
Nordic Journal of Computing 1(1994), 458–474.

AN O(log log n) TIME ALGORITHM TO COMPUTE
THE KERNEL OF A POLYGON∗

SVEN SCHUIERER
Institut für Informatik, Universität Freiburg

Rheinstr. 10-12, D-79104 Freiburg, Fed. Rep. of Germany
schuierer@informatik.uni-freiburg.de

Abstract. The kernel of a polygon P is the set of all points that see the interior
of P . It can be computed as the intersection of the halfplanes that are to the left
of the edges of P . We present an O(log log n) time CRCW-PRAM algorithm using
n/log log n processors to compute a representation of the kernel of P that allows
to answer point containment and line intersection queries efficiently. Our approach
is based on computing a subsequence of the edges that are sorted by slope and
contain the “relevant” edges for the kernel computation.

CR Classification: F.2.2

Key words: computational geometry, visibility, polygons, kernel

1. Introduction

Visibility problems play an important role in many applications and are
a well studied field in computational geometry [O’Rourke 1987], [Preparata
and Shamos 1985]. Given a simple polygon P in the plane we say two points
p and q in P are visible from each other or see each other if the line segment
pq is contained in P . The kernel of P kernel(P) is then defined as the
set of all points that see all the other points in P . It can be easily shown
that kernel(P) is the intersection of all the halfplanes that lie to the left
of the polygon’s edges given a counterclockwise orientation of P [Lee and
Preparata 1979].

Although Ω(n log n) time is required to compute the intersection of n
arbitrary halfplanes, the fact that the halfplanes correspond to the edges of a
simple polygon can be exploited to obtain a linear time sequential algorithm
[Lee and Preparata 1979] or an O(log n) time algorithm for a CREW-PRAM
with n/ log n processors [Cole and Goodrich 1992]. Other visibility related
algorithms for parallel models of computation that have been previously
studied are an optimal O(log n) time CREW-PRAM algorithm to find the
visibility polygon of a point [Atallah, Chen, and Wagener 1991] and an
optimal O(log n) time CREW-PRAM algorithm for detecting weak visibility
of a simple polygon [Chen 1992].

∗ This work was supported by the Deutsche Forschungsgemeinschaft under Grant No.
Ot 64/8-1.

Received May 1994. Accepted November 1994.

AN O(log log n) TIME ALGORITHM TO COMPUTE THE KERNEL . . . 459

Our approach to compute the kernel of a polygon is very similar to the
one used in [Cole and Goodrich 1992]. In a first step the halfplanes which
are irrelevant for the kernel computation are filtered out and, then, a repre-
sentation of the intersection of the remaining set of halfplanes is computed.
This representation of the kernel allows to answer point containment and
line intersection queries in time O(log n/ log p) if p processors are available.

As it turns out this idea can be implemented on a parallel random ac-
cess machine where concurrent write and read accesses to one cell are al-
lowed (CRCW-PRAM) in time O(log log n) using n/log log n processors.
The particular model of CRCW-PRAM we make use of here is the COM-

MON CRCW-PRAM where concurrent write is only allowed if all processors
write the same value to one cell.

The paper is organized as follows. After introducing some notation we
describe in the third section which edges can be filtered out. The result are
two sequences of halfplanes which are sorted by slope and whose intersection
yields the kernel. It is shown how to compute these sequences of halfplanes
efficiently in parallel. In Section 4 we describe how to use dualization to find
a representation of the intersection of these halfplanes that allows efficient
point-containment and line-intersection queries.

2. Definitions and Notation

As was pointed out above the kernel of a simple polygon P is the intersection
of all the halfplanes that are to the left of its edges given a counterclock-
wise orientation of P . Since the approach we present works for closed and
open curves we assume in the following that we are given a simple oriented
polygonal chain C = (e1, . . . , en) where edge ei starts at vertex vi and ends
at vertex vi+1.

We denote the halfplane with ei on its boundary and interior to the left of
ei by h+(ei) and the halfplane with ei on its boundary and interior to the
right of ei by h−(ei). The kernel of C is defined as

⋂

1≤i≤n h+(ei). Hence, if
C is a closed curve with a counterclockwise orientation, then the kernel of C
is the set of all points that see the interior of C.

One main step in our algorithm is to produce a sequence of edges that
are sorted according to turning angle. By turning angle we mean the angle
of the edge plus the number of times the chain has spiraled around itself.
Here, the angle of edge ei is defined as the angle between the directed line
through ei and the x-axis and is denoted by Θ(ei).

The turning angle can be defined incrementally by considering the differ-
ence between the angles of two consecutive edges. If ei and ei+1 are two
consecutive edges of C, then we define the incremental angle between ei and
ei+1 to be the signed angle between ei and ei+1 if they are considered as
vectors and denote it by incr(ei, ei+1). incr(ei, ei+1) is positive if ei+1 turns
left from ei and negative if ei+1 turns right.

