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Abstract

In data mining and knowledge discovery, similarity between objects is one
of the central concepts. A measure of similarity can be user-de�ned, but an
important problem is de�ning similarity on the basis of data. In this thesis
we consider three kinds of similarity notions: similarity between binary
attributes, similarity between event sequences, and similarity between event
types occurring in sequences.

Traditional approaches for de�ning similarity between two attributes typi-
cally consider only the values of those two attributes, not the values of any
other attributes in the relation. Such similarity measures are often useful,
but unfortunately they cannot describe all important types of similarity.
Therefore, we introduce a new attribute similarity measure that takes into
account the values of other attributes in the relation. The behavior of the
di�erent measures of attribute similarity is demonstrated by giving empir-
ical results on two real-life data sets.

We also present a simple model for de�ning similarity between event se-
quences. This model is based on the idea that a similarity notion should
re
ect how much work is needed in transforming an event sequence into
another. We formalize this notion as an edit distance between sequences.
Then we show how the resulting measure of distance can be e�ciently
computed using a form of dynamic programming, and also give some ex-
perimental results on two real-life data sets.

As the third case of similarity notions, we study how similarity between
types of events occurring in sequences could be de�ned. Intuitively, two
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event types are similar if they occur in similar contexts. We show di�erent
possibilities for how a context of an event can be extracted from a sequence.
Then we discuss ways of de�ning similarity between two event types by
using sets of the contexts of all their occurrences in given sequences. Results
of experiments on the event type similarity with di�erent measures are
described on both synthetic and real-life data sets.

Computing Reviews (1998) Categories and Subject Descriptors:

H.2.8 Database Applications: Data mining
H.3.3 Information Search and Retrieval
I.2.6 Learning

General Terms:

Algorithms, Experimentation, Theory

Additional Key Words and Phrases:

Data mining, Knowledge discovery, Similarity, Distance, Relational data,
Binary attributes, Event sequences, Event types in sequences
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Chapter 1

Introduction

The rapid development of computer technology in the last decades has made
it possible to easily collect huge amounts of data. For example, a telecom-
munication network produces large amounts of alarm data. Analyzing such
large data sets is tedious and costly, and thus we need e�cient methods to
be able to understand how the data was generated, and what sort of pat-
terns or regularities exist in the data. A research area in computer science
that studies these questions is called data mining, or knowledge discovery

in databases (KDD); see, e.g., [PSF91, FPSSU96] for overviews of research
in data mining.

In order to �nd patterns or regularities in the data, it is necessary
that we can describe how far from each other two data objects are. This
is the reason why similarity between objects is one of the central con-
cepts in data mining and knowledge discovery. During the last few years,
there has been considerable interest in de�ning intuitive and easily com-
putable measures of similarity between objects in di�erent application ar-
eas and in using abstract similarity notions in querying databases; see, e.g.,
[ABKS98, AFS93, BFG99, B�O97, CPZ97, GIM99, GK95, JMM95, KA96,
KE98, KJF97, SK97, WJ96].

A typical data set considered in data mining is a relation that consists
of a number of data objects with several attributes. An example of such a
data set is market basket data, where the data objects represent customers
and the attributes are di�erent products sold in the supermarket. Similar
data sets occur, for example, in information retrieval where the objects
are documents and the attributes (key)words occurring in the documents.
The attributes in a database usually have a large value domain, but, for
simplicity, we will consider only binary attributes in this thesis.

When discussing similarity and databases, we are often talking about
similarity between the objects stored in the database. In market basket
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data, for example, this would mean that we are interested in �nding sim-
ilarities between the customers of the supermarket. In such a case, the
notion of similarity could, for instance, be used in customer segmentation
or prediction. There is, however, another class of similarity notions, i.e.,
similarity between (binary) attributes. In the market basket database set-
ting, we could, for example, de�ne similarities between the products sold
in the supermarket by looking at how the customers buy these products.

One of the problems we consider in this thesis is the problem of de�ning
similarity between attributes in large data sets. A traditional approach for
attribute similarity is to use an internal measure of similarity. An internal
measure of similarity between two attributes is de�ned purely in terms of
the values of these two attributes. Such measures of similarity are useful
in several applications but, unfortunately, they are not able to re
ect all
important types of similarity. That is why we propose using an external

measure of similarity between attributes. In addition to the values of the
two attributes compared, an external measure also takes into account the
values of a set of other attributes in the database. We contend that in
several cases external measures can give more accurate and useful results
than internal measures.

Similarities between attributes can be used in forming hierarchies or
clusters of attributes. Such a hierarchy describes the structure of the data,
and can be used in data mining to form various kinds of rules, e.g., gener-
alized association rules [HF95, SA95], or characteristic rules and discrim-
ination rules [HCC92]. Often the hierarchy of attributes is supposed to
be given by a domain expert. Unfortunately, the domain expertise needed
to form such a hierarchy is not always available. Hence, we need a way
of computing similarities between attributes and forming such a hierarchy
based on these similarities. Another reason for the need of a computable
similarity notion between attributes is that it is useful to derive such an
attribute hierarchy purely on the basis of the actual data, not by using the
a priori knowledge.

Another important form of data considered in data mining is sequential
data. This kind of data occurs in many application domains, such as bio-
statistics, medicine, telecommunication, user interface studies, and World
Wide Web page request monitoring. Abstractly, such data can be viewed
as an event sequence that is an ordered collection of events from a �nite set
of event types, with each event of the sequence having an occurrence time.
In telecommunication network management, for example, event types are
the possible error messages, and events are the actual occurrences of errors
at certain times. In the same way, in an event sequence of a web access log
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from a single session of a user the event types are the web pages, and an
individual event is a request for a particular page at a particular time.

Analyzing sequences of events gives us important knowledge about the
behavior and actions of a system or a user. Such knowledge can, for exam-
ple, be used in locating problems and possibly predicting severe faults in a
telecommunication network. During the last few years, interest to develop
methods for knowledge discovery from sequences of events has increased;
see, e.g., [AS95, GRS99, GWS98, HKM+96, Lai93, MKL95, MT96, MTV95,
MTV97, OC96, WH98, Zha99]. In this thesis we consider two problems
concerning similarity and event sequences, namely similarity between event

sequences and similarity between event types occurring in sequences.
First we consider the problem of de�ning similarity between event se-

quences. A great deal of work has been done in the area of similarity
between time series and other numerical sequences. Note that an event
sequence is di�erent from a time series in that a time series describes a
variable with a continuous value over time, whereas an event sequence con-
sists of discrete events in time. Thus, the methods for describing similarity
between time series are not necessarily suitable for event sequences.

Our approach to event sequence similarity is based on the idea that
similarity between event sequences should re
ect the amount of work that
is needed to transform one event sequence into another. We formalize this
notion as an edit distance between sequences, and show that the resulting
de�nition of similarity has several appealing features.

A similarity notion between event sequences can be used to build an
index of a set of sequences. Such an index could be used, for instance,
for e�ciently �nding all sequences similar to a given pattern sequence.
On the other hand, we might be interested in predicting an occurrence of
an event of a particular type in a sequence. For that we would have to
�nd typical situations preceding an occurrence of an event of this type.
These situations can be found, for example, by grouping all the sequences
preceding the occurrences of such an event type based on the similarities
between these sequences.

In this thesis we also study the problem of de�ning similarity between
event types occurring in sequences. In telecommunication network man-
agement it would, for example, be interesting to know how similar di�erent
alarms are. Our idea of de�ning similarity between event types is based on
the following simple idea: two event types are similar if they occur in sim-
ilar contexts. Abstractly, similarity between two event types is de�ned by
taking sets of all contexts of their occurrences and computing the similarity
between these sets. To formalize this intuitive idea we have to answer two
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questions: (1) What is the context of an occurrence of an event type? and
(2) What does it mean that two sets of contexts are similar? We discuss
several possibilities for answering these questions and show that even sim-
ple answers can yield results that are interesting from the practical point
of view.

A similarity notion between event types in sequences is useful in itself, as
it provides us with important information about the relationships between
the event types in the data set considered. Moreover, similarities between
event types can be used in various ways in querying the data set. And
of course, similarities between event types are useful in de�ning similarity
between event sequences, especially if we want to look at other things than
just equality and inequality of events.

Many of the ideas in this thesis have been developed together with
Professor Heikki Mannila, but also together with Professor Gautam Das.
Theory of attribute similarity was originally presented in [DMR98] (pre-
liminarily discussed in [DMR97]). The basics for the theory remains in
this thesis, but experiments have been reworked. Theory of event sequence
similarity was published in [MR97], although it has been somewhat re�ned
here. Ideas of event type similarity described in [MM99]1 remain here,
but more have been developed for this thesis. Experiments have also been
reworked to the latter two articles.

The rest of this thesis is organized as follows. First, in Chapter 2 we
discuss some general properties and uses of similarity notions in data min-
ing. Then, in Chapter 3 we describe some possible similarity measures for
binary attributes in relations. In Chapter 4 we represent the main charac-
teristics of event sequences and de�ne similarity between event sequences as
the edit distance between them. After that, in Chapter 5, we discuss ways
of de�ning similarity between event types occurring in sequences. Finally,
in Chapter 6, we make some concluding remarks and discuss future work.

1Note that in 1998 my last name changed from Ronkainen to Moen.



Chapter 2

Similarity notions and their uses

We start by discussing the meaning and uses of similarity notions. Formally
such notions are de�ned using di�erent similarity measures. Therefore, in
this chapter we also describe some general properties that we expect a
similarity measure to have.

Similarity is an important concept in many research areas; for example,
in biology, computer science, linguistics, logic, mathematics, philosophy and
statistics, a great deal of work has been done on similarity issues. The main
goal of data mining is to analyze data sets and �nd patterns and regularities
that contain important knowledge about the data. In searching for such
regularities, it is usually not enough to consider only equality or inequality
of data objects. Instead, we need to consider how similar, or di�erent two
objects are, i.e., we have to be able to quantify how far from each other two
objects are. This is the reason why similarity (or distance) between objects
is one of the central concepts in data mining and knowledge discovery.

A notion of similarity between objects is needed in virtually any
database and knowledge discovery application. The following are some
typical examples of such applications.

� Market basket data contains a great deal of valuable information
about customer behavior in terms of purchased products. Informa-
tion about products with similar selling patterns can, for example, be
useful in planning marketing campaigns and promotions, in product
pricing, or in the placement of products in the supermarket.

� In information retrieval, a user typically wants to �nd all documents
that are semantically similar, i.e., documents that are described by
similar keywords. Therefore, in e�cient retrieval we need both a
notion for similarity between documents and a notion for similarity
between keywords.
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� In computational biology the most important primitive operation is a
comparison of sequences, where the idea is to �nd which parts of the
sequences are alike and which parts di�er. The user can be interested
in �nding out how similar two DNA sequences of the same length are,
for example, or if there are any subsequences in a long DNA sequence
that are similar to a given short DNA sequence.

� \How similar are the sequences that precede occurrences of an alarm
of type 1400?" or \are alarm sequences from Monday afternoon simi-
lar to sequences from Friday afternoon?" are two interesting questions
that could be made about telecommunication alarm data. The same
kind of questions could also be posed about any sequential data, a
WWW page request log, for example.

� From �nancial time series data a user may be interested in �nding, for
example, stocks that had a large price 
uctuation last week, or iden-
tifying companies whose stock prices have similar patterns of growth.
Same kind of queries one could pose about any set of time series.

� In image databases it might be interesting to retrieve all such images
in the database that are similar to the query image with respect to
certain colors or shapes, for example.

These examples show clearly how important and essential a notion of simi-
larity is for data mining. Searching for similar objects can help, for example,
in predictions, hypothesis testing, and rule discovery [WJ96]. Moreover, a
notion of similarity is essential in the grouping and clustering of objects.

How similarity between objects is de�ned, however, largely depends on
the type of the data. The objects considered in data mining are often
complex, and they are described by a di�erent number of di�erent kinds of
features. It is, for instance, clear that similarity between binary attributes
is determined di�erently from similarity between images or sounds. Neither
can we de�ne similarity between biosequences exactly in the same way as
similarity between time series. On the other hand, on a single set of data we
can have several kinds of similarity notions. Consider, for example, market
basket data. In this data set, it would not be natural to de�ne similarity
between the customers in the same way as similarity between the products
sold in the supermarket. Neither should similarity between alarm types in
telecommunication data be determined with the same similarity notion as
similarity between sequences of alarms.

The de�nition of similarity may also vary depending on what kind of
similarity we are looking for. Di�erent similarity measures can re
ect dif-
ferent facets of the data, and therefore, two objects can be determined to
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be very similar by one measure and very di�erent by another measure. This
means that we have to carefully choose one particular measure and hope
that it gives proper results, or we have to try several measures on the data
and, by comparing the results given by these measures, choose the one that
best suits our purposes.

Despite the fact that there is no single de�nition for similarity, and that
one single measure seldom suits for every purpose, we can try to describe
some properties that every similarity measure should have. In the following
we use an approach where similarity between objects is de�ned in terms of
a complementary notion of distance.

De�nition 2.1 Let O be a set of objects, and d a measure of a distance
between objects in the set O. The measure d is called a metric, if it satis�es
the following conditions for all objects 
i; 
j and 
k in the set O:

1. d(
i; 
j) � 0

2. d(
i; 
j) = 0 if and only if 
i = 
j

3. d(
i; 
j) = d(
j ; 
i)

4. d(
i; 
k) � d(
i; 
j) + d(
j ; 
k).

Ideally, a distance measure between objects should be a metric. The
�rst condition of De�nition 2.1 says that a distance measure d should always
have a non-negative value, which is a very natural requirement. The same
conclusion holds good for the third condition, which states that a distance
measure d should be symmetric.

The second condition of De�nition 2.1 states that if the distance be-
tween two objects is zero, then these objects should be identical, and vice
versa. This requirement is quite natural but, unfortunately, it may be too
restrictive in some cases. It can happen that according to some measure a
distance between two objects is zero, for example, even if the objects are
distinct. Then we have the following.

De�nition 2.2 Let O be a set of objects, and d a measure of a distance
between objects in the set O. The measure d is called a a pseudometric, if
it satis�es the conditions

1. d(
i; 
j) � 0

2
0

: d(
i; 
i) = 0

3. d(
i; 
j) = d(
j ; 
i)

4. d(
i; 
k) � d(
i; 
j) + d(
j ; 
k)

for all objects 
i; 
j and 
k in the set O.
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The conditions 1; 2 and 4 of De�nition 2.2 are the same as in the
de�nition of a metric. The only di�erence between these de�nitions is that
according to a pseudometric the distance of an object to itself is always
zero (the condition 2

0

), but even a distance between two distinct objects
can be zero. In such a case, these two objects are, however, considered
to be identical from the application's point of view. Hence, it causes no
problems, if such a measure is used as a distance measure.

The fourth condition in De�nitions 2.1 and 2.2 states that a distance
measure should satisfy the triangle inequality. The need for this property
may not be obvious. Consider, however, the problem of searching from a
large set of objects for all objects similar to an object 
i. Assume then that
we know that the object 
i is close to an object 
j , and the object 
j is
far from an object 
k. Now the triangle inequality tells us that the object

i is also far from the object 
k, and we do not need to actually compute
the distance between the objects 
i and 
k. This is a crucial property, if
we want to access large sets of objects e�ciently.

On the other hand, without the requirement that a distance measure
should satisfy the triangle inequality, we could have a case where d(
i; 
j)
and d(
j ; 
k) are both small, but still the distance d(
i; 
k) would be large.
Such a situation is in many cases undesirable. In order to obtain the prop-
erty that an object 
i is close to an object 
k, when we know that the object

i is close to an object 
j, and the object 
j is close to an object 
k, the
distance measure may not always need to satisfy the triangle inequality.
Instead, it can be su�cient for the distance measure to satisfy a relaxed
triangle inequality [FS96], i.e., to satisfy the condition

4
0

: d(
i; 
k) � � � (d(
i; 
j) + d(
j ; 
k))

where � is a constant that is larger than 1, but not too large. Because
it is not quite certain how useful such a property is in practice, we would
like distance measures to satisfy the exact triangle inequality. Still, even
measures that do not satisfy the relaxed triangle inequality, can sometimes
be used as distance measures. This leads us to the following de�nition.

De�nition 2.3 Let O be a set of objects, and d a measure of a distance
between objects in the set O. The measure d is called a semimetric, if it
ful�lls the conditions

1. d(
i; 
j) � 0

2
00

: d(
i; 
i) = 0, or d(
i; 
j) = 0 if and only if 
i = 
j

3. d(
i; 
j) = d(
j ; 
i)

for all objects 
i; 
j and 
k in the set O.
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In addition to being a metric, a pseudometric or a semimetric, a distance
measure d should be natural in some sense, and it should describe the facets
of the data that are thought to be interesting. Moreover, the measure
should be easy and e�cient to compute. If the size of the object set is
reasonable, an algorithm that is quadratic in the number of objects can
still be acceptable. After all, the number of pairwise distances between the
objects is quadratic in the number of objects. However, a cubic algorithm
may already be too slow.

Because the distance between objects is a complementary notion of the
similarity between objects, a distance measure should also capture properly
the notion of similarity. This means that if two objects are similar, the
distance between them should be small, and vice versa. This requirement
is di�cult to formalize, and because similarity notions are so dependent on
the type of the data and the application domain, it is not possible to write
down any set of requirements that would apply to all cases.

As stated earlier, in some cases we may have to try several distance
measures on the data. In order to �nd the measure that suits our purposes,
we need to compare the results given by the di�erent measures. In such
cases, only the order of the distance values is important, whereas the actual
numerical values of the measures are irrelevant. Two distance measures
can then be said to behave similarly if they preserve the same order of the
distance values; that is, d and d

0

agree with each other in the sense that
for all 
i; 
j and 
k

d(
i; 
k) < d(
j ; 
k) if and only if d
0

(
i; 
k) < d
0

(
j ; 
k):

This means that we can multiply or divide the distance values by any
constant without modifying the properties of the measure. If this condition
does not hold good, the two measures do not describe the data in the same
way, and therefore, they give a di�erent view of the data.

