
Nordic Journal of Computing 1(1994), 433–457.

FINDING ALL WEAKLY-VISIBLE CHORDS OF A
POLYGON IN LINEAR TIME

GAUTAM DAS∗ PAUL J. HEFFERNAN GIRI NARASIMHAN†

Mathematical Sciences Department
The University of Memphis
Memphis, TN 38152, U.S.A.

Abstract. A chord of a simple polygon P is weakly-visible if every point on P
is visible from some point on the chord. We give an optimal linear-time algorithm
which computes all weakly-visible chords of a simple polygon P with n vertices.
Previous algorithms for the problem run in O(n log n) time, and only compute a
single weakly-visible chord, if one exists.

CR Classification: F.2.2

Key words: computational geometry, visibility, polygons, chords

1. Introduction

Two sets of points are said to be weakly-visible if every point in either set is
visible from some point in the other set. A chord of a simple polygon is a line
segment that connects two points on its boundary and lies entirely inside the
polygon. A weakly-visible chord c of a polygon P is a chord such that c and
P are weakly-visible. In this paper we present an optimal-time algorithm
which computes all weakly-visible chords of a simple polygon. For a simple
polygon P with n vertices, our algorithm requires time O(n). Previous
results [5, 11] require O(n log n) time and compute only one weakly-visible
chord.

We state four versions of the weakly-visible chords problem:

(1) determine whether a given chord c is weakly-visible;

(2) determine whether there exists a weakly-visible chord;

(3) return a weakly-visible chord c, if indeed such a chord exists; and

(4) return all weakly-visible chords.

In earlier papers [5, 11], version 3 has been solved in O(n log n) time. Version
4 is the strongest, and an algorithm for it also solves the first three versions.
In this paper we solve to optimality version 4 and prove the theorem given

∗
e-mail: dasg@next1.msci.memst.edu;Supported in part by NSF Grant CCR-930-6822

†
e-mail: giri@next1.msci.memst.edu;Supported in part by NSF Grants INT-911-5870 and

CCR-940-9752

Received May 1994. Accepted November 1994.



434 G. DAS, P. J. HEFFERNAN, G. NARASIMHAN

below. Although a polygon can have an infinite number of weakly-visible
chords, the output can be described in a piece-wise manner using only O(n)
space as described later in the paper.

Theorem 1. Given a simple polygon P , there exists a linear-time algorithm
that computes all weakly-visible chords of P .

The question of weakly-visible chords falls in the larger area of weak-
visibility in polygons, which has received much attention by researchers.
Weak-visibility of a polygon from an edge was first studied by Avis and
Toussaint [1]; Sack and Suri [14] subsequently gave a linear-time algorithm
that computes all weakly-visible edges of a simple polygon. Chen [4] gave
a linear-time algorithm that finds the shortest weakly-visible edge, if one
exists. Any two points x and y of a polygon P partition P into two chains,
which we call L and R, for left and right chains. A polygon is LR-visible
for x and y if L and R are weakly-visible. An O(n log n)-time algorithm
that computes all LR-visible pairs x and y is given by Tseng and Lee [15],
and Das, Heffernan and Narasimhan [6] subsequently gave a linear-time
algorithm that computes all LR-visible pairs s and t. The weakly-visible
chords problem was studied by Doh and Chwa [5] and by Ke [11]. They
developed algorithms that required O(n log n) time and computed only one
weakly-visible chord.

This paper is of interest not only because we present an optimal result for
an intriguing problem in polygonal visibility, but also on account of the tech-
niques we employ, and because of the relationship between weakly-visible
chords and other problems in polygonal visibility, such as LR-visibility. LR-
visibility is a subproblem of weakly-visible chords, for it can be shown that
two points x and y of P are the endpoints of a weakly-visible chord of P if
and only if xy is a chord of P and P is LR-visible with respect to x and y.
In the current paper, the linear-time algorithm for computing all LR-visible
pairs in [6] is used as a subprocedure.

What is interesting about the techniques used here and in [6] is that both
the linear-time algorithms output a mass of information, which when sifted
appropriately can provide a wealth of visibility information for a simple
polygon. Furthermore, the result and techniques reported here were used
effectively by Das and Narasimhan [7] to solve to optimality the problem of
finding the shortest weakly-visible segment (if one exists) in the interior of
a simple polygon.

A related result is a linear-time algorithm due to Bhattacharya et al. [2]
to compute a single (not necessarily shortest) weakly-visible line segment
inside a given polygon. The advantage of their algorithm is that it does not
use the linear-time triangulation algorithm of Chazelle [3] or the linear-time
shortest path algorithm of Guibas et al. [8].

Another problem that is closely related to weak-visibility problems is the
two-guard problem. While the two-guard problem has many formulations,
we will state just one for the sake of illustration: a polygon P is walkable



FINDING ALL WEAKLY-VISIBLE CHORDS . . . 435

from point x to point y if one “guard” can traverse the left chain L and
the other the right chain R from x to y while always remaining co-visible.
Other formulations require the guards to move monotonically or that one
guard traverses from y to x. For the two-guard problem, currently there
exist optimal linear-time algorithms for various formulations for fixed x and
y (version 1) [9], and O(n log n)-time algorithms which find all pairs x and
y (version 4) for various formulations [15].

For this paper, we assume that the input is in general position, which
means that no three vertices are collinear, and no three lines defined by
edges intersect at a common point. Since our algorithm uses many other
algorithms as subroutines, where similar assumptions have been made, it is
not clear whether this assumption can be eliminated from our algorithm.

2. Preliminaries

In this section we define some of the notation used in this paper. We also
discuss some of the properties of shortest paths in polygons. which will be
used as a subprocedure. A polygonal chain in the plane is a concatenation of
line segments or edges that connect vertices. If the segments intersect only at
the endpoints of adjacent segments, then the chain is simple, and if a polyg-
onal chain is closed we call it a polygon. In this paper, we deal with a simple
polygon P , and its interior, int(P ). A clockwise (resp. counterclockwise)
traversal of P is a traversal along P such that int(P ) always lies immediately
to the right (resp. left). Two points x, y ∈ P are visible if xy ⊂ P ∪ int(P ),
i.e., xy is a chord of P . For x, y ∈ P , PCW (x, y) (PCCW (x, y)) is the subchain
obtained by traversing P clockwise (counterclockwise) from x to y.

We let d(x, y) denote the direction of a ray or line from x through y, and
~r(x, α) represent the ray rooted at x in direction α. Two rays with common
endpoint x partition the plane into two regions, each of which is the union
of a set of rays with endpoint x. A cone is defined as the region containing
all rays encountered as we sweep counterclockwise from ~r(x, y1) to ~r(x, y2),
and is denoted as cone(d(x, y1), d(x, y2)) (or cone(y1, x, y2)). We can also
think of a cone as an interval of directions. We write int(cone(y1, x, y2))
to represent cone(y1, x, y2) \ {~r(x, y1), ~r(x, y2)}, a cone minus its boundary
directions. For a vertex x of P , let x+ be the vertex adjacent to x in
the clockwise direction, and x− the vertex adjacent in the counterclockwise
direction.