460 SVEN SCHUIERER

Θ(ei+1)

Θ(ei) + π Θ(ei+1)

(a) (b)

Θ(ei) Θ(ei)

Θ(ei) + π

Θ(ei+1)

Θ(ei)

(c) (d)

Θ(ei+1)

Θ(ei) − π
Θ(ei+1)

Θ(ei) − π

Θ(ei+1) Θ(ei)

Fig. 1: The definition of incr(ei, ei+1).

More precisely, incr(ei, ei+1) is defined as follows (see Fig. 1):

incr(ei, ei+1) =

(a) Θ(ei+1) − Θ(ei) if Θ(ei+1) < Θ(ei) + π ≤ 2π;
(b) Θ(ei+1) − Θ(ei) − 2π if Θ(ei+1) > Θ(ei) + π;
(c) Θ(ei+1) − Θ(ei) if Θ(ei+1) > Θ(ei) − π ≥ 0;
(d) Θ(ei+1) − Θ(ei) + 2π if Θ(ei+1) < Θ(ei) − π.

We can now define the turning angle ΘC(ei) of an edge ei w.r.t. C induc-
tively by

ΘC(e1) = Θ(e1)

ΘC(ei+1) = ΘC(ei) + incr(ei, ei+1)

= Θ(e1) +

i
∑

j=1

incr(ej , ej+1).

The chain C spirals if there are two indices i and j such that ΘC(ej) −
ΘC(ej) > 3π.

3. Highly Parallel Computation of the Kernel

In this section we present an O(log log n) algorithm for a CRCW-PRAM
with O(n/log log n) processors to compute the kernel of a simple polygonal
chain.

To this end we say edge e is relevant if the line through e intersects
kernel(C) in more than one point. We now construct two sets S and S ′

which contain all the relevant edges of C.
Let θi = max1≤j≤i ΘC(ej) and let S be the set of edges ei with ΘC(ei) =

θi > θi−1, where θ0 = −∞, i.e., S is the set of edges whose turning angle is
larger than the turning angle of any previous edge. Furthermore, suppose
we mirror C at the y-axis and revert the orientation of the edges and call
this new chain C ′ consisting of the edges e′1, . . . , e

′
n where e′i is the image of

edge ei. Note that the kernel of C ′ is the image of the kernel of C and a
relevant edge of C ′ is the image of a relevant edge of C. Hence, we can define

AN O(log log n) TIME ALGORITHM TO COMPUTE THE KERNEL . . . 461

ui = ui−1 + 1di = di−1 + 1

vi

vi

(a)

h+(ei)

ei

ej′−1 ej′

h+(ej′−1) ∩ h+(ej′)

(b)

Fig. 2: (a) The definition of up- and downturns and (b) The kernel of C is empty if
ΘC(ei) − ΘC(ej′) ≥ π.

θ′i = maxi≤j≤n ΘC′(e′j). Let S′ be the sequence of edges of C with θ′i > θ′i+1.

In [Cole and Goodrich 1992] it is shown that if C does not spiral, then S∪S ′

contains the relevant edges of C, i.e.

kernel(C) =
⋂

e∈S

h+(e) ∩
⋂

e∈S′

h+(e).

With the above observations it seems that the following approach to com-
puting the kernel is reasonable.

1. Compute S and S ′;
2. Merge S and S ′ into a single sequence S ′′;
3. Intersect the halfplanes in S ′′;

In the following we will address each of the three steps.

3.1 Computing S

The computation of S consists of two steps. First we have to compute
ΘC(ei), and then θi, for 1 ≤ i ≤ n. Computing ΘC(ei) essentially amounts

to computing the sums
∑i

j=1 incr(ej , ej+1), for 1 ≤ i ≤ n. Unfortunately,

there is a lower bound of Ω(log n/log log n) for the computation of the parity
function of n bits on a CRCW-PRAM which, in particular, implies a lower
bound for the computation of the sum of n numbers.

In order to beat this lower bound, we make use of a different representation
of ΘC(ei). We say vertex vi+1 with adjacent edges ei and ei+1 is a downturn

if Θ(ei+1) > Θ(ei)+π. Similarly, we say vertex vi+1 is an upturn if Θ(ei+1) <
Θ(ei) − π (see Fig. 2a). Let the number of upturns up to and including
vertex vi be ui and the number of downturns di.

Lemma 3.1. If C is a polygonal chain, then

ΘC(ei) = Θ(ei) + (ui − di)2π.

462 SVEN SCHUIERER

Proof. The proof is by induction on the number of edges. The claim
obviously holds for i = 1. Now suppose the claim is true for some i > 1,
i.e., ΘC(ei) = Θ(ei) + (ui − di)2π. We want to show that ΘC(ei+1) =
Θ(ei+1) + (ui+1 − di+1)2π with ΘC(ei+1) = ΘC(ei) + incr(ei, ei+1). In order
to do so we distinguish four cases depending on Θ(ei).