In the following chapters we consider similarity between objects in three
particular cases. First, in Chapter 3 we give some measures for de�ning sim-
ilarity between binary attributes. How similarity between event sequences
could be determined we represent in Chapter 4. And �nally, in Chapter 5
we describe ways of de�ning similarity between event types occurring in
sequences.
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Chapter 3

Similarity between attributes

One important type of data considered in data mining are relations of data
objects with several attributes. Special cases of such relations are those
where all the attributes are binary-valued. From such a relation one has
usually searched for similarities between the stored data objects. In this
chapter, however, we study how to de�ne similarity between the binary
attributes in such a relation. We consider two basic approaches to attribute
similarity. An internal measure of similarity between two attributes is based
purely on the values of those two attributes, not on any other attributes in
the relation. An external measure, on the contrary, also takes into account
the values of all or some of the other attributes in the relation. We also
study how similarities between attributes obtained with di�erent measures
are related to each other, and show how these similarities can be used, for
example, to build attribute hierarchies.

In Section 3.1 we de�ne the basic concepts of attributes and relations
used in this thesis. Section 3.2 presents internal and Section 3.3 exter-
nal measures of similarity. Algorithms for computing attribute similarity
measures are given in Section 3.4. Section 3.5 represents the results of
our experiments with various data sets and various measures. Finally, in
Section 3.6 we discuss the relationships between the various attribute sim-
ilarity measures. A part of the material in this chapter has been published
in [DMR97, DMR98].

3.1 Attributes in relations

A well-known and widely used way of describing the structure of a database
is the relational data model [AHV95, EN89, MR92, Vos91, Ull88]. In this
model the data is represented as relations, i.e., tables where each row de-
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scribes an object in the application area considered. In this chapter we use
the following data model resembling the relational model.

De�nition 3.1 A schema R = fA1; A2; : : : ; Amg is a set of binary at-

tributes, i.e., attributes with a domain f0; 1g. A relation r over R is a
multiset of m-tuples called rows. Given a row t in the relation r, the value
of an attribute Ai in the row t is denoted by t[Ai]. If there is no risk for
confusion, we use a notation Ai for t[Ai] = 1 and a notation Ai for t[Ai] = 0.
The number of attributes in the relation r is denoted by jRj = m, and the
number of rows in the relation r by jrj = n. Figure 3.1 presents an example
of such a relation.

This kind of data can be found in many application areas. In this chap-
ter we use examples of a market basket data, and a collection of keywords
of newswire articles.

Example 3.1 In a market basket data attributes represent di�erent prod-
ucts such as beer, potato chips, milk, and mustard. Each row in the relation
represents a shopping basket of a customer in a supermarket. If a customer
bought just beer and chips, the row describing his/her shopping basket has
values t[beer] = 1 and t[chips] = 1, and a value 0 for all other attributes. A
small example of market basket data is presented in Figure 3.2. From this
relation we can, for instance, see that customers 5 and 12 bought mustard,
sausage, and milk, and that customer 1 just purchased chips. The number
of rows in the example market basket relation is 12.

Note that in our data model we consider only whether a product was
purchased or not. In the relational data model, however, attributes like the
quantity and the price of the products purchased could also be taken into
account.

Example 3.2 As another example data set we use the so-called Reuters-
21578 categorization collection of newswire articles [Lew97]. The data set
was modi�ed so that each row in the relation corresponds to a newswire
article, and attributes of the relation are all the possible keywords describ-
ing the articles. The keywords are divided in �ve categories: economic
subjects, exchanges, organizations, people, and places. For example, key-
words associated with an article titled \Bahia Cocoa Review" are cocoa,

El Salvador, USA, and Uruguay, and with an article titled \Six killed in
South African gold mine accident" gold and South Africa. A total of 19 716
articles out of 21 578 have at least one associated keyword. In our examples
and experiments, the number of rows in the Reuters data set is, therefore,
considered to be 19 716 rows.
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Row ID A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

t1 1 0 0 0 0 1 0 1 0 0

t2 1 1 1 1 0 1 0 0 1 1

t3 1 0 1 0 1 0 0 1 1 0

t4 0 0 1 0 0 1 0 1 1 1

t5 0 1 1 1 0 0 1 0 1 1

: : :

t1000 1 0 1 1 0 1 0 1 0 1

Figure 3.1: An example relation r over the binary attributes fA1; : : : ; A10g.

Customer chips mustard sausage beer milk Pepsi Coke

t1 1 0 0 0 0 0 0

t2 0 1 1 0 0 0 0

t3 1 0 0 0 1 0 0

t4 1 0 0 1 0 0 1

t5 0 1 1 0 1 0 0

t6 1 0 0 1 1 0 1

t7 0 1 1 0 0 1 0

t8 1 0 0 0 1 1 0

t9 0 1 1 1 0 0 1

t10 1 0 0 1 0 0 0

t11 0 1 1 0 1 1 0

t12 0 1 1 0 1 0 0

Figure 3.2: An example of market basket data.

We use letters from the beginning of the alphabet like A and B to
denote attributes, and letters from the end of the alphabet like X and Y
to denote sets of attributes. An attribute set X = fA;B;Cg can also be
written as a concatenation of its elements, i.e., X = ABC. A set of all
attributes is denoted by R, relations by the letter r, and rows of relations
by the letter t.

In a relation there can be hundreds, or even thousands of attributes,
but for each row typically only a few attributes have a value 1, i.e., the
relation is very sparse. Therefore, it can be useful to view the relation so
that each row is a set of those attributes that have the value 1 in that row.
The example market basket data is presented in this manner in Figure 3.3,
and the Reuters-21578 data set in Figure 3.4.
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Customer Purchases

t1 fchipsg

t2 fmustard, sausageg
t3 fchips, milkg
t4 fchips, beer, Cokeg
t5 fmustard, sausage, milkg

t6 fchips, beer, milk, Cokeg
t7 fmustard, sausage, Pepsig
t8 fchips, milk, Pepsig
t9 fmustard, sausage, beer, Cokeg

t10 fchips, beerg
t11 fmustard, sausage, milk, Pepsig
t12 fmustard, sausage, milkg

Figure 3.3: The example market basket data in Figure 3.2 viewed in a
form where each row consists of a row identi�er and a set of the products
purchased.

Article Keywords

1 fcocoa, El Salvador, USA, Uruguayg
2 fUSAg
3 fUSAg
4 fUSA, Brazilg

5 fgrain, wheat, corn, barley, oat, sorghum, USAg
: : :

21576 fgold, South Africag
21577 fSwitzerlandg
21578 fUSA, amexg

Figure 3.4: A part of the Reuters-21578 collection viewed in a form of sets
of keywords associated with the articles.

Typically, we are not interested in every row of the relation at the same
time, but just a fraction of the rows. This leads us to the de�nition of a
subrelation.

De�nition 3.2 Let R be a set of binary attributes, and r a relation over R.
A boolean expression �, which is constructed from atomic formulae of the
form \t[A] = 1" and \t[A] = 0", is called a selection condition on the rows
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of a relation r. A subrelation of r that consists of the rows satisfying the
selection condition � is denoted as r� = ��(r). For example, a subrelation
where the attribute A 2 R has value 1, i.e., the rows where t[A] = 1, is
denoted by rA, and the number of rows in it by jrAj. Similarly, we denote by
rA the subrelation of r where the attribute A has value 0, and the number
of rows in this subrelation by jrAj.

Example 3.3 A subrelation of beer buyers rbeer in the example market
basket data in Figure 3.2 consists of four rows, i.e., the rows t4; t6; t9; and
t10 of the relation r. On the other hand, a subrelation rmilk of non-milk
buyers consists of rows t1; t2; t4; t7; t9 and t10, and the number of rows in it,
therefore, is six.

Example 3.4 A subrelation rUSA consists of 12 541 rows where keyword
USA occurs in the Reuters-21578 data set, and a subrelation rEl Salvador
of 11 rows with keyword El Salvador. On the other hand, a subrela-
tion rSwitzerland consists of 19 502 rows (note that if the rows without
any keywords were also considered, the number of rows in the subrelation
rSwitzerland would be 21 364 rows).

The number of rows in a subrelation indicates the number of rows sat-
isfying the given selection condition. Often we are not interested in the
absolute number of rows but rather would like to consider the relative
number of the rows, i.e., their relative frequency.

De�nition 3.3 Let R be a set of attributes, r a relation over R, � a se-
lection condition, and r� a subrelation satisfying the condition �. The
(relative) frequency of the subrelation r� is denoted by

fr (�; r) =
jr�j

jrj
:

If the relation r is clear from the context, we may write fr (�). Additionally,
we use the abbreviation fr (A) for fr (t[A] = 1), and fr (ABC) for fr (t[A] =
1 ^ t[B] = 1 ^ t[C] = 1). Similarly, fr (t[A] = 0) is denoted as fr (A) and
fr (t[A] = 0^t[B] = 1^t[C] = 0) as fr (ABC):We are usually interested only
in the presence of attributes, i.e., the cases where t[A] = 1, and therefore,
we talk about the frequency fr (X) of an attribute set X.

Example 3.5 Let us consider the subrelations in Example 3.3. The fre-
quency of beer buyers is fr (beer) = 4=12 = 0:33, and the frequency of
non-milk buyers fr (milk) = 6=12 = 0:50:
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Example 3.6 In the Reuters-21578 data set the most frequent keyword is
USA with the frequency of 0:6360. For the other keywords in Example 3.4
we have frequencies fr (El Salvador) = 0:0006, and fr (Switzerland) =
0:9891:

In De�nition 3.3 we presented that the frequency can be de�ned for
both the presence and the absence of the attribute, i.e., for the cases of
t[A] = 1 and t[A] = 0, respectively. Usually, in literature and programs
computing the frequencies only the presence of attributes is considered
(see [SVA97] for an exception). This is, however, no problem because the
frequencies for absent attributes can be computed from the frequencies of
present attributes, i.e., fr (A) = 1� fr (A); of course assuming that we know
all the needed frequencies fr (A). More about computing the frequencies
can be read, for example, from [AIS93, AMS+96, Toi96].

The notion of frequency makes it possible for us to de�ne association
rules. An association rule describes how a set of attributes tends to occur
in the same rows with another set of attributes.

De�nition 3.4 An association rule in a relation r over R is an expression
X ) Y , where X � R and Y � R. The frequency or support of the rule is
fr (X [ Y; r), and the con�dence of the rule is

conf (X ) Y; r) =
fr (X [ Y; r)

fr (X; r)
:

If the relation r is clear from the context, we simply write fr (X [ Y ) and
conf (X ) Y ).

The frequency of an association rule is a measure of the positive evidence
for the rule in the relation r. The con�dence of the rule is the conditional
probability that a randomly chosen row from r that matchesX also matches
Y . Algorithms for computing association rules are described, for example,
in [AIS93] and [Toi96]. Note that the right-hand side of an association rule
was de�ned above to be a set of attributes. However, in this thesis we only
need to consider association rules where the right-hand side of the rule is
one attribute.

Example 3.7 Consider the example market basket relation in Figure 3.2.
In that relation the frequency of sausage buyers is fr (sausage) = 0:50, and
the frequency of mustard buyers fr (mustard) = 0:50. The frequency of the
rule \sausage ) mustard" is also 0:50 and the con�dence of the rule is
0:50=0:50 = 1:00. This means that every customer that bought mustard,
also bought sausage, and vice versa.
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The frequency of chips buyers in the same relation is fr (chips) = 0:50
and the frequency of beer buyers fr (beer) = 0:33. The frequency of the rule
\beer ) chips" is 0:25 and the con�dence of the rule is 0:25=0:33 = 0:75.
This means that 25 % of the customers bought both beer and chips, and
75 % of those who bought beer also bought chips. On the other hand,
the frequency of customers buying chips but not beer is fr (t[beer] = 0 ^
t[chips] = 1) = 0:25; and the frequency of customers buying beer but not
chips is fr (t[beer] = 1 ^ t[chips] = 0) = 0:08: So, the con�dence of the
rule \chips ) beer" is 0:25=0:50 = 0:50 and the con�dence of the rule
\beer ) chips" is 0:08=0:33 = 0:24:

Example 3.8 In the Reuters-21578 article collection the frequency of the
keyword grain is 0:0319. The frequency of the rule \USA ) grain" is
0:0185 and the con�dence of the rule is 0:0185=0:6360 = 0:0291. The
frequency of the rule \El Salvador ) grain\ is 0:0001 and the con�dence
of the rule is 0:0001=0:0006 = 0:1667. This means that 1.85 % of the
articles have both the keywords USA and grain, and of the articles with
the keyword USA only about 3 % have the keyword grain. The keywords El
Salvador and grain occur very seldom in the same article, but as much as
16.67 % of the articles talking about El Salvador also mention the keyword
grain.

The frequency of the rule \Switzerland) grain" is

fr (grain; Switzerland) = fr (grain)� fr (grain; Switzerland)
= 0:0319 � 0:0001 = 0:0318

and the con�dence of the rule is 0:0318=0:9891 = 0:0322: On the other
hand, the con�dence of the rule \grain) Switzerland" is 0:0318=0:0319 =
0:9969: So if we know that the keyword grain is associated with the article,
it is very unlikely that the keyword Switzerland is also associated with the
article. But if we know that Switzerland is not a keyword of the article
considered, we have a possibility of about 3 % that the keyword grain

occurs among the keywords of the article. In fact, there is only one article
with which both these keywords are associated.

We will now de�ne similarity between binary attributes. As stated
in Chapter 2, we can de�ne similarity between attributes in terms of a
complementary notion of a distance between attributes. Then we have the
following general de�nition.

De�nition 3.5 Given a set of binary attributes R and a class of all possi-
ble relations R over R, a distance measure d between binary attributes is
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de�ned as d : R � R �R ! IR. Given a relation r over R, and attributes
A 2 R and B 2 R, the distance between these two attributes is denoted by
d(A;B; r). If there is no risk for confusion, we write simply d(A;B).

The exact choice of the distance measure obviously depends on the
application and the type of similarity we are looking for. In the next two
sections we consider two di�erent approaches to computing the distance
between binary attributes. In Section 3.2 we discuss internal measures and
in Section 3.3 external measures of attribute similarity.

Because there are typically tens or hundreds, even thousands of at-
tributes in a relation, computing all the pairwise similarities between these
attributes is tedious. On the other hand, in many cases we are not even
interested in �nding similarities between all the attributes. This means
that �rst we have to de�ne which attributes interest us and then compute
similarities just between these attributes.

De�nition 3.6 A set of attributes Ai 2 R between which we want to
compute similarity values is called the set of interesting attributes, and it
is denoted by AI. The size of the set AI, i.e., the number of attributes in
the set, is denoted by jAIj.

The selection of interesting attributes depends on the situation and ap-
plication we are considering. A natural requirement is that the interesting
attributes should be intuitively similar. We might think that juice and
washing powder, for example, are not intuitively very similar products in
the market basket data. Despite that, in some cases they might still be con-
sidered as belonging to the same group of products, the group of food and
household goods. When choosing the interesting attributes, one should also
remember that if we consider just the attributes known to be associated
with each other, some interesting and new associations between attributes
may be lost.

Example 3.9 In market basket data, a set of interesting attributes could
consist of a set of beverages, dairy products, or fast food products. Butter,
cheese, milk, and yogurt, for example, could be the set of interesting dairy
products, and beer, milk, Coke, and Pepsi the set of interesting beverages.

Example 3.10 In the Reuters-21578 data a set of interesting places could
be, for example, the set of keywords Argentina, Canada, Spain, Switzerland,
USA, and Uruguay. On the other hand, keywords Chirac, Deng Xiaoping,
Gandhi, Kohl, Nakasone, and Reagan could form the set of interesting
people.
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3.2 Internal measures of similarity

An internal measure of similarity between attributes is a measure whose
value for two binary attributes A and B 2 R is only based on the values
of the columns of these attributes. So, such a measure describes how two
attributes A and B appear together, i.e., how they are associated with each
other.

The statistics needed by any internal distance measure can be expressed
by the familiar 2-by-2 contingency table given in Figure 3.5. The value n11
in the table describes the number of the rows in the relation that ful�ll the
condition \t[A] = 1 ^ t[B] = 1", the value n10 the number of the rows that
ful�ll the condition \t[A] = 1^t[B] = 0", etc. This simpli�cation is possible
for two reasons. For the �rst, there are only 4 possible value combinations
of the attributes A and B, and secondly, we are assuming that the order of
the rows in the relation r does not make any di�erence. When the marginal
proportions of the attributes are known, �xing one cell value in the 2-by-2
contingency table �xes all the other cell values. This means that only one
cell value can be assigned at will, and therefore, we say that any internal
measure of similarity has one degree of freedom.

There are, of course, numerous ways of de�ning measures for the
strength of association between attributes; see [GK79] for an excellent re-
view for some possible measures. One of the possibilities is the �2 test
statistic, which measures the deviation between the observed and expected
values of the cells in the contingency table under the independence assump-
tion. In the case of two binary attributes, the �2 test statistic is

�2 =
X

i2f0;1g

X
j2f0;1g

(nij � (ni� � n�j=n))
2

ni� � n�j=n

where nij represents the observed and (ni� � n�j=n) the expected number of
rows with t[A] = i ^ t[B] = j when ni� is the observed number of the rows
with t[A] = i and n�j the observed number of the rows with t[B] = j: With
the attribute frequencies this measure can be expressed as

�2 = n �
X

i2f0;1g

X
j2f0;1g

fr (ij)2

fr (i) fr (j)
� n

where the index i describes the values of the attribute A and the index j the
values of the attribute B. As a measure of association between attributes
we could also use any of the many modi�cations of the �2 test statistic, like
Yule's, Pearson's, or Tschuprow's coe�cients of association [YK58, GK79].
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B B
P

A n11 n10 n1�

A n01 n00 n0�P
n�1 n�0 n

Figure 3.5: The 2-by-2 contingency table of the attributes A and B.