The ray shot from a vertex v in direction d consists of “shooting” a “bul-
let” from v in direction d which travels until it hits a point of P . Formally,
for a ray ~r(v, α) rooted at v, where α ∈ int(cone(v+, v, v−)), the hit point of
this ray shot is the point of (P \{v})∩~r(v, α) closest to v. We will sometimes
denote a ray shot by writing its corresponding ray. Note that the ray shot
~r(v, α) is defined only if α ∈ int(cone(v+, v, v−)). A reflex vertex of P is
defined as a vertex where the angle between the two edges incident on that
vertex towards the interior of P is greater than 180 degrees. Each reflex ver-
tex defines two special ray shots as follows. We let ~rCW (v) = ~r(v, d(v+, v))



436 G. DAS, P. J. HEFFERNAN, G. NARASIMHAN

v+

v

v′

w

w′

Fig. 1: Reflex vertex and redundant component

represent the clockwise ray shot from v. If v ′ is the hit point of the clock-
wise ray shot, then the subchain PCW (v, v′) is the clockwise component of
v. Counterclockwise ray shots and components are defined in the same way.
A component is redundant if it is a superset of another component. Fig. 1
shows an example of two reflex vertices v and w, two clockwise components,
namely, PCW (v, v′) and PCW (w,w′). Note that PCW (v, v′) is a redundant
component since it is a superset of the component PCW (w,w′).

The shortest path between two vertices w and v of P , denoted SP (w, v),
is the (Euclidean) minimum-distance curve with endpoints w and v lying
entirely in P ∪ int(P ). Several properties of shortest paths were noted in [6]
and [9], These properties are fairly intuitive. However, here we reproduce
the ones that we need: Shortest paths are unique. Two shortest paths from
a vertex to two distinct vertices cannot cross twice, since this would imply
distinct shortest paths between a pair of points. The path SP (w, v) is always
a polygonal chain, whose interior vertices are all reflex vertices of P . This is
because: if one of the above two conditions is violated, some small amount of
local improvement is possible. The following lemma is reproduced from [6].

Lemma 1. If w and v are vertices of P , and SP (w, v) is the shortest path
directed from w to v, then any vertex of SP (w, v) \ {w, v} that lies on
PCW (w, v) is a left turn, while a vertex of SP (w, v) on PCCW (w, v) is a
right turn.

We write FE(w, v) to denote the first edge of SP (w, v); that is, the edge of
SP (w, v) incident to w. The direction of this edge away from w is denoted
dFE(w, v). The following lemma is established in [9].

Lemma 2. Given points x and y of P , and a direction α contained in the
interior of cone(x+, x, x−), the ray shot ~r(x, α) hits PCCW (x, y) if α ∈
int(cone(d(x, x+), dFE(x, y))) and it hits PCW (x, y) if α is contained in
the interior of cone(dFE(x, y), d(x, x−)).



FINDING ALL WEAKLY-VISIBLE CHORDS . . . 437

x
z

t

s

z′

Fig. 2: Proof of lemma 3

3. LR-visibility

Since the LR-visibility algorithm is used as a subprocedure by our algorithm,
we present an important lemma about LR-visibility and briefly describe the
output of the LR-visibility algorithm in [6], We show in lemma 3 that the set
of all components of P completely determines LR-visibility of P . Lemma 3
is implied by the results in [10]. However, we present a complete proof here
since we use this lemma extensively throughout the paper.

Lemma 3. A polygon P is LR-visible with respect to s and t if and only if
each non-redundant component of P contains either s or t.

Proof. If s and t both miss a clockwise component PCW (v, v′), then the
edge (v, v+) is clearly not visible from any point on PCW (s, t), as can be
seen from Fig. 1. Consequently, P is not LR-visible with respect to s and t.

To prove the converse, let s or t be contained in every non-redundant
component. For the sake of contradiction, assume that there is a point x ∈
PCCW (s, t) which is not visible from PCW (s, t). Hence on a counterclockwise
traversal of P the points are encountered in the order x, t, s. From the
simple properties of shortest path, we know that on a counterclockwise sweep
at x starting d(x, x−) to d(x, x+), FE(x, t) will not be encountered after
FE(x, s), since otherwise the shortest path SP (x, s) and SP (x, t) would
cross each other twice. If FE(x, s) 6= FE(x, t) then consider a ray shot
along a direction between dFE(x, s) and dFE(x, t) towards the interior of
P . By lemma 2 this ray shot cannot hit PCW (x, s) or PCCW (x, t). Hence
it must hit PCW (s, t). But this contradicts the assumption that x is not
visible from PCW (s, t). So let FE(x, s) = FE(x, t) = (x, z). Fig. 2 shows
this situation with the two paths SP (x, s) and SP (x, t) shown using dashed
lines. Without loss of generality assume that z is a point on PCCW (x, t), as
shown in Fig. 2. Since z is also on PCCW (x, s), by lemma 1, SP (x, s) must
have a right turn at z. Now consider the clockwise component at z, namely
C = PCW (z, z′). Fig. 2 shows the ray shot from z using a dotted line. The



438 G. DAS, P. J. HEFFERNAN, G. NARASIMHAN

A1

A2

A3

A4

B1

B2
B3

B4

Fig. 3: A LR-visible polygon

hit point z′ of the counterclockwise ray shot from z cannot be on PCCW (z, s)
since otherwise SP (x, s) would have a left turn instead of a right turn at z.
Hence z′ must be on PCW (z, s) and thus C cannot include s. Also, since z

is on PCCW (x, t), and since C does not include s, it cannot include t either.
Thus C misses both s and t. If C is not a non-redundant component, then
there must exist a non-redundant component that is completely contained
in C and hence misses both s and t. In any case, we show the existence of a
non-redundant component that misses both s and t, which contradicts our
assumption. Hence the proof. 2

One consequence of the above lemma is that if a polygon has more than two
disjoint components, then it is not LR-visible, i.e., it has no LR-visible pairs
of points. The LR-visibility algorithm in [6] outputs O(n) pairs of subchains
of the form (Ai, Bi) such that any point s on a subchain Ai is LR-visible to
any point t on the corresponding subchain Bi. For the example shown in
Fig. 3, the algorithm outputs the pairs of subchains (A1, B1), . . . , (A4, B4).
It is also easy to verify that if (s, t) is a pair of points that do not both lie in
one of the four pairs of subchains, then both s and t will miss at least one
component. We now describe Ai and Bi more rigorously. The endpoints of
non-redundant components partition P into a collection of intervals that we



FINDING ALL WEAKLY-VISIBLE CHORDS . . . 439

call basic intervals, and denote A1, · · · , Ak, ordered counterclockwise. (In
the rest of the paper, we use the term interval to denote a subchain of the
polygon’s boundary). It is possible for a degenerate basic interval consisting
of a single point to exist. Thus a basic interval may or may not contain
either of its endpoints. In any case, for any interval F , let b(F ) (e(F ))
denote the starting point (ending point) of an interval F encountered in the
counterclockwise direction. By lemma 3, all points of a basic interval form
LR-visible pairs with the same collection of partners. Thus, we denote as
Bi the set of all points y such that (x, y) is a LR-visible pair for all x ∈ Ai.
The following two lemmas are proved in [6].

Lemma 4. Bi is a connected set; that is, it is either the entire polygon P ,
or the empty set, or a non-empty subinterval of P composed of the union of
adjacent basic intervals.

Lemma 5. If Ai ∩ Bi 6= ∅, then Bi = P .

