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Abstract. This paper gives a CREW PRAM algorithm for the problem of finding
lowest common ancestors in a forest under the insertion of leaves and roots and
the deletion of leaves. For a forest with a maximum of n vertices, the algorithm
takes O(m/p + r log p + min(m, r log n)) time and O(n) space using p processors to
process a sequence of m operations that are presented over r rounds. Furthermore,
lowest common ancestor queries can be done in worst case constant time using a
single processor. For one processor, the algorithm matches the bounds achieved by
the best sequential algorithm known.
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1. Introduction

Finding lowest common ancestors in trees is a frequently occurring prob-
lem in the literature and has found application in such diverse problems as
computing dominators in reducible flow graphs [Aho et al. 1976], detect-
ing negative cycles in sparse graphs [Maier 1979], planarity testing [Já Já
and Simon 1982], and computing weighted matchings [Gabow 1990]. This
paper gives a Concurrent Read Exclusive Write Parallel Random Access Ma-
chine (CREW PRAM) algorithm for the problem of finding lowest common
ancestors in a forest of trees under the insertion of leaves and roots, and
the deletion of leaves. As part of the solution to dynamic lowest common
ancestors, this paper also defines and solves the dynamic restricted range
minimum problem: a restricted version of the problem of finding the mini-
mal valued element between two elements in a collection of lists under the
insertion and deletion of elements.

Both problems considered in this paper are treated as Abstract Data Types
with a fixed set of operation types. Operations are classified as either coop-

erative or independent. Cooperative operations must be processed together
as a group; independent operations can be performed independently by a
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single processor provided the data structure is not being updated. An exter-
nal agent is assumed to make rounds of one or more requests for cooperative
operations, where each round consists of requests of the same type and must
be dealt with on-line before the next round. Between rounds, the external
agent can freely make independent requests, which must be processed on
line before the next round can proceed.

The dynamic lowest common ancestor problem is to maintain a forest of
trees of unbounded degree under the following operations.

initialize(T, x): Add a new tree T to the forest, where T contains the single
vertex x.

lca(T, x, y): For any x and y in T , find the vertex of greatest depth in T
that is an ancestor of both x and y.

add-leaf(T, x, y): Add the new vertex y as a child of the vertex x in T .

add-root(T, x): Make x the root of the tree T and the old root a child of x.

delete-leaf(T, x): Remove the leaf x from the tree T .

We place the further restriction that, within a round, at most one add-leaf

operation can be specified at each existing vertex, and at most one add-root

operation can be specified for each tree in the forest. The lca operation is
independent, all other operations are cooperative.

Let n denote the maximum number of vertices ever contained in the forest.
When a total of m cooperative operations are requested over r rounds, we
achieve O(m/p + r log p + min(m, r log n)) time and O(n) space on a p pro-
cessor CREW PRAM. For p ∈ O(n/r log n) the time-processor product is
O(m), which is optimal. Also, any lca query can be performed in worst case
constant time using one processor without performing any write operations.
This is the first parallel algorithm for the dynamic problem. This algorithm
can be used to substantially improve the PRAM simulation of the Parallel
Asynchronous Recursion Model (PAR Model) given by Higham and Schenk
[1992] and Schenk [1992], reducing the worst case work in the simulation
from O(w2 log p) to O(w log p), where w is the work performed by the PAR
Model algorithm, and p is the total number of processes used by the PAR
Model algorithm.

Gabow [1990] gives a sequential algorithm to process sequences of m lca,
add-leaf and add-root operations creating a tree of maximum size n in O(m)
time and O(n) space. This matches the sequential complexity of our algo-
rithm. As well, the method used here to deal with deletions applies directly
to Gabow’s construction.

Both Gabow’s algorithm and our algorithm are based upon algorithms
for the static lowest common ancestor problem, which is to pre-process a
fixed tree T of size n such that on-line lca queries can be answered effi-
ciently. Harel and Tarjan [1984] give an algorithm that achieves O(n) time
and space for preprocessing and constant time to answer queries. Gabow
[1990] bases his algorithm for the dynamic lowest common ancestor problem
on this algorithm. Under the assumption that the tree is given together
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with an Euler tour, Berkman and Vishkin [1989] use a completely different
approach to derive a constant time, n processor, preprocessing algorithm
for the static problem on a special variant of the CRCW PRAM. ( If the
Euler tour is not available, then the preprocessing requires O(log n) time on
n/ log n processors.) This results in a data structure that allows lca queries
to be answered in constant time using a single processor. Our solution to
the dynamic lowest common ancestor problem is based upon Berkman and
Vishkin’s algorithm.

Our construction for the dynamic lowest common ancestor problem is
a reduction to the dynamic restricted range minimum problem, which is
a variation of a problem defined by Berkman and Vishkin [1989] to help
compute lowest common ancestors. This problem is to maintain a collection
of lists of elements, where each element x has an associated value value(x). A
total ordering is defined on the elements of a list such that for two elements
x and y, x < y if (1) value(x) < value(y) or (2) value(x) = value(y) and y
precedes x in the list. The following operations must be supported.

initialize-min(X,x1, x2, . . . , xn′): Add a new list X to the collection, where
X contains [x1, x2, . . . , xn′ ] in that order.

list-insert(X,x, y, side): Insert a new element x into the list X either to the
left or right of y as indicated by the value of side. It must be the
case that x > y, and that for at least one neighbor v of x, there is a
constant k > 0 such that |value(x)− value(v)| ≤ k.

list-delete(X,x): Remove the element x from the list X. The element x
must be a local maximum in the list. That is, if y is a neighbor of x
in the list, then x > y.

collect(X,C): Put the elements of the list X into the array C in the order
they occur in X.

rmin(X,x, y): For any x and y in X, find the rightmost minimum valued
element in X between x and y inclusive.

prec(X,x, y): For any x and y in X, determine if x precedes y in the list X.

Within a round, at most one insertion can be specified at each element
currently in a list X. For the purposes of analysis, the initialization of a list
of n′ elements is counted as n′ operations; likewise a collect operation on a
list of n′ elements is counted as n′ operations. The rmin and prec operations
are independent operations, all other operations are cooperative.

Let n denote the maximum number of elements contained in the collection
of lists at any one time. When a total of m cooperative operations are
requested over r rounds, we achieve O(m/p + r log p + min(m, r log n)) time
and O(n) space on a p processor CREW PRAM. The work is optimal for p ∈
O(n/r log n). Also, any rmin or prec query can be performed in worst case
constant time using one processor without performing any write operations.

Remark 1. The list-delete operation specified here is not used in the re-
duction from the dynamic lowest common ancestors problem. It is included
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only to extend the possible operations on the dynamic restricted range min-
imum data structure as far as possible. The purpose of the collect operation
is to allow access to the current contents of the data structure.

The remainder of this paper is organized as follows. Section 2 briefly de-
fines the PRAM model and gives some basic results that are used in this
paper. Section 3 gives the reduction from the dynamic lowest common an-
cestor problem to the dynamic restricted range minimum problem. Section 4
gives a simple but not very efficient algorithm for dynamic restricted range
minimum. Section 5 shows how to make this algorithm optimal for very
small lists. Section 6 combines the algorithms of section 4 and 5 to obtain
a general optimal algorithm. Section 7 presents some concluding remarks.

2. Some PRAM Basics

We describe briefly the Parallel Random Access Machine (PRAM) model of
computation, and some basic results that we make use of.

A PRAM is a collection of synchronized independent sequential processors
with unique identifiers. These processors communicate through a global
memory. Each memory cell stores O(log n) bits, where n is the size of the
input. In each time step, each processor can read a location in the global
memory, perform a local computation, and then write to a location in the
global memory. In an EREW (Exclusive Read Exclusive Write) PRAM no
two processors may simultaneously access the same memory location for
either reading or writing; in a CREW (Concurrent Read Exclusive Write)
PRAM, simultaneous reading, but not writing, is permitted. (See Karp and
Ramachandran 1990 for an overview of PRAM models and results.)

2.1 Self Simulation on Parallel Random Access Machines

In the algorithms presented in the remainder of this paper, the number of
processors is a fixed value p. However, sometimes it is convenient to present
an algorithm as though it uses some larger number of processors, say p′. In
these cases we make use of the observation that any PRAM computation
taking t time using p′ processors, can be performed using p ≤ p′ processors
in O(tp′/p) time by having each processor perform the tasks of at most dp′/pe
of the original p′ processors [Karp and Ramachandran 1990].

