition from (a) to (c) of Figure 2. a ≥ 1 means that
the corresponding key is placed on level a. For instance, the tree (g) is
constructed by the decision sequence DS = (0, 1, 0, 2, 2, 2, 1, 2, 2), assuming
that s1 = () (i.e. hs = 0) is the initial state. Why we start with s1 = () and
not with s1 = (0) is explained below.

Let s = (s1, . . . , shs
) be a state. A feasible decision a has to fulfill the

following conditions:

(i) 0 ≤ a ≤ hs

(ii) sµ ≥ k, a + 1 ≤ µ ≤ hs

(iii) a = 0 ∨ sa < 2k

Condition (ii) is due to (2) of Definition 1 and (iii) is due to (1) of Definition
1. (i) guarantees the consistency of state s. So we can define Dν = {(s, a)|s ∈
Sν , a fulfills (i) to (iii)}. Observe that the feasible decisions of a state s are
independent of the stage ν. So we define D(s) = {a ∈ A|a fulfills (i) to (iii)}
as the set of feasible decisions for state s. For every B-tree there exists a
unique feasible decision sequence that constructs the tree. As an example
see the decision sequence to construct tree (g) above. Using these definition
each feasible decision sequence leads to trees that are valid B-trees with the
exception of the rightmost path. Such trees are filtered by the terminal cost
function Cn+1.

As explained before, making a decision a has two effects. First, the block
on level a of the rightmost path gets one additional key and second, the
blocks on the levels from a + 1 to hs become closed. That means we cannot
assign following keys to these blocks. We get new empty blocks for these
levels as in (c) of Figure 2. So the definition for the transition function is:

Tν(s, a) = T (s, a) =

{

(1, 0, . . . , 0) ∈ INhs+1
2k if a = 0

(s1, . . . , sa−1, sa + 1, 0, . . . , 0) ∈ INhs

2k if 1 ≤ a ≤ hs

With this definition of Tν the state sets Sν can be formally defined by:

S1 = {()}

Sν+1 = T (Dν), ν = 1, . . . , n

The cost functions cν are defined by:

cν(s, a) =

{

hs qν + a pν if a > 0
(hs + 1)qν + pν + w(0, ν − 1) if a = 0

CONSTRUCTION OF OPTIMAL B-TREES 397

If we create a new root (a = 0), the tree constructed so far becomes a
subtree of the new root. In that case the levels of the previous keys and
gaps increase by one. This results in an additional weighted path length of
w(0, ν − 1). Observe that by using s1 = () the first gap weight q0 is treated
correctly.

The terminal costs Cn+1 model whether our final state fulfills the B-tree
conditions, especially condition (2) of Definition 1. For instance, tree (c) of
Figure 2 is not a valid B-tree for n = 3. So we have to verify whether the
rightmost path contains underfull nodes. We have:

Cn+1(s) =

{

0 if sν ≥ k, 2 ≤ ν ≤ hs

∞ otherwise

Now the definition of the dynamic program DP is complete. Using this
definition the optimization problem is

F :=
n

∑

ν=1

cν(sν , aν) + Cn+1(sn+1)→ min

subject to:
s1 = ()
aν ∈ D(sν), 1 ≤ ν ≤ n
sν+1 = T (sν , aν), 1 ≤ ν ≤ n

The value F of the objective function yields the minimum weighted path
length. The tree is given by the optimal sequence of feasible decisions.

For the solution of this optimization problem we use a common dynamic
programming algorithm, cf. [5].

Algorithm 2:

forall s ∈ Sn+1

W (s)← Cn+1(s)
for ν ← n downto 1 do

forall s ∈ Sν do

forall a ∈ D(s) do

compute ā that minimizes cν(s, a) + W (T (s, a))
V (s)← cν(s, ā) + W (T (s, ā))
πν(s)← ā

W ← V
s← ()
c̃← 0
for ν ← 1 to n do

aν ← πν(s)
c̃← c̃ + cν(s, aν)
s← T (s, aν)

The result of the algorithm is a sequence DS = (a1, . . . , an) that defines
the optimal tree. Having DS we are able to build the corresponding tree in

398 PETER BECKER

linear time, as for each key kν the level where kν has to be placed is given
by the sequence of the aν .

5. Complexity results

Now we have to prove that solving our DP using Algorithm 2 yields the
above mentioned running time. Cornerstones of this proof are bounds for
the cardinalities of the state sets Sν and the sets Dν that define the feasible
decisions.

Theorem 2. For all state sets Sν we have:

|Sν | = O(nβ) with β = 1 +
log 2

log(k + 1)
, ν = 1, ..., n + 1

Proof. Let S := {0, . . . , 2k}hu and let S̃ := ∪n+1
ν=1Sν . The function

f : S̃ → S defined by

f(s) = (0, . . . , 0, s1, . . . , shs
) ∈ INhu

2k

is an injective mapping from S̃ to S. The vector f(s) is simply constructed
from s by adding leading hu − hs zeros. Observe that the first component
s1 of a state s ∈ S̃ is always positive. Due to the injectivity of the mapping
we get

|Sν | ≤ |S| = (2k + 1)hu , ν = 1, ..., n + 1

Using Theorem 1 we get

|S| ≤ (2k + 1)1+log(n+1

2
)/ log(k+1)

= (2k + 1) exp

(

log(
n + 1

2
)
log(2k + 1)

log(k + 1)

)

Using log(2k + 1) ≤ log 2 + log(k + 1) we get

|S| ≤ (2k + 1)

(

n + 1

2

)1+log(2)/ log(k+1)

. 2

The next theorem states that the cardinality of the feasible decisions is
bounded by the same function as the cardinality of the states.