In [6], we gave a linear-time algorithm that constructs all LR-visible pairs
of intervals (A1, B1), · · · , (Ak, Bk). The intervals A1, · · · , Ak are disjoint and
ordered counterclockwise on P . The intervals B1, · · · , Bk are also ordered
counterclockwise but are not necessarily disjoint. As one moves counter-
clockwise from Ai to Ai+1, one either leaves or enters a non-redundant com-
ponent, which may result in either the starting or ending endpoint of Bi to
move counterclockwise in order to form Bi+1.

In the remaining sections we develop the weakly-visible chords algorithm.
Additional notation is introduced as and when required.

4. More geometric properties

In this section we present some important geometric properties on which our
algorithm depends. The actual algorithm is presented in the next section.
The following lemma relates weakly-visible chords to LR-visibility.

Lemma 6. For points x and y on P , the segment xy is a weakly-visible chord
of P if and only if (1) xy is a chord of P and (2) P is LR-visible for x and
y.

Proof. The proof follows easily from the definitions involved. Assume
xy is a weakly-visible chord of P . Let A = PCW (x, y) and B = PCCW (x, y).
Consider any point z on A. There must be a point z ′ on chord xy from which
z is visible. The line zz ′ when extended must hit a point on B. Hence every
point on A (B) is visible from some point on B (A). Hence P is LR-visible
for x and y.

Now if xy is a chord of P and P is LR-visible for x and y, then any point
z on A = PCW (x, y) must be visible from some point w on B = PCCW (x, y).
Hence zw is a chord of P that must intersect chord xy, implying that z must



440 G. DAS, P. J. HEFFERNAN, G. NARASIMHAN

be visible from some point on chord xy. A similar argument proves that any
point on B must be visible from some point on the chord xy. 2

The lemma suggests the following skeleton for the algorithm: first compute
LR-visibility using the algorithm in [6], then compute all chords xy such
that x ∈ Ai and y ∈ Bi, i.e., find all pairs of LR-visible pairs of points that
are visible to each other. While lemma 4 shows that Bi is connected, the
crucial point that we use is that for every x ∈ Ai, the set of points on Bi

that are visible to x form a subinterval of Bi, i.e., form a connected set in
Bi. The rest of the section focuses on proving this critical point.

We first develop further properties of basic intervals necessary for this
task. The kernel, K, of a polygon P is defined as the collection of points
in P ∪ int(P ) which are visible from all points of P . The kernel is defined
as the intersection of the half-planes formed by extending the edges of the
polygon (see [13] for details). The intersection of one of these half-planes
with the polygon P is exactly a component of P . The kernel is thus a convex
set and the points of P in the kernel are exactly those which intersect all
components. It is clear that a point x ∈ K ∩P forms a weakly-visible chord
with every other point of P . This means that the set of weakly-visible chords
containing a kernel point as an endpoint can be succinctly represented as
the set of chords between the pair of intervals (K ∩ P, P ).

Lemma 7. For some i, Bi = P if and only if Ai is contained in K.

Proof. Let x ∈ Ai. If Bi = P then (x, x) is an LR-visible pair, so x

intersects all components and thus is in the kernel. Suppose Ai ⊂ K. Let
x ∈ Ai. Then x intersects all components, so (x, x) is an LR-visible pair;
thus x ∈ Bi, and since Ai ∩ Bi 6= ∅, by lemma 5 we have Bi = P . 2

We know that each basic interval consists entirely of points in K or points
not in K, and we call a basic interval that consists of kernel points a kernel
interval. A basic interval Ai which is not a kernel interval is disjoint from
Bi; for such a case we define Di as the interval of points encountered as one
traverses counterclockwise from the ending point of Ai to the starting point
of Bi, and we define Ei as the interval encountered counterclockwise from
the ending point of Bi to the starting point of Ai. We call Di and Ei the
side intervals of Ai. The four intervals Ai, Bi, Di and Ei partition P . It is
possible for Di and/or Ei to be empty.

We now introduce a concept called well-behavedness that is very crucial
for understanding the correctness and efficiency of our algorithm. We say
that an interval F is well-behaved if the shortest path between its endpoints
inside P only touches points of F and not the rest of the polygon. Thus if
PCCW (w, v) is a well-behaved interval then by lemma 1 SP (w, v) contains no
left turns. This is a stronger statement than simply saying that SP (w, v) is
a convex chain, since it specifies the direction of all the turns. The following
lemmas prove that the Ais, Bis, Dis, and Eis are all well-behaved; this fact
will be useful in their efficient computation, as shown later.



FINDING ALL WEAKLY-VISIBLE CHORDS . . . 441

F

w

x

v
y

z z′

z′′

Fig. 4: Proof of lemma 8

Lemma 8. Any subchain of a non-redundant component is well-behaved.

Proof. Consider the subchain PCCW (w, v) of a non-redundant compo-
nent F . If it is not well behaved, then SP (w, v) must contain a point z

of PCW (w, v) \ {w, v}. Let x (resp. y) be the last (resp. first) point of
PCCW (w, v) preceding (resp. succeeding) z on SP (w, v) (see Fig. 4). The
chord that forms F partitions P into two subpolygons, and since w and v

are in the same subpolygon, any point on SP (w, v) must also be in this
subpolygon; thus z ∈ F . Since z is on SP (w, v) it is a reflex vertex of P and
therefore generates two components. The hit points of these components
must both be on PCCW (x, y), as one can see by considering that the ray
shots are contained in the subpolygon formed by PCCW (x, y) and SP (x, y).
Since z and its two hit points z ′ and z′′ lie on F , one of the two components
generated by z (PCW (z, z′) and PCCW (z, z′′)) is strictly contained in F , a
contradiction of the fact that F is non-redundant. 2

The following is a simple consequence of the above lemma.

Lemma 9. Any non-kernel basic interval Ai as well as its corresponding Bi

is well-behaved.

Proof. Clearly, by the definition each non-kernel basic interval Ai is
contained in some non-redundant component. Hence by lemma 8, Ai is
well-behaved. Also, every non-kernel Ai must miss some non-redundant
component, say F . By lemma 3, the corresponding Bi must be included in
F . Again by lemma 8 Bi is also well-behaved. 2

We next show that even the side intervals Di and Ei are well-behaved. We
first consider the case where P does not have two disjoint non-redundant



442 G. DAS, P. J. HEFFERNAN, G. NARASIMHAN

components. It may be noted that even if P does not have two disjoint
non-redundant components, it does not guarantee that P has a kernel. This
is because it is possible to have three non-redundant components that cover
the entire polygon and that intersect each other. This justifies the need for
the following lemma.

Lemma 10. Let P be a polygon with no two disjoint components. Then for
each non-kernel Ai, the corresponding Di and Ei are well-behaved.

Proof. Every component corresponds to a ray shot and a corresponding
chord. We first prove that if P does not have two disjoint components,
then the chord corresponding to any non-redundant component is a weakly-
visible chord. Suppose we have a non-redundant component F . Since no two
components are disjoint, F intersects every other component. Furthermore,
at least one endpoint of F intersects another component G unless G is
contained in F , which is not possible since F is non-redundant. Therefore
the chord that forms F has endpoints intersecting every component of P ,
and thus by lemmas 3 and 6 is a weakly-visible chord of P .