The �2 test statistic determines whether two attributes A and B are
independent or not. If the attributes are independent, the value of the
measure is zero. On the other hand, the attributes are considered to be
dependent on each other, if the value of the �2 test statistic is higher than
a cuto� value at a given signi�cance level. The cuto� value at the given
signi�cance level and with one degree of freedom can, in turn, be obtained
from the common table of the signi�cant points of �2 available in nearly
every book of statistics.

Example 3.11 Consider products beer and milk in the example market
basket data. The contingency table and the table of expected values for
these attributes are given in Figure 3.6. With the values in these tables,
the �2 test statistic is

�2 =
(1� 2)2

2
+

(3� 2)2

2
+

(5� 4)2

4
+

(3� 4)2

4
= 1:50:

At the 5 % signi�cance level and with one degree of freedom, the cuto�
value of �2 is 3:84. Because 1:50 < 3:84, we cannot reject the independence
assumption at this signi�cance level, i.e., the products beer and milk cannot
be said to be signi�cantly dependent on each other at this signi�cance level.

Consider then products beer and Coke in the same relation. For these
products the contingency table and the table of expected values are pre-
sented in Figure 3.7. Using these tables, the value of the �2 test statistic
is

�2 =
(3� 1)2

1
+

(1� 3)2

3
+

(0� 2)2

2
+

(8� 6)2

6
= 8:00:

Because 8:00 > 3:84, i.e., the value of the �2 test statistic is higher than
the cuto� value, the products beer and Coke are said to be dependent on
each other at the 5 % signi�cance level.

Example 3.12 Consider then keywords USA and Switzerland in the
Reuters-21578 data. The contingency table and the table of the expected
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a)

milk milk
P

beer 1 3 4

beer 5 3 8P
6 6 12

b)

milk milk
P

beer 2 2 4

beer 4 4 8P
6 6 12

Figure 3.6: The contingency table (a) and the table of expected values (b)
for the products beer and milk.

a)

Coke Coke
P

beer 3 1 4

beer 0 8 8P
3 9 12

b)

Coke Coke
P

beer 1 3 4

beer 2 6 8P
3 9 12

Figure 3.7: The contingency table (a) and the table of expected values (b)
for the products beer and Coke.

values for these keywords are given in Figure 3.8. The value of the �2 test
statistic for these keywords is nearly 209. Thus, the observed signi�cance
level is very small, and the keywords can be said to be dependent on each
other at any reasonable signi�cance level.

However, for keywords USA and El Salvador the contingency table pre-
sented in Figure 3.9 is the same as the table of the expected values for the
numbers of occurrences of these keywords. In this case the value of the �2

test statistic is zero, and the keywords can be said to be independent at
any signi�cance level.

The good thing with measuring the signi�cance of associations via the
�2 test statistic is that the measure takes into account both the presence
and the absence of attributes [BMS97, SBM98]. Unfortunately, as [GK79]
puts it, \The fact that an excellent test of independence may be based on �2

does not at all mean that �2, or some simple function of it, is an appropriate
measure of degree of association". One of the well-known problems with �2

is that using it is recommended only if all cells in the contingency table have
expected values greater than 1, i.e., expected frequencies are large enough.
Also at least 80 per cent of the cells in the contingency table should have
expected values greater than 5. In the example market basket data, for
instance, this causes di�culties. In addition, the total number of rows n
considered should be reasonably large.
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a)

Switzerland Switzerland
P

USA 35 12 506 12 541

USA 179 6 996 7 175P
214 19 502 19 716

b)

Switzerland Switzerland
P

USA 136.12 12 404.88 12 541

USA 77.88 7 097.12 7 175P
214 19 502 19 716

Figure 3.8: The contingency table (a) and the table of expected values (b)
for the keywords USA and Switzerland.

El Salvador El Salvador
P

USA 7 12 534 12 541

USA 4 7 171 7 175P
11 19 705 19 716

Figure 3.9: The contingency table of the keywords USA and El Salvador.

Because of the problems with the �2 measure, we consider some other
possibilities of de�ning an internal similarity measure. We start by de�ning
a similarity measure that is based on the frequencies of the attributes.

De�nition 3.7 Given two binary attributes A and B 2 R, an internal

distance dIsd between them in a relation r over R is de�ned as

dIsd(A;B) = fr ((t[A]=1^t[B]=0)_(t[A]=0^t[B]=1))

fr (t[A]=1_t[B]=1)

= fr (A)+fr (B)�2 fr (AB)

fr (A)+fr (B)�fr (AB)
:

The similarity measure dIsd focuses on the positive information of the
presence of the attributes A and B. It describes the relative size of the
symmetric di�erence of the rows with t[A] = 1 and t[B] = 1: The distance
measure dIsd is a complement of the well-known non-invariant coe�cient
for binary data, the Jaccard's coe�cient [And73, KR90]:

fr (AB)

fr (A) + fr (B)� fr (AB)
:
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According to [MS68], the complement measure dIsd is a metric.
The values of the dIsd measure vary between 0 and 1. The extremes of

the value range of this measure can be reached as follows. If the attributes
A and B are equally frequent and the frequency of AB is also the same,
i.e., fr (A) = fr (B) = fr (AB), the value of dIsd is 0, and the attributes are
said to be exactly similar. On the other hand, the attributes are completely
dissimilar, i.e., dIsd = 1, when fr (AB) = 0.

Example 3.13 If we consider the products beer and milk in the exam-
ple market basket data, we notice that the frequency of beer buyers is
fr (beer) = 0:33, the frequency of milk buyers fr (milk) = 0:50, and the fre-
quency of customers buying both beer andmilk is fr (beer;milk) = 0:08. Us-
ing these values the distance dIsd between beer and milk is 0:33+0:50�2�0:08

0:33+0:50�0:08 =
0:89. Hence, according to this measure beer buyers do not tend to buy milk,
and vice versa. In this sense the beer buyers behave di�erently than the
milk buyers.

The frequency of Coke buyers in the example market basket data is
0:25 and the frequency of customers buying both beer and Coke is 0:25.
The internal distance dIsd between these products is 0:33+0:25�2�0:25

0:33+0:25�0:25 = 0:25:
Thus, we can say that the buyers of Coke behave rather similarly to the
customers buying beer.

Example 3.14 In the Reuters-21578 data, the frequency of the key-
word El Salvador is 0:0006, the frequency of the keyword Switzerland

0:0109, and the frequency of the keyword USA 0:6360. The frequency
of the keyword set fSwitzerland; USAg is 0:0018. With these values
we get the distance dIsd(Switzerland; USA) = 0:9972. The frequencies
fr (El Salvador; USA) = 0:0004 and fr (El Salvador; Switzerland) = 0
in their turn give us distances dIsd(El Salvador; USA) = 0:9994 and
dIsd(El Salvador; Switzerland) = 1: All the distances have quite high val-
ues, which indicates that these keywords as such are di�erent from each
other, and they do not appear in the same articles.

In data mining contexts, it would be natural to make use of association
rules in de�ning similarity between attributes. One possibility is to de�ne
a measure based on the con�dences of the association rules A ) B and
B ) A.

De�nition 3.8 Let A and B be binary attributes in the set R, and A) B
and B ) A association rules computed from a relation r over R. Then an
internal distance dIconf between attributes A and B is de�ned as

dIconf (A;B) = (1� conf (A) B)) + (1� conf (B ) A)):
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The internal distance measure dIconf resembles the common Manhattan

distance [KR90, Nii87], which is known to be a metric. The measure dIconf
is, however, only a pseudometric, because its value can be zero even if the
attributes A and B are not identical, i.e., A 6= B. This happens when the
attributes A and B occur only in the same rows of the relation r.

The value range of dIconf is [0; 2] indicating that attributes that are
exactly similar have distance 0 and attributes that are completely dissimilar
have distance 2. This means that in the former case the con�dences of the
association rules have value 1, which happens only when the attributes
always occur in the same rows, i.e., fr (A) = fr (B) = fr (AB). In the latter
case both the con�dences are zero, which means that fr (AB) = 0, i.e., the
attributes A and B never have the value 1 in the same row.

Example 3.15 Consider the buyers of beer, milk and Coke in our example
market basket data. The internal distance dIconf between beer and milk

buyers is dIconf (beer;milk) = (1 � 0:25) + (1 � 0:17) = 1:58. Thus, this
measure indicates that beer and milk buyers behave di�erently. On the
other hand, the internal distance dIconf between beer and Coke buyers is
dIconf (beer; Coke) = (1 � 0:75) + (1 � 1) = 0:25: Therefore, the buyers of
these two beverages can be said to behave rather similarly. These results are
similar to the ones obtained with the distance measure dIsd in Example 3.13.

Example 3.16 The distance dIconf between keywords Switzerland and
USA is 1:8320, between keywords El Salvador and USA 1:3327, and be-
tween keywords El Salvador and Switzerland 2. Therefore, the internal
distance measure dIconf indicates that these keywords are not behaving
similarly and are only seldom associated with the same articles. Recall
that the same kind of results were also obtained with the distance measure
dIsd in Example 3.14.

Internal measures represent the traditional way of de�ning attribute
similarity, and they are useful in many applications. Unfortunately, because
they are based solely on the values of the two attributes considered, they
do not necessarily �nd all important types of similarity.

Example 3.17 Let chips, milk, mustard and sausage be four interesting
products in the example market basket data. These products have some
very interesting connections. The products chips and sausage, for example,
are substitutes to each other because customers buying chips never buy
sausages at the same time. On the other hand, customers buying mustard
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always buy sausages, and vice versa. Therefore, the products mustard and
sausage are complements to each other. A third pair of products, milk and
sausage, seem to be independent of each other, since milk buyers purchase
sausage as often as non-milk buyers. Similarly, sausage buyers purchase
milk as often as non-sausage buyers. The contingency tables of these three
situations are given in Figure 3.10.

We computed the values of the three internal distance measures consid-
ered in this section for the three pairs of products above. These distance
values are shown in Table 3.1. According to the �2 test statistic the prod-
ucts milk and sausage are, indeed, statistically independent. The products
of the two other pairs are dependent on each other. Knowing this and by
looking at the contingency tables in Figure 3.10 we can see that the prod-
ucts chips and sausage are completely negatively, and the productsmustard
and sausage completely positively associated with each other. The measure
dIsd , on the other hand, says that the product chips is completely dissimilar
to the product sausage, the products milk and sausage are rather di�erent
from each other, and that the products mustard and sausage are exactly
similar. The results given by the measure dIconf are similar to the results
with the measure dIsd .

The results of Example 3.17 can be generalized to every situation where
the contingency tables are similar to Figure 3.10. Only the value of the �2

test statistic changes in the case of completely positively and negatively
associated attributes: the value is always the number of rows in the rela-
tion r.

None of the internal measures can view the three types of situations
described in Figure 3.10 as re
ecting that the two attributes A and B are
similar. Still, the similarity between the attributes A and B in each case
can be high, if the similarity between them is due to some other factors
than just the information given by the values in the columns A and B.
Therefore, we need to consider external measures for similarity. For them,
the values of other attributes than A and B also have an in
uence on the
similarity between these two attributes.

3.3 External measures of similarity

An external measure of similarity between attributes takes into account
both the values of attributes A and B, and the values of all the other
attributes, or a subset of the other attributes in the set R. Using such
measures we can �nd that two attributes A and B behave similarly, even
if they never occur in the same row of the relation r.
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a)

sausage sausage
P

chips 0 6 6

chips 6 0 6P
6 6 12

b)

sausage sausage
P

mustard 6 0 6

mustard 0 6 6P
6 6 12

c)

sausage sausage
P

milk 3 3 6

milk 3 3 6P
6 6 12

Figure 3.10: The 2-by-2 contingency tables for a) substitute, b) comple-
ment, and 3) independent products.

Distance chips and mustard and milk and

measure sausage sausage sausage

�2 12 12 0

dIsd 1 0 2/3

dIconf 2 0 1

Table 3.1: The values of three internal distance measures for three pairs of
product in the example market basket data.

Example 3.18 In a market basket data, two products may be classi�ed
as similar if the behavior of the customers buying them is similar to the
behavior of the buyers of other products. For instance, two products, Pepsi
and Coke, could be deemed similar if the customers buying them behave
similarly with respect to products mustard and sausage.

Example 3.19 Two keywords in the Reuters-21578 data set can be de�ned
similar if they occur in articles in a similar way with respect to a set of other
keywords. Thus, keywords El Salvador and USA would be deemed similar,
if they are associated in a similar way to keywords co�ee and grain.
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The main idea in external measures is to de�ne the similarity between
attributes A and B by the similarity between subrelations rA and rB : An
external measure should say that the attributes A and B are similar only
if the di�erences between subrelations rA and rB can arise by chance. Sim-
ilarity between these subrelations is de�ned by considering the marginal
frequencies of a selected subset of other attributes in the relation.

De�nition 3.9 Let R be the set of attributes and r a relation over R. A
probe set P = fD1;D2; : : : ;Dkg is a subset of the attributes in R. We call
these attributes Di in P probe attributes. Given two binary attributes A
and B 2 R, the relation r and the probe set P , an external measure of

similarity between attributes says that the attributes A and B are similar
if subrelations rA and rB are similar with respect to P .

The probe set de�nes the viewpoint from which similarity between at-
tributes is judged. Thus, di�erent selections of probe attributes produce
di�erent measures. The choice of the probe set is considered more thor-
oughly later in this section.

We originally wanted to de�ne similarity between two attributes of size
n�1, and now we have reduced this to similarity between two subrelations of
sizes nA�k and nB�k, where k is the number of attributes in P , nA = jrAj,
and nB = jrB j. This may seem to be a step backwards, but fortunately,
the problem can be diminished by using some very well-established notions,
such as frequencies, in de�ning similarity between subrelations.

The subrelations rA and rB projected to the probe set P can be viewed
as de�ning two multivariate distributions gA and gB on f0; 1gjP j. Then,
given an element x 2 f0; 1gjP j, the value gA(x) is the relative frequency of
x in the relation rA. One widely used distance notion between distributions
is the Kullbach-Leibler distance [KL51, Kul59, Bas89]:

d(gA k gB) =
X
x

gA(x) � log
gB(x)

gA(x)

or a symmetrized version of it: d(gA k gB)+d(gB k gA): This measure is also
known as relative entropy or cross entropy. The problem with the Kullbach-
Leibler distance is that the sum has 2jP j elements, so direct computation of
the measure is not feasible. Therefore, we look for simpler measures that
would still somehow re
ect the distance between gA and gB .
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3.3.1 Basic measure

One way to remove the exponential dependency on jP j is to look at only
a single attribute Di 2 P at a time. Now similarity between attributes A
and B can be de�ned as follows.

De�nition 3.10 Let R be a set of binary attributes, A and B two at-
tributes in R, P a set of probe attributes, r a relation over R, and
Ef(A;B;Di) a function for measuring how similar the attributes A and
B are with respect to a probe attribute Di 2 P . An external distance dEf ;P

between the attributes A and B in the relation r is then de�ned as

dEf ;P (A;B) =
X
Di2P

Ef(A;B;Di);

i.e., as the sum of the values of Ef over all the probe attributes Di 2 P .

The dEf ;P measure is a simpli�cation that loses power compared to the
full relative entropy measure. Still, we suggest the measure dEf ;P as the
external distance between attributes A and B. If the value of dEf ;P (A;B)
is small, the attributes A and B are said to be similar with respect to the
attributes in P . On the other hand, we know that the attributes A and B
do not behave in the same way with respect to the attributes in P , if the
value dEf ;P (A;B) is large.

Note that the function Ef(A;B;Di) in De�nition 3.10 was not �xed.
This means that we can use one of several di�erent functions Ef for mea-
suring similarity between subrelations rA and rB with respect to a probe
attributeDi. One possibility is to measure how di�erent the frequency ofDi

is in relations rA and rB. A simple test for this is to use the �2 test statistic
for two proportions, as is widely done in, e.g., epidemiology [Mie85]. Given
a probe attribute Di 2 P and two attributes A and B in R, the �2 test
statistic is, after some simpli�cations,

E�2(A;B;Di) =
(fr (Di; rA)� fr (Di; rB))

2 fr (A; r) fr (B; r) (n� 1)

fr (Di; r)(1� fr (Di; r)) (fr (A; r) + fr (B; r))

where n is the size of the relation r. When summed over all the probes
Di 2 P , we get a distance measure dE�2 ;P

(A;B) =
P

Di2P E�2(A;B;Di).

This measure is �2 distributed with jP j degrees of freedom.
One might be tempted to use dE�2 ;P

or some similar notion as an ex-
ternal measure of similarity. Unfortunately, this measure su�ers from the
same problems as any other �2 based measure (see Section 3.2), and we
need some other Ef measure. One such alternative is to de�ne Ef(A;B;Di)
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as the di�erence in the relative frequencies of the probe attribute Di in the
subrelations rA and rB . We then have the following.

De�nition 3.11 Let A and B be two binary attributes in the set R, rA
and rB the corresponding subrelations of a relation r over R, P a set of
probe attributes, and Di a probe attribute in the set P . The di�erence in
the frequencies of the probe attribute Di in the relations rA and rB is

Efr(A;B;Di) = j fr (Di; rA)� fr (Di; rB) j:

Now the external distance between attributes A and B is

dEfr;P (A;B) =
X
Di2P

Efr(A;B;Di):

Because fr (Di; rA) = conf (A ) Di) and fr (Di; rB) = conf (B ) Di), the
measure dEfr;P can be also expressed as

dEfr;P (A;B) =
X
Di2P

j conf (A) Di)� conf (B ) Di) j:

The measure dEfr;P resembles the Manhattan distance [KR90, Nii87],
and thus, it could be a metric. It is, however, only a pseudometric, be-
cause its value can be zero even if the attributes compared are not iden-
tical, i.e., A 6= B. This happens when fr (Di; rA) = fr (Di; rB) with every
probe attribute Di 2 P . Note that for the internal distance dIconf we have
dIconf (A;B) = dEfr;fA;Bg(A;B).