2.2 Prefix Sums

The prefix sums computation is one of the basic tools in the design of efficient
parallel algorithms [Karp and Ramachandran 1990]. Let ∗ be an associative
operation over a domain D. Given an array X = x1, . . . , xs of s elements
from D, the prefix sums problem is to compute the values si = x1 ∗x2 ∗ . . . xi

for i ∈ {1, . . . , s}. Ladner and Fischer [1980] give an optimal prefix sums
algorithm for the EREW PRAM with a running time of O(s/p + log p)
using p processors.
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2.3 Array Compaction

One common application of prefix sums is to compact an array containing
“dead” elements into a smaller array containing only “live” elements. To
compute the position of “live” elements in this new array assign a 1 to each
“live” element and a 0 to each “dead” element, and then compute the prefix
sums with addition as the ∗ operator. Suppose, all “dead” elements are
identifiable by some property that can be tested by a single processor in
constant time. Then using Ladner and Fischer’s algorithm these elements
can be removed from an array of length s in O(s/p + log p) time using p
processors.

2.4 List Ranking

The list ranking computation is similar to prefix sums computation. Given
a linked list on s elements, compute the suffix sums of the last i elements of
the linked list for all i = 1, . . . , s. Cole and Vishkin [1988] give an optimal
list ranking algorithm for the EREW PRAM with a running time of O(s/p+
log p) using p processors.

2.5 Task Scheduling

In section 5 we will need to solve the following static scheduling problem.
Consider a list of tasks t1, . . . , te of known size. Let si denote the size of
task i. Let s =

∑e
i=1 si, and let M = maxe

i=1 si. A task of size si can be
completed in O(si) time using one processor. Furthermore, a task cannot
be broken down into sub-tasks that can be performed on more than one
processor. We wish to assign sets of tasks to processors to minimize the
time to complete all the tasks. Let Si =

∑i
j=1 sj (the prefix sums of the

sizes). We say a task ti is a group leader if bSi/(s/p)c > bSi−1/(s/p)c. Also,
task t1 is a group leader by definition. The group leaders partition the list
of tasks into sublists such that the total size of the tasks in each sublist is
at most O(s/p + M). If we assign one processor to each sublist of tasks the
tasks can be completed in O(s/p + M) time using p processors. Adding in
the time to compute the prefix sums and the partitioning of the tasks, the
tasks can be completed in O(s/p + log p + M) time using p processors.

2.6 Memory Allocation and Deallocation

The algorithms presented in this paper allocate and deallocate memory
blocks of widely varying sizes. To avoid memory fragmentation we make
use of a brute force relocating memory management scheme.

All memory is partitioned into working and storage memory via interleav-
ing. Working memory is managed directly by the algorithms as needed for
temporary data at various stages of the computation. All permanent data
structures other than those described in this section are assumed to be in
the storage memory.
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The general strategy is as follows. When memory is deallocated it is
marked as such, and a count of the number of deallocated cells is kept.
After each round of computation, a garbage collector is run. If the number
of deallocated cells exceeds half the total number of cells in use, then the
garbage collector compacts the entire storage memory removing deallocated
cells. This at most doubles the amortized cost of allocating and deallocating
memory.

Given a list of allocation requests for a total of s memory cells, the allo-
cations can be performed in O(min(s, s/p + log p)) time using p processors
by a straight forward application of prefix sums. Similarly, given a list of
deallocation requests for a total of s memory cells, the deallocations can be
performed in O(min(s, s/p + log p)) time using p processors. The garbage
collection process is also a straight forward application of prefix sums. If
there are c memory cells allocated when a garbage collection is performed,
then the garbage collection takes O(c/p + log p) time using p processors. It
is easily seen that the total cost of garbage collections matches the total cost
of marking cells as deallocated. Therefore, for the remainder of this paper
we ignore the cost of performing garbage collection.

Finally, we observe that if at most n cells are allocated at any one time,
then at most O(n) cells of the storage memory are used. Hence it is accept-
able to count the number of allocated cells to obtain a bound on the space
complexity of our algorithms.

3. Dynamic Least Common Ancestors

To solve the dynamic least common ancestors problem we reduce it to the
dynamic restricted range minimum problem. Our reduction is similar to that
used by Berkman and Vishkin [1989] in their solution to the static lowest
common ancestor problem. The following lemma is central to our reduction.
Let the sequence [x1, . . . , xs] be the preorder tour of a tree T , where s is the
number of vertices in T . (Recall that the preorder tour consists of the root
of the tree, followed by the preorder tours of all subtrees.) Let [xi, . . . , xj]
denote the sublist of elements between xi and xj inclusive.

Lemma 1. For any i < j, let z be the rightmost vertex of minimal depth in

the sublist [xi, . . . , xj ]. If xi = z, then lca(xi, xj) = z; otherwise lca(xi, xj)
is the parent of z in T .

Proof. We claim that z must be an ancestor of xj. Assume not. Then
let x be that ancestor of xj with the same depth as z. By the definition of a
preorder tour, x must come before xj in the tour, and only descendants of
x lie between x and xj in the tour. It follows that x is to the right of z in
X, and hence z is not the rightmost vertex of minimal depth in [xi, . . . , xj ].
It follows directly that if xi = z, then lca(xi, xj) = z. Now assume xi 6= z.
Let y be the parent of z in T . Since z has minimum depth of any vertex in
[xi, . . . , xj ] and depth(y) < depth(z), y is not in [xi, . . . , xj ]. Furthermore, y
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must appear before z in preorder, thus y must appear before xi. Finally, y
must be an ancestor of xi, since all descendants of y occur in a contiguous
block in the preorder tour. Since z is not an ancestor of xi it follows that
lca(xi, xj) = y. 2

Remark 2. Note that only the relative depths of vertices are important.
Depths can therefore be represented by negative numbers if necessary. We
will make use of this property to allow the insertion of new roots.

With some minor additional structure this lemma reduces the problem of
computing lowest common ancestors in a tree to the problems of determining
the relative order of elements within a list and of finding the rightmost
element with minimal depth among the elements in a sublist of a list.

3.1 The LCA Data Structure

Each tree T in the forest is represented independently. The field T.list
is a dynamic restricted range minimum list [x0, x1, . . . , xs]. The elements
x1, . . . , xs are the vertices of T in preorder. The element x0 is a sentinel
with value −∞ that is necessary to support the add-root operation. For
1 ≤ i ≤ s, value(xi) is the depth of xi in T . The field T.head points to the
first element in the list T.list, i.e. x0. The field T.root points to the root of
the tree T , i.e. x1. For each vertex v in the tree T , the field v.parent stores
the parent of the vertex v and the field v.value stores value(v) as defined for
the dynamic restricted range minimum problem.

Efficient implementation of the delete-leaf operation cannot be supported
directly with this structure. This difficulty is avoided by a lazy deletion
scheme. When a delete-leaf operation occurs, the vertex in question is
marked for future deletion from the range minimum list. When the to-
tal number of marked vertices becomes at least half as large as the entire
data structure, then the data structure is thrown away and rebuilt from
scratch. Since only leaves can be deleted, and no child will ever be added to
a deleted leaf, we can see that the failure to immediately complete a deletion
request will never cause a future request to be answered incorrectly.

Some additional structure is needed to support this deletion scheme. First,
for each vertex v, the field v.deleted stores a flag that is true if and only if
the vertex has been marked for deletion. In addition, the array F stores a
list of the trees in the forest. The number of trees in the forest is stored in
tree-count, the size of the array F is stored in tree-limit. Initially F is an
array of length 1, tree-limit is set to 1, and tree-count is set to 0. The number
of vertices in the forest is stored in forest-size. The number of vertices in
the forest that are marked for deletion is stored in forest-deleted. Initially
both of these fields are set to 0.

Excluding the representation for the dynamic restricted range minimum
lists, this structure uses O(n) space. It will be shown that O(n) space is
sufficient for the dynamic restricted range minimum lists. Thus, the total
space used is O(n).
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3.2 Computing LCA

Following lemma 1, an LCA operation lca(T, x, y), is implemented as follows.

1. if prec(T.list, y, x) is true then swap x and y;

2. z ← rmin(T.list, x, y);

3. if z = x then return z
else return z.parent;

It will be shown in section 6 that the prec and rmin operations can be per-
formed in constant time using a single processor without performing any
write operations. It follows that the entire computation can be completed
in constant time using a single processor without performing any write op-
erations.

3.3 Initializations

A round of q initialize operations R1, . . . , Rq, where Ri = initialize(Ti, xi),
is implemented as follows.

1. for 1 ≤ i ≤ q in parallel, create a vertex vi, and set vi.value = −∞;

2. for 1 ≤ i ≤ q in parallel

xi.value← 0;
xi.parent← null;
xi.deleted← false;
Ti.root← xi;
Ti.head ← vi;

3. for 1 ≤ i ≤ q in parallel, initialize-min(Ti.list, vi, xi);

4. increment both forest-size and tree-count by q;

5. if tree-count > tree-limit then

tree-limit← 2tree-count;
allocate a new array F of size tree-limit;
copy the old array contents into the new array;

6. for 1 ≤ i ≤ q in parallel, Ftree-count+1−i ← Ti;

The necessary memory for vertex and tree structures can be allocated in
O(q/p + log p) time using p processors using the algorithm of section 2.6.
Steps 1, 2 and 6 can be performed in O(q/p) time using p processors. Since
each initialize operation in step 3 initializes a list of two elements, step
3 contributes 2q operations toward the cost of maintaining the dynamic
restricted range minimum lists. Step 4 can be performed in constant time
using one processor. If the current size of F is c, then step 5 can be performed
in O(c/p + log p) time using p processors.