Thus there are (at least two) weakly-visible chords connecting one of the
endpoints of each non-kernel Ai and its corresponding Bi. Any one of these
weakly-visible chords separates Di and Ei into different subpolygons. Thus,
if Di is not well-behaved it is because the shortest path between its endpoints
contains a point of Ai or of Bi. Say it contains a point z of Ai that is not
an endpoint of Ai. By an argument similar to that in the proof of lemma 8,
z must be a reflex vertex whose hit points lie inside Di. Thus z generates
a component H that intersects both Ai and Di yet contains neither. H

does not intersect Bi, and does not contain b(Ai), the first point of Ai in
counterclockwise order. This means that there exists a pair of points s and t

such that neither of them are contained in H. By lemma 3, this contradicts
the assumption that each point of Ai is LR-visible with each point of Bi. 2

We now consider the case where P has at least two disjoint components.
The following lemma is similar to the above, except that it is somewhat less
general.

Lemma 11. Let P be a polygon with at least two disjoint components. If
there exists a weakly-visible chord in P then each subchain of Di and Ei is
well-behaved.

Proof. This proof is more involved than that of lemma 10. We first show
that if a subchain of Di (resp. Ei) is not well-behaved, then it cannot be
due to obstruction by some portion of Di (resp. Ei). Next we show that if
a subchain of Di (resp. Ei) is not well-behaved, then it cannot be because
of obstruction by Ai or Bi. Finally we show that if a subchain of Di (resp.
Ei) is not well-behaved due to obstruction by Ei (resp. Di), then the LR-
visible pairs of points are not visible from each other, and consequently no
weakly-visible chords exist.



FINDING ALL WEAKLY-VISIBLE CHORDS . . . 443

b(Di)

x

z

y

e(Di)

z′

x′

y′

Fig. 5: Proof of lemma 11

Using arguments similar to the ones used in lemmas 9 and 10, it is easy to
prove that if a subchain of Di (resp. Ei) is not well-behaved then it cannot
be because of Di (resp. Ei), since this would produce a component wholly
contained inside Di (resp. Ei).

Next assume that a subchain of Di is not well-behaved because of Ai.
This happens when SP (x′, y′) (for some x′ and y′ on Di) contains a reflex
vertex z of Ai (see Fig. 5). If z is a reflex vertex of Ai \ {b(Ai)} then let
z′ be the hitpoint of the counterclockwise ray shot from z. The component
PCCW (z, z′) is not touched by the left endpoint of Ai, namely b(Ai). It
also does not touch any point of Bi. Thus the LR-visible pair of points
(b(Ai), b(Bi)) misses the component PCCW (z, z′), which is a contradiction
by lemma 3. One other case to consider is if z = b(Ai). Let x (resp. y) be
the first point of Di preceding (resp. succeeding) z on SP (x′, y′), as shown
in Fig. 5. Consider the clockwise component from x. The clockwise ray shot
from x must lie within PCW (x, z) and hence the corresponding component
does not touch b(Ai) or Bi, contradicting the fact that (b(Ai), b(Bi)) is an
LR-visible pair of points (by lemma 3). Using similar arguments it can be
proved that if either Di or Ei are not well-behaved it cannot be because of
either Ai or Bi.

Now we assume that a subchian of Di is not well-behaved because of Ei,
i.e., SP (x′, y′) contains a reflex vertex z of Ei. Note that by an argument
similar to the one in the previous paragraph, it can be shown that z is



444 G. DAS, P. J. HEFFERNAN, G. NARASIMHAN

neither b(Ei) nor e(Ei). Since SP (x, y) passes through z, x and y cannot
be visible from each other. This is a special case since we now have two
disjoint components, namely the clockwise component at x (call it Cx) and
the counterclockwise component at y (call it Cy), that are completely hidden
from each other. By lemma 3, the pair of intervals (Ai, Bi) cannot miss
any components. Hence every basic interval Ai must lie in one of the two
components Cx or Cy, while the corresponding interval Bi must lie in the
other component. This implies that none of the LR-visible pairs of intervals
(Ai, Bi) are visible to each other and consequently P has no weakly-visible
chords. Hence the proof. 2

The following lemma states that the visibility restrictions between points on
Ai and points on Bi are imposed only by the side intervals Di and Ei. If a
point x ∈ Ai cannot see a point y ∈ Bi, its visibility is blocked by Di or Ei.

Lemma 12. Let x be a point on Ai and y a point on Bi. If the ray shot
from x along xy intersects the polygon at a point w ∈ PCCW (x, e(Ai)) ∪
PCCW (b(Bi), y), then there must be at least one point of Di to the left of the
ray. Similarly, if the ray shot from x along xy intersects the polygon at a
point w ∈ PCCW (y, e(Bi))∪PCCW (b(Ai), x), then there must be at least one
point of Ei to the right of the ray.

Proof. Assume that a portion of Ai obstructs the ray from x towards
y. Consider the point z on PCCW (x, b(Bi)) that lies to the left of the ray
along xy and such that the angle subtended by the segment xz with the
segment xy is the greatest (see Fig. 6). Since z is an extreme point, it must
be a reflex vertex. Let z ′ be the hit point of the clockwise ray shot from z.
Let z be a point on Ai and z 6= e(Ai). The component PCW (z, z′) does not
touch e(Ai) or b(Bi), contradicting the LR-visibility of the pair of points
(e(Ai), b(Bi)). Hence z = e(Ai) or z must be on Di. In either case there is
a point of Di to the left of the ray from x towards y.

Similar arguments prove that (1) if a portion of PCCW (b(Bi), y) obstructs
the ray shot from x towards y, then it must have at least one point of Di

to its left, and that (2) if a portion of PCCW (y, e(Bi)) ∪ PCCW (b(Ai), x)
obstructs the ray shot from x towards y, then it must have at least one
point of Ei to its right. 2

The consequence of the above lemma is that if a ray shot from x ∈ Ai

towards y ∈ Bi has all of Di to its right and all of Ei to its left, then it
cannot be obstructed by any other point of Ai or Bi. Also, if a ray shot
from x along xy has Di completely to its right, then this ray does not
intersect PCCW (y, e(Bi)) ∪ PCCW (b(Ai), x)\{x, y}.

5. Overview of the algorithm

We first give an overview of the algorithm. There are several preliminary
steps. Our algorithm first constructs the kernel K using the linear time



FINDING ALL WEAKLY-VISIBLE CHORDS . . . 445

x

z

z′

y

Fig. 6: Proof of lemma 12

method of [12] and then constructs K ∩P . This latter step is easily accom-
plished since the algorithm of [12] can return the vertices of K which lie on
P . If this is not empty, the algorithm outputs (K ∩ P, P ) which describes
all weakly-visible chords with one endpoint in the kernel.

We then run the linear-time algorithm of Bhattacharya and Mukhopad-
hyay [2] to compute a single weakly-visible line segment. Clearly, P has
a weakly-visible line segment if and only if P has a weakly-visible chord.
Thus if P does not have a single weakly-visible segment then the algorithm
can stop and report that there are no weakly-visible chords. Henceforth we
will assume P has at least one weakly-visible chord, and consequently (by
lemmas 10 and 11) that the side intervals are well-behaved.