(1) Θ(ei+1) < Θ(ei) + π ≤ 2π.
By definition we have incr(ei, ei+1) = Θ(ei+1) − Θ(ei), di+1 = di and
ui+1 = ui. Hence,

ΘC(ei+1) = ΘC(ei) + incr(ei, ei+1)

= Θ(ei) + (ui − di)2π + Θ(ei+1) − Θ(ei)

= Θ(ei+1) + (ui+1 − di+1)2π.

(2) Θ(ei+1) > Θ(ei) + π.
We have incr(ei, ei+1) = Θ(ei+1) − Θ(ei) − 2π, di+1 = di + 1, and
ui+1 = ui. Hence,

ΘC(ei+1) = ΘC(ei) + incr(ei, ei+1)

= Θ(ei) + (ui − di)2π + Θ(ei+1) − Θ(ei) − 2π

= Θ(ei+1) + (ui+1 − (di + 1))2π

= Θ(ei+1) + (ui+1 − di+1)2π.

(3) The cases Θ(ei+1) > Θ(ei) − π ≥ 0 and Θ(ei+1) < Θ(ei) − π can be
handled analogously.

Hence, the computation of ΘC(ei) can be reduced to computing ti = ui−di.
If we consider the sequence (τi), where

τi =

+1 if vi is an upturn,
−1 if vi is a downturn, and
0 otherwise,

then (ti) is the sequence of the prefix sums of τi. As we pointed out be-
fore there is a lower bound of Ω(log n/ log log n) to compute the parity of
bit sequences and, thus, prefix sums [Beam and Hastad 1987]. But if the
sequence (ti) originates from a simple starshaped polygonal curve, then it
spans only a very small range. In order to proof this we need the following
observation.

Lemma 3.2. Let ei and ei′ be two consecutive edges in S. If there is an edge

ej with i < j < i′ such that ΘC(ei) − ΘC(ej) ≥ π, then kernel(C) is empty.

Proof. Let j ′ be the smallest index j ′ > i with ΘC(ei) − ΘC(ej′) ≥ π.
Hence, the part of C from ei to ej′−1 is monotone w.r.t. Θ(ei) + π and
h+(ei) ∩ h+(ej′−1) ∩ h+(ej′) = ∅ (see Fig. 2b). 2

In the following we call a vertex vi that is an upturn or a downturn a turn

and we say two turns vi and vj are consecutive if there is no turn between
vi and vj .

AN O(log log n) TIME ALGORITHM TO COMPUTE THE KERNEL . . . 463

1

0

1 n

−1

downturn upturn

ti

i

j0

Fig. 3: The graph of the ti-values of simple polygon with non-empty kernel.

Lemma 3.3. If C is a polygonal chain with non-empty kernel, then ti is

contained in the interval [−1, 1], for all 1 ≤ i ≤ n. Furthermore, there are

no two consecutive downturns.

Proof. The proof is by contradiction. If there is an i with ti > 1, then
we have ΘC(ei) = Θ(ei) + ti2π > 4π which implies that kernel(C) is empty
[Cole and Goodrich 1992], [Lee and Preparata 1979] in contradiction to the
assumption of the lemma.

If there is an i with ti < −1, then ΘC(ei) = Θ(ei) − ti2π < −2π. Let eil
be the edge in S with maximum il < i. Since ΘC(eil) > ΘC(ef (C)), we have
ΘC(eil) − ΘC(ei) > ΘC(ef (C)) − ΘC(ei) > 2π which implies by Lemma 3.2
that kernel(C) is also empty in this case.

To see the second claim assume there are two downturns vi and vj such
that there is no upturn between vi and vj. Consider the edge ei−1 and some
edge ek with i ≤ k < j. By Lemma 3.1 we have

ΘC(ei−1) − ΘC(ek) = Θ(ei−1) − Θ(ek) + (ui−1 − uk − (di−1 − dk))2π

≥ −2π + 2π ≥ 0.

Thus, if eil is the edge in S with maximum il < j, then il ≤ i − 1 and

ΘC(eil) − ΘC(ej) ≥ ΘC(ei−1) − ΘC(ej)

= Θ(ei−1) − Θ(ej) + (ui−1 − uj − (di−1 − dj))2π

≥ −2π + 2 · 2π ≥ 2π.

and, hence, the kernel(C) is empty by Lemma 3.2. 2

Note that there may be two consecutive upturns. But since no two con-
secutive downturns may occur, Lemma 3.3 implies there is at most one pair
of consecutive upturns. Fig. 3 displays a possible graph of the ti-values for
a simple polygon with non-empty kernel if a pair of consecutive upturns
occurs.

In order to compute the values of ti, for 1 ≤ i ≤ n, we make use of
an algorithm that solves the all nearest smaller values (ANSV) problem

464 SVEN SCHUIERER

which is defined as follows [Berkman, Schieber, and Vishkin 1988]. Given
a sequence of n elements (a1, . . . , an) from a totally ordered domain, find,
for each element ai, 1 ≤ i ≤ n, the left and right closest smaller element,
i.e., find the maximum j < i with aj < ai and find the minimum k > i with
ak < ai. The element aj is called the left match of ai and ak is called the
right match.