3.4 Adding Roots

A round of q add root operations R1, . . . , Rq, where Ri = add-root(Ti, xi),
is implemented as follows.

1. for 1 ≤ i ≤ q in parallel
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xi.value← Ti.root.value − 1;
xi.parent← null;
xi.deleted← false;
Ti.root.parent← xi;

2. increment forest-size by q;

3. for 1 ≤ i ≤ q in parallel, list-insert(Ti.list, xi, Ti.head, right);

Note that Ti is unique for each i, since at most one root can be added to a
tree in a round. Also note that new roots will have negative values assigned
to them. Since the depth values are only used to determine which vertex has
minimal depth, this will not cause any difficulties. The necessary memory
for vertex and tree structures can be allocated in O(q/p + log p) time using
p processors using the algorithm of section 2.6. Step 1 can be performed in
O(q/p) time using p processors. Step 2 can be performed in constant time
using one processor. Step 3 contributes q insertion requests toward the cost
of maintaining the dynamic restricted range minimum lists.

3.5 Adding Leaves

A round of q add leaf operations R1, . . . , Rq, where Ri = add-leaf(Ti, xi, yi),
is implemented as follows.

1. for 1 ≤ i ≤ q in parallel

yi.value← xi.value + 1;
yi.parent← xi;
yi.deleted← false;

2. increment forest-size by q;

3. for 1 ≤ i ≤ q in parallel, list-insert(Ti.list, xi, yi, right);

The necessary memory for vertex and tree structures can be allocated in
O(q/p + log p) time using p processors using the algorithm of section 2.6.
Step 1 can be performed in O(q/p) time using p processors. Step 2 can
be performed in constant time using one processor. Step 3 contributes q
insertion requests toward the cost of maintaining the dynamic restricted
range minimum lists.

3.6 Deleting Leaves

The deletion of leaves is implemented by marking deleted vertices as such,
and rebuilding the entire data structure whenever the number of marked
vertices becomes greater than half the total number of vertices. Since only
leaves can be deleted, any vertex that has been marked as deleted will never
be the answer to any lowest common ancestor query. Thus the failure of
the algorithm to remove these vertices from the structure will not cause a
future error.

A round of q delete operations R1, . . . , Rq, where Ri = delete-leaf(T, x), is
implemented as follows.

1. for 1 ≤ i ≤ q in parallel, vi.deleted← true;

2. increment forest-deleted by q;
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3. if 2forest-deleted > forest-size then

perform collect operations on all the trees in F placing the contents of
the trees into arrays;
remove deleted items from the arrays;
rebuild the data structure using the initialize operations;
deallocate memory that is no longer in use;

Step 1 can be performed in O(q/p) time using p processors. Step 2 can be
performed in constant time using one processor. If c′ is the total number of
vertices in the forest that had to be collected (including vertices marked for
deletion), then step 3 contributes collect operations on a total of c′ elements
toward the total cost, plus initialization operations on at most c′ elements.
In addition, the compaction of the collected elements takes O(c′/p + log p)
time using p processors, and the deallocation of memory takes a further
O(c′/p + log p) time using p processors.

3.7 Complexity

The solution to the dynamic restricted range minimum problem presented
in the remainder of this paper, together with the above discussion implies
the following.

Theorem 1. For a forest containing at most n vertices at any one time,

any sequence of m cooperative dynamic lowest common ancestor operations,

presented over r rounds, can be processed on a CREW PRAM in O(m/p +
r log p+min(m, r log n)) time and O(n) space using p processors. In addition,

lca queries can be processed in constant time using a single processor without

performing any writes.

Proof. The stated bound on space has already been established, as has
the stated bound on the time taken by lca queries. It remains to establish
the time bound on cooperative operations.

Let mi denote the number of cooperative operations requested in round
i. Note that

∑r
i=1 mi = m. Let ci denote the number of elements of F that

must be copied due to a reallocation of F in round i. If F is not reallocated
in round i then ci = 0. Since F always at least doubles in size, and the final
size of F is at most 2n, it follows that

∑r
i=1 ci ∈ O(n). Let c′i denote the

number of vertices in the forest that must be collected and then initialized
in round i because the number of deleted elements exceeded half the size
of the data structure. If no collections were performed in round i, then
c′i = 0. Since a round of collections only occurs when the number of deleted
elements is more than half the number of elements in the data structure, it
follows that

∑r
i=1 c′i ∈ O(m).

From these facts, and the running times derived in the subsections above,
we can see that a total of O(m) operations are induced over O(r) rounds
in the dynamic restricted range minimum data structure. Furthermore,
summing the times for these operations we obtain a total of O(m/p+r log p+
min(m, r log n)) time on p processors. 2



412 ERIC SCHENK

4. A Simple Dynamic Restricted Range Minimum Algorithm

This section presents a simple, but not very efficient, algorithm for the
dynamic restricted range minimum problem. The data structure presented
in this section will be referred to as the basic structure. This algorithm relies
on a solution to a restricted version of the dynamic lowest common ancestor
problem, which we solve by taking advantage of some structural properties
of a binary tree.

4.1 Preliminaries

For any list X, let |X| denote the number of elements in the list. For any
vertex v in a binary tree, let Bv denote the subtree rooted at v, let |Bv|
denote the number of leaves in Bv, let `(v) denote the leftmost leaf and let
r(v) denote the rightmost leaf of Bv. The depth of a vertex v is denoted
depth(v), where the root of a tree has depth 0. Let lca(x, y) denote the
lowest common ancestor of any two vertices x and y.

By analogy with half open intervals on a number line we define half open
intervals on a list. The notation [x, . . . , y) denotes the list of elements be-
tween x and y excluding y. Similarly (x, . . . , y] denotes the list of elements
between x and y excluding x. In both cases, if x = y the list is empty.

The operators ∨, ∧, ⊕ and ¬ denote the bitwise boolean or, bitwise boolean
and, bitwise boolean exclusive or, and bitwise complement operations, re-
spectively.

Finally, throughout this section, we assume that n and n̂ are known quanti-
ties, where n the maximum number of elements that will be in the collection
at any one time and n̂ is the maximum number of elements that will be in
any one list in the collection at any one time. The final algorithm given in
section 6 will remove this assumption.

4.2 The Basic Data Structure

The basic structure for representing a list [x1, . . . , xs] is a binary tree of
depth O(log s) whose leaves in left to right order are x1, . . . , xs. For each
list X there is a single field X.root that points to the root of the binary tree
representing the list. In addition:

(1) Each vertex v has a field v.min that points to to the minimum leaf in
Bv, a field v.depth that stores its depth, and fields v.parent, v.left and
v.right that respectively point to its parent, left child and right child,
if any.

(2) Each leaf v holds an array Av[1, . . . , depth(v)]. Let vi denote the an-
cestor of v at depth i. For all 1 ≤ i ≤ depth(v), if vi is a right child,
then Av[i] points to the minimum element in the list [`(vi), . . . , v), oth-
erwise Av[i] points to the minimum element in the list (v, . . . , r(vi)].
In either case, if the list in question is empty, then Av[i] = 0.
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Fig. 1: Computing rmin.

(3) Each vertex v is labelled by a pair of integers 〈πv, µv〉. The root of
a tree is labelled 〈0, 1〉. If vertex v is labelled 〈πv , µv〉, then its left
child is labelled 〈πv, 2µv〉, and its right child is labelled 〈πv ∨ µv, 2µv〉.
Note that if v is at depth d, then µv = 2d. Also note that the d least
significant bits of πv, read from least to most significant bit, describe
the path from the root to v, with a 0 bit indicating a left branch and
a 1 bit indicating a right branch.

In order to simplify memory allocation issues, every array Av is allocated
O(log n̂) entries. This means that the binary tree representing a list of
s elements takes O(s log n̂) space. A collection of lists with a total of at
most n elements takes O(n log n̂) space. Furthermore, for each vertex v, the
integers used in the field 〈πv, µv〉 fit into an O(log n) bit word.

4.3 Computing rmin and prec

For any two leaves x, y, where x is to the left of y, the answer to the query
rmin(X,x, y) can be computed as follows. Let γ = πx ⊕ πy. Let d be
the position of the least significant 1 bit in the binary representation of γ.
Observe that this is the position where the paths to x and y diverge. Thus,
d is the depth of lca(x, y). It is easily shown that if λ = γ ∧ ¬(γ − 1), then
λ = 2d. Let x′ be the ancestor of x at depth d + 1 and y ′ be the ancestor of
y at depth d + 1 (see Fig. 1). By definition Ax[d +1] contains the minimum
element in (x, . . . , r(x′)] and Ay[d + 1] contains the minimum element in
[`(y′), . . . , y). It follows directly that the answer to the query rmin(X,x, y)
is min(x,Ax[d + 1], Ay [d + 1], y).