The next step is to run the LR-visibility algorithm from [6], which gives
us the non-redundant components with endpoints in counterclockwise order,
as well as the LR-visible pairs of intervals (Ai, Bi), i = 1, . . . , k. We next
determine whether there exist two disjoint components. This can be done in
linear time by using the scheme described in [15] or in [6]. Suppose we find
that P does have a pair of disjoint components F and G. Any LR-visible
pair of points must have one point on F and the other on G, so for any basic
interval Ai in F we know that Bi is contained in G. It suffices to look only
at Ai in F (and their corresponding Bi in G) and compute weakly-visible
chords, if any. Suppose P does not have two disjoint components. In this
case the algorithm examines each non-kernel Ai and its corresponding Bi in
search of weakly-visible chords.



446 G. DAS, P. J. HEFFERNAN, G. NARASIMHAN

r
Ai

Bi

Di

Ei

p(r)
q(r)

t(r)

s(r)

β

α γ

δ

e(Bi)b(Bi)

Fig. 7: Pseudo-tangents, pseudo-tangent points, and their extensions

In either case, the algorithm goes through k iterations, where k = O(n)
is the number of pairs of intervals output by the LR-visibility algorithm.
The i-th iteration consists of determining the weakly-visible chords between
a non-kernel Ai and its corresponding Bi. Since a point r ∈ Ai forms an
LR-visible pair with every point p ∈ Bi, by lemma 6 we can construct the
set of weakly-visible chords by determining the points of Bi that are visible
from r. By lemma 12, for each r ∈ Ai its visibility from points on Bi is
restricted only by the side intervals Di and Ei.

The visibility between a point r ∈ Ai and points on the chain Bi is deter-
mined by a pair of constructs we call the pseudo-tangents. Consider Fig. 7.
The pseudo-tangent from r to Di (resp. Ei) is the unique line directed along
a ray shot from r towards a point s(r) of Di (resp. t(r) of Ei) such that
all of Di (resp. Ei) lies on or to the right (resp. left) of the ray shot. The
points s(r) and t(r) are called the pseudo-tangent points. Pseudo-tangents
are different from tangents, since tangents are also required to be chords.
For example, the pseudo-tangent from r to Di may intersect Ei and hence
may not be a chord. We denote the direction of the pseudo-tangent to Di

(resp. Ei) by β(r) (resp. γ(r)). We give labels to two other special di-
rections: the direction from r to b(Bi) (resp. e(Bi)) is denoted α(r) (resp.
δ(r)). Let p(r) (resp. q(r)) be the other endpoint of the longest chord of P

with one endpoint at r in direction β(r) (resp. γ(r)). We call p(r) and q(r)



FINDING ALL WEAKLY-VISIBLE CHORDS . . . 447

the extension points of the two pseudo-tangents. If direction β is clockwise
of γ with respect to r ∈ Ai, then by lemma 12, all points on Bi between p(r)
and q(r) are visible from r and hence form weakly-visible chords with r. Let
SP (Di) denote the shortest path between the endpoints of Di. Since Di is
well-behaved, it is easy to see that the pseudo-tangents to Di are the same
as the pseudo-tangents to SP (Di). In the following discussion, sometimes
we will use abbreviated notation, for example α instead of α(r), when the r

under consideration is clear.

Hence the strategy used by the algorithm is to traverse P with a point r.
The i-th iteration is started off by computing the subchains SP (Di), and
SP (Ei) and by computing the pseudo-tangents from b(Ai) to Di and Ei.
Then, as r traverses along Ai, for each r ∈ Ai, it computes the pseudo-
tangents to Di and Ei, thus computing the values of β and γ. If r is visible
from some point on Bi, it computes the extensions of the pseudo-tangents p

and q as well as the points of tangency s and t. Then the algorithm reports
all chords between r and points on Bi between p and q.

Below we give the details of the algorithm. We also show that as r traverses
along P , the values of α(r), β(r), γ(r), δ(r), s(r), t(r), p(r), and q(r) can
be efficiently maintained and updated (they all satisfy some monotonicity
properties), thus obtaining a linear-time algorithm.

6. Computing all weakly-visible chords

Consider the i-th iteration of the algorithm, which involves the traversal
with r along Ai. The preprocessing at the start of the i-th iteration involves
computing the subchains SP (Di) (as described in section 6.1) and SP (Ei),
and computing the pseudo-tangents from b(Ai) to Di and Ei. As r traverses
along Ai, the pseudo-tangents are computed for each r (as described in
section 6.2).

For a fixed point r, the directions α and δ are easily computed. The
pseudo-tangents from r effectively give the directions β and γ. The point r

is visible from some point of Bi if and only if the special directions satisfy
the following relationship: α ≤ccw β ≤ccw γ ≤ccw δ (where ≤ccw means
“precedes or equals in counterclockwise order towards the interior of P , as
viewed from r”). Consider the scenario for a point r ∈ Ai which is visible
from some point on Bi. In this case the pseudo-tangencies are actually
tangencies, in the sense that rp and rq are chords of P . Since α, β, γ and
δ are ordered counterclockwise, the points p and q lie on Bi. Points of Bi

lying between b(Bi) and p (resp. q and e(Bi)) are not visible from r because
visibility is blocked by Di (resp. Ei). However, by lemma 12 all points of
PCCW (p, q) are visible from r. Also, if b(Bi) (resp. e(Bi)) is the pseudo-
tangent point of Di (resp. Ei), i.e. if α = β (resp. γ = δ), then b(Bi) (resp.
e(Bi)) is also visible from r. Thus if r is visible from some point on Bi,
by lemma 6 and 12, its set of weakly-visible chord partners consists of the
closed subchain PCCW (p, q) of Bi.



448 G. DAS, P. J. HEFFERNAN, G. NARASIMHAN

If r is not visible from any point on Bi, then the four special directions
are not ordered properly. If Di (resp. Ei) blocks all of Bi from r, then
we have the subordering α ≤ccw δ <ccw β (resp. γ <ccw α ≤ccw δ). If the
ordering is α ≤ccw γ <ccw β ≤ccw δ, then neither Di nor Ei totally block
visibility individually, but together they do. In this case we can still define
p and q as the extensions of the pseudo-tangencies until they hit Bi, where
the opposite side interval is simply ignored. The fact that the ordering of β

and γ is reversed means that q precedes p counterclockwise on Bi.
In order to find the pseudo-tangencies from every point r, we traverse P

once clockwise with a point r, calculating for each r on Ai the pseudo-tangent
to the side interval Ei. We then perform the counterclockwise traversal
of P and compute for each r the pseudo-tangent to Di (as described in
section 6.2). During this traversal, we also determine for which points r

the ordering α ≤ccw β ≤ccw γ ≤ccw δ is obeyed. For these points r we
compute the extensions p and q to obtain the partner interval PCCW (p, q).
The computation of the extensions of the pseudo-tangents is described in
section 6.2. Note that if γ <ccw β then r sees no point of Bi and the
extension p is undefined. Also if α = β (resp. γ = δ) for any point r, then
b(Bi) (resp. e(Bi)) is also a partner. Since p and q are different for each
r, and there are an infinitude of values of r, we must exhibit care in our
manner of computing and storing the output; this issue will be addressed
during the discussion below.

We now show how SP (Di) can be efficiently computed and stored in a
structure we will call as the side shortest path tree (or simply the SSPT
structure).