Example 3.20 Consider products milk and sausage in our example
market basket data. Assume then that we have a probe set P =
fbeer; Coke; Pepsig. With this probe set, the products milk and sausage

have the external distance

dEfr;P (milk; sausage) = Efr(milk; sausage; beer)

+Efr(milk; sausage; Coke)
+Efr(milk; sausage; Pepsi)

= j 16 �
1
6 j+ j 16 �

1
6 j+ j 26 �

2
6 j = 0:

The same result can also be obtained with any non-empty subset of P .
This result means that with respect to buying beer, Coke and Pepsi, the
customers buying milk and sausage behave similarly.

Now consider the products chips and sausage in the same relation. If
we have a probe set P = fmilkg, these products have an external distance
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dEfr;P (chips; sausage) = j 36 �
3
6 j = 0: Therefore, the products chips and

sausage are similar in relation to the product milk.
The external distance between the products mustard and sausage in

the example market basket data becomes zero if we use a probe set P =
R n fmustard; sausageg. Also any subset of P or even an empty probe set
gives the same result. This is due to the fact that mustard and sausage are
complement products.

In the previous example, all the three product pairs above were found
similar with respect to some set of probes. These results are very di�erent
from the results obtained with internal measures in Example 3.17. There-
fore, even such pairs of attributes that according to internal measures are
completely di�erent can be found to be highly similar by using the external
distance measure dEfr;P . This result corresponds to the intuition that sim-
ilarity between attributes A and B can also be due to some other factors
that just the information given by the values in the columns A and B.

3.3.2 Variations

De�nition 3.11 is by no means the only possible de�nition for the measure
dEfr;P . We have at least the following three ways of rede�ning the external
distance dEfr ;P between attributes A and B.

1. Instead of using a function resembling the Manhattan distance we
could use a function corresponding to the more general Minkowski

distance [KR90, Nii87]. Then the external distance between attributes
A and B would be

dEfr;P (A;B) =

2
4 X
Di2P

j fr (Di; rA)� fr (Di; rB) j
p

3
5
1=p

where p � 1.

2. For each probe attribute Di we could give a weight w(Di) describ-
ing its signi�cance in the relation r. The external distance between
attributes A and B in that way would be

dEfr;P (A;B) =
X
Di2P

w(Di) � j fr (Di; rA)� fr (Di; rB) j:
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3. The probe set P could be generalized to a set of boolean formulas �i
on attributes. Then the external measure distance between attributes
A and B would be

dEfr;P (A;B) =
X
�i2P

j fr (�i; rA)� fr (�i; rB) j:

Each of these variations certainly in
uences the distances. The �rst
variation should not have a large e�ect on them. The behavior of the
other two variations is not immediately obvious, and it is also unsure if
the second variation using the weights of probe attributes is a metric or
even a pseudometric. Evaluating the exact importance and e�ect of these
variations is, however, left for further study.

3.3.3 Constructing external measures from internal mea-

sures

Our basic external distance measure and its variations for similarity be-
tween binary attributes A and B are based on using frequencies of at-
tributes and con�dences of association rules. Instead of frequencies and
con�dences, we could use any function that describes the behavior of the
probe attributes in relation to the attributes A and B.

One set of such functions is the set of internal measures for attribute
similarity. Given a probe set P = fD1;D2; : : : ;Dkg and attributes A and B
belonging to the set R, an internal measure of distance between attributes
can be used to de�ne the external distance between attributes A and B as
follows. Assume that internal distances dIf

between the attribute A and all
the probe attributes Di 2 P are presented as a vector

vA;P = [ dIf
(A;D1); : : : ; dIf

(A;Dk) ]:

Similarly, internal distances dIf
between the attribute B and all the probe

attributes Di 2 P can be presented as vB;P = [dIf
(B;D1); : : : ; dIf

(B;Dk)]:
Then, the external distance between the attributes A and B can be de�ned
using any suitable distance notion d between the vectors vA;P and vB;P .

Example 3.21 Consider productsmilk and sausage in the example market
basket data. Assume that we have a probe set P = fbeer; Coke; Pepsig and
that we use the internal distance dIsd for describing relations between the
interesting products and the probe attributes. Then, for the product milk
we have the vector

vmilk;P = [ dIsd(milk; beer); dIsd(milk; Coke); dIsd(milk; Pepsi) ]
= [ 0:889; 0:875; 0:714 ]:
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Similarly, for the product sausage we have the vector

vsausage;P = [ dIsd(sausage; beer); dIsd (sausage; Coke);
dIsd(sausage; Pepsi) ]

= [ 0:889; 0:875; 0:714 ]:

If we now use a measure corresponding to the Manhattan distance as the
distance d between two vectors, the external distance between the products
milk and sausage is zero. Therefore, the customers buying milk and sausage
are said to behave similarly with respect to buying beer, Coke and Pepsi.
Note that the same result would also be obtained with all the general
Minkowski distance measures.

3.3.4 Selection of probe attributes

In developing the external measure of similarity our goal was that probe
attributes describe the facets of the subrelations that the user thinks are im-
portant. Because the probe set de�nes the viewpoint from which similarity
is judged, di�erent selections of probes produce di�erent similarity mea-
sures. This is demonstrated by the experiments described in Section 3.5.
Therefore, a proper selection of the probe set is crucial for the usefulness
of the external measure of attribute similarity.

It is clear that there is no single optimal solution to the probe selection
problem. Ideally, the user should have su�cient domain knowledge to de-
termine which attributes should be used as probes and which not. Even
though the problem of selecting probes is highly dependent on the applica-
tion domain and the situation considered, we try to describe some general
strategies that can help the user in the selection of the probes.

The simplest way of choosing probes is, of course, to take into the
probe set all the other attributes except the attributes A and B, i.e., use
the set P = R n fA;Bg as a probe set. This set is probably inappropriate
in most cases, especially if the number of attributes in the relation r is
high. Another simple way is to select a �xed amount of attributes as
probes, the �ve attributes that have the highest or the lowest frequencies,
for example, if either the common or the rare attributes, respectively, would
be considered to be good probe attributes. We could also de�ne a threshold
for the frequency of attributes and choose the attributes whose frequency
is higher than the given threshold as probes.

When the number of attributes in the probe set P grows, the distance
between attributes A and B, of course, increases or at least stays the same.
If we add one new probe Dk+1 to the probe set P , we get a new probe set
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Q = P [ fDk+1g. Using De�nition 3.11, the distance between attributes A
and B with the probe set Q is

dEfr;Q(A;B) = dEfr;P (A;B) + j conf (A) Dk+1)� conf (B ) Dk+1) j:

Irrespective of the number of probes in the set P , the external distance
between the attributes A and B will always be less than the size of the
probe set, i.e., dEfr;P (A;B) � jP j.

The most frequent attributes tend to co-occur with almost every at-
tribute in the relation r. If a probe Di 2 P is such an attribute, con�dences
of the association rules A ) Di and B ) Di are both nearly one. This
means that the probeDi has little e�ect on the whole distance. An extreme
case is when fr (Di; r) = 1, because then the con�dences above are both ex-
actly 1 and the external distance dEfr;fDig(A;B) = 0. Thus, such a probe
Di has no e�ect at all on the external distance. If the frequency fr (Di; r)
is, however, low compared to the frequencies of the attributes A and B,
the con�dences conf (A) Di) and conf (B ) Di) are also low. This again
means that the change in the external distance is small. Thus, adding or
excluding a probe attribute with a very high or very low frequency typi-
cally does not produce dramatic changes in the external distance between
attributes.

The probe selection problem can also be considered more formally. As-
sume, for example, that for some reason we know (or wish) attributes A and
B to be more similar than attributes A and C. Then we can try to search
for a probe set that implies this fact, and use this probe set (if one exists) to
�nd distances between other interesting attributes. The problem of �nding
such a probe set can be solved in di�erent ways. For the �rst, we can search
for all the singletons P = fDig satisfying dEfr;P (A;B) < dEfr;P (A;C); or
alternatively, the largest set P of probes satisfying the same condition.
Similarly, if we know several such constraints on the similarities between
attributes, we can search for all the single probes Di satisfying all these
constraints, or all the possible probe sets P satisfying them. Algorithms
for �nding such probe attributes are given in [DMR97].

3.4 Algorithms for computing attribute similarity

In this section we present algorithms for computing both internal and ex-
ternal distances between binary attributes. We also brie
y study the time
and space complexities of these algorithms.
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Algorithms for computing internal distances

For computing the internal distances dIsd and dIconf between attributes
we can use Algorithms 3.1 and 3.2. The input of these trivial algorithms
is a set AI of interesting attributes. In addition to this, Algorithm 3.1
requires a frequency fr (A) of each A 2 AI, and a frequency fr (AB) for all
pairs of attributes A and B in the set AI computed from a certain relation
r over R. Algorithm 3.2, on the other hand, requires con�dences of the
association rules A) B in a relation r for all A;B 2 AI as the additional
input, instead of the frequencies of attribute pairs. The output of both
algorithms are all the pairwise internal distances between the attributes in
the set AI in the relation r.

Algorithm 3.1 Internal distance dIsd between attributes

Input: A set AI of interesting attributes, frequencies of all the attributes in the
set AI and frequencies of all the pairwise sets of the attributes in the set AI ,
computed from a relation r.
Output: Pairwise internal distances between the attributes in the set AI in the
relation r.
Method:

1. for all attribute pairs (A;B) where A and B 2 AI do
2. calculate dIsd(A;B);
3. od;
4. output the pairwise internal distances dIsd(A;B);

Algorithm 3.2 Internal distance dIconf between attributes

Input: A set AI of interesting attributes, and con�dences of the association rules
A) B for all attributes A;B 2 AI , computed from a relation r.
Output: Pairwise internal distances between the attributes in the set AI in the
relation r.
Method:

1. for all attribute pairs (A;B) where A and B 2 AI do
2. calculate dIconf (A;B);
3. od;
4. output the pairwise internal distances dIconf (A;B);

Algorithm for computing external distances

Algorithm 3.3 presents a method for computing the external dis-
tance dEfr;P between attributes. The input of the algorithm are a set
AI of interesting attributes and a set P of probe attributes. Frequencies
fr (A) of the interesting attributes, and frequencies fr (ADi), for each
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A 2 AI and Di 2 P computed from a relation r, are also given as input
to the algorithm. Another possibility would be to give as input, instead
of the frequencies above, frequencies of all probe attributes Di 2 P in all
subrelations rA, when A 2 AI. This is the same as giving the con�dences
of the rules A ) Di, for each A 2 AI and Di 2 P computed from
a relation r. The algorithm �rst computes the value of the function
Efr(A;B;Di) for each probe Di 2 P , and then adds it to the distance
value already computed. The output of the algorithm is the set of pairwise
external distances between the attributes in the set AI in the relation r.

Algorithm 3.3 External similarity dEfr;P between attributes

Input: A set of interesting attributes AI , a set P of probe attributes, frequencies
of the interesting attributes in the set AI and frequencies of all pairs (interesting
attribute, probe attribute) in a relation r.
Output: Pairwise external distances between the attributes in the set AI in the
relation r.
Method:

1. for all attribute pairs (A;B) where A and B 2 AI do
2. for each probe Di 2 P do
3. calculate Efr(A;B;Di);
4. add Efr(A;B;Di) to dEfr;P (A;B);
5. od;
6. od;
7. output the pairwise external distances dEfr ;P (A;B);

Complexity considerations

Computing the frequencies needed in the algorithms for calculating
attribute similarity is a special case of the problem of computing all fre-
quent sets that arises in association rule discovery [AIS93, AMS+96, Toi96].
The di�erence to association rule discovery is that in the case of attribute
similarity we do not need all frequent sets, just the frequencies of the sets
containing interesting attributes and/or probe attributes. If we are not
interested in probe attributes of small frequency, we can also use variations
of the Apriori [AMS+96] algorithm for the computations. This method is
fast and scales nicely to very large data sets.

For computing the values of the internal measure dIsd we need frequen-
cies of all attributes A 2 AI and also the frequencies fr (AB), where both

A and B are in the set AI. There are jAIj +
�
jAIj
2

�
such frequencies.

On the other hand, for computing the values of the measure dIconf we

need a total of 2 �
�
jAIj
2

�
con�dence values of association rules A ) B,
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where both A and B are in the set AI. When we have jAIj interesting
attributes, Algorithms 3.1 and 3.2 both require O(jAIj2) space. Both al-

gorithms compute internal distances between
�
jAIj
2

�
pairs of attributes. If

we assume that computing an internal distance, either dIsd or dIconf , be-
tween two attributes takes a constant time, the time complexity of both
algorithms is also O(jAIj2):

For computing the values of the external distance measure dEfr;P we
need frequencies of all attributes A 2 AI and all pairwise frequencies
fr (ADi), where A 2 AI and Di 2 P . There are a total of jAIj+ jAIj � jP j
such frequencies. If we use the con�dence values of the association rules
A ) Di, for each A and Di, as input, the number of values needed is
jAIj � jP j. When there are jAIj interesting attributes and jP j probe at-
tributes, the space complexity of Algorithm 3.3 is O(jAIj jP j). The algo-

rithm computes distances between
�
jAIj
2

�
pairs of attributes, and comput-

ing an external distance dEfr;P between two attributes takes a jP j time.
Therefore, the time complexity of Algorithm 3.3 is O(jAIj2 jP j):

3.5 Experiments

In this section we present experiments that we made on similarity between
binary attributes. First, in Section 3.5.1 we describe the data sets used
in these experiments. The results of our experiments are then represented
in Section 3.5.2. All the experiments were run on a PC with a 233 MHz
Pentium processor and a 64 MB main memory under the Linux operating
system.

3.5.1 Data sets

In our experiments on similarity between attributes we used two real-life
data sets: the Reuters-21578 collection of newswire articles [Lew97], and the
course enrollment data collected at the Department of Computer Science
at the University of Helsinki. Both these data sets resided in 
at text �les.

Documents and keywords

The Reuters-21578 collection consists of 21 578 news articles from
the year 1987. Most of these articles have a few keywords describing
their contents. For example, an article titled \National average prices
for farmer-owned reserve" has keywords grain, wheat, corn, barley, oat,

sorghum and USA. There are 674 possible keywords, of which only 445
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Keyword set name Interesting keywords

15 countries Argentina, Australia, Brazil, Canada, China,

Cuba, France, Japan, Mexico, New Zealand,

South Africa, United Kingdom, USA, USSR,

West Germany

17 commodities cocoa, co�ee, copper, corn, cotton, gold,

grain, iron-steel, livestock, oilseed, rice,

rubber, silver, soybean, sugar, vegetable oil,

wheat

Table 3.2: The sets AI of interesting keywords in the Reuters-21578 data.

occur in the data set considered. The possible keywords are divided in
�ve categories: economic subjects, exchanges, organizations, people and
places. A total of 1 862 articles have no keywords at all. We omitted these
articles from the data set, which means that in our experiments the data
set consists of 19 716 rows, instead of 21 578 rows. One of the articles in
this data set has 29 keywords, and the average number of keywords per
article is slightly over two.

We selected several sets AI of interesting attributes, i.e., interesting
keywords from this data set of 19 716 rows. In the following we show
detailed results obtained for only two of them. The �rst of the chosen sets
AI of interesting keywords is a set of 15 countries1, and the second a set
of 17 commodities. The keywords belonging to these two sets are given in
Table 3.2.

For the set of 15 countries we �rst computed the internal distances
dIsd and dIconf , and then the external distances dEfr;P by using �ve probe
sets. The probe sets of economic terms, energy terms, food commodities,
international organizations and mixed terms are given in Table 3.3. For
the set of 17 commodities, though, we computed the internal distances dIsd
and dIconf , as well as the external distances dEfr;P by using three probe
sets. One of these probe sets is the set of 15 interesting countries given in
Table 3.2, and the two other probe sets are the sets of economic terms and
international organizations given in Table 3.3.

1The data set was collected in 1987, before the split of the USSR and the uni�cation
of Germany.
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Probe set name Probe attributes

economic terms balance of payments, consumer price index,

gross national/domestic product, industrial

production index, money supply, reserves,

retail sales, trade, unemployment, wholesale

price index

energy terms crude oil, fuel oil, gasoline, heat oil/gas

oil, jet & kerosine, naphtha, natural gas,

petro-chemicals, propane

food commodities barley, corn, grain, oat, potato, rice, rye

sorghum, soybean, wheat

organizations EC, GATT, IMF, OECD, OPEC, Worldbank

mixed terms corn, crude oil, earnings, grain, interest

rates, mergers/acquisitions, money/foreign

exchange, natural gas, rice, shipping,

soybean, trade, wheat

Table 3.3: The sets P of probe attributes in the Reuters-21578 data.

Students and courses

The course enrollment data contains information about 6 966 stu-
dents of the Department of Computer Science at the University of
Helsinki. This data was collected during the years 1989 { 1996. The
original data set was transformed into a relation where each row of the
relation describes the course enrollments of one student. One �rst year
student has enrolled in the courses Introduction to Computing, Computer

Systems Organization, and Programming (Pascal), for example. The
courses taught at the department are divided into three classes: basic,
intermediate and advanced level courses. Further, the advanced level
courses are divided by the section to which they belong. This division into
courses from sections of general computer science, computer software, and
information systems is not, however, very strict. The number of di�erent
courses in the whole data set is 173. About one third of the students
(2 528 students) has enrolled only in one course, and one student in a
total of 33 di�erent courses. The average number of di�erent courses each
student has enrolled in is close to �ve.
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Course set name Interesting courses

nine advanced Database Systems II, Object-Oriented Databases,

level courses User Interfaces, Compilers, Computer Networks,

Distributed Operating Systems, Design and

Analysis of Algorithms, Neural Networks,

String Processing Algorithms

ten di�erent Computer Systems Organization, Programming

level courses (Pascal), Information Systems, Database

Systems I, Data Structures, Computers and

Operating Systems, Design and Analysis of

Algorithms, Distributed Operating Systems,

Compilers, Database Systems II

Table 3.4: The sets AI of interesting courses in the course enrollment data.