To compute the answer to the query rmin(X,x, y) for any two elements
x, y in a list X, we need to be able to determine if x precedes y in the list
(i.e. check if prec(X,x, y) is true). Assume without loss of generality that
x 6= y. Compute λ as described above. The leaf x precedes y in the list X if
and only if πx ∧ λ = 0 (i.e. bit d of πx is 0). To see this, note that the path
from the root to x takes a left branch at lca(x, y) exactly when bit d of πx

is 0.
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Using the above algorithms both rmin and prec can be computed in con-
stant time by one processor without performing any writes. Furthermore,
because no writes are performed for either operation, there is no difficulty
in performing multiple queries in parallel on a CREW PRAM.

4.4 Rebalancing and Initializations

As elements are inserted into or deleted from a list X, the tree representing
the list must continue to have depth O(log |X|). Following Nievergelt and
Reingold [1973], we use a brute force rebalancing scheme that replaces any
potentially unbalanced subtree with a perfectly balanced subtree. For each
vertex v, store the size of Bv in v.size. If v is a leaf then define the root

balance ρ(v) to be 1/2, otherwise define ρ(v) = v.left.size/v.size. For a given
constant α ∈ (0, 1/2), a subtree Bv is balanced if and only if α ≤ ρ(v) ≤
1−α. (This criteria can be replaced by any of the criteria defined for weight
balanced trees. See, for example, Andersson 1989.)

To rebalance a subtree Bv, we replace it with a balanced subtree and
recompute the data structure on those vertices. Let s = |Bv|. Since the
depth of a tree increases by at most one during a round of insertions, and
all subtrees were balanced before the insertions, it follows that, even before
rebalancing, the subtree Bv will have depth O(log s). Therefore, the vertices
of Bv can be collected into an array in O(log s) time using s processors by
recursively descending the tree. The vertices can be formed into a tree of
depth dlog se in constant time using s processors [Moitra and Iyengar 1986].
Let w be the root of the resulting tree. For any vertex z, the field 〈πz, µz〉
can be computed from z’s parent, if any, in constant time. Thus, these fields
can be computed for all vertices z in Bw in a total of O(log s) time using
s processors by descending the tree. Similarly, for any vertex z the fields
z.min and z.size can be computed from the children of z, if any, in constant
time. Thus, these fields can be computed for all vertices z in Bw in a total
of O(log s) time using s processors by ascending the tree. It remains to
describe how to compute Ax for each leaf x in Bw. The following procedure
computes Ax using one processor in O(depth(x)) time.

R′ ← 0, L′ ← 0, v ← x
for i← depth(x) down to 1 do

loop invariant: L′ = min[`(v), . . . , x) and R′ = min(x, . . . , r(v)].
if v is a right child then Ax[i]← L′; L′ ← min(v.parent.left.min, L′).
if v is a left child then Ax[i]← R′; R′ ← min(R′, v.parent.right.min).
v ← v.parent

We show that the loop correctly initializes Ax[1, . . . , depth(x)]. Let xi denote
x’s ancestor at depth i. It is clear that in round i, v = xi. Furthermore,
if the loop invariant holds it is clear that Ax[i] is computed correctly for
each 1 ≤ i ≤ depth(x). The loop invariant holds trivially for i = depth(x).
Assume the loop invariant holds for i, we show it holds for i − 1. We
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consider the case where v is a right child. The case where v is a left child is
symmetrical. If v is a right child, then r(v) = r(v.parent), so

(x, . . . , r(v.parent)] = (x, . . . , r(v)] = R′,

and thus R′ is correct for iteration i− 1. Furthermore,

[`(v.parent), . . . , x) = [`(v.parent.left), . . . , r(v.parent.left)] ∪ [`(v), . . . , x),

so
min[`(v.parent), . . . , x) = min(v.parent.left.min, L′),

and thus L′ is correct for iteration i− 1.
Since all trees have depth O(log n̂), it follows that the total time to rebal-

ance a subtree Bv is O(log n̂) time using s = |Bv| processors.
This procedure can also be used to perform initialize-min operations.

Let R1, . . . , Rq̂ be the requested initializations, where the request Ri =
initialize-min(Xi, xi,1, . . . , xi,si

) specifies that the list Xi should be initial-
ized to contain xi,1, . . . , xi,si

. Let q be the total number of elements in the
initialization requests. By simulating q processors and assigning si proces-
sors to the request Ri, the q̂ data structures can be initialized in a total of
O(q log n̂/p + log p) time on p processors, where O(q log n̂/p + log p) time
is used to allocate the memory for the data structures using the algorithm
of section 2.6, and O(q/p + log p) time is used to assign processors to their
tasks.

4.5 Collect Operations

Let R1, . . . , Rq̂ be the requested collect operations, where the request Ri =
collect(Xi, Ci) specifies that the elements in the list Xi should be copied into
the array Ci in left to right order. Compute the prefix sums of Xi.root.size,
for 1 ≤ i ≤ q̂. Using this information, Xi.root.size virtual processors can
be assigned to each list Xi. These processors then recursively descend the
tree to assign a single processor to each leaf, i.e. a block of v.size contiguous
processors assigned to a vertex v splits itself into two sub-blocks of size
v.left.size and v.right.size and assigns the sub-blocks to the left and right
children of v, if any. When a single processor is assigned to each leaf,
each processor copies its leaf into the appropriate array Ci at the position
indicated by the processor’s identifier.

Let q be the total number of elements collected. Since all trees have depth
O(log n̂), the complete algorithm takes O((q/p + 1) log n̂ + log p) time using
p processors.

4.6 Insertions

Let R1, . . . , Rq be the requested insertion operations, where the request Ri =
list-insert(Xi, xi, yi, sidei) specifies that the new leaf xi is to be inserted
to the left or right of yi in Xi depending on whether sidei = “left” or
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sidei = “right”. The insertions are dealt with in two stages. In stage one,
the new leaves are inserted into the specified trees and the data structure
is extended to these new leaves. In stage two, subtrees are rebalanced if
necessary.

The insertion algorithm begins by allocating a record for each new leaf xi,
and allocating a corresponding record zi for the new internal node that will
be the parent of xi and yi. Using the algorithm of section 2.6, this can be
accomplished in O(q log n̂/p + log p) time using p processors. Next, for all
requests Ri, we replace the leaf yi with a three node subtree rooted at zi

having xi and yi as leaves, where the order of the leaves is determined by the
value of sidei. This can be performed in constant time using q processors.
Having constructed these replacement trees, we compute the fields for all
their vertices using the same method as in the rebalancing procedure. This
takes a further O(log n̂) time using q processors.

The information stored in the vertices of the replacement subtrees is cor-
rect by construction. We must show that the rest of the data structure is
still correct. Consider any vertex v not in any replacement subtree. Since
the path from v to the root is unchanged, 〈πv, µv〉 remains correct trivially.
Before the insertions, v.min was correct. Any new leaf xi inserted into Bv

must have a value greater than its corresponding insertion point yi, which
was in the subtree Bv before the insertions. Hence value(xi) > v.min. It
follows that v.min is correct for all vertices. Now suppose v is a leaf. Before
the insertions Av[i] was correct for all 1 ≤ i ≤ depth(v). Assume Av[i] is
now incorrect for some i, and let vi denote the ancestor of v at depth i.
We deal with the case where vi is a right child. The case where vi is a left
child is symmetrical. If vi is a right child, then it must be the case that
there is a new minimal element in the list [`(vi), . . . , v). By assumption, the
insertion point of this element is not v, so the insertion point must also be
in the list [`(vi), . . . , v). However, this is impossible, since any new leaf must
have value greater than its insertion point. Hence min[`(vi), . . . , v) must be
unchanged and Av[i] is correct.

It remains to update subtree sizes and carry out rebalancing. For each zi,
it is necessary to recompute v.size at every ancestor v of zi. This is done
by having one processor walk up the tree from each zi and compute v.size
at each ancestor of zi from the sizes of its children. Some care must be
taken in scheduling to avoid write conflicts. One way to avoid conflicts is to
alternate moves up from left and right children and have processors taking
a path up from a right child halt if they discover that another processor
has just travelled up from the left child. If all processors leave marks on
the vertices they examine, then a processor that is examining a vertex v can
easily discover if another process is currently at v’s sibling. A similar process
is used to find, for each zi, the highest unbalanced subtree on the path from
zi to the root of the tree zi occurs in. Let W be the set of unbalanced
subtrees found in this search. Since the subtrees in W are disjoint they can
be rebalanced in parallel. Updating sizes and collecting W can be done in
O(log n̂) time using q processors. Let c be the total number of vertices in
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the subtrees to be rebalanced. The rebalancing step can be performed in
a further O(log n̂) time using c processors. By the same argument as used
above, the data structure remains correct after the rebalancing.

The complete algorithm takes a total of O(((q + c)/p + 1) log n̂ + log p)
time using p processors.