We now apply the ANSV-algorithm to the vertices of C. For each vertex
vi we compute the closest turn vj with j > i. In order to do so, processor i
writes n− i into an array cell ai if vertex vi is a turn and n+1 otherwise. If
we apply the ANSV-algorithm to array a, then we obtain a right match of
each vertex. In a similar fashion we compute the left match. Given the two
matches for each vertex, we can test in constant time with n processors if
there are two or more consecutive downturns or three or more consecutive
upturns. If this is the case, then kernel(C) is empty by Lemma 3.3 and we
stop.

We also have to check for pairs of consecutive upturns. In order to do
so, we apply the ANSV-algorithm once again to compute the closest pair
of consecutive upturns to the left and right of each vertex. If there is more
than one such pair or there is one such pair and the first turn of C is an
upturn, then kernel(C) is empty by Lemma 3.3 and we stop.

Now let il be the index of the left match of vertex vi. If a the pair
of consecutive upturns exists, then let j0 be the higher index of the pair;
otherwise we set j0 = n + 1 if the first turn of C is a downturn and j0 = 0 if
the first turn of C is an upturn. Note that il and j0 have been precomputed
in the previous steps. For each vertex vi we set

ti =

{

−1/2 + 1/2τil + τi if i < j0

1/2 + 1/2τil + τi if i ≥ j0

which by the above considerations assigns the correct ti-value to each vertex.
All of the above operations can be carried out in time O(log log n) with
n/log log n processors.

Given the ti values for each vertex, ΘC(ei) can be computed in time
O(log log n), for all 1 ≤ i ≤ n, by Lemma 3.1. In order to obtain S it
is necessary to compute θi = max1≤j≤i ΘC(ej) which is a prefix maxima op-
eration on ΘC(ei) and can be carried out in time O(log log n) with n/log log n
processors [Berkman, Schieber, and Vishkin 1988].

The sequence S ′ can be computed analogously.

Finally, we have to check if C spirals. Cole and Goodrich [1992] show
that by computing the minimum of ΘCi

(ei), θi and the prefix maximum of
(θi + θ′i) it can be decided if C spirals or not. Again each of these steps can
be carried out in O(log log n) steps with n/log log n processors [Berkman,
Schieber, and Vishkin 1988].

AN O(log log n) TIME ALGORITHM TO COMPUTE THE KERNEL . . . 465

3.2 Merging S and S ′

The important property of S and S ′ is that the edges in both sequences are
sorted by turning angles. Hence, an application of an optimal O(log log n)
merging algorithm to obtain a merged sequence S ′′ seems possible. Unfor-
tunately, the edges of S and S ′ are scattered among the edges of C which
we assume to be stored in an array A. In order to compact the edges of
S and S′ into a contiguous part of A we need at least Ω(log |S|/log log n)
time [Ragde 1990] which we cannot afford since S (or S ′) can be as large
as Ω(n). The solution is to apply the ANSV-algorithm in order to find,
for each edge e not in S, its left closest match lcmS(e) in S and the same
for edges not in S ′. We create two new arrays A and A′ with A[j] = ej if
ej is in S and A[j] = lcmS(ej) otherwise and similar for S ′ and A′. Note
that

⋂

e∈A h+(e) =
⋂

e∈S h+(e) and
⋂

e∈A′ h+(e) =
⋂

e∈S′ h+(e). Hence, we
can merge the two arrays A and A′ into one array A′′ of size 2n in time
O(log log n).

3.3 Intersecting the Halfplanes of S and S ′

Since the turning angles of the edges in A′′ vary at most between −2π and
4π, we can split A′′ into O(1) contiguous parts such that the angles of the
edges in these parts are in the intervals [−π/2, π/2) or [π/2, 3π/2) and merge
these parts again into two sequences E+ and E− such that the angles of all
edges in E+ are sorted and in the range [−π/2, π/2) and the angles of the
edges in E− are also sorted and in the range [π/2, 3π/2). In order to compute
the intersection of the halfplanes associated with the edges in E+ ∪ E− we
apply a dualization method as described below.

4. Halfplane Intersection and the Convex Hull

In this section we show how to reduce the intersection of halfplanes that
are sorted by angle to the computation of the convex hull of certain point
sets that are sorted on one coordinate. To this end we apply the concept of
geometric duality which maps points onto lines and vice versa while keeping
incidence relations. More precisely we apply the following dual map D; see
Edelsbrunner [1987].

D(p) = {(x, y) ∈ IR2 | y = p1x − p2} with p = (p1, p2) and
D(`) = (a1,−a2) with ` = {(x, y) ∈ IR2 | y = a1x + a2}.