Similarly to the case of the Reuters-21578 data set, we selected from
the course enrollment data set diverse sets AI of interesting attributes, i.e.,
interesting courses. In the following we give results obtained for only two of
these sets. The �rst of the sets consists of nine advanced level courses, and
the second of ten di�erent level courses. The courses belonging to these
two sets are given in Table 3.4. Of the nine advanced level courses, the �rst
three are courses from the section of information systems, the next three
courses from the section of computer software, and the last three courses of
general orientation in computer science. The �rst three courses of the set
of ten di�erent level courses, in turn, are basic level courses, the next three
intermediate level courses, and the last four advanced level courses. All the
basic and intermediate courses in this set are compulsory courses for every
student, whereas each advanced level course in this set is a compulsory
course in some section of the department.

For the set of nine advanced level courses we computed the internal dis-
tances dIsd and dIconf , as well as the external distances dEfr;P by using four
probe sets. The probe sets of compulsory intermediate level courses, op-
tional intermediate level courses, advanced level courses, and courses from

the section of computer software are given in Table 3.5. For the set of ten
di�erent level courses we computed, in addition to the internal distances
dIsd and dIconf , the external distances dEfr;P by using four probe sets. The
�rst one of these probe sets is a set of nine mixed courses, and the other
three are its subsets. All these four probe sets are given in Table 3.6.
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Probe set name Probe attributes

compulsory Computers and Operating Systems,

intermediate Data Structures, Database Systems I,

level courses Theory of Computation

optional Computer Graphics, Computer-Aided

intermediate Instruction, Data Communications

level courses

advanced Knowledge Bases, Logic Programming,

level courses Machine Learning

courses from Data Communications, Unix Data

the section of Communications, Unix Platform

computer software

Table 3.5: The sets P of probe attributes used in the experiments with the
set AI of nine advanced level courses.

Probe set name Probe attributes

mixed courses Computer-Aided Instruction, Computer

Graphics, Computer Networks, Data

Communications, Fundamentals of ADP,

Introduction to Unix, Programming

in C, String Processing Algorithms,

User Interfaces

basic level Fundamentals of ADP, Introduction to

courses among Unix, Programming in C

mixed courses

intermediate level Computer-Aided Instruction, Computer

courses among Graphics, Data Communications

mixed courses

advanced level Computer Networks, String Processing

courses among Algorithms, User Interfaces

mixed courses

Table 3.6: The sets P of probe attributes used in the experiments with the
set AI of ten courses from di�erent levels.



3.5 Experiments 41

3.5.2 Results

We start by presenting some comparisons of the distance values given by the
two internal distance measures dIsd and dIconf for our test sets. After that
we explain how the internal distances dIsd between attributes are related
to the values given by the external distance measure dEfr;P with di�erent
probe sets P . We also consider how the external distances with di�erent
probe sets di�er from each other. Finally, we show how the computed
distance values can be used for building attribute hierarchies.

All the distances in this section are computed using programs that cor-
respond to the algorithms given in Section 3.4. We give some examples of
the actual distance values, but as stated in Chapter 2, these values are of-
ten irrelevant. Therefore, what we are more interested in, when comparing
di�erent measures, is the order of distance values given by them.

Internal distances

Figure 3.11a shows the distribution of points (dIsd(A;B); dIconf (A;B))
of internal distances for all the keyword pairs (A;B) of the chosen 15
countries in the Reuters-21578 data set. Many values of the measure
dIconf are near two, which is the maximal value of this measure. This
indicates that for the most of the country pairs (A;B), the con�dences of
the association rules A ) B and B ) A are both rather low. Similarly,
a large fraction of the values of the measure dIsd are close to one. These
results are natural, because when we look at the original data, we can see
that the chosen countries seldom occur in the same articles. For example,
the keyword Cuba occurs in the same articles only with three of the other
chosen countries, namely with the keywords Brazil, United Kingdom and
USSR, and even with them very seldom. The pair of countries that has
the lowest value of the measure dIconf is the pair (USA, USSR), whereas
the pair (France, West Germany) has the shortest distance according to
the measure dIsd .

We also made a similar comparison of the internal distances between
the 17 commodities. The distribution of points (dIsd(A;B); dIconf (A;B))
in this set is given in Figure 3.11b. In this case, most of the keyword pairs
also have a long distance according to the two internal measures. There
are, however, three pairs of commodities that are indicated to be rather
similar by both these measures. These pairs of commodities are (oilseed,

soybean), (grain, wheat), and (corn, grain). For all these three pairs, the
frequencies of the keywords themselves as well as the frequencies of their
pairwise combinations are about the same magnitude. This means that
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Figure 3.11: Comparison of internal distances dIsd and dIconf between
a) 15 countries, and b) 17 commodities.

these pairs of keywords occur rather often in the same articles. According
to the measure dIconf , the keywords grain and rice can also be said to be
quite similar. What is interesting, is that according to the measure dIsd
these two keywords are not particularly similar. An explanation for this
result is rather simple. The keyword grain occurs much more often in the
articles than the keyword rice. The frequency fr (grain; rice), however, is
about the same as the frequency of the keyword rice alone. Therefore, the
value of the term 1 � conf (rice ) grain) in the measure dIconf is nearly
zero, and even though 1 � conf (grain ) rice) is quite high, the distance
is still less than one. The measure dIsd , on the other hand, describes the
symmetric distance of the rows where the keywords grain and rice occur.
Therefore, it takes into account the di�erences in the frequencies better,
and regards the keywords as dissimilar.

Similar experiments were also made with the two sets of interesting
courses from the course enrollment data. Figure 3.12a presents the dis-
tribution of points (dIsd(A;B); dIconf (A;B)) for the nine advanced level
courses. In this case, there are no pairs of courses that have a particularly
short distance with any of the internal distance measures, neither are the
pairs of courses extremely dissimilar. In fact, only the courses Computer
Networks and String Processing Algorithms are determined completely dis-
similar by both internal measures dIsd and dIconf . With both measures dIsd
and dIconf , the most similar pair of courses is the pair (Compilers, Dis-
tributed Operating Systems). This is a natural result, because these courses
belong to the courses from the section of computer software and are, in
fact, compulsory courses for all the students in that section. Because the
students typically enroll in several courses of the same section, it is also
natural that many of the other courses that belong to the same section
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Figure 3.12: Comparison of internal distances dIsd and dIconf between
a) nine advanced level courses, and b) ten di�erent level courses.

have a short internal distance. On the other hand, courses that belong to
di�erent sections typically have quite a long internal distance, according to
both internal measures dIsd and dIconf .

For the set of ten courses from di�erent levels, the relationship between
the internal distances dIsd and dIconf is shown in Figure 3.12b. Here the
pair of courses with the lowest value by both internal distance measures is
the pair (Data Structures, Database Systems I). Also some other pairs of
courses have quite short distances. Typically, with both measures, courses
from the basic and intermediate levels have short internal distances. In
this set of ten courses, no courses are completely dissimilar according to
either measure. The most dissimilar courses according to the measure dIconf
are the courses Compilers and Database Systems II, which are advanced
level courses from di�erent sections. In other cases, the measure dIconf
also assigns a high distance value for courses of di�erent sections. Using
the measure dIsd , however, the pair (Design and Analysis of Algorithms,

Programming (Pascal)) has the longest distance. Similarly, many other
pairs where one of the courses is a basic level course and the other an
advanced level course have a long internal distance. This shows that the
two internal measures stress somewhat di�erent aspects of the data, even
though generally they behave rather similarly.

Internal versus external distances

Figure 3.13 describes how the internal distances dIsd between the
chosen 15 countries correspond to their external distances given by the
measure dEfr;P with the �ve probe sets P in the Reuters-21378 data. The
distributions of the points (dIsd(A;B); dEfr ;P (A;B)) in these plots vary a
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great deal depending on the probe set P used in computing the external
distances. The distributions are especially wide with the probe sets of food
commodities (Figure 3.13c) and mixed terms (Figure 3.13e).

According to the internal distance measure dIsd , the two countries with
the shortest distance are France and West Germany. The pair of countries
that has the shortest distance by di�erent external measures dEfr;P varies
depending on the probe set P used. However, none of the external measures
regards France and West Germany as the most similar pair of countries.
According to the internal measure dIsd , there are a total of twenty-four pairs
of countries that have an internal distance dIsd(A;B) = 1: That is, they
are completely dissimilar because they never occur in the same articles.
However, our experiments show that an external distance between such a
pair of countries can be either very long or very short. Keywords Cuba and
New Zealand, for example, are classi�ed by the measure dIsd as completely
dissimilar keywords. However, using the probe set of energy terms, their
external distance is zero, i.e., they are said to be completely similar. All
these results indicate that internal and external measures truly describe
di�erent things.

Similar plots of internal and external distances between the 17 com-
modities are given in Figure 3.14. In this case the plots are also di�erent
from each other. With the internal measure dIsd , the most similar pair of
commodities is the pair (oilseed, soybean). However, with external mea-
sures, the most similar pair of commodities is di�erent depending on the
probe set P used, and none of them de�nes oilseed and soybean as the pair
of commodities with the shortest distance. Also the most dissimilar pair
of commodities varies depending on the probe set P used. In general, with
the economic term probe set, the external distances have very small values,
and with the organization probe set the external distances are only slightly
higher. These results indicate that, for the pairs (A;B) of commodities,
the di�erences between the con�dences conf (A) Di) and conf (B ) Di),
where Di 2 P , are small in those two probe sets. Actually, most of the 17
commodities occur only seldom with the chosen economic terms or orga-
nizations, and thus, the con�dence values are also small. This means that
the 17 commodities are similar in the absence of the probe keywords in
the sets of economic terms and international organizations. If we, however,
are interested in �nding more di�erences between the pairs of commodities
in the presence of the probe keywords, we should use the probe set of 15
countries for computing the external distances between the 17 commodi-
ties. Namely, with this probe set of 15 countries, the external distances
between the 17 commodities vary more than with the other two probe sets.
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Figure 3.13: Comparison of internal distances dIsd and external distances
dEfr;P between 15 countries with the probe sets of a) economic terms, b)
energy terms, c) food commodities, d) organizations, and e) mixed terms.
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Figure 3.14: Comparison of internal distances dIsd and external distances
dEfr;P between 17 commodities with the probe sets of a) countries, b)
economic terms, and c) organizations.

This can be explained by the fact that some of the commodities occur more
often in the same articles with all or some of the 15 countries than other
commodities.

Experiments for comparing internal distances dIsd and external dis-
tances dEfr;P with di�erent probe sets P were also made with the two
sets of interesting courses in the course enrollment data set. For the nine
advanced level courses the distributions of points (dIsd(A;B); dEfr;P (A;B))
with the four probe sets P are presented in Figure 3.15. The distributions of
the points again show that internal and external measures describe di�erent
aspects of the data. The distributions of points in the plots are especially
wide when the probe set P used in computing the external distances is
either the set of compulsory intermediate courses, or the set of courses
from the section of computer software. According to the internal distance
measure dIsd , the most similar pair of courses is the pair (Compilers, Dis-
tributed Operating Systems). However, this pair is not the most similar pair
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Figure 3.15: Comparison of internal distances dIsd and external distances
dEfr;P between nine advanced level courses with the probe sets of a) com-
pulsory intermediate level courses, b) optional intermediate level courses,
c) advanced level courses, and d) courses from the section of computer
software.

of courses with any of the external measures. Similarly, the most dissimilar
pair of courses determined by the measure dIsd , namely the pair (Computer
Networks, String Processing Algorithms), is not the most dissimilar pair
of courses according to any of the external measures. Actually, with the
probe set of compulsory intermediate level courses, Computer Networks and
String Processing Algorithms are among the most similar pairs of courses.
In general, the results with the internal measure dIsd showed that courses
of the same section typically have short distances. In the case of external
distances this behavior is not clear, and external distances between courses
of di�erent sections are in some cases rather short.

The last comparison plots of the internal and external distances are
given in Figure 3.16. These plots describe how the internal distances dIsd
and the di�erent external distances dEfr;P between the ten di�erent level
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Figure 3.16: Comparison of internal distances dIsd and external distances
dEfr;P between ten di�erent level courses with a) the mixed course probe
set and its subsets of b) basic level, c) intermediate level, and d) advanced
level courses.

courses in the course enrollment data correspond to each other. In this
case the external distances seem to have a closer relationship to the inter-
nal distances than in our earlier test cases. However, these relationships are
slightly di�erent depending on the probe set used. By the internal distance
measure dIsd the most similar pair of courses is the pair (Data Structures,

Database Systems I). On the other hand, according to the external measures
with the whole set of mixed probes and the subsets of the basic and the
intermediate level probes, the most similar courses are Computer Systems
Organization and Information Systems. This result is not very surprising
because this pair of courses has the second shortest distance according to
the measure dIsd . Moreover, with the advanced level probes, the most sim-
ilar pair of courses is the pair (Computer and Operating Systems, Database

Systems I), which has the third shortest distance by the internal measure
dIsd : In general, the external distances between courses from the same level



3.5 Experiments 49

are rather short, as are also their internal distances. Typically, the dis-
tances, either internal or external, are longest between the pairs of courses
where one of the courses is a basic level course and the other an advanced
level course. What the external distances between either the basic or the
advanced level and the intermediate level courses are like, depends on the
probe set used.

External distances with di�erent probe sets

Our main idea in constructing the external similarity measure was
to let the choice of probe attributes a�ect the distances. Therefore, given
two sets P and Q of probe attributes which have no relation to each other,
we have no reason to assume that the measures dEfr;P and dEfr;Q should
have any speci�c relationship. On the other hand, if the probe sets are
associated with each other, the external distances obtained using them
should also be related. Our experiments con�rm both these conclusions.

The four plots in Figure 3.17 describe relationships between the external
distances of 15 countries in the Reuters-21578 data when di�erent probe
sets are used. In these plots, the X axis describes the external distances
with the probe set of food commodities, whereas the external distances
represented on the Y axis di�er. The points in the plots are very di�erently
distributed indicating that di�erent probe sets produce di�erent similarity
notions.

Three of the external measures used in this case agree on the most
similar pair of countries. Namely, with the probe sets of food commodi-
ties, international organizations and mixed terms all regard the countries
Canada and USA as the most similar pair of countries in the set of 15
countries considered. According to the other two external measures, the
countries with the shortest distances are the pair (Argentina, Mexico) with
the probe set of economic terms, and the pair (Cuba, New Zealand) with
the probe set of energy terms. What is interesting is that while the external
distance between Cuba and New Zealand with the energy term probes is
zero, i.e., these countries are said to be completely similar, they are the
most dissimilar pair of countries with the probe set of economic terms.
This phenomenon can be explained as follows. The keyword Cuba does
not occur often with any of the other keywords, neither the countries nor
the various probe keywords. On the other hand, the keyword New Zealand

does not co-occur with any of the chosen energy terms, but does co-occur
with other types of probe keywords. Thus, in the case of energy terms
the di�erences are small between the con�dences conf (Cuba ) Di) and
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Figure 3.17: Comparison of external distances dEfr;P between 15 countries
obtained using the food commodity probe set and the probe sets of a)
economic terms, b) energy terms, c) organizations, and d) mixed terms.

conf (New Zealand) Di), where Di is one of the energy terms, but in the
case of the probe set of economic terms these di�erences are large.

That di�erent probe sets produce di�erent similarity notions is also
con�rmed by the orders of the external distances dEfr;P with di�erent
probe sets P . Consider, for example, keyword pairs (Australia, Japan)
and (Japan, USSR) in the set of 15 countries. With the probe set of the
international organizations, the external distances of both these pairs are
0:0416. However, with the probe set of mixed terms, their external dis-
tances are di�erent, i.e., dEfr;mixed terms(Australia; Japan) = 0:6432 and
dEfr;mixed terms(Japan;USSR) = 1:1896. This means that with respect
to the mixed terms, Australia and Japan are more similar than Japan and
USSR. On the other hand, using the probe set of energy terms, the external
distances of these pairs are dEfr;energy terms(Australia; Japan) = 0:0720
and dEfr;energy terms(Japan;USSR) = 0:0480. That is, with respect to the
energy terms, Japan and USSR are more similar than Australia and Japan.
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Figure 3.18: Comparison of external distances dEfr;P between 17 commodi-
ties obtained using the country probe set and the probe sets of a) economic
terms, and b) organizations.

Therefore, the order of external distances is not the same with di�erent
probe sets.

Two comparison plots of external distances between the 17 commodi-
ties with di�erent probe sets are shown in Figure 3.18. In these plots,
the X axis describes external distances with the probe set of 15 countries
and the Y axes external distances with the probe sets of economic terms
(Figure 3.18a), and organizations (Figure 3.18b). The distributions of the
points in these plots are di�erent, and none of the three external mea-
sures agree on the most similar or the most dissimilar pair of commodities.
The order of external distances between the 17 commodities is also dif-
ferent in every case. The external distances with the country probe set
between the commodities cocoa and co�ee is 0:6428, for example, and be-
tween the commodities cocoa and copper 1:2904. That is, cocoa and co�ee

are more similar commodities than cocoa and copper with respect to the
15 countries. On the other hand, with the organizations probe set, their
external distances are the same, namely 0:1026; and thus, the two pairs
of commodities are equally similar. With the third probe set, the set of
economic terms, however, the order of the external distances of these pairs
is changed. Namely, with the probe set of economic terms the external
distances of these pairs are dEfr;economic terms(cocoa; coffee) = 0:0554 and
dEfr;economic terms(cocoa; copper) = 0:0256. And this result is by no means
exceptional in the set of 17 commodities.