6.1 Computing SP (Di)

The computation of the SP (Di)s are handled in groups. Consider the first
side interval D1, which corresponds to the first basic interval A1. As-
sume that it contains the collection of basic intervals A2, · · · , Aj , as shown
in Fig. 8. Assume that the side interval Dj contains the basic intervals
Aj+1, · · · , Al, and is the first side interval that does not overlap with D1.
We will essentially deal with D1 through Dj−1 as the first group. Similarly,
Dj through Dl−1 will be dealt with as the second group, and so on. In the
next three paragraphs, we will describe how to preprocess an entire group
in a manner that allows efficient updating. Note that the first and the last
group may overlap. However, no basic interval is in more than two groups.
Hence this overlap only introduces a constant multiplicative factor in the
time complexity. Note also that if P has two disjoint components, then all
the basic intervals A2, . . . , Ak are contained in D1, and only one group of
side intervals is formed. If P does not have two disjoint components, then
many groups of side intervals may exist. Hence the procedure described
below for one group is repeated once for each group.

For what follows, we assume that a group consists of side intervals D1

through Dj−1. The preprocessing for the group involves the construction



FINDING ALL WEAKLY-VISIBLE CHORDS . . . 449

A1

A2

Ai

D1

Di

Dj

Aj

Aj+1 Al

Bridge BR(Di)

Fig. 8: Processing the side intervals

of the shortest path tree from e(D1) as well as from b(D1) to all vertices
of D1. We also construct shortest path trees from e(Dj) and b(Dj) to all
vertices of Dj . Since D1 and Dj are well-behaved we perform this step in
time proportional to the size of D1 and Dj , by a modification of the algo-
rithm of [8]. We refer to a common tangent between two convex chains as
the bridge between them. At any time SP (Di) is stored in three fragments,
namely as two shortest paths, SP (b(Di), e(D1)) and SP (e(D1), e(Di)), plus
the bridge between them denoted by BR(Di). Thus, as r moves from Ai−1

to Ai, we first update to obtain SP (b(Di), e(D1)) and then update to ob-
tain SP (e(D1), e(Di)). The fragment SP (b(Di), e(D1)) is obtained from
SP (b(Di−1), e(D1)) by a depth-first search of the shortest path tree from
e(D1), which allows one to visit all vertices of D1 according to the coun-
terclockwise order on P . The fragment SP (e(D1), e(Di)) is obtained from
SP (e(D1), e(Di−1)) by performing a depth-first search of the shortest path
tree from b(Dj), which allows one to visit all vertices of Dj according to the
counterclockwise order on P . Note that SP (e(D1), e(Di)) is “ballooning
out” while SP (b(Di), e(D1)) is “shrinking”. More formally, the region of
int(P ) enclosed by SP (e(D1), e(Di)) contains the region of int(P ) enclosed
by SP (e(D1), e(Di−1) and the region of int(P ) enclosed by SP (b(Di), e(D1))



450 G. DAS, P. J. HEFFERNAN, G. NARASIMHAN

a′
i−1 a′

i−1

b′i−1

e(D1)

e(Di)

b′′i−1 = b b′′i−1 = b

a′′
i−1 = a

b(Di)

b(Di−1)

e(Di−1)

a′′
i−1 = a

b′i−1 = b

b′′i−1 b′′i−1

b′i−1 b′i−1 = b

a′
i−1 = a a′

i−1 = a

a′′
i−1 a′′

i−1

(a) (b) (c) (d)

Fig. 9: Processing the side intervals

is contained in the region of int(P ) enclosed by SP (b(Di−1), e(D1). We
point out that because of the above observations, the chains SP (Di−1) and
SP (Di) must intersect.

Computing the bridge between two convex chains that share a common
point can be done in one of many ways. One way to do it is as follows:
traverse the first chain starting from the common point moving towards its
extreme end, while traversing the second chain from its extreme end moving
towards the common point. For each vertex x traversed on the second
chain, compute the point of tangency for tangents to the first chain passing
through x. Keep moving to the next vertex on the second chain until the
pair of vertices representing the points of common tangency (i.e. the bridge
between the chains) between the chains is found. To check whether a line
joining two points is the required bridge (in constant time) compare the
slopes of the incident edges from the two chains with that of the tangent
line.

The above method for finding the bridge is used by our algorithm for
computing BR(D1), the bridge for the first side interval. However, we use
a slightly modified method for computing the other bridges BR(Di), i > 1,
since these can be computed from BR(Di−1) as described below.

Let the bridge BR(Di−1) connect point a′

i−1 on SP (b(Di−1), e(D1)) and
point b′i−1 on SP (e(D1), e(Di−1)). Denote by a′′i−1 the point where the
paths SP (b(Di), e(D1)) and SP (b(Di−1), e(D1)) begin to separate, and by
b′′i−1 the point where SP (e(D1), e(Di)) and SP (e(D1), e(Di−1)) begin to



FINDING ALL WEAKLY-VISIBLE CHORDS . . . 451

separate. Let a be the point that is closer to e(D1) among the two points
a′i−1 and a′′i−1. Note that when we say that point x is closer to e(D1) than y

we mean that point x lies on the shortest path from y to e(D1). Similarly,
let b be the point that is closer to e(D1) among the two points b′i−1 and
b′′i−1. Let the bridge BR(Di) connect the points a′

i and b′i. Due to the
shrinking of SP (b(Di), e(D1)), a′i must lie on SP (b(Di), a). Similarly, due
to the ballooning out of SP (e(D1), e(Di), b′i must lie on SP (e(D1), b

′

i−1) if
b = b′i−1, otherwise b′i must lie on SP (e(D1), e(Di)). Examples of the four
cases generated if a = a′

i−1 or a = a′′i−1 and if b = b′i−1 or b = b′′i−1 are shown
in Figs. 9(a)-(d). These figures show the two fragments of SP (Di−1) as a
polygonal chain, the two fragments of SP (Di)\SP (Di−1) as a dashed chain,
and the bridge BR(Di−1) as a dotted line. A thick arrow in the figure shows
the direction of traversals for finding BR(Di).

To find the bridge BR(Di), our algorithm traverses along SP (b(Di), e(D1))
from a (instead of starting the search from e(D1)) in a direction away from
e(D1). If b = b′i−1, then the algorithm traverses along SP (e(D1), e(Di))
from b in a direction towards e(D1). If, instead, b = b′′i−1, then the algo-
rithm traverses along SP (e(D1), e(Di)) from e(Di) in a direction towards
e(D1). At any point along these traversals the algorithm computes the
point of tangency from the point on SP (e(D1), e(Di)) to the convex chain
SP (b(Di), e(D1)). Once the point is found, the algorithm moves to the next
vertex along SP (e(D1), e(Di)) and finds the point of tangency for this new
vertex. This is continued until the bridge is found. Note that this is a slight
modification of the scheme presented earlier for finding BR(D1). The main
difference is that additional information about the location of the points of
tangency a′i and b′i are used, thereby avoiding repeated traversals of portions
of the shortest path tree.