CONSTRUCTION OF OPTIMAL B-TREES 399

Theorem 3. Let D := ∪n+1
ν=1Dν. Then we have:

|D| = O(|S|)

Proof. We have D ⊂ S̃ ×A and

|D| =
∑

s∈S̃

|D(s)|

Now we define a partition of S by

Rd := {s ∈ S|k ≤ shu−d+2, . . . , shu
≤ 2k ∧ (0 < shu−d+1 < k ∨ hu = d)},

d = 1, . . . , hu

i.e. Rd contains the vectors of s that have exactly d−1 components equal to
or greater than k at the backend. Observe that this is a necessary condition
for a state to have d feasible decisions (see the definition of D(s)). Because
the definition of Rd relaxes the conditions given in the definition of Dν(s)
we have

(s̃ ∈ S̃ ∧ |D(s̃)| = d ∧ f(s̃) ∈ Re)⇒ d ≤ e

i.e. a state s ∈ S̃ which has exactly d feasible decisions is mapped to some
vector f(s̃) ∈ Re with d ≤ e. Using that the mapping is injective yields

|D| ≤

hu
∑

d=1

d |Rd|

Using the definition of Rd we get

|Rd| =
k

2k + 1

(

k + 1

2k + 1

)d−1

|S|, d = 1, . . . , hu − 1

and |Rhu
| = ((k +1)/(2k +1))hu |S|. Extending the upper bound of the sum

to ∞ yields

|D| ≤ |S|
k

2k + 1

∞
∑

d=0

(d + 1)

(

k + 1

2k + 1

)d

1/2 is an upper bound for the second term and 2/3 is an upper bound
for (k + 1)/(2k + 1). To compute the sum we examine the power series
∑∞

ν=0(ν + 1)xν . We have

∞
∑

ν=0

(ν + 1)xν =
d

dx
x

∞
∑

ν=0

xν =
1

(1− x)2

Using the upper bounds we get:

|D| ≤
9

2
|S| . 2

400 PETER BECKER

Now we consider Algorithm 2. There are nested loops over ν, Sν , and D(s)
for each s ∈ Sν . Using Theorems 2 and 3 we get the result that Algorithm
2 will have running time O(k n1+β) if we are able to compute the remaining
statements efficiently enough. But this is simple. We map the states to
components of an array AS. The function

index(s) =

hu
∑

ν=1

sν(2k + 1)hu−ν

defines a bijective mapping between S and the index domain of AS. Each
component AS(i) of AS represents a certain state s. Attached to this com-
ponent is an array AD that represents D(s). Each component of AD con-
tains a pointer to another state. This pointer implements the transition
function T (s, a). Due to this, we are able to compute W (T (s, a)) in O(1).
Initialization of these data structures needs time O(|D|). Moreover, it is
not necessary to use exactly the set Sν at stage ν. Because of the fact that
the states S̄ν \ Sν can never be reached in the forward computation of Al-
gorithm 2, the Algorithm remains correct if some superset S̄ν ⊃ Sν is used,
for instance S̄ν := S. For this reason we do not need any precomputation
of the state sets Sν. But even if we did, we would not need more than
O(k n1+β) time by using the above described data structure. Putting all
together yields:

Theorem 4. Algorithm 2 has running time O(k nα) with
α = 2 + log 2/ log(k + 1).

6. Summary

We have presented a new algorithm to construct optimal weighted B-trees.
The key to the improvement has been the formulation of a dynamic program
that models the construction of the tree in a decision-oriented way. In the
model we have to decide key by key, the level on which the key should be
placed. The B-tree conditions are included by additional constraints and a
terminal cost function.

One idea for further improvement is to use an A∗ algorithm in combi-
nation with a strong admissible estimation function, cf. [6]. In this case
we would use a forward computation instead of the backward computation
used in Algorithm 2. A state would be modelled as in our model but with
an additional component that gives the number of keys already assigned.
That means a state would correspond to a state-stage pair of our model.
Expanding a state then means adding a key to the tree that is modelled
by the state. The main difference to the former approach is that we may
get a strong lower bound for the cost of the final tree by using an adequate
admissible estimation function. In this way we may achieve a better per-
formance, because a lot of states would never be expanded. Of course we
can use w(., .) as estimate function, but the performance of w(., .) is poor,
especially for increasing n.

CONSTRUCTION OF OPTIMAL B-TREES 401

References

[1] R. Bayer, E. M. McCreight, Organization and Maintenance of Large Ordered
Indexes, Acta Informatica 1, pp. 173–189, 1972.

[2] L. Gotlieb, Optimal Multi-Way Search Trees, SIAM Journal of Computing 10,
pp. 422–433, 1981.

[3] S.-H. S. Huang, V. Viswanathan, On the Construction of Weighted Time-Optimal
B-Trees, BIT 30, pp. 207–215, 1990.

[4] D. E. Knuth, Optimum Binary Search Trees, Acta Informatica 1, pp. 14-25, 1971.
[5] K. Neumann, M. Morlock, Operations Research, Hanser, Munich, 1993.
[6] J. Pearl, Heuristics — Intelligent Search Strategies for Computer Problem Solving,

Addison-Wesley, 1984.
[7] V. K. Vaishnavi, H. P. Kriegel, D. Wood, Optimum Multiway Search Trees,

Acta Informatica 14, pp. 119–133, 1980.