In the same way, we compared the external distances between the two
sets of courses in the course enrollment data using di�erent probe sets.
Three such comparison plots, where the X axis always describes the ex-
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Figure 3.19: Comparison of external distances dEfr;P between nine ad-
vanced level courses obtained using the probe set of compulsory intermedi-
ate level courses and the probe sets of a) optional intermediate level courses,
b) advanced level courses, and c) courses from the section of computer soft-
ware.

ternal distances between the nine advanced level courses with the probe
set of compulsory intermediate level courses, are given in Figure 3.19. In
these plots the distributions of points vary a lot, and none of the four ex-
ternal measures states the same pair of courses as the most similar, or the
most dissimilar pair. As the order of the external distances with di�erent
probe sets in general is also varying, these experiments further con�rm our
conclusion that by using di�erent probe sets we can obtain very di�erent
similarity notions for binary attributes.

Finally, Figure 3.20 presents three comparison plots of external dis-
tances between ten courses from di�erent levels in the course enrollment
data. In these plots, the X axis always represents the external distances
with the mixed course probe set, and the Y axes the external distances
with the various subsets of it. Once again the distribution of the points
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Figure 3.20: Comparison of external distances dEfr;P between ten di�erent
level courses obtained using the mixed course probe set and its subsets of
a) basic, b) intermediate, and c) advanced level courses.

in the plots are di�erent. All the four external measures regard a di�er-
ent pair of courses as the most dissimilar. However, three of the external
measures agree on the most similar pair of courses. That is, the most
similar pair of courses with the mixed probe set and its subsets of basic
and intermediate level courses is the pair (Computer Systems Organiza-
tion, Information Systems). With the advanced level courses, on the other
hand, the most similar courses are the courses Computer and Operating

Systems and Database Systems I, but also the courses Computer Systems

Organization and Information Systems are very similar.
Because three of the probe sets in this last case are subsets of the fourth

probe set, i.e., the probe set of mixed courses, we can see that the external
distances with di�erent probe sets are now more closely related than in
our earlier test cases. Especially, the relationship between the external
distances with the mixed courses and the intermediate level courses is close
to linear. These distinct relationships can be explained by the fact that
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the external distances with the whole mixed course probe set are actually
sums of the external distances with the three other probe sets. Despite the
fact that the external distances in this case are closely related, the order
of distances still varies depending on the probe set used, and thus, these
measures also de�ne similarities between the ten chosen courses di�erently.

Attribute hierarchies

One of the reasons for studying attribute similarity is the need for
building attribute hierarchies based purely on the data. In our exper-
iments we built such attribute hierarchies based on the values of the
di�erent similarity measures presented in this chapter. In constructing
these attribute hierarchies we used the standard agglomerative hierarchical

clustering [And73, JD88, KR90], especially the single, complete and
average linkage clustering (see Appendix A for details). In the following
we give some examples of the attribute hierarchies constructed for two of
the chosen sets of interesting attributes: the set of 15 countries and the
set of nine advanced level courses.

Figure 3.21 presents four clustering trees for the set of 15 countries in
the Reuters-21578 data set. All the clustering trees were produced with
the single linkage method. The clustering tree based on the internal dis-
tance dIsd (Figure 3.21a) re
ects mainly the number of co-occurrences of
the countries in the articles. The other three clustering trees are based
on the external distances dEfr;P with the three probe sets P of food com-
modities (Figures 3.21b), international organizations (Figures 3.21c) and
mixed terms (Figures 3.21d). All these trees weigh the co-occurrences of
the countries with the given probe keywords, not with each other.

As the clustering trees in Figure 3.21 are based on di�erent similarity
measures, it is not surprising that they are di�erent. Their di�erences de-
pend on the distance measure used, and in the case of external measures
the di�erences also re
ect the di�erent probe sets used. Despite the di�er-
ences, these trees are all quite natural, and they correspond mainly to our
views of the geopolitical relationships between the countries. For example,
in Figure 3.21a the six G7 countries2 together with China and USSR form
a rather tight group. This is natural because articles about G7 countries
usually name all member countries of the group. In the three other clus-
tering trees we can also �nd many natural groups, for instance, a group of
Canada and USA, or a group of Latin American countries. Note that the
clustering tree in Figure 3.21b is quite a typical example of the chaining

2The seventh G7 country is Italy which did not belong to our test set of 15 countries.



3.5 Experiments 55

a)

´

UK

USA

China

USSR

Mexico

Brazil

Cuba

Australia

New Zealand

1

5

4
7

8

9

6

2

3

10

11

14

France

West Germany

Japan

Canada

Argentina

South Africa

12

13

b)

1

2

3

4

5

6

7

8

10

9 11

14

13

12

Canada

UK

West Germany

New Zealand

Japan

Cuba

Brazil

Mexico

Australia

France

South Africa

China

Argentina

USSR

USA

c)

1

2

3

4

5

6

7

8

9

10

11

12

14

13

Canada

Cuba

UK

USSR

USA

South Africa

Australia

Japan

China

France

West Germany

Brazil

Mexico

Argentina

New Zealand

d)

1

4

5

6

7

8

10

11

12

13

14

9

2

3

USA

Canada

UK

West Germany

France

Japan

Australia

South Africa

Cuba

Mexico

Brazil

New Zealand

China

Argentina

USSR

Figure 3.21: Clustering trees of 15 countries produced with the single link-
age method by using a) the internal distances dIsd , and the external dis-
tances dEfr;P with the probe sets of b) food commodities, c) organizations,
and d) mixed terms.
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of clusters (see Appendix A), whereas the other three trees contain several
clear groups of countries.

Four clustering trees for the nine advanced level courses in the course
enrollment data are given in Figure 3.22. These trees are also produced
using the single linkage method. Using the internal distance measure dIsd ,
we get the clustering tree in Figure 3.22a. In this tree the nine courses are
clearly divided into three groups, corresponding to the sections at the De-
partment of Computer Science. This clustering tree is very natural because
many of the students mainly enroll in the courses of the same section.

Figure 3.22b presents the clustering tree of the courses based on the
external distances dEfr;P when the optional intermediate level courses are
used as probe attributes. In this tree there are two main clusters of courses.
The �rst cluster consists of the courses from the section of computer soft-
ware, and the second, the larger cluster, of the courses from the sections of
the information systems and the general orientation in computer science.
The clustering tree in Figure 3.22c, based on the external distances between
the nine courses with the probe set of advanced level courses, also has two
main clusters. These two clusters are, however, di�erent from the previ-
ous case. The larger group of courses is now formed by the courses from
the section of computer software and the section of information systems,
whereas the smaller group contains just the courses of the general orien-
tation in computer science. Using the external distances with the probe
set of courses from the section of computer software, the clustering tree
of the nine courses looks as in Figure 3.22d. In this case the courses Dis-
tributed Operating Systems and Compilers that are compulsory courses for
the computer software section students form one cluster, whereas all the
other courses are grouped together. These last three clustering trees once
again con�rm the idea that the probe sets describe the data from di�erent
points of view.

The clustering trees in Figures 3.21 and 3.22 show that when we use dif-
ferent distance measures, we can obtain clustering trees with very di�erent
structures, even though we use the same hierarchical clustering method.
Moreover, if the distance values are computed using the same distance
measure, but the clustering method is varied, we could get very di�erent
kinds of clustering trees for the chosen set of attributes. The hierarchical
clustering methods di�er in their way of de�ning the distance between two
clusters. Therefore, it is only natural that the clusters that are merged in
each phase of the clustering process do not have to be the same with every
method, resulting in clustering trees with di�erent structures.
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Figure 3.22: Clustering trees of nine advanced level courses produced with
the single linkage method by using a) the internal distances dIsd , and the
external distances dEfr;P with the probe sets of b) optional intermediate
level courses, c) advanced level courses, and d) courses from the section of
computer software.

Figure 3.23 presents a situation where the clustering trees produced
with di�erent hierarchical clustering methods di�er from each other. In
this �gure there are three clustering trees of the nine advanced level courses
formed by using the external distances between the courses with the probe
set of compulsory intermediate level courses. During the �rst three phases
of clustering, all the three methods proceed similarly, but after that di�erent
clusters are merged. The tree in Figure 3.23a is produced with the single
linkage method. In this tree there are two clear clusters: a cluster of courses
Computer Networks and String Processing Algorithms, and a cluster of the
other seven courses. In Figure 3.23b there is a clustering tree of the nine
courses produced with the complete linkage method. Now the courses are
divided into three rather distinct groups. The �rst cluster is the same as
in the tree formed using the single linkage method. The cluster of seven
courses above is, however, divided in two clusters of four and three courses,
respectively. The clustering tree in Figure 3.23c, which is produced using
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Figure 3.23: Clustering trees of nine advanced level courses produced with
a) the single linkage, b) the complete linkage and c) the average linkage
method using external distances dEfr;P with the probe set of compulsory
intermediate level courses.
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the average linkage method, also consists of three clear clusters. The �rst
cluster is the same as in the two situations above. The second cluster
consists of six courses, and what is somewhat surprising, the last one only
of one course: the course Compilers. In this example case the di�erences
in the clustering trees are rather small. In general, the clustering trees
produced by the three di�erent hierarchical linkage methods can either
di�er or, in some cases, they can be exactly the same.

3.6 Discussion

In this chapter we have presented several ways of measuring similarity be-
tween binary attributes. Using internal similarity measures we can get in-
formation on how two binary attributes co-occur in the rows of a relation.
On the other hand, an external distance between two binary attributes
weighs their co-occurrences with given probe attributes. Therefore, it is in-
tuitively clear that these measures re
ect di�erent viewpoints on similarity
between attributes.

In Section 3.5 we described results of our experiments with the distance
measures using several real-life data sets. These results con�rmed our ex-
pectations: internal and external distance measures truly describe di�erent
features of the data. For example, if two attributes do not co-occur at all,
or only very seldom, their internal distance is inevitably long, i.e., these
two attributes are internally dissimilar. However, with respect to some set
of probe attributes these two attributes can be externally very similar, if
they co-occur with those probe attributes in the same way. Yet, if two
attributes are externally similar with respect to one probe set, they can be
very dissimilar, when another set of probe attributes is considered. This is
also expected: the probe set de�nes the point of view from which similarity
between attributes is judged. There is just one exception from these rules
above. Namely, if two attributes are very similar according to an internal
distance measure, they cannot be dissimilar according to any external dis-
tance measure. In those cases they inevitably co-occur in the same way
with most of the possible probe attributes.

In a typical situation, there is no single notion of similarity between
binary attributes, and neither can we give any general rules about which
measure to choose. Therefore, the choice of the distance measure between
binary attributes mainly depends on for what kind of similarity we are
searching. In some cases, the application area may also in
uence this choice.



60 3 Similarity between attributes



Chapter 4

Similarity between event

sequences

In this chapter we move to discuss another important type of data consid-
ered in data mining, i.e., sequences of events. Especially we consider how we
could de�ne similarity between sequences of events. Our approach to this
problem is based on an idea that similarity between two event sequences
should re
ect the amount of work needed to transform one sequence into
another. We formalize this idea as an edit distance between event sequences,
and show that using such a measure with di�erent parameter values we can
achieve very di�erent notions of event sequence similarity. We also show
how these similarities between sequences can be used, for example, to build
hierarchies of sequences.

We start by describing properties of event sequences in Section 4.1. In
Section 4.2 we introduce di�erent measures for similarity between event
sequences. After that, in Section 4.3 we give algorithms for computing
these similarities. Experimental results on event sequence similarity are
presented in Section 4.4, and the meaning of these results is discussed in
Section 4.5. A part of the material in this chapter is based on [MR97].

4.1 Event sequences

Often, when we use data mining techniques, we study unordered data sets.
Still, in many important application areas the data has a clear sequential
structure. In user interface studies, in World Wide Web (WWW) page
request monitoring, or in telecommunication network monitoring, for ex-
ample, a great deal of data can easily be collected about the behavior of
the user or the system. Formally, such data can be viewed as an event
sequence.
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De�nition 4.1 Let R = fA1; : : : ; Amg be a set of event attributes with
domains Dom(A1); : : : ;Dom(Am). Then an event is an (m + 1)-tuple
(a1; : : : ; am; t) where ai 2 Dom(Ai) and t is a real number, the occurrence
time of the event.

An event sequence is a collection of events over R [ fTg, where the
domain of the attribute T is the set of real numbers IR. The events in the
event sequence are ranged in an ascending order by their occurrence times.

In the examples of this chapter we mainly use arti�cial data, but in some
cases telecommunication alarm data and a log of WWW page requests, as
well.

Example 4.1 Telecommunication networks produce large amounts of
alarms. An alarm is generated by a network element if it has detected
some abnormal situation. Such an alarm 
ow can be viewed as an event
sequence. Each alarm has several attributes like module and severity, in-
dicating the element that sent the alarm, and the severity of the alarm,
respectively. An alarm also has a type and an occurrence time associated
with it. An example of a real alarm is

( 2730, 30896, 2, Con�guration of BCF failed,
19.8.1994 08:33:59 )

where the attributes are the type of the alarm, the sending network element,
the severity class, a text describing the failure, and the occurrence time of
the alarm.

Example 4.2 Page requests made in the WWW are often collected into
a log. Event attributes of a page request are, e.g., the requested WWW
page, the name of the host that made the request, and the occurrence time
of the request. An example of a page request is

( ../mannila/data-mining-publications.html,
athene.cs.uni-magdeburg.de,
200, 12134, 07/Aug/1996 15:37:11 )

where the �rst attribute is the requested page, and the second the request-
ing host. The next two attributes of the request describe the success status
of the request, and the last attribute is the occurrence time of the request.
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The number of attributes associated with each event can be high. Some
of these event attributes can contain redundant or irrelevant information.
In telecommunication alarm data, for example, the alarm text can be con-
sidered redundant if it can be determined from the alarm type. On the
other hand, one example of what can be regarded as irrelevant information
is the physical location of the network element sending the alarm. If such
redundant and irrelevant attributes are disregarded, only few of the event
attributes are really interesting when studying the similarity between event
sequences. In the following, we therefore consider a simpler model of events
where each event has only a type and an occurrence time.

De�nition 4.2 Let the set E be a set of event types. Now an event is a
pair (e; t) where e 2 E is an event type and t 2 IR is the occurrence time of
the event. An event sequence S is then an ordered collection of events, i.e.,

S = h(e1; t1); (e2; t2); : : : ; (en; tn)i;

where ei 2 E for all i = 1; : : : ; n, and ti � ti+1 for all i = 1; : : : ; n � 1.
The length of the sequence S is denoted by jSj = n. A sequence that only
consists of event types in temporal order, i.e.,

S = he1; e2; : : : ; eni;

where each ei 2 E for all i = 1; : : : ; n, is called an event type sequence. An
empty event sequence, or an empty event type sequence is denoted by hi.

Example 4.3 Let E = fA;B;C;D;E; Fg be the set of possible event
types. An example of an event sequence consisting of events of types e 2 E
is represented in Figure 4.1. Formally, this sequence can be expressed as

S = h (A; 30); (D; 31); (F; 32); (E; 33); : : : ; (E; 66) i:

An event type sequence corresponding to this event sequence is

S = hA;D;F;E; : : : ; Ei:

Both the event sequence S and the event type sequence S contain 25 events.
If, however, there were events whose occurrence times were less than 30 or
more than 66, and they were taken into account, the sequences would have
been longer.
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time30 35 40 45 50 55 60 65

ADFE C DAF CDB EDAF BFC EDB CF DE

Figure 4.1: An event sequence on the time axis.
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Figure 4.2: An example alarm sequence on the time axis.

Example 4.4 An example of an event sequence in telecommunication data
is an alarm sequence Salarm given in Figure 4.2. This sequence consists of
23 alarms from the set

E = f7002; 7010; 7030; 7127; 7172; 7177; 7201; 7311; 7312; 7401g

of alarm types which is only a small alarm type set. Typically, there are
hundreds, or even thousands of di�erent types of alarms in alarm sequences.

One problem with analyzing alarm data is related to the occurrence
times of the alarms in the network. In the alarm sequence Salarm in Fig-
ure 4.2 there are several cases where two alarms have the same occurrence
time. For instance, alarms of types 7172 and 7177 occur at time 5. The
problem here is that we cannot know for certain which is the real order
of these alarms. When analyzing alarm sequences we should actually take
into account all the possible orders of alarms that have the same occurrence
time. Another problem associated with the occurrence times is that there
can be di�erences of several minutes in the synchronization of the clocks
in the network elements. This means that two alarms may have occurred
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exactly at the same time, but still have di�erent occurrence times in the
given sequence, or an alarm can be assigned an occurrence time which is
di�erent from its real occurrence time.

Despite these known problems with occurrence times, we assume that
alarms have occurred strictly in the order in which they are written into
the alarm log, and leave handling of the problems with occurrence times of
alarms for future study. Hence, the sequence in Figure 4.2 is considered to
be the event sequence

Salarm = h (7010; 3); (7172; 5); (7177; 5); (7311; 7);
(7312; 7); : : : ; (7010; 38); (7312; 38); (7410; 42) i;

i.e., when two events in the sequence have the same occurrence time, the
alarm in the upper position in the �gure was written later in the alarm log.
Then the sequence

Salarm = h 7010; 7172; 7177; 7311; 7312; : : : ; 7010; 7312; 7410 i

is the event type sequence corresponding to the alarm sequence Salarm.

Example 4.5 Assume that the names of requested WWW pages are the
event types. Then an example of a short event sequence in the WWW log
data is a sequence of (page,time) -pairs

SWWW = h(../research/pmdm/datamining/,15),
(../mannila/cv.ps,137),
(../mannila/data-mining-publications.html,201),
(../mannila/,211)i.