The data structure to store all the SP (Di)s is called the side short-
est path tree (SSPT) structure. It has one structure for each group of
side intervals. As mentioned earlier, for a group of side intervals, say
D1, . . . , Dj , each SP (Di), 1 ≤ i ≤ j, is stored in three fragments, namely,
SP (b(Di), e(D1)), SP (e(D1), e(Di)) and BR(Di). The collection of the first
fragments (SP (b(Di), e(D1))) of each SP (Di), 1 ≤ i ≤ j is stored in a tree,
while the collection of second fragments (SP (e(D1), e(Di))) is stored in an-
other tree. In order to store BR(Di), pointers are stored in both the trees
to indicate its endpoints. By the construction described above, it should be
clear that if an edge of one of the trees is on SP (Dl) and on SP (Du), then
it is also on SP (Dl+1), . . . , SP (Du−1). Each edge e of the SSPT structure
has information attached to it of the form [le, ue] to indicate that le (resp.
ue) is the smallest (resp. largest) index such that e is on SP (Dle) (resp.
SP (Due)). Note that the values le and ue are initialized during iterations
le and ue + 1 respectively. In iteration le a subchain that includes e will
be added to a fragment of SP (Dle), while in iteration ue + 1 a subchain
that includes e will be removed from SP (Due+1). For convenience, we will
assume that the SSPT structure is a separate data structure built to store
all the SP (Di)s, although it is possible to incorporate this data structure



452 G. DAS, P. J. HEFFERNAN, G. NARASIMHAN

into the shortest path trees that are built from b(D1) and e(D1).
We now discuss the complexity of computing the SSPT structure. The

first step involved is computing the shortest path trees from the starting
and ending points of each group of side intervals. Computing these trees is
done once for each group of side intervals and can be done in linear time
by the algorithm of [8], since each of them is well-behaved. The size of
the shortest path tree for a group is at most a constant times the num-
ber of vertices in that group and thus the union of these trees has O(n)
vertices. It is easy to see that the overlap between the first and the last
group will not affect the size by more than a factor of 2. Hence comput-
ing shortest path trees takes time O(n). Computing SP (b(Di), e(D1)) and
SP (e(D1), e(Di)) involves performing a depth first search of these shortest
path trees, and the time spent on this computation for an entire group is
linear in the size of the tree for that group. Overall, this work amortizes to
O(n) time. Efficient computation and maintenance of the bridge is possible
because the bridge endpoints display a monotonicity property similar to that
of the pseudo-tangents from r: the bridge endpoints progress monotonically
clockwise along the shortest paths. Because of the starting points (points
a and b from above) as well as the clockwise directions of the traversals in
each iteration it is clear that no edge of the shortest path trees is traversed
more than once for the purpose of finding a bridge. Thus computing all the
bridges can also be done in O(n) time. Hence the preprocessing to compute
the SSPT structure that stores all the SP (Di)s can be performed in linear
time.

6.2 Computing pseudo-tangents and their extension points

We now describe the computation of the pseudo-tangents to Di as r traverses
counterclockwise along Ai; the procedure for the pseudo-tangent to Ei is
similar. The well-behavedness of Di makes it easy to find and update pseudo-
tangencies. Also determining if a point of SP (Di) is the pseudo-tangent
point is accomplished in constant time by comparing directions of the line
from r with those of the adjacent edges.

The following lemma is crucial to understanding the correctness as well as
the complexity of computing these pseudo-tangents.

Lemma 13. As r is traversing counterclockwise within a basic interval Ai,
the point of pseudo-tangency from r on Di, namely s(r), moves clockwise
along SP (Di) towards b(Di).

Proof. Since Di is well-behaved, the shortest path SP (Di) is a convex
chain consisting of only right turns (by lemma 1) and the point of pseudo-
tangency must lie on SP (Di). If Ai were convex then clearly as r moves
counterclockwise along Ai, the point of pseudo-tangency moves clockwise
along SP (Di). Ai may not be convex; however, it is well-behaved. For
the sake of contradiction assume that for some r on Ai, a counterclockwise



FINDING ALL WEAKLY-VISIBLE CHORDS . . . 453

r

r′

SP (Di)

Ai

Fig. 10: Proof of lemma 13

traversal from r causes the point of pseudo-tangency to move counterclock-
wise along SP (Di). As can be seen easily from Fig. 10, this will cause some
portion of Ai to obstruct visibility of Bi without any portion of Di causing
the obstruction. This contradicts lemma 12 and hence the proof. 2

This also results in the monotonicity of many other values as r traverses
along Ai. We first show that the functions β(r) and p(r) are monotonic,
i.e., as r moves counterclockwise along the entire polygon, the direction
β moves counterclockwise with respect to r and the point p moves coun-
terclockwise along P . We first consider the traversal of r within a basic
interval Ai. If the pseudo-tangent point remains the same, then as r moves
counterclockwise the pseudo-tangent rotates counterclockwise around the
pseudo-tangent point, with the consequence that p (if defined) moves coun-
terclockwise on Bi. If the pseudo-tangent point changes (there is an instant
when the point of pseudo-tangency lies on an edge of SP (Di)), it moves in
a clockwise direction along SP (Di) towards b(Di). But then β(r) and p(r)
moves monotonically counterclockwise. Note also that the points r, s(r)
and p(r) are collinear. So once r and s(r) are computed, computing p(r)
involves a simple counterclockwise traversal of Bi.

Next we describe the computation (performed at the start of iteration i) of
the pseudo-tangents from b(Ai) to Di. When r reaches e(Ai−1) = b(Ai), it-
eration i is started. Then SP (Di) is computed from SP (Di−1) as described
in section 6.1. The point of pseudo-tangency s(b(Ai)) lies on SP (Di). If
α(b(Ai)) ≤ccw β(e(Ai−1)), then the pseudo-tangent point does not change
(see Fig. 11(a)), and in fact, s(e(Ai−1)) lies on SP (Di−1) ∩ SP (Di). Con-



454 G. DAS, P. J. HEFFERNAN, G. NARASIMHAN

Ai−1

Ai

Di−1

Di

(a)

Ai−1

Ai

Di−1

Di

(b)

Fig. 11: Computing pseudo-tangents from b(Ai) to Di

sequently, s(e(Ai−1)) = s(b(Ai)) and p(e(Ai−1)) = p(b(Ai)). Now assume
that β(e(Ai−1)) ≤ccw α(b(Ai)) (see Fig. 11(b)). Since SP (Di) is a convex
chain, although s(e(Ai−1)) may lie on it, it does not touch the rest of the
subchain of SP (Di−1) from s(e(Ai−1)) to e(Di−1) (otherwise SP (Di−1) will
lie entirely to the left of the direction β(e(Ai−1))). In this case the algorithm
computes the new point of pseudo-tangency by traversing SP (Di) starting
from e(Di) until s(b(Ai)) is found. Note that the subchain of SP (Di−1)
from s(e(Ai−1)) to b(Di−1) has not been traversed for the purpose of finding
pseudo-tangents. Hence any portion of SP (Di−1)∩SP (Di) on this subchain
of SP (Di−1) has also not been traversed for this purpose (although it may
be traversed in a later iteration). In this case the pseudo-tangent from r to
Di is counterclockwise to the pseudo-tangent from r to Di−1. Hence p(b(Ai))
is counterclockwise of p(e(Ai−1)) and can be found by a counterclockwise
traversal of Bi starting from b(Bi). Traversing along SP (Di) simply involves
traversing along the SSPT structure described in section 6.1. As argued
above, the portion of the SSPT structure traversed during the i-th iteration
for computing pseudo-tangents consists only of those edges of the SSPT
structure that have not been traversed in earlier iterations and by previous
arguments this must take O(n) time when summed over all iterations.