D has the special property that it preserves order which means in this
case that if p is above the line `, then D(`) is above D(p). In order to
compute the intersection of the halfplanes H = {h+(e) | e ∈ A} we now
proceed as follows. H is split into the two sets H+ = {h+(e) | e ∈ E+}
and H− = {h+(e) | e ∈ E−}. Hence,

⋂H =
⋂H+ ∩ ⋂H−. Note that all

the halfplanes in H+ have their interior above their boundary and all the
halfplanes in H− have their interior below their boundary. Further, let L+

466 SVEN SCHUIERER

P P

Fig. 4: The upper and lower convex hull of a point set P .

be the set of directed boundary lines of the halfplanes in H+ and L− be
defined analogously for H−. Now p ∈ ⋂H+ if and only if p is above all lines
` in L+; in the dual plane this corresponds to the fact that for all ` ∈ L+,
the point D(`) is above the line D(p), i.e., that the upper convex hull of
D(L+) is above D(p). The upper convex hull of D(L+) is defined as the set
of points that are above or in the convex hull of D(L+). Similarly, the lower

convex hull of D(L−) is defined as the set of points that are below or in the
convex hull of D(L−) (see Fig. 4). We denote the boundary of the upper
convex hull of D(L+) by B+(L+) and the boundary of the lower convex hull
of D(L−) by B−(L−).

In the same way we get that p ∈ ⋂H− if and only if, for all ` ∈ L−, the
point D(`) is below the line D(p), i.e., if the lower convex hull of D(L−)
is below D(p). The angles of the lines in L+ are sorted and contained in
the interval [−π/2, π/2) and the angles of the lines in L− are sorted and
contained in [π/2, 3π/2). If the equation of the line bounding a halfplane
with angle θ is y = a1x+a2, we have the relation a1 = tan θ. Hence, D(L+)
and D(L−) are point sets that are sorted by x-coordinate, and the optimal
O(log log n) time algorithm of Wagener [1992] can be used to compute the
convex hull of D(L+) and D(L−).

Unfortunately, there is a lower bound of Ω(log n/log log n) for the com-
putation of an array representation of the convex hull of a sorted point set
provided the number of processors remains polynomially bounded. This
again follows from a reduction to compute the parity of the sum of n bits
on a CRCW PRAM [Wagener 1992], [Beam and Hastad 1987]. In the ap-
pendix we show that the parity problem can also be reduced to computing
the number of edges of the kernel of a polygon. If the edges of kernel(C)
are stored in a contiguous part of an array, then their number can be eas-
ily determined. Hence, Ω(log n/log log n) time is required to compute an
array-representation of kernel(C) as well.

Therefore, a special data structure—called the bridge tree—is used in
[Wagener 1992]. The bridge tree is defined on point sets and is not designed
to be redualized. Nevertheless, we can use the bridge tree representation of
the convex hull of D(L+) and D(L−) to answer several queries about

⋂H+

and
⋂H−.

AN O(log log n) TIME ALGORITHM TO COMPUTE THE KERNEL . . . 467

If P is a point set with n points, a bridge tree supports the following
queries in time O(log n/(log p + 1) + 1) if p processors are assigned to the
query:

(i) Given a point q, test whether q is contained in the upper hull of P .

(ii) Given a point q, report the tangents to the upper hull of P passing
through q.

(iii) Given a line `, report the intersection of ` with the upper hull of P .

(iv) Given a direction d, report the extremal points of the upper hull of P
in direction d.

Of course, the same type of queries can be answered for the lower hull
of P .

In the following it is our aim to show that queries (i)–(iv) can also be
handled for K =

⋂H+ ∩ ⋂H− within the same time bounds. A query of
type (i) can be answered if we make use of the observation that the points
contained in

⋂H+ are mapped to lines that do not intersect the upper hull
of D(L+). Hence, to test if a point p is contained in K can be mapped to
the query whether the dual line D(p) does neither intersect the upper hull
of D(L+) nor the lower hull of D(L−).

In order to answer a query of type (iii) we observe the following.

Lemma 4.1. The line ` intersects K if and only if two of the four tangents

of D(`) to B+(L+) and B−(L−) do neither intersect the interior of the upper

hull of D(L+) nor the lower hull of D(L−).

Proof. The line ` intersects K if and only if there are two points s1

and s2 on ` which are also on the boundary of
⋂H+ and/or

⋂H− and
which belong to K. Hence, the point D(`) is the intersection point of the
lines D(s1) and D(s2) and D(s1) and D(s2) are tangents to B+(L+) and/or
B−(L−). Furthermore, D(s1) and D(s2) belong to D(K) and, hence, do
neither intersect the upper hull of D(L+) nor the lower hull of D(L−). 2

Since there are only four tangents through D(`) to the upper hull of D(L+)
and the lower hull of D(L−) and these tangents can be found and tested for
intersection with the interiors of the hulls in time O(log n/(log p + 1) + 1)
with the help of a bridge tree, we can report the intersection points of a line
` with K, if they exist, within the same time bound (see Fig. 5).

4.1 Computing the Intersection Points of B+(L+) and B−(L−)

In order to answer queries of type (ii) and (iv) for K, we first have to find the
intersection points p1 and p2 of the boundary of

⋂H+ with the boundary of
⋂H− since, for example, p1 is the extremal point of K in direction π. The
lines t1 = D(p1) and t2 = D(p2) are simultaneously tangents to the upper
hull of D(L+) and the lower hull of D(L−) (see Fig. 6).