4.7 Deletions

Let R1, . . . , Rq be the requested delete operations, where the request Ri =
list-delete(Xi, xi) specifies that the element xi is to be deleted from the list
Xi. As is the case with insertions, deletions proceed in two stages. In stage
one, the vertices are deleted from the tree and the fields in some vertices are
recomputed to maintain correctness. In stage two, subtrees are rebalanced
if necessary.

Deleting a single leaf is done by removing both the leaf and its parent and
updating its siblings parent pointer. This cannot be done in the presence
of parallel deletions, since the sibling may also be deleted. This difficulty
can be avoided by alternating deletions between left and right children.
Note that as many as O(log n̂) rounds of alteration may be necessary, since
after deleting all left children, some right children may become left children.
During the deletion process, subtrees rooted at siblings of deleted vertices
are moved up in the tree. Because of this, the fields in the vertices of these
subtrees must be updated. Note that the same subtree may be moved more
than once.

We must show how to find the subtrees that must be updated. Let zi be
the sibling of xi at the time that xi is deleted. The roots of the subtrees
that must be updated are contained in the list Z = z1, . . . , zq. However, this
list may contain some extra vertices. There are three possible problems.

(1) Some vertices in the list Z may have been deleted after they were
recorded. All such vertices must be removed from Z. If processors
mark the vertices they delete, then the deleted vertices in Z can easily
be identified in constant time using q processors.

(2) Some vertices may occur more than once in the list Z. This happens
when a vertex is moved by more than one delete operation. All but one
occurrence of each vertex must be removed from Z. If each processor
i marks the sibling of xi at the time xi is deleted with its identifier
i, then for each v in Z there is exactly one zi = v such that v is
marked with i. Thus, the extra copies of each vertex can be identified
in constant time using q processors.

(3) Some vertices may be descendants of other vertices in the list. All
such vertices must be removed from Z. These vertices can be found
in O(log n̂) time using q processors by marking each vertex in the list
and ascending the tree looking for marked vertices.

Once the vertices that must be thrown away have been identified, they can
be removed from Z by array compaction in O(q/p + log p) time using p
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processors. The rebalancing procedure is used to correct the fields in the
subtrees rooted at the remaining vertices in Z. Since the trees were originally
balanced, and since each such subtree was a sibling of a deleted vertex, the
total number of vertices in these subtrees is O(q). Thus, this rebalancing
takes O(log n̂) time using q processors.

A similar argument to that used for insertions shows that the data struc-
ture is correct after the first stage of deletions. Updating subtree sizes and
performing any necessary rebalancing is done exactly as for insertions. If
c is the number of vertices in subtrees that are rebalanced, then this takes
O(log n̂) time using c processors.

Using the algorithm of section 2.6, memory that is no longer in use can
be deallocated at the end of the deletion algorithm in O(q log n̂/p + log p)
time using p processors.

The complete algorithm takes a total of O(((q + c)/p + 1) log n̂ + log p)
time using p processors.

4.8 Complexity

Let the maximum number of elements contained in the entire collection of
lists at any one time be denoted by n, and let the maximum number of
elements contained in any one list at any one time be denoted by n̂.

Theorem 2. Given n and n̂, any sequence of m cooperative dynamic re-

stricted range minimum operations presented over r rounds can be processed

on a CREW PRAM in O(m log2 n̂/p + r log p + r log n̂) time and O(n log n̂)
space using p processors. In addition, rmin and prec queries can be processed

in constant time using a single processor without performing any writes.

Proof. The stated bound on space has already been established, as have
the stated bounds on the time taken by rmin and prec queries. It remains
to establish the time bound on cooperative operations.

Let mi denote the number of cooperative operations requested in round
i. Note that

∑r
i=1 mi = m. Let ci be the number of vertices in subtrees

rebalanced in round i. By the balance criteria, a subtree rooted at v is
rebalanced only if one of its subtrees has become a constant fraction bigger
than the other. Let the number of insertions and deletions since the last
rebalancing be denoted respectively by I and D, and let S be the size of Bv at
the last rebalancing. We claim that v.size ∈ O(I +D). Assume without loss
of generality that the left subtree has become bigger than the right. If v is
unbalanced and heavier on the left than the right, then v.left.size/v.size >
1 − α. Now, v.left.size ≤ dS/2e + I and v.size = S + I − D, so we have
(dS/2e+I)/(S+I−D) > 1−α. Simplifying we obtain S < (I+D+1)/( 1

2−α).
The claim follows. Now, since each insertion or deletion occurs in at most
O(log n̂) subtrees, it follows that

∑r
i=1 ci ∈ O(m log n̂).

From the complexity results derived in the previous subsections we have
that round i takes O(((mi + ci)/p+1) log n̂+ log p) time using p processors.
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Summing the time for r rounds on a p processor CREW PRAM, we obtain
a total time of O(m log2 n̂/p + r log n̂ + r log p). 2

4.9 The Grouping Problem

In the work optimal construction given in section 6, it will be necessary to
group together requests for operations on the basic structure that are for
the same list. To be precise, we must solve the following problem.
The Grouping Problem: Given an array L of pairs, such that all the second
components are distinct, construct an array L′ that is a permutation of the
original array L such that all pairs with the same value in the first component
occur contiguously.

In our application the pairs of the array are of the form 〈Xi, xi〉, where
Xi is the name of a list represented using the basic structure, and xi is
an element of the list Xi. Note that each xi is a unique leaf in the tree
representing Xi.

We solve the grouping problem in two stages. In the first stage we assign
a processor to each xi and ascend the tree collecting together the leaves
owned by other processors that are ascending the same tree. Whenever
two processors meet at a vertex they combine their collections and only one
processor proceeds to the root. At the end of the first stage we have a
collection of linked lists, one for each unique list X that occurs in L. In the
second stage we use list ranking on this set of linked lists to place the leaves
into the array L′.

The first stage of this construction finishes in O(log n̂) time using s pro-
cessors, where s is the number of pairs in the array L. The second stage
takes O(s/p+log p) time using p processors. The total is O(s log n̂/p+log p)
time using p processors.

5. An Optimal Algorithm for Small Lists

The algorithm presented in section 4 performs large amounts of work both in
rebalancing, and in computing the Av arrays for new vertices v. This section
presents an algorithm that avoids this work for a collection of lists, where
each list has length at most b, where (2b + 2) dlog(b + 1)e ∈ log n + O(1),
and where n is the maximum number of elements in the entire collection at
any one time. The general approach is to precompute all possible answers
for all possible lists of this size. The size b is chosen so that the cost of the
precomputation is subsumed in the cost of the overall computation. Note
that, for the purposes of this algorithm, the value of n must be known in
advance. The data structure presented in this section will be referred to as
the micro structure. The next section will combine this algorithm with the
previous algorithm to obtain an optimal algorithm for the dynamic restricted
range minimum problem. In addition, the requirement that n be known will
be removed.
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Fig. 2: An augmented Cartesian Tree

5.1 Representing Lists by Cartesian Trees

Gabow et al. [1984] observed that the problem of finding range minima in a
fixed list can be reduced to finding lowest common ancestors in a Cartesian
tree. The Cartesian tree for the list of elements [x1, . . . , xs] is the binary tree
with x1, . . . , xs as the vertices defined as follows. The (rightmost) minimal
element in X, call it xm, is the root of the tree. The left subtree is the
Cartesian tree for [x1, . . . , xm−1] and the right subtree is the Cartesian tree
for [xm+1, . . . , xs]. It follows from this definition that rmin(x, y) in the list
is the same element as lca(x, y) in the Cartesian tree. This structure is the
basis of the algorithm presented in this section.

We call a vertex v in the Cartesian tree a head vertex either if its value is
not the same as its parent’s or if it is the root of the tree. We call a vertex
v in the Cartesian tree a tail vertex either if its value is not the same as its
left child’s, or if it has no left child. Note that each head vertex is joined to
a tail vertex by a chain of left children, such that all vertices in the chain
have the same value. We say that a head and tail vertex joined by such a
chain correspond. Also note that the parent of a vertex v in the Cartesian
tree has a value of at most value(v).

The rank of a vertex in a Cartesian tree is the number of vertices that
occur to its left in the tree.

5.2 A Data Structure for Small Lists

Each list in the collection is represented independently. A list [x1, . . . , xs] is
represented by the corresponding Cartesian tree as described above, together
with a compact one word representation of the Cartesian tree. The compact
representation is used to answer queries by doing table lookups.