An event type sequence corresponding to the event sequence SWWW is the
sequence

SWWW = h../research/pmdm/datamining/, ../mannila/cv.ps,
../mannila/data-mining-publications.html, ../mannila/i.

In this chapter, we use letters from the beginning of the alphabet, like
A;B and C, to denote event types. A set of all possible event types is
denoted by E , event sequences by a calligraphic letter S, and event type
sequences by a letter S.

Real-life event sequences are often extremely long, and they are dif-
�cult to analyze as such. Therefore, we need a way of selecting shorter
sequences suitable for our purposes. This leads us to the de�nition of an
event subsequence.
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De�nition 4.3 Let S be an event sequence and S an event type sequence
over a set E of event types. A boolean expression � on event types and/or
occurrence times of events is called a selection condition on events of a
sequence. An event subsequence of the sequence S is an event sequence
that satis�es �, i.e.,

S(�) = h (ei; ti) j (ei; ti) 2 S and it satis�es � i:

An event type subsequence can either be an event type sequence that satis�es
� in the event sequence S, i.e.,

S(�) = h ei j (ei; ti) 2 S and it satis�es � i;

or an event type sequence that satis�es � in the event type sequence S, i.e.,

S(�) = h ei j ei 2 S and it satis�es � i:

The de�nitions of an event subsequence S(�) and an event type subse-
quence S(�) resemble the de�nition of a subrelation r� in Section 3.1. The
form of a selection condition � in De�nition 4.3 was, however, left quite
open. The condition � can contain restrictions on event types, occurrence
times of the events, or both of them. In the case of event type sequences, of
course, only restrictions on event types are meaningful. Simple constraints
on event types and occurrence times can be combined with boolean opera-
tors.

The simplest constraints on event types are of the form \ei = A".
Examples of more complex selection conditions � on event types are \ei =
A _ ei = B" and \ei = B ^ ei+1 = C". Constraints on occurrence times,
on the other hand, can select all the events in a given time period before or
after a given type of an event into the subsequence. They can also restrict
the length of the time period allowed between the �rst and the last event
in the subsequence.

Note that a subsequence does not have to be a continuous part of the
original sequence; it just has to maintain the order of the events. Hence,
a subsequence is a subset of the events of the original sequence in their
relative order.

Example 4.6 Consider the event sequence in Figure 4.1. From it we can
select a subsequence, for example,

S(ei = A) = h(A; 30); (A; 38); (A; 49)i

which is a sequence of the events of type A.
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Example 4.7 Consider the alarm sequence in Figure 4.2. From it we can
extract, for example, the following subsequences. A subsequence of events
whose type is 7177 consists of four events, i.e.,

S(ei = 7177) = h(7177; 5); (7177; 13); (7177; 18); (7177; 28)i:

Assume then that we are interested in what happens, for instance, at most
�ve seconds before an event of type 7401 occurs, i.e., we want to �nd
subsequences S(9 (ej ; tj) so that ej = 7401 ^ tj � 5 � ti � tj ^ i < j ): In
the example sequence there are three events of type 7401, at times 10, 22
and 42. Therefore, we �nd three subsequences

S1 = h (7172; 5); (7177; 5); (7311; 7); (7312; 7); (7172; 8); (7312; 8) i;
S2 = h (7177; 18) i; and
S3 = h (7010; 38); (7312; 38) i:

On the other hand, a subsequence

Salarm(10 � ti � 20) = h (7401; 10); (7177; 13); (7201; 16); (7177; 18)i

is an alarm subsequence which consists of alarms with occurrence times
between 10 and 20.

In the case of our example alarm sequence we could also search for
subsequences where we give some range to the event types. We could, for
instance, be interested in a subsequence where the types of all the events
are between 7000 and 7100, i.e., a subsequence S(7000 � ei � 7100): The
resulting subsequence consists of seven events and is

S(7000 � ei � 7100) = h (7010; 3); (7002; 24); (7030; 24); (7002; 29);
(7030; 30); (7010; 38) i:

In recent years, interest in knowledge discovery from event sequences has
been quite extensive; see, for example, [AS95, GRS99, GWS98, HKM+96,
Lai93, MKL95, MT96, MTV95, MTV97, OC96, WH98, Zha99]. The prob-
lem of similarity between sequences has also been considered in many ar-
eas such as text databases, genetics, biomedical measurements, telecom-
munication network measurements, economic databases, and scienti�c
databases. This research, however, often concentrates on sequences of
numerical values, not on sequences of events. Especially time series and
similarity queries on them have been widely studied; see, for example,
[AFS93, ALSS95, APWZ95, DGM97, FRM93, GK95, RM97, SHJM96].
Some of these articles consider similarity between long sequences, and some
of them just �nding similar subsequences.
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In this thesis we consider how similarity between two event sequences
can be de�ned, but also how to de�ne similarity between two event type
sequences. That is, we study similarities between two sequences with or
without occurrence times. In both of these cases, we de�ne similarity be-
tween two sequences by using a complementary notion of distance.

De�nition 4.4 Given a set of event types E and a class of all possible
sequences S over E , a distance measure d between sequences is de�ned as
d : S � S ! IR. Then, the distance between two event sequences S1 and
S2 in the set S is denoted by d(S1;S2). Similarly, given two event type
sequences S1 and S2 belonging to the set S, the distance between them is
denoted by d(S1; S2).

There are several ways of de�ning the distance between two event se-
quences, or between two event type sequences. The intuitive idea behind
our distance measure is that it should re
ect the amount of work needed
to transform one sequence into another. In Section 4.2 we show how this
idea is formalized as edit distance, which is a common and simple formal-
ization of a distance between strings or sequences. Edit distance is a widely
used distance measure in the analysis of textual strings [CR94, Ste94], and
in the comparison of biological sequences [Gus97, SM97]. Modi�cations
of edit distance have also been suggested as a similarity measure between
numerical sequences [BY�O97, Y�O96] and behavioral sequences [LB97].

Sometimes we are interested in just computing similarity, or distance
between two sequences. We may, however, also be interested in a set of
sequences, and want to �nd out how similar to each other all these sequences
are. This leads us to the following de�nition.

De�nition 4.5 Let E be a set of event types and S a set of all sequences
over E . Assume then that we have a set of event sequences, or event type
sequences that belong to the set S, or are subsequences of the sequences
in the set S, and that ful�ll some selection criterion on event types and/or
occurrence times of events. If we want to compute the pairwise similarities
between the sequences in this set, it is called the set of interesting sequences,
and it is denoted by SI. The size of such a set, i.e., the number of sequences
in such a set, is denoted by jSIj.

Example 4.8 In telecommunication alarm data, a set SI of interesting
alarm sequences could be, for example, all sequences of events preceding
occurrences of a certain alarm type, like the alarm type 7010, within some
time period. Another set SI of interesting sequences might be all sequences
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of alarms sent by a certain network element in weekdays between 7 and 10
o'clock in the evening.

Example 4.9 A set SI of interesting sequences in WWW might be a
set of sequences of page requests made by a user during separate sessions.
Another set of interesting page request sequences could consist of sequences
preceding a request to a certain WWW page, for example the home page
of the Data Mining research group at the University of Helsinki, within a
given time period.

4.2 Similarity measures

As stated in the previous section, our intuitive idea of similarity, or dis-
tance between sequences of events is based on how much work is needed
in transforming one sequence of events into another. Such a distance can
be formalized as edit distance, for example. In this section we show how
to de�ne edit distance both between two event sequences and between two
event type sequences.

4.2.1 Edit operations

A transformation of one sequence of events into another is made by a se-
quence of edit operations on events of the sequence.

De�nition 4.6 Let O be a set of edit operations allowed in a transforma-
tion between sequences. A transformation between two sequences of events
can be presented by giving a series of needed edit operations, called an
operation sequence. An operation sequence of k edit operations is denoted
by O = ho1; o2; : : : ; oki; where each oi 2 O for all i = 1; : : : ; k:

The set of allowed edit operations depends on the application area, our
purpose, and the type of the sequences. In traditional text string matching
and biosequence comparison, a standard edit operation set consists of an
insertion, a deletion, and a substitution of characters. Whatever edit oper-
ations are chosen, a non-operation calledmatch is always used in computing
the edit distance.

In transforming one event sequence into another, we use three parame-
terized edit operations:

1. Ins (ei; ti) that inserts an event of type e to a time ti, i.e., adds an
event (ei; ti) to a sequence,
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2. Del (ei; ti) that deletes an event of type e from a time ti, i.e., deletes
an event (ei; ti) from a sequence, and

3. Move (ei; ti; t
0

i) that changes the occurrence time of an event (ei; ti)
from time ti to time t

0

i.

All these three edit operations also take into account the occurrence times
of events. They are very natural and useful when computing the edit dis-
tance between two event sequences. In the following, we denote the set
fIns; Del; Moveg of edit operations by OS . Note that we do not allow
transpositions, or swaps of adjacent events, not even in the case when the
occurrence times of events are changed.

When considering two event type sequences, however, we use only two
parameterized edit operations: an operation Ins (ei) that inserts an event
of type e into a sequence as its i'th event, and an operation Del (ei) that
deletes an event of type e from a sequence, when this event is the i'th
event of the sequence from which the transformation began. These two
operations were chosen, because they are very natural, and they can easily
be applied with every kind of event type sequences. This set fIns; Delg of
edit operations we denote by OS :

Example 4.10 Consider an event type set E = fA;B;C;D;Eg, two
event sequences S1 = h(A; 1); (B; 3); (A; 4); (C; 6); (B; 9); (D; 11)i and S2 =
h(A; 2); (B; 5); (C; 8); (C; 12); (A; 13); (D; 16)i over E (also presented in Fig-
ure 4.3), and the set OS of edit operations. An operation sequence

O = h Move (A; 1; 2); Move (B; 3; 5); Del (A; 4);
Move (C; 6; 8); Del (B; 9); Ins (C; 12);
Ins (A; 13); Move (D; 11; 16) i

is one of the possible operation sequences transforming the sequence S1 into
the sequence S2.

Then consider two event type sequences S1 = hA;B;A;C;B;Di and
S2 = hA;B;C;C;A;Di corresponding to the event sequences above, and
the set OS of edit operations. Now an operation sequence

O = h Del (A3); Ins (C4); Del (B5); Ins (A5) i

is one of the operation sequences transforming the event type sequence S1
into the event type sequence S2:
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a)

time1 5 10 15

A BA C B D

b)

time1 5 10 15

A B C CA D

Figure 4.3: The event sequences a) S1 and b) S2 of Example 4.10 on the
time axis.

4.2.2 Costs of operations

In traditional text matching and comparison of biosequences, the edit dis-
tance between two strings or sequences is often de�ned as the minimum
number of edit operations needed to transform a string (sequence) into an-
other. This type of an edit distance is also referred to as the Levenshtein
distance [CR94, Ste94, Gus97]. If we use such an approach for de�ning the
distance between sequences of events, then our intuition says that two se-
quences are similar, if many of the events in them match and the operation
sequence O contains only few insertions and deletions. In the case of event
sequences such an operation sequence should also contain only few moves,
or at least, the moves should be short.

We want, however, the measure of the distance between sequences of
events to be more general than just based on the number of the needed edit
operations. This leads us to the de�nition of edit operation costs.

De�nition 4.7 Let O be a set of edit operations allowed. We associate
with every edit operation o 2 O a cost1 which we denote by c (o).

There are several ways of de�ning the costs of edit operations. If each
operation in the set O has a prede�ned constant cost, edit operations are
said to have operation-weight costs. On the other hand, if the cost of an
operation depends on the type of the event considered, we say that edit
operations have alphabet-weighted costs.

We start by considering costs of Ins- and Del-operations. The simplest
way of assigning costs for these operations is to use constant unit costs. In

1Also the terms weight and score of an edit operation are widely used in literature; the
�rst one in the computer science literature, and the second one in the biological literature
[Gus97].
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the case of event type sequences this means that the cost of inserting an
event ei to a sequence is c (Ins (ei)) = 1; and the cost of deleting an event
ei from a sequence is c (Del (ei)) = 1, for every event type in E . Similarly,
in the case of event sequences, the unit cost of inserting an event (ei; ti) to
a sequence is c (Ins (ei; ti)) = 1; and the cost of deleting an event (ei; ti)
from a sequence is c (Del (ei; ti)) = 1, for every event type in E and for
every occurrence time ti 2 IR.

Because some types of events occur more often in sequences than others,
it might be more natural, if the cost of an edit operation was dependent
on the type of the event. We may, for example, want the cost of adding
(deleting) a rare event to (from) a sequence to be higher than the cost of
adding (deleting) a common event. For event type sequences, we de�ne an
alphabet-weighted cost of an Ins-operation as

c (Ins (ei)) = w(e);

where w(e) is a constant proportional to occ(e)�1, when occ(e) is the num-
ber of occurrences of an event type e in a long reference sequence from the
same application area. An alphabet-weighted cost of deleting an event from
an event type sequence is, in turn, de�ned to be the same as the cost of an
Ins-operation, i.e., c (Del (ei)) = w(e): Similarly, we can de�ne alphabet-
weighted costs of inserting or deleting an event from an event sequence to
be c (Ins (ei; ti)) = w(e) and c (Del (ei; ti)) = w(e): Note that here we have
de�ned the costs of Ins- and Del-operations to be exactly the same, but in
general they could also di�er from each other.

A more di�cult problem than de�ning the costs of inserting and deleting
events is to de�ne the cost of moving an event in time when transformations
between event sequences are considered. We de�ne this cost as

c (Move (ei; ti; t
0

i)) = V � j ti � t
0

ij;

where V is a constant and j ti � t
0

ij is the length of the move. With this
de�nition a short move has a lower cost than a long move. For two event
sequences to be considered similar, this de�nition assumes that the occur-
rence times of events have approximately the same magnitude in both com-
pared sequences. This means that sequences such as h(A; 1); (B; 2); (C; 5)i
and h(A; 101); (B; 102); (C; 105)i are considered to be very far from each
other, even though the types of their events and the distances between the
occurrence times of their events in time match exactly.

In some applications it may be useful, or even necessary to limit the
length of moves of the events explicitly. A bound W for the maximum
length of moves, a window width, can be a prede�ned value in given time
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units. It can also be somehow dependent on the occurrence times in the se-
quences: it can be the maximum of the lengths of the time periods between
the �rst and the last event in the sequences, for example, or the length of
the longest or the shortest of the sequences. With this bound, the cost of
moving an event is always c (Move (ei; ti; t

0

i)) � V �W:
The parameter V used in de�ning the cost of a Move-operation also has

some logical restrictions. In the case of unit costs for inserting and deleting
an event, we should have V � 2. Namely, if V > 2, then moving an
event is never cost-e�ective: instead, one can always �rst delete and then
insert an event of the type e. Note that in this case the cost of a Move-
operation does not depend on the event types. For similar reasons, when
we use alphabet-weighted costs for insertions and deletions of events, we
should have V � 2 � w(e) for all the event types e 2 E . The highest value
of V that satis�es this condition for every event type is 2 � min w where
min w = minfw(e)g. In this case, the cost of moving an event does not
directly depend on the type of the event either. However, the length of a
cost-e�ective move is nearly always dependent on the type of the event. To
name an example, if V = 2�min w, then for an event of the type e which has
the minimum weight min w; the length of the longest cost-e�ective move is
one time unit. The length of the longest cost-e�ective move for an event of
any other type is determined by an equation

jti � t
0

ij �
w(e)

min w
;

where w(e) is a constant inversely proportional to the number of occur-
rences of the event type e. The absolutely longest moves are cost-e�ective
for events of the type e with the maximal value of w(e) among all the event
types in E . There are, however, values of the parameter V with which the
length of a cost-e�ective move is never dependent on the type of the event.
If we use a parameter value V = 2�min w

W ; for example, then all moves of W
time units or less would be cost-e�ective regardless of the type of the event
considered.

As noted before, transforming one sequence into another usually de-
mands several edit operations. A total cost of such an operation sequence
can be de�ned as follows.

De�nition 4.8 Let O be a set of edit operations, and c (o) a cost for an
operation o 2 O: A cost of an operation sequence O = ho1; o2; : : : ; oki is the
sum of the costs of all individual operations oi, i.e.,

c (O) =
kX
i=1

c (oi):
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An operation sequence with the minimum total cost is called an optimal

operation sequence Ô:

4.2.3 Edit distance between sequences

We now give a formal de�nition of the edit distance between two event
sequences, or between two event type sequences.

De�nition 4.9 Let S1 = h(e1; t1); (e2; t2); (e3; t3); : : : ; (em; tm)i and S2 =
h(f1; u1); (f2; u2); (f3; u3); : : : ; (fn; un)i be two event sequences. The edit
distance between these event sequences S1 and S2 is de�ned as

dS(S1;S2) = min f c (Oj) j Oj is an operation sequence
transforming sequence S1 into sequence S2 g;

i.e., as the cost of an optimal operation sequence2 Ô transforming the se-
quence S1 into the sequence S2. Similarly, the edit distance dS between two
event type sequences S1 = he1; e2; e3; : : : ; emi and S2 = hf1; f2; f3; : : : ; fni
is de�ned as the cost of the optimal operation sequence Ô transforming the
sequence S1 into the sequence S2.

If the edit distance between two event sequences, or event type se-
quences, is determined using De�nitions 4.8 and 4.9, we are actually con-
sidering a weighted edit distance. More speci�cally, if edit operations have
operation-weighted costs, we should talk about operation-weight edit dis-
tance, and if they have alphabet-weighted operations costs, we should use
a term alphabet-weight edit distance [Gus97].

If the edit distance between sequences of events had been de�ned as
the minimum number of operations needed to transform a sequence into
another, then our distance measure would have been a metric. However,
when we de�ne the edit distance between sequences as the cost of the
optimal operation sequence making such a transformation, we cannot be
sure that the resulting measure is a metric. Especially, with alphabet-
weighted operation costs the triangle inequality might not be satis�ed, and,
therefore, the measure obtained is not necessarily a metric [Ste94]. This
does not, however, prevent the use of weighted edit distance as a measure
of distance between sequences.