Note that the upper hull of D(L+) is on a different side of t1 (t2) as the
lower hull of D(L−). In order to compute t1 and t2 we make use of the

468 SVEN SCHUIERER

`

⋂

H−

⋂

H+

s1
s2

D(`)

B+(L+)

B−(L−)

D(s1)

D(s2)

Fig. 5: The tangents to the upper hull of D(L+) and the lower hull of D(L−) correspond
to the intersection points of `.

(a)

p2

⋂

H−

p1

⋂

H+

D(p1)

D(p2)

(b)

B+(L+)

B−(L−)

Fig. 6: The duality between
⋂

H and the upper hull of D(L+) and the lower hull of
D(L−).

internal structure of the bridge tree for the the lower hull of D(L−). It can
be described as follows. On the first level of the bridge tree the points of
D(L−) are split into n1/6 contiguous sequences Pi of points, each consisting
of at most O(n5/6) points. For each Pi, at most two bridges are stored where
a bridge is an edge of the lower hull of D(L−) such that the x-range of the
bridge intersects the x-range of Pi. A bridge b is called a proper bridge of
Pi if one of the end points of b belongs to Pi; otherwise it is called a passing

bridge. In the latter case no point of Pi belongs to the boundary of the
lower hull of D(L−). This structure is recursively applied to all Pi.

Our algorithm proceeds according to the recursive structure of the bridge
tree. In the first step it is our aim to sort out the two sets of consecutive
points Pi0 and Pi1 that contain the vertices that are incident to t1 and t2.
We then apply the procedure recursively to Pi0 and Pi1 .

AN O(log log n) TIME ALGORITHM TO COMPUTE THE KERNEL . . . 469

(a)

v′′

`

v′

q

B+(L+)

t′′ p+

t′

W

p′

B+(L+)

t′′ p+

t′

W

(b)

q

v′`
T v′′

p′

Fig. 7: q is not in the interior of W .

Let v1, . . . , vk, k ≤ 2n1/6, be the vertices that belong to the bridges on
the first level of the bridge tree. With n1/6 · n2/3 = n5/6 processors we can
find, for each of the k vertices, the tangents to the upper hull of D(L+) in
time O(log n/(log n2/3 + 1) + 1) = O(1) with the help of the bridge tree for
the upper hull of D(L+). With n1/3 processors we can check in constant
time which tangents have all the vertices v1, . . . , vk to one side. Let t′ and
t′′ be these two tangents and v′ and v′′ be the vertices incident to t′ and t′′,
respectively, with v′ to the left of v′′. The lines t′ and t′′ form four wedges.
Let p′ be the intersection point of t′ and t′′ and let W be the wedge that
contains v′ and v′′ and W ′ the wedge opposite to W .

Lemma 4.2. The support points of the tangents t1 and t2 at the lower hull

of D(L−) are not contained in the interior of W .

Proof. To see this let q be first a point in the interior of the triangle T
spanned by p′, v′ and v′′. Since the line segment from v′ to v′′ is contained
in the lower hull of D(L−), any line ` that is incident to q and that is the
dual of a point in K does not intersect v ′v′′ and, hence, intersects the line
segments from v′ to p′ and from v′′ to p′. This implies that W ′ is entirely
above ` and, hence, ` is not a tangent to D(L+) (see Fig. 7a).

Now consider a point q in W below the line segment from v ′ to v′′. We
claim that neither t1 nor t2 intersects q. For consider a line ` through q.
Either ` intersects t′ below v′ or t′′ below v′′. In the first case v′ and the
intersection point p+ of t′ with D(L+) are on the same side of ` and, hence,
` cannot be t1 or t2. An analogous statement holds in the second case (see
Fig. 7b). Therefore, the intersection points of t1 and t2 and D(L−) are not
in the interior of W . 2

A consequence of Lemma 4.2 is that we only have to consider points that
are outside W . Let b′ be the bridge incident to v′. Suppose that b′ starts at

470 SVEN SCHUIERER

vertex u′ and ends at v′. Let w′ be the next vertex after v′ in the top level
of the bridge tree that belongs to a bridge. We denote the x-coordinate of
a point p by px.

Lemma 4.3. If p is a point above t′, then px is between v′x and w′
x.

Proof. Let x′ be a vertex of B−(L−) after w′. If x′ is above t′, then w′

is entirely below the line segment from v ′ to x′ and, hence, does not belong
to the boundary of the lower hull of D(L−) in contradiction to our choice of
w′. A similar argument holds if x′ is before u′. And if there exists a vertex
x′ between u′ and v′ that is above t′, then b′ is below x′ and, hence, does
not belong to the boundary of the lower hull of D(L−). 2

Of course, we can argue in a similar way if b′ starts in v′. Furthermore, b′′,
v′′, and t′′ can be dealt with analogously.