We elaborate upon the structure for a list X. Each vertex in the Cartesian
tree has pointers to its parent and its left and right children, if any. To
support fast insertions the Cartesian tree is augmented so that each head
vertex v has a pointer v.tail pointing to the corresponding tail vertex, and
each tail vertex has a pointer v.head pointing to the corresponding head
vertex (See Fig. 2). The field X.micro stores a word that is divided into
2b fields of size dlog2(b + 1)e bits each. Following Gabow and Tarjan [1985]
this field is used to store a compact representation of the Cartesian tree of
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the list X. First, each vertex v is assigned a unique index v.index from the
set {1, . . . , s}. For each 1 ≤ i ≤ b, the field 2i− 1 stores the index of the left
child of the vertex with index i, and the field 2i stores the index of the right
child of the vertex with index i. If the vertex with index i has no left or right
child, then the corresponding field is set to 0. To allow access to a vertex
given its index the array X.map stores a pointer to the vertex with index i
in X.map[i]. As the list grows, the array X.map will need to be periodically
reallocated. Toward this end, the field X.array-size stores the current size
of X.map, and the field X.size will store the current number of elements
in the list X. Whenever X.size > X.array-size or 2X.size < X.array-size,
X.array-size is set to 2X.size and the array X.map reallocated so that its
length is X.array-size. Note that as vertices are deleted from a list it is
important that the remaining vertices have indices in the range [1, X.size],
otherwise it will not be possible to reallocate X.map when it shrinks.

Finally, there are two precomputed lookup tables: LCA and RANK, where
LCA[T, i, j] stores the least common ancestor of the vertices with indices i
and j in a tree represented by the word T , and RANK[T, i] stores the rank
of the vertex with index i in a tree represented by the word T .

Due to the assumed bounds on b, each field in this structure can be rep-
resented in a single O(log n) bit word. In addition the lookup tables LCA

and RANK take a total of O(n) words of space. Finally, the representation
for a collection of lists having at most n elements at any one time takes a
further O(n) space, giving a total space consumption of O(n).

5.3 Computing the Lookup Tables

At the start of the computation the lookup tables LCA and RANK must
be computed. Both tables can be constructed in O(b2) time using n/b2

processors, giving O(min(n, n/p + b2)) time using p processors.
Each processor is assigned one of the possible 2b dlog(b + 1)e bit values.

Observe that there are at most n/b2 such values. The construction using
a single processor proceeds as follows. Let T be the 2b dlog(b + 1)e bits
assigned to the processor. First the processor checks that T represents
a Cartesian tree, i.e. that the representation contains no cycles, and each
vertex has only one incoming edge. This can be done in O(b) time. Next
the processor builds a list of the leaves as they appear from left to right
in the Cartesian tree T . The values RANK[T, 1], . . . ,RANK[T, b] can be
computed from this list in O(b) time. Finally the values LCA[T, i, j], for all
1 ≤ i, j ≤ b, can be computed in a further O(b2) time.

5.4 Computing rmin and prec

The answer to a query rmin(X,x, y) can be computed by looking up the
value LCA[X.micro, x.index, y.index] and returning the vertex with this in-
dex. Likewise, the answer to a query prec(X,x, y) can be computed by
comparing RANK[X.micro, x.index] and RANK[X.micro, y.index]. Both op-
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erations take only constant time using a single processor. Furthermore, be-
cause no writes are performed for either operation, there is no difficulty in
performing multiple queries in parallel on a CREW PRAM.

5.5 Collect Operations

A collect operation, collect(X,C), on a list X with s elements can be done
in O(s) time using one processor by looking up RANK[X.micro, i] for each
index i in [1, X.size], and assigning the vertex with index i to the indicated
position in the array C.

A round of q̂ collect operations, R1, . . . , Rq̂, where Ri = collect(Xi, Ci), can
be treated as q̂ independent tasks of maximum size b. If there are a total of q
elements to be collected, then using the load balancing procedure discussed
in section 2.5, these operations can be performed in O(min(q, q/p+log p+b))
time using p processors.

5.6 Initializations

The construction of a Cartesian tree for a list [x1, . . . , xs] can be accom-
plished with the following algorithm of Gabow et al. [1984]. Start with the
empty Cartesian tree. To derive the Cartesian tree on the first i elements
from the Cartesian tree on the first i−1 elements, ascend the path from the
rightmost vertex to the root until xk, the first node smaller than xi, is found;
the right subtree of xk is made into the left subtree of xi and xi is made into
the right child of xk. The total time to construct the Cartesian tree is O(s),
since a vertex leaves the rightmost path immediately after it is traversed.
Using this algorithm an initialization request initialize-min(X,x1, . . . , xs)
can be processed in O(s) time using one processor.

Consider a round of q̂ initialize operations, R1, . . . , Rq̂, initializing a total
of q elements, where Ri = initialize-min(Xi, xi,1, . . . , xi,si

). A total of O(q)
space is required for the data structures that are being initialized. This
memory can be allocated in O(min(q, q/p + log p)) time using p processors
(see subsection 2.6). The application of the above initialization procedure
can be treated as q̂ independent tasks of maximum size b. Using the load
balancing procedure discussed in section 2.5 these operations can be per-
formed in O(min(q, q/p + log p + b)) time using p processors. In total the
round takes O(min(q, q/p + log p + b)) time using p processors.

5.7 The Grouping Problem

In order to efficiently deal with insertions and deletions it will be necessary
to group together requests for operations on the micro structure that are for
the same list. This operation will also be needed in the optimal algorithm
given in section 6. We reiterate the problem that must be solved.
The Grouping Problem: Given an array L of pairs, such that all the second
components are distinct, construct an array L′ that is a permutation of the
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original array L such that all pairs with the same value in the first component
occur contiguously.

In our application the pairs of the array are of the form 〈Xi, xi〉, where
Xi is the name of a list represented using the micro structure, and xi is an
element of the list Xi.

If s < b, then there is no reason to parallelize the solution, and we simply
perform a bucket sort on one processor in O(s) time. Otherwise, we must
make use of some parallelism.

We take advantage of the fact that within the list Xi, the element xi

has a unique index in {1, . . . , X.size}. The construction begins by sorting
L by these indices. Reif [1985] gives an algorithm that sorts s elements
drawn from a set of size b in O(b) time on an EREW PRAM using s/b
processors. Let Lj denote the contiguous sub-array of elements with index
j. The ends of the sub-arrays L1, . . . , LX.size can be determined from the
sorted list in constant time using s processors. Observe that for all j, all
pairs in Lj are unique, i.e. no list X occurs in more than one entry of
Lj. Thus we can quickly construct linked lists of pairs that refer to the
same list by successively assigning processors to all the entries in Lj for
each j = 1, . . . , X.size. Furthermore, the length of each linked list and the
rank of each element are determined. Using s processors this can be done
in O(s/p + b) time. Prefix sums can be used to determine the allocation
of space for each linked list in O(s/p + log p) time using p processors. The
elements can then be packed into an array in a further O(s/p) time using p
processors. The total time to solve the grouping problem with this technique
is O(s/p + log p + b) time using p processors.

Combining the single processor algorithm with the parallel algorithm, we
get a final complexity of O(min(s, s/p+log p+ b)) time to perform grouping
using p processors.

5.8 Insertions

Consider the insertion of a new element x next to an existing element y. If
x is to be inserted as an endpoint of the list, it is simply made a child of y.
Otherwise, suppose that x is inserted inserted between y and z, where z is a
neighbor of y. We consider the case where z is a right neighbor of y; the case
for the left neighbor is symmetrical. Observe that if value(y) > value(z),
then y has no right child in the Cartesian tree and otherwise z has no left
child. There are two sub-cases to be dealt with. If value(x) > value(z) then
x becomes either a right child of y or a left child of z, whichever has greater
value. Otherwise, value(y) < value(x) ≤ value(z), which implies that y is an
ancestor of z. The new vertex x must be inserted on the path from y to z as
the left child of the deepest vertex v with value no less than the value of x.
The old left child of v becomes the right child of x. Because the conditions
on insertions require that value(x) is either within k of value(y) or within k
of value(z), the vertex v can be found in O(k) time by following a path from
either y or z (whichever has the value closest to value(x)). Note that long



424 ERIC SCHENK

runs of vertices with the same weight must be skipped using the head and
tail pointers. Provided that the array X.map is large enough, a group of s
insertions on a list X can be processed using this algorithm in O(s) time
using one processor.

Consider a round of q insertion operations, R1, . . . , Rq, where the opera-
tion Ri = list-insert(Xi, xi, yi, sidei). First, the grouping algorithm of sub-
section 5.7 is used to group together requests for the same list. This takes
O(min(q, q/p+log p+b)) time using p processors. After the grouping opera-
tion, the size of each unique X in X1, . . . , Xq can updated in a further O(q/p)
time using p processors. The memory for the records to store the q new el-
ements can be allocated in O(min(q, q/p + log p)) time using p processors.
Next, all arrays Xi.map that have become too small are reallocated. Let c
be the total number of elements in the reallocated arrays after reallocation.
The necessary memory allocation, deallocation and copying from the old ar-
rays to the new arrays can be performed in O(min(c, c/p+log p)) time using
p processors. The main work of the insertions, performed by the algorithm
given above, can be treated as at most q independent tasks of maximum
size b and of total size q. Using the load balancing procedure discussed in
section 2.5 these tasks can be performed in O(min(q, q/p + log p + b)) time
using p processors. In total the round takes O(min(c+q, (c+q)/p+log p+b))
time using p processors.