Thus it is clear that pseudo-tangents points, pseudo-tangents and their
extension points for all r can be computed in linear time.



FINDING ALL WEAKLY-VISIBLE CHORDS . . . 455

6.3 Representing and storing the output

Section 6.2 details how to find p(r) and q(r) for any given r, and also how to
maintain it as r traverses along P . For any given r, it forms weakly-visible
chords with all points on the subchain from p(r) to q(r). Now we discuss
how to represent p(r) for a set of points. This is important in order to
describe how the output is represented and stored. As r traverses along Ai,
several events can occur:

(1) r can reach a vertex of Ai (other than e(Ai)),

(2) p can reach a vertex of Bi (other than e(Bi)),

(3) the pseudo-tangent point s can pivot about an edge of SP (Di),

(4) r can reach e(Ai), or

(5) p can reach e(Bi).

In order to easily store the output, we introduce Steiner points at r and
p (if r and/or p are not already vertices) whenever one of the events (1)-
(5) above occurs. The union of Ais and Bis have a total of O(n) vertices.
The total number of vertices and edges in the SSPT structure storing the
SP (Di)s is also O(n). Hence, there are at most a total of O(n) events that
can occur. Thus the total number of Steiner points introduced is O(n). The
description of the output is piecewise and a different constant-sized piece
is output at each event. Between events, however, we have (1) an edge of
Ai containing r, (2) a similar edge of Bi containing p, and (3) a point s

on SP (Di) that lies on rp. Both the edges containing r and p connect two
Steiner points and can be described by a linear equation involving their x-
and y-coordinates. The point r can be described as a point with x-coordinate
x and y-coordinate as a linear function of x. The point p can be described
as a point with x-coordinate x′ and y-coordinate as a linear function of x′.
The line joining points r and p can be expressed as a linear equation in x

and x′. Since this line must pass through s, it can be expressed as a linear
equation in only one variable, say x. Furthermore, the coordinates of point
p can also be expressed in terms of x. The range for x can be determined
based on consecutive events, Thus, as r traverses through the infinitude of
points on an edge, each has a unique p; the function p(r) can be described
in constant time and space. Given a point r, its corresponding p(r) can
thus be found in constant time. In this way, every point of a non-kernel
basic interval has a linear function p(r). In case (4) both s and therefore
p may need to be updated. In case (5) the remainder of Ai does not have
weakly-visible partners in Bi.

A symmetric procedure has r traversing clockwise around P in order to
compute q(r) for each r. By merging the Steiner points introduced while
computing q(r) with those from the computation of p(r), we have that for
every edge of a non-kernel basic interval, p(r) and q(r) are linear functions.
Checking whether p(r) precedes q(r) counterclockwise for all points r on the
edge can be done by comparing the values of β(r) and γ(r). For those r

which violate this order, we return that they have no weakly-visible partners.



456 G. DAS, P. J. HEFFERNAN, G. NARASIMHAN

For those r which obey the order, the weakly-visible partners are the points
on the interval from p(r) to q(r).

A final consideration concerns b(Bi) and e(Bi). We stated that if α = β

(γ = δ) then b(Bi) (e(Bi)) is a weakly-visible partner of r, even though it
is outside the interval PCCW (p, q). Throughout the above procedure, then,
b(Bi) and e(Bi) are stored separately as weakly-visible partners whenever
appropriate.

Tying up all the pieces together, we have shown a linear-time algorithm
to compute all weakly-visible chords of a simple polygon.

7. Conclusion

This paper presents linear-time algorithms to compute all weakly-visible
chords in a simple polygon. It may be noted that the algorithm presented
in this paper uses Chazelle’s linear-time triangulation [3] as part of its pre-
processing. One of the open problems mentioned in the preliminary version
of this paper was to design an algorithm for the weakly-visible chords prob-
lem without utilizing the triangulation algorithm. We believe that this open
problem has been solved and will appear in a journal version of [7].

It is interesting to note that the results in this paper were used to develop
an optimal linear-time algorithm for computing the shortest weakly-visible
segment in the interior of a simple polygon [7]. We believe that the results
and techniques presented here will be useful in finding efficient algorithms
for other visibility problems in polygons.

8. Acknowledgements

The authors wish to thank the anonymous referees for their careful reading
and for their many comments that greatly improved the presentation.

References

[1] D. Avis, G.T. Toussaint, An optimal algorithm for determining the visibility of a
polygon from an edge. IEEE Transactions on Computers, 30, pp.910–914, 1981.

[2] B. Bhattacharya, A. Mukhopadhyay, Computing in linear time an internal line
segment from which a simple polygon is weakly internally visible, Manuscript, 1993.

[3] B. Chazelle, Triangulating a simple polygon in linear time. Discrete and Computa-

tional Geometry, 6 pp.485–524, 1991.
[4] D.Z. Chen, Optimally computing the shortest weakly-visible edge of a simple polygon,

Proc. Fourth ISAAC, LNCS 762, pp.323–332, 1993.
[5] J. Doh, K. Chwa, An algorithm for determining visibility of a simple polygon from

an Internal Line Segment, J. of Algorithms, 14(1), pp.139–168, 1993.
[6] G. Das, P.J. Heffernan, G. Narasimhan, LR-visibility in polygons, Proceedings

of the 5th Canadian Conference on Computational Geometry, pp.303–308, 1993. Sub-
mitted to special issue of Computational Geometry - Theory and Appln..

[7] G. Das, G. Narasimhan, Optimal Linear-Time Algorithm for the Shortest Illumi-
nating Line Segment in a Polygon, Proceedings of the 10th Annual ACM Symp. on

Computational Geometry, pp. 259–268, 1994.



FINDING ALL WEAKLY-VISIBLE CHORDS . . . 457

[8] L. Guibas, J. Hershberger, D. Leven, M. Sharir, R.E. Tarjan, Linear time
algorithms for visibility and shortest path problems inside triangulated simple polygons,
Algorithmica, 2, pp. 209–233, 1987.

[9] P.J. Heffernan, An optimal algorithm for the two-guard problem, Proceedings of
the 9th Annual ACM Symp. on Computational Geometry, pp.348–358, 1993.

[10] C. Icking, R. Klein, The two guards problem, Proceedings of the 7th Annual ACM

Symp. on Computational Geometry, pp.166–175, 1991.
[11] Y. Ke, Detecting the weak visibility of a simple polygon and related problems, Tech.

Report, The Johns Hopkins University, 1987.
[12] D.T. Lee, F.P. Preparata, An optimal algorithm for finding the kernel of a poly-

gon, Journal of the ACM, 26(3), pp.415–421, 1979.
[13] F.P. Preparata, M.I. Shamos, Computational Geometry: An Introduction,

Springer Verlag, 1985.
[14] J.-R. Sack, S. Suri, An optimal algorithm for detecting weak visibility, IEEE Trans-

actions on Computers, 39(10), pp.1213–1219, 1990.
[15] L.H. Tseng, D.T. Lee, Two-guard walkability of simple polygons, Manuscript, 1993.