If v′ belongs to Pi′ , then our observations imply that we can recur on the
O(n5/6) vertices of Pi′ in order to find t1 and similarly for t2. Since we
reduce the exponent of the number of vertices we have to look at with each
recursion step by a factor of 5/6, the total time needed to find t1 and t2 is
O(log log n). If we stop the recursion after, say, ten levels, then the number
of vertices to be considered has been reduced to O(n1/6) and the problem
can be solved directly in constant time as in the first step. Hence, in fact,
we need only constant time to compute t1 and t2. If we do not find the two
tangents t1 and t2, then the upper hull of D(L+) intersects the lower hull of
D(L−) and the kernel of C is empty. In particular, this implies that we can
check in time O(log log n) if C is starshaped or not.

With the help of t1 and t2 we also obtain a more accurate representation of
K in the dual plane. To this end let qi,+ be the intersection point of B+(L+)
with ti and qi,− be the intersection point of B−(L−) with ti, for i = 1, 2.
We denote the part of the boundary of B+(L+) between q1,+ and q2,+ by
B∗

+(L+) and the part of the boundary of B−(L−) between between q1,− and
q2,− by B∗

−(L−). Let ri,+ be the ray that is contained in ti, starts at qi,+,
and that does not contain qi,−, for i = 1, 2; similarly, let ri,− be the ray that
is contained in ti, starts at qi,−, and that does not contain qi,+, for i = 1, 2
(see Fig. 8).

Lemma 4.4. The points in K are duals of lines that do not intersect B∗
+(L+),

B∗
−(L−), r1,+, r2,+, r1,−, or r2,−.

Proof. Let ` be a line that does not intersect r1,+ ∪ B∗
+(L+) ∪ r2,+. ` is

below r1,+ ∪ B∗
+(L+) ∪ r2,+ and, hence, below B+(L+). Similaly, if ` does

not intersect r1,−∪B∗
−(L−)∪ r2,−, then ` is above r1,−∪B∗

−(L−)∪ r2,− and,
hence, above B−(L−). This implies that ` is the dual of a point K.

If ` intersects r1,+ and is above q1,+, then ` intersects B+(L+). If ` in-
tersects r1,+ and is below q1,+, then ` intersects B−(L−) since any line that
is below q1,+ and has a steeper slope than t1 intersects B−(L−). Similar
arguments hold if ` intersects r2,+, r1,−, or r2,−. 2

AN O(log log n) TIME ALGORITHM TO COMPUTE THE KERNEL . . . 471

B∗
+(L+)

t2

B∗
−(L−)

r2,−

r1,−

q1,+

r1,+

r2,+

q2,+

q1,−

t1

q2,−

Fig. 8: Defining qi,+, ri,+, qi,−, ri,−, B∗
+(L+), and B∗

−(L−).

t2

t1

D+(K)

D−(K)

Fig. 9: The dual of K.

We denote the region above r1,+∪B∗
+(L+)∪r2,+ by D+(K) and the region

below r1,−∪B∗
−(L−)∪ r2,− by D−(K). K is the set of points whose dual line

do not intersect the interior of D+(K) ∪ D−(K) (see Fig. 9).

In order to answer a query of type (ii), that is in order to compute the
tangent to K through a given point p, we just note that the intersection
points q1 and q2 of D(p) with the boundary of D+(K)∪D−(K) are the duals
of the tangents to K. To see this just note that D(q1) is a tangent to K
through p since q1 is on the boundary of D(K) and D(p) is incident to q1.

Finally, in order to answer a query of type (iv) we note that the set of
parallel lines in the primal plane with slope d can be represented by the
vertical line `d through the point (d, 0) in the dual plane. Hence, we have
to intersect `d with the boundaries of D+(K) and D−(K).

Clearly, all of the above queries require only a constant number of queries
to the bridge tree of the upper hull of D(L+) and the lower hull of D(L−)

472 SVEN SCHUIERER

and, hence, the query time is still O(log n/(log p + 1) + 1).

5. Conclusions

We have presented an O(log log n) time algorithm to compute the kernel of
a polygonal chain with O(n/log log n) processors on a COMMON CRCW-
PRAM. Our approach is based on the algorithm by Cole and Goodrich
[1992]. We show how to avoid parallel prefix sum computation which is
needed in their algorithm. Since our intersection of halfplanes algorithm
makes use of dualization and the new optimal O(log log n) convex hull al-
gorithm of Wagener [1992], we also address the question of how to answer
the following four queries for the kernel of a polygon P in the primal plane
given a query structure in the dual plane.

(i) Given a point q, test whether q is in the kernel(P).

(ii) Given a point q, report the tangents to the kernel(P) passing
through q.

(iii) Given a line `, report the intersection of ` with kernel(P).

(iv) Given a direction d, report the extremal points of kernel(P) in direc-
tion d.

All of these queries can be answered in time O(log n/(log p + 1) + 1) if p
processors are available.