5.9 Deletions

Any element to be deleted is a local maximum in the list, hence it is neces-
sarily a leaf in the Cartesian tree, and so can be removed in constant time.
The only difficulty is that once a vertex v is deleted the index v.index does
not have an associated vertex, and this may introduce a hole in the set of
indices. This problem can be avoided by first swapping indices with the
vertex that has the largest index. This will also require some adjustments
in B.micro, but these can easily be performed in constant time. Using this
procedure a sequence of s deletions in a list can be performed in O(s) time
using one processor.

Consider a round of q delete operations, R1, . . . , Rq, where the oper-
ation Ri = list-delete(Xi, xi). First, the grouping algorithm of subsec-
tion 5.7 is used to group together requests for the same list. This takes
O(min(q, q/p + log p + b)) time using p processors. The main work of dele-
tion, performed by the algorithm given above, can be treated as at most
q independent tasks of maximum size b and of total size q, with one task
for each group found by the grouping algorithm. Using the load balanc-
ing procedure discussed in section 2.5 these tasks can be performed in
O(min(q, q/p + log p + b)) time using p processors. After the deletions have
been processed, the size of each unique X in X1, . . . , Xq can updated in a
further O(q/p) time using p processors. Finally, all arrays X.map that have
become too large are reallocated. Let c be the total number of elements
in the reallocated arrays before reallocation. The necessary memory allo-
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cation, deallocation and copying from the old arrays to the new arrays can
be performed in O(min(c, c/p + log p)) time using p processors. In total the
round takes O(min(c + q, (c + q)/p + log p + b)) time using p processors.

5.10 Complexity

Let the maximum number of elements contained in the entire collection of
lists at any one time be denoted by n, and let the maximum number of
elements contained in any one list at any one time be denoted by b.

Theorem 3. Given n and b, where (2b+2) dlog(b + 1)e ∈ log n+O(1), any

sequence of m cooperative dynamic restricted range minimum operations,

presented over r rounds, can be processed on a CREW PRAM in O(m/p +
min(m, r log p + rb + b2)) time and O(n) space on using p processors. In

addition, rmin and prec queries can be processed in constant time using a

single processor without performing any writes.

Proof. The stated bound on space has already been established, as have
the stated bounds on the time taken by rmin and prec queries. It remains
to establish the time bound on cooperative operations.

Let mi denote the number of cooperative operations requested in round i.
Note that

∑r
i=1 mi = m. Let ci denote the total number of memory cells that

are either allocated or deallocated during round i as part of the reallocation
of an array X.map for some list X. An array X.map is reallocated in round
i if the portion in use has changed by a factor of 2 since its last reallocation.
Using this fact is is easily established that

∑r
i=1 ci ∈ O(m). Now, the running

time for round i using p processors is O(min(ci + mi, (ci + mi)/p + log p +
b)). Summing the time for each round over the r rounds gives a total cost
of O(m/p + min(m, r log p + rb)) time using p processor. Including the
O(min(n, n/p + b2)) time using p processors to initialize the lookup tables,
we obtain a total of O(m/p+min(m, r log p+rb+b2)) time using p processors.

2

Remark 3. It will be necessary to apply this theorem for b = c(log log n)2,
for some positive constant c. Observe that

(2b + 2) dlog(b + 1)e ≤ 2(b + 1)(log(b + 1) + 1)

≤ 2(2b)(2b)

≤ 8b2.

Hence, it is sufficient to show there is a constant c, such that for n > 0,
8c(log log n)4 ≤ log n. Since (log log n)4 ∈ o(log n) this is clearly the case.

6. An Optimal Algorithm

Examining the algorithm of section 4 shows that much of the work performed
arises from always rebalancing an entire subtree, despite the fact that the
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subtrees near the leaves are already balanced. This cost can be circumvented
by reducing the dynamic restricted range minimum problem to a smaller
version of itself. Combining this approach with the algorithm for small lists
presented in section 5 leads to a work optimal algorithm.

6.1 Preliminaries

Assume there exist two algorithms, A1 and A2 that solve the dynamic re-
stricted range minimum problem, and furthermore that we can solve the
grouping problem on their respective data structures. These algorithms will
be used to construct a new algorithm parameterized by a function f(n).
The complexity of the construction will be expressed in terms of its running
time excluding computations performed by A1 and A2, plus the number of
operations performed by A1 and A2. The construction described in the fol-
lowing subsections also assumes that the value of n, the maximum number of
elements ever in the collection of lists at any one time, is known in advance.
The final subsection shows that this assumption can be removed.

6.2 The Data Structure

Each list X in the collection is represented by a collection of sublists of
X. Say X contains [x1, . . . , xs]. Then it is partitioned into the sublists
G1, . . . , Gds/f(n)e each of size O(f(n)). For each sublist Gi three pointers
are maintained: Gi.head, Gi.tail and Gi.min, that point to the head, the
tail, and the minimum element of the sublist Gi respectively. As well, the
field Gi.size records the number of elements in the sublist. The field X.first

points to G1. Each element xi also has a pointer xi.sublist that points to
the sublist it is contained in. The sublists are maintained using algorithm
A2. If s ≥ f(n) a second list named X.reduced containing [b1, . . . , bds/f(n)e]
is maintained by algorithm A1, where bi = Gi.min. Note that each bi occurs
in two lists, Gi and X.reduced. Also, the list X.reduced is doubly linked so
that for each bi, bi.next and bi.prior point to the next and prior elements in
the list.

Using this construction, the total space required to store a collection of
lists containing a total of at most n elements at any one time is O(n) space
plus the space required by A1 to represent a collection of lists containing at
most a total of n/f(n) elements, with no list larger than n/f(n) elements,
plus the space required by A2 to represent a collection of list containing at
most a total of n elements, with no list larger than 2f(n) elements.

6.3 Computing rmin and prec

A request prec(X,x, y) can be satisfied as follows. If x.sublist = y.sublist,
then it can be computed in the sublist x.sublist using algorithm A2. Oth-
erwise, prec(x, y) is the same as prec(X.reduced, x.sublist.min, y.sublist.min)
computed using algorithm A1.
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Fig. 3: Computing rmin(x, y) in the reduction structure.

A request rmin(X,x, y) can be satisfied as follows. Without loss of gen-
erality, suppose that x occurs to the left of y in the list. For notational
simplicity let x′ denote x.sublist and let y′ denote y.sublist. If x and y are
in the same sublist, i.e. x′ = y′, then the request can be satisfied directly
using algorithm A2 on sublist x′. Otherwise, there are three possibilities
(see Fig. 3). The minimum could be in the list x′ between x and x′.tail, it
could be in the list y′ between y and y′.head, and it could be the minimum
element in the list X.reduced between x′.min.next and y′.min.prior. The first
two of these can be found using algorithm A2, the last by using algorithm
A1.

Using these algorithms an rmin or prec query can be processed using one
processor in constant time plus the sum of the time required to process
a constant number of queries with both algorithms A1 and A2. Provided
algorithms A1 and A2 can perform queries without performing writes, the
combined construction can perform queries without performing any writes.

6.4 Collections

A round of q̂ requests, R1, . . . , Rq̂, for collect operations on a total of q
elements, where Ri = collect(Xi, Ci), is performed in two stages. In the
first stage collect operations are performed on lists with less than f(n) ele-
ments using algorithm A2 alone. In the second stage collect operations are
performed on longer lists.

Let Xσ(1), . . . , Xσ(c) be those Xi with less than f(n) elements, i.e. those Xi

with an empty list Xi.reduced. This set can be found in O(q̂/p + log p) time
using p processors. The corresponding collect operations collect(Xσ(i), Cσ(i)),
1 ≤ i ≤ c, are performed using algorithm A2.

Let Xτ(1), . . . , Xτ(c′) be those Xi with at least f(n) elements, i.e. those Xi

with a non empty list Xi.reduced. This set can be found in O(q̂/p + log p)
time using p processors. For each 1 ≤ i ≤ c′, a collect operation is performed
on Xτ(i).reduced using algorithm A1. Let sτ(i) denote the number of elements
collected from list Xτ(i).reduced, and let S =

∑
1≤i≤c′ sτ(i). A prefix sums
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operation on the sizes of the S < q sublists Xτ(i).Gj , 1 ≤ i ≤ c′ and
1 ≤ j ≤ sτ(i), collected in the first step can be used to allocate space in each
array Cτ(i) for the elements in the sublists. This requires O(q/p + log p)
time using p processors. Finally, using algorithm A2 collect operations can
be performed on each list Xτ(i).Gj , placing the results into the appropriate
place in the array Cτ(i).

The total running time of the collect procedure is O(q/p+log p) time using
p processors, plus the time to perform collect operations on at most q/f(n)
elements using algorithm A1 and on exactly q elements using algorithm A2.

6.5 Initializations

A round of q̂ requests, R1, . . . , Rq̂, for initialize-min operations on a total
of q elements, where Ri = initialize-min(Xi, xi,1, . . . , xi,si

), is performed as
follows. The necessary memory is allocated using the algorithm of subsec-
tion 2.6. This takes O(q/p + log p) time using p processors. Then, for all
requests Ri, 1 ≤ i ≤ q̂, divide the input lists into sublists of size f(n) in
O(q/p + log p) time on p processors and initialize each sublist using algo-
rithm A2, next construct the contents of the lists X1.reduced, . . . , Xq̂.reduced,
if any, in a further constant time using q processors, and finally initialize
the lists X1.reduced, . . . , Xq̂.reduced using algorithm A1. Note that some
Xi.reduced may be empty, and therefore are not initialized.

The total running time of the initialization procedure is O(q/p + log p)
time using p processors, plus the time to perform initialize-min operations
on q/f(n) elements using algorithm A1 and q elements using algorithm A2.

6.6 Insertions

We consider the problem of processing a set of q list-insert requests. The
necessary memory is allocated using the algorithm of subsection 2.6. This
takes O(q/p + log p) time using p processors. Next we must group together
insertions that are in the same sublist. This requires that we solve an in-
stance of size q of the grouping problem on the data structure of algorithm
A2. Once the grouping has been done, the insertions in each sublist are
carried out using algorithm A2. Next any sublists that have become larger
than f(n) elements must be identified; this can be done in O(q/p + log p)
time using p processors. Let q′ be the total size of these sublists. Each of
these sublists must be split in half. Toward this end, each sublist is mapped
into an array, then divided into two sublists of size at most f(n) each, and
then the initialization procedure of algorithm A2 must be run on each new
sublist. The memory necessary to store these new sublists can be allocated
in O(q/p + log p) time using p processors. Mapping the sublists into arrays
can be done by collect operations on a total of q ′ elements using algorithm
A2. The sublists can be split in half in O(q ′/p) time using p processors. For
each sublist that is split, one of the new sublists will have a global minimum
equal to the global minimum of the sublist being replaced. This sublist is
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already represented in the appropriate list X.reduced, unless X.reduced is
empty, in which case it must also be inserted. The other new sublist must
have its global minimum inserted into the appropriate list X.reduced. Both
cases are dealt with using algorithm A1.

The total time required for the q insertions is O(q/p+q ′/p+log p) plus the
time for q insertions, q′ collections, and q′ initializations of elements using
algorithm A2, at most q insertions using A1, at most q initializations of one
element lists using A1, and the time to solve a grouping problem of size q
on the data structure for algorithm A2.

6.7 Deletions

We consider the problem of processing a set of q list-delete requests. First
we must group together deletions that are in the same sublist. This requires
that we solve an instance of size q of the grouping problem on the data
structure of algorithm A2. Once the grouping has been done, the q elements
to be deleted are removed from their respective sublists in parallel using
algorithm A2. The sublists that become empty due to these deletions are
identified and collected into an array in a further O(q/p + log p) time using
p processors, and then for all such sublists G in parallel, G.min is removed
from the appropriate list X.reduced using algorithm A1. Note that G.min is
always the last element to be deleted from a sublist G, so there is no danger
that the list X.reduced will become incorrect. The memory that is freed by
the deletions can be deallocated using the algorithm of subsection 2.6. This
takes O(q/p + log p) time using p processors.

The total running time for the q deletions is O(q/p + log p) time using p
processors, plus the time to perform q deletions using algorithm A2, at most
q deletions using algorithm A1, and the time to solve a grouping problem of
size q on the data structure for algorithm A2.

6.8 Complexity

Let T ′
1 be the time to process a single independent operation on a single

processor using algorithm A1. Let T1(n̂,m, r, p) be the time to process a
collection of m cooperative operations presented over r rounds using algo-
rithm A1 on a p processor CREW PRAM, where n̂ is the maximum number
of elements in any one list in the data structure. Let S1(n, n̂) be the space
required by algorithm A1 to store a collection of lists with a maximum n
total elements, and at most n̂ elements in any one list. Define T ′

2, T2, and
S2 similarly with respect to algorithm A2. Let G2(n̂,m, r, p) be the time to
process r instances of the grouping problem for the data structure for A2

using p processors, where m is the total of the sizes of the r instances, and
n̂ is the maximum number of elements stored in any one list in the data
structure.

Let the maximum number of elements ever contained in a collection of
lists at any one time be denoted by n.
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Theorem 4. Given n and a function f(n) ∈ o(n), any sequence of m co-

operative dynamic restricted range minimum operations, presented over r
rounds, can be processed on a CREW PRAM in

O(m/p + r log p + T1(n/f(n),m/f(n),min(r,m/f(n)), p)

+ T2(f(n),m, r, p) + G2(f(n),m, r, p))

time and

O(S1(n/f(n), n/f(n)) + S2(n, f(n)) + n)

space using a p processors. In addition, rmin and prec queries can be pro-

cessed in O(T ′
1 + T ′

2) time using a single processor without performing any

writes.

Proof. The stated space complexity has already been established, as has
the stated complexity for processing rmin and prec queries. It remains to
prove the time complexity for the cooperative operations.

Let mi denote the number of cooperative operations requested in round
i. By definition

∑r
i=1 mi = n. Define m′

i to be the number of elements
that are in sublists that are split in round i. Since a list that is splitting
must have at least doubled in size since the last split, the total number of
elements involved in splits can be counted by charging 2 to each element
inserted since the last split. This implies that

∑r
i=1 m′

i ≤ 2m. Excluding
the cost of running algorithms A1 and A2, processing a round of cooperative
operations requires O((mi+m′

i)/p+log p) time using p processors. Summing
these times we obtain a time of O(m/p + r log p) time. The running time
required for operations by algorithm A2 is easily seen to be T2(f(n),m, r, p).
Similarly, the complexity of the grouping operations is easily seen to be
G2(f(n),m, r, p). The number of elements inserted into lists maintained
by algorithm A1 is O(n/f(n)) by construction, and hence no one list has
more than O(n/f(n)) elements in it. The number of operations performed
on lists maintained by algorithm A1 is bounded by O(m/f(n)). This is
immediate for the collect and initialize operations. For list-insert operations
it follows from the fact that an insertion is performed using algorithm A2

only if a sublist has reached size 2f(n). It follows from this that there
are at most O(m/f(n)) list-delete operations performed using algorithm
A2. Finally, the number of rounds that algorithm A1 is applied in is at
most O(m/f(n)). This implies that the running time for algorithm A1 is
T1(n/f(n),m/f(n),min(r,m/f(n)), p). The stated time complexity follows.

2

Theorem 5. Given n, any sequence of m cooperative dynamic restricted

range minimum operations, presented over r rounds, can be processed on a

CREW PRAM in O(m/p + r log p + min(m, r log n)) time and O(n) space

using p processors. In addition, rmin and prec queries can be processed in

constant time using a single processor without performing any writes.
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Proof. Setting both A1 and A2 to the algorithm of section 4, the grouping
algorithm to that of subsection 4.9, and f(n) to log2 n, an application of
theorem 4 gives a CREW PRAM algorithm that runs in O(m(log log n)2/p+
r(log log n)2 +r log p+min(m, r log n)) time and O(n log log n) space using p
processors. Setting A1 to the algorithm thus obtained, A2 to the algorithm
of section 5, the grouping algorithm to that of subsection 5.7, and f(n) to
c(log log n)2 for some constant c > 0, an application of theorem 4 gives a
CREW PRAM algorithm that runs in O(m/p + r log p + min(m, r log n))
time and O(n) space using p processors. 2

We conclude the section by showing that advance knowledge of n is not
necessary.

Theorem 6. Any sequence of m cooperative dynamic restricted range min-

imum operations, presented over r rounds, on a collection of lists containing

at most n elements can be processed on a CREW PRAM in O(m/p+r log p+
min(m, r log n)) time and O(n) space using p processors. In addition, rmin

and prec queries can be processed in constant time using a single processor

without performing any writes.

Proof. If n is not known in advance a sequence of operations can be
processed by initially assuming an upper bound on n of 2, and doubling the
upper bound each time the real value of n meets it. To process a sequence
of operations the algorithm of theorem 5 is run using the upper bound as if
it were the real value of n. Each time the upper bound is changed the entire
data structure is rebuilt. The necessary information to allow rebuilding of
the data structure can be recorded in a manner analogous to that used in
the algorithm of section 3. This at most doubles the overall time complexity.

2

7. Concluding Remarks

In the dynamic restricted range minimum problem, the insertion of a vertex
requires only that it be greater than one of its neighbors, but the deletion of
a vertex requires that the vertex be a global maximum in the list. It would
be interesting to allow deletions under the same restrictions as insertions.

Similarly, in the dynamic lowest common ancestor problem, new roots can
be inserted, but not deleted. It would be interesting to allow more general
deletion operations.

Finally, all of the algorithms presented in this paper only perform well in
an amortized sense. It remains open whether or not the amortization can
be eliminated.
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