6. Acknowledgements

I would like to thank the unknown referee whose valuable comments and
suggestions have considerably improved the presentation of the paper as
well as led to the inclusion of some new results.

References

M. J. Atallah, D. Z. Chen, and H. Wagener. Optimal parallel algorithm for visibility
of a simple polygon from a point. Journal of the ACM, 38:516–553, 1991.

P. Beame and J. Hastad. Optimal bounds for decision problems no the CRCW PRAM.
In Proc. 19th ACM Symposium on Theory of Computing, pages 83–93, 1987.

O. Berkman, B. Schieber, and U. Vishkin. Some doubly logarithmic optimal parallel
algorithms based on finding all nearest smaller values. Technical Report UMIACS-
TR-88-79, Institute for Advance Computer Studies, University of Maryland, College
Park, MD, 1988.

D. Z. Chen. An optimal parallel algorithm for detecting weak visibility of a simple
polygon. In Proc. 8th ACM Symposium on Computational Geometry, pages 63–72,
1992.

R. Cole and M. Goodrich. Optimal parallel algorithms for polygon and point-set
problems. Algorithmica, 7:3-23, 1992.

H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer Verlag, 1987.
D. T. Lee and F. P. Preparata. An optimal algorithm for finding the kernel of a

polygon. Journal of the ACM, 26(3):415–421, 1979.
J. O’Rourke. Art Gallery Theorems and Algorithms. Oxford University Press, 1987.

AN O(log log n) TIME ALGORITHM TO COMPUTE THE KERNEL . . . 473

C2

C3

C4

t4

t3

t2

C1

2
3

4

1
n

t1

p1

q1

q2
p′
1

t′1

Fig. 10: Illustrating the construction of polygon P .

F.P. Preparata and M.I. Shamos. Computational Geometry — an Introduction.
Springer Verlag, 1985.

P. Ragde. The parallel simplicity of compaction and chaining. In Proc. 17th International

Colloquium on Automata, Languages, and Programming, pages 744–751, 1990.
H. Wagener. Optimal parallel hull construction for simple polygons in O(log log n) time.

In Proc. 33rd IEEE Syposium on Foundations of Computer Science, pages 593–599,
1992.

Appendix A. A Lower Bound to Compute the Size of the Kernel

As was indicated before the lower bound is obtained by reducing the parity
problem to the problem of computing the number of edges of the kernel of a
simple polygon. So let b1, . . . , bn be a sequence of n bits. W.l.o.g. we assume
that n = 4k, for some k > 1. We set the bits b1, bk+1, b2k+1, and b3k+1 to 1.
If the parity of the bit sequence b1bk+1b2k+1b3k+1 was odd before, then we
invert bit b2.

We now construct a polygon P consisting of 2n edges e1, . . . , e2n such that
edge ei is relevant if and only if i = 2j − 1 and bj = 1, for some 1 ≤ j ≤ n.
The construction is illustrated in Fig. 10. Let C1 be a unit circle that is
divided by n points into equal parts. At each point i we construct the tangent
ti to C1. Let C4 be a circle that is concentric to C1 and that has radius
r4 > 2 and let pi be the intersection point of C4 with ti. Furthermore, let
C2 be the circle of radius 2 which is concentric to C1. Consider the tangent
t′i to C2 that goes through pi. The intersection points qi of t′i with ti+1 all
lie on a circle C3 that is also concentric to C1. The points qi are sorted
counterclockwise on C3 if the points on C1 are sorted counterclockwise.

474 SVEN SCHUIERER

If we choose r4 > 2
√

1 + 2
√

3, then a simple calculation shows that ti+k

intersects t′i in the line segment between pi and the intersection point p′i of t′i
with C2; this implies in particular that ti+1 intersects t′i in the line segment

between pi and p′i. Hence, if r3 is the radius of C3 and r4 > 2
√

1 + 2
√

3,
then r2 < r3 < r4 as drawn in Fig. 10. Note that pi and qi can be computed
independently, for each 1 ≤ i ≤ n.

We now construct P . The points qi are a subset of the vertices of P . If bit
bi is 1, then edge e2i−1 consists of the line segment from qi to pi and edge e2i

consists of the line segment from pi to qi+1. This is shown for q1, p1, and q2

in Fig. 10. If bit bi is 0, then edge e2i−1 consists of the line segment from qi

to some point q′i on C3 between qi and qi+1 and edge e2i consists of the line
segment from q′i to qi+1. This is shown for q3 and q4 in Fig. 10. Note that
only the halfplanes corresponding to the edges e2j−1 with bj = 1 intersect
the smallest axis-parallel square that contains C1. Since bjk+1 = 1, for
0 ≤ j ≤ 3, this square contains kernel(P). Furthermore, h+(e2j−1) contains
a neighbourhood of all the points 1, . . . , n except for point j if bj = 1. This
implies that edge e2j−1 is relevant if and only if bj = 1. Furthermore, there
are no other relevant edges. Hence, the the number of edges of the kernel of
P is the number of 1’s in b1, . . . , bn and the parities are the same.