Example 4.11 Let E = fA;B;C;D;Eg be the set of event types, and
OS the set of edit operations. Using unit operation costs, an event type

2Note that there can be several operation sequences that have the minimum cost, and
thus, there can also be many optimal operation sequences.
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c (Ins (ei)) =
e occ(e) c (Del (ei))

A 100 0.0100
B 50 0.0200
C 20 0.0500
D 80 0.0125
E 10 0.1000

Table 4.1: The numbers of occurrences of di�erent event types occurring
in a hypothetical reference sequence and the alphabet-weighted operation
costs of inserting and deleting events of these types.

sequence S1 = hA;B;A;C;B;Di can be transformed into an event type se-
quence S2 = hA;B;C;C;A;Di, for instance, with three operation sequences
O1; O2 and O3. That is, with operation sequences

O1 = h Del (A3); Ins (C4); Del (B5); Ins (A5) i;

O2 = h Ins (C3); Del (A3); Del (B5); Ins (A5) i;

and
O3 = h Ins (C3); Ins (C4); Del (C4); Del (B5) i:

The costs of each of these operation sequences are c (O1) = c (O2) =
c (O3) = 4: They are all optimal operation sequences, and thus, the
weighted edit distance between the event type sequences S1 and S2 is 4.

Suppose then that we have a reference sequence from which we get
the numbers of occurrences of di�erent event types in the set E . Let
Table 4.1 present the numbers of these occurrences and the alphabet-
weighted costs of insertions and deletions of these event types, when
c (Ins (ei)) = c (Del (ei)) = w(e) = occ(e)�1: Now the weighted edit dis-
tance between the event type sequences S1 and S2 is

dS(S1; S2) = 0:01 + 0:05 + 0:01 + 0:02 = 0:09:

This distance is the cost of the operation sequences O1 and O2, which
are both optimal operation sequences. However, the operation sequence
O3 is no longer optimal, because its cost is 0:17; which is higher than the
minimum cost 0:09.

Example 4.12 Let E = fA;B;C;D;Eg be the set of event types, and
S1 and S2 the two event sequences in Figure 4.3. Assume that we have a
window width W = 20 and the set OS of edit operations.
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If the edit operations have the unit costs, the value of the parameter
V should be less than 2. For example, with value V = 0:5, the cost of
moving an event is c (Move (ei; ti; t

0

i)) = 0:5 � j ti � t
0

ij, and the cost of the
maximum length move (20 time units) is, therefore, 0:5 � 20 = 10. With
these operation costs, the optimal operation sequence Ô for the sequences
S1 and S2 is

Ô = h Move (A; 1; 2); Move (B; 3; 5); Del (A; 4);
Move (C; 6; 8); Del (B; 9); Del (D; 11);
Ins (C; 12); Ins (A; 13); Ins (D; 16) i

and the edit distance between these sequences is

dS(S1;S2) = c (Move (A; 1; 2)) + c (Move (B; 3; 5))
+c (Del (A; 4)) + c (Move (C; 6; 8))
+c (Del (B; 9)) + c (Del (D; 11))
+c (Ins (C; 12)) + c (Ins (A; 13))
+c (Ins (D; 16))

= 0:5 � 1 + 0:5 � 2 + 1 + 0:5 � 2 + 1
+1 + 1 + 1 + 1 = 8:5:

In this case, the cost of moving the event (D; 11) to the time 16 is
c (Move (D; 11; 16)) = 2:5. Because it is higher than the cost of �rst delet-
ing and then inserting an event of type D, this Move-operation is not cost-
e�ective, and thus, it is not a part of the optimal operation sequence.

If we want moving an event always to be preferred to deleting and
inserting it, we can use the parameter value V = 1

W = 1
20 = 0:05: Then the

cost of moving an event is c (Move (ei; ti; t
0

i)) = 0:05 � j ti � t
0

ij, and the cost
of the maximum length move (20 time units) is 0:05 � 20 = 1. The optimal
operation sequence Ô for the sequences S1 and S2 is now

Ô = h Move (A; 1; 2); Move (B; 3; 5); Del (A; 4);
Move (C; 6; 8); Del (B; 9); Ins (C; 12);
Ins (A; 13); Move (D; 11; 16) i

and the edit distance between the sequences is

dS(S1;S2) = c (Move (A; 1; 2)) + c (Move (B; 3; 5))
+c (Del (A; 4)) + c (Move (C; 6; 8))
+c (Del (B; 9)) + c (Ins (C; 12))
+c (Ins (A; 13)) + c (Move (D; 11; 16))

= 0:05 � 1 + 0:05 � 2 + 1 + 0:05 � 2 + 1
+1 + 1 + 0:05 � 5 = 4:50:
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Unlike in the situation above, it is now cost-e�ective to move the event
(D; 11) to the time 16.

Then let the numbers of occurrences of di�erent event types in the set
E and the alphabet-weighted costs of inserting and deleting events of these
types, when w(e) = occ(e)�1, be as in Table 4.1. If we now want moving of
events for all event types to be cost-e�ective at least sometimes, the value
of the parameter V should be less than 2 � 0:01 = 0:02. Assume �rst that
we use the parameter value V = 0:02. Then the cost of moving an event
(ei; ti) to time t

0

i is 0:02 � j ti � t
0

ij, and the cost of a move of the maximum
length (20 time units) is 0:4. This means that moving an event is not
always cost-e�ective. The edit distance between the sequences S1 and S2
with these parameter values is

dS(S1;S2) = c (Move (A; 1; 2)) + c (Move (B; 3; 5))
+c (Del (A; 4)) + c (Move (C; 6; 8))
+c (Del (B; 9)) + c (Del (D; 11))
+c (Ins (C; 12)) + c (Ins (A; 13))
+c (Ins (D; 16))

= 0:02 � 1 + 0:02 � 2 + 0:01 + 0:02 � 2
+0:02 + 0:0125 + 0:05 + 0:01 + 0:0125 = 0:215:

In this case moving the event (D; 11) for 5 time units costs 0:10, but �rst
deleting and then inserting an event of the type D costs only 0:025. Hence,
deleting and inserting of the event is more cost-e�ective than moving it.

On the other hand, if we use a parameter value V = (2 �min w)=W , the
cost of moving an event is c (Move (ei; ti; t

0

i)) = [(2 � 0:01)=20] � j ti � t
0

ij =
0:001 � j ti� t

0

ij, and the cost of a Move-operation with the maximum length
20 is thus 0:001 � 20 = 0:02. The optimal operation sequence Ô is now
di�erent from the case with the parameter value V = 2 � min w, because
moving the event (D; 11) is cost-e�ective. The optimal operation sequence
is now

Ô = h Move (A; 1; 2); Move (B; 3; 5); Del (A; 4);
Move (C; 6; 8); Del (B; 9); Ins (C; 12);
Ins (A; 13); Move (D; 11; 16) i

and the edit distance between the sequences S1 and S2 is

dS(S1;S2) = c (Move (A; 1; 2)) + c (Move (B; 3; 5));
c (Del (A; 4)) + c (Move (C; 6; 8))
c (Del (B; 9)) + c (Ins (C; 12));
c (Ins (A; 13)) + c (Move (D; 11; 16))

= 0:001 � 1 + 0:001 � 2 + 0:01 + 0:001 � 2
+0:02 + 0:05 + 0:01 + 0:001 � 5 = 0:100:
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Examples 4.11 and 4.12 clearly show that the costs of edit operations
in
uence which operations are cost-e�ective, and thus, they determine what
operation sequences are optimal, and what the edit distance between two
sequences is. Therefore, it is important that the costs are chosen so that
the edit distance between sequences corresponds to the intuitive notion of
sequence similarity.

Assume now that two event sequences S1 and S2 have no events of
similar type, i.e., there are no events (ei; ti) 2 S1 and (fj ; uj) 2 S2 such
that ei = fj. The edit distance between these sequences then is

dS(S1;S2) =
X

(ei;ti)2S1

c (Del (ei; ti)) +
X

(fj ;uj)2S2

c (Ins (fj ; uj)):

Similarly, when two event type sequences S1 and S2 have no events of
similar type, the edit distance between them is

dS(S1; S2) =
X
ei2S1

c (Del (ei)) +
X
fj2S2

c (Ins (fj)):

The other extreme case when the edit distance between two sequences is
zero is reached when the two sequences are identical. If one of the sequences
is an empty sequence, then the distance between these two sequences is
the sum of costs for inserting (deleting) all the events of the non-empty
sequence. On the other hand, if both sequences compared are empty se-
quences, then their edit distance is zero by de�nition.

Example 4.13 Let E = fA;B;C;D;Eg be the set of event types, and
OS the set of edit operations. Then consider two event sequences S3 =
h(A; 6); (B; 8); (C; 12)i and S4 = h(D; 2); (E; 7); (D; 9)i over E . These two
event sequences have no events of a similar type, and one optimal operation
sequence Ô transforming the sequence S3 into the sequence S4 is

Ô = h Del (A; 6); Del (B; 8); Del (C; 12);
Ins (D; 2); Ins (E; 7); Ins (D; 9) i:

The edit distance between these two event sequences with the unit costs is

dS(S3;S4) = c (Del (A; 6)) + c (Del (B; 8)) + c (Del (C; 12))
+ c (Ins (D; 2)) + c (Ins (E; 7)) + c (Ins (D; 9))

= 1 + 1 + 1 + 1 + 1 + 1 = 6:

On the other hand, if we use the alphabet-weighted operation costs given
in Table 4.1, the optimal operation sequence is the same as above, and the
edit distance between these two event sequences is

dS(S3;S4) = 0:01 + 0:02 + 0:05 + 0:0125 + 0:10 + 0:0125 = 0:205:
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Similar results would be obtained, if we considered the two corresponding
event type sequences S3 = hA;B;Ci and S4 = hD;E;Di; and used the set
OS of edit operations.

Now consider the set E = fA;B;C; : : :g of event types, and two event
sequences S1 = h (e1; t1); : : : ; (em; tm); (A; 57); (B; 58); (C; 60) i and S2 =
h (A; 5); (B; 6); (C; 8); (f1 ; u1); : : : ; (fm; um) i, where all the event types ei
and fj are in the set E n fA;B;Cg; and ei 6= fj for all i; j. Then the edit
distance dS(S1;S2) is long because the sequences have so many mismatching
events. Also the moves of any transformation would be very long: 52 time
units. The sequence S1 is, however, more similar to the sequence

S3 = h (g1; v1); (g2; v2); (g3; v3); (g4; v4); (A; 13); (B; 14); (C; 16);
(g5; v5); : : : ; (gm; vm) i

than to the sequence S2, even though they all have a very similar subse-
quence. Namely, the types of the events in these subsequences are exactly
the same and the relative di�erences between the occurrence times of the
events of these subsequences in time are also the same in every case.

Then study the corresponding three event type sequences S1 =
hA;B;C; e1; : : : ; em i; S2 = h f1; : : : ; fm; A;B;C i; and S3 = h g1; g2; g3;
g4; A;B;C; g5; : : : ; gm i: Now the occurrence times of the events do not in-

uence the comparison of the sequences, and therefore, the sequence S1 is
as similar to the sequence S2 as it is to the sequence S3. This example shows
that edit distances between event sequences can be very di�erent from edit
distances between the corresponding event type sequences. Therefore, if
we want to emphasize similarity between entire sequences, not just parts
of them, it is obvious that the occurrence times of events, not only their
order, must be taken into account.

In all the three event sequences above, there is a subsequence where the
time di�erences between events are the same. Also the three event type
sequences have a short common subsequence. In some cases �nding such
common subsequences, either with or without occurrence times, might be
useful; see [Gus97, SM97] for studies on this problem in molecular biology.
Here we will not, however, discuss any further the problem of �nding such
local similarities between sequences.

4.2.4 Variations

The sets of edit operations can easily be extended to allow an edit operation
that changes the type of an event, i.e., to allow a substitution of events, if
such an operation is considered natural. Assume that we have a measure hE
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of similarity de�ned on the set E of event types. Then a cost of transforming
an event (ei; ti) into another event (e

0

i; t
0

i) in an event sequence, or changing
an event of the type e in an event type sequence to an event of the type e

0

,
could be de�ned as hE (e; e

0

) + b, where b is a constant.
The previous de�nition of the cost of substituting an event does not

take into account the possible di�erence in the occurrence times ti and t
0

i in
the event sequences. One solution to this problem might be to combine the
costs of changing the event type and moving the event. In such a case, the
total cost of substituting an event of one type by an event of another type
should still be less than the sum of deletion and insertion costs of events,
if we want substitutions of events to be cost-e�ective.

Assume then that we have two short sequences of events that have no
events of similar type, and two long sequences that di�er only with few
events. Now the intuitive result would be that the edit distance between
the long sequences is shorter than the edit distance between the short se-
quences. However, to transform one short sequence into another short se-
quence we need only a few operations. This, unfortunately, means that the
edit distance between these sequences can be shorter than the edit distance
between the two long sequences. If we want to avoid this phenomenon that
intuitively seems incorrect, we have to take the lengths of the sequences
into account when determining the edit distances. A simple way of doing
this is to normalize the edit distances based on the costs of edit operations
in the optimal operation sequence. In normalizing these edit distances we
can use a factorX

(ei;ti)2S

c (Del (ei; ti)) +
X

(fj ;uj)2S
0

c (Ins (fj ; uj))

when we consider the edit distance between two event sequences S and S
0

,
and a factor X

ei2S

c (Del (ei)) +
X
fj2S

0

c (Ins (fj))

when we determine the edit distance between two event type sequences S
and S

0

. Using this kind of normalization factors, the edit distances between
sequences will vary between zero and one.

4.3 Algorithms for computing event sequence

similarity

In this section we present algorithms for computing the edit distance be-
tween two sequences and for computing all the pairwise edit distances for
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a set SI of interesting sequences. The algorithms are mainly presented by
using event sequences, but they all also apply to the case of event type se-
quences. We start by describing an algorithm for computing the weighted
edit distance between two event sequences.

We use a fairly typical dynamic programming method [Aho90, CR94,
Ste94, Gus97] to compute the weighted edit distance between two event
sequences and to �nd the optimal operation sequence for transforming the
�rst event sequence into the other. The dynamic programming approach
has three essential components: a recurrence relation, a tabular computa-

tion, and a traceback [Gus97].
Given two event sequences S1 and S2, we use r(i; j) to denote the min-

imum cost of the operations needed to transform the �rst i events of the
sequence S1 into the �rst j events of the sequence S2. The weighted edit
distance between the event sequences S1 and S2 is, therefore, r(m;n), where
m is the number of events in the sequence S1 and n the number of events
in the sequence S2. A recursive relationship between the value of r(i; j)
for all positive indexes i and j and the values of r with smaller indexes
than i and j is given by the recurrence relation [Gus97]. When there are
no smaller indexes, the value of r(i; j) must de�ned explicitly by the base
conditions for r(i; j). In this thesis, we use the following base conditions
and recurrence relation.

De�nition 4.10 Let S1 = h(e1; t1); (e2; t2); : : : ; (em; tm)i and S2 =
h(f1; u1); (f2; u2); : : : ; (fn; un)i be two event sequences, or similarly S1 =
he1; e2; : : : ; emi and S2 = hf1; f2; : : : ; fni two event type sequences. The
base conditions and the recurrence relation for the value r(i; j) are

r(0; 0) = 0
r(i; 0) = r(i� 1; 0) + w(e); i > 0
r(0; j) = r(0; j � 1) +w(f); j > 0
r(i; j) = min f r(i � 1; j) + w(e); r(i; j � 1) + w(f);

r(i� 1; j � 1) + k(i; j) g; i > 0; j > 0

where w(e) and w(f) are costs of deleting (inserting) an event ei or fj,
respectively. For event sequences we de�ne k(i; j) as

k(i; j) =

(
V � j ti � ujj; if ei = fj
w(e) + w(f); if ei 6= fj:

In the case of event type sequences, k(i; j) is de�ned as

k(i; j) =

(
0; if ei = fj
w(e) + w(f); if ei 6= fj:
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The second component of the dynamic programming approach is us-
ing the base conditions and the recurrence relation to compute the value
r(m;n), i.e., the edit distance between the event sequences S1 and S2. We
use a bottom-up approach [Gus97] to compute such a distance. This means
the values r(i; j) are computed for increasing values of indexes and saved
in an (m+ 1)� (n+ 1) dynamic programming table.

Often the dynamic programming table is �lled in one column at a time,
in order of increasing index i. In our approach, however, we �ll the table
in one row at a time, in order of increasing index j; the resulting table is
the same in both cases. First, we set up the boundary values of the table.
For each cell in the zeroth column the value r(i; 0) is the sum of the costs
of deleting the �rst i events of the sequence S1. Similarly, each cell in the
zeroth row of the table has the value r(0; j) which is the sum of the costs
of inserting the �rst j events of the sequence S2. Later, when computing
the value r(i; j), we already know the table values r(i � 1; j); r(i; j � 1)
and r(i � 1; j � 1). The value of r(i; j) is obtained by adding to r(i � 1; j)
the cost of deletion of an event (ei; ti) from the sequence S1, by adding to
r(i; j� 1) the cost of insertion of an event (fj ; uj) to the sequence S2, or by
adding to r(i � 1; j � 1) the cost k(i; j) of transforming an event (ei; ti) in
the sequence S1 into an event (fj; uj) in the sequence S2. The cost k(i; j)
depends on whether ei = fj or not. Because r(i; j) has to be the minimum
cost of transforming the �rst i events of the sequence S1 into the �rst j
events of the sequence S2, it is clear that we have to choose the cheapest
of the results above as the value of r(i; j).

Example 4.14 Consider the set E = fA;B;C;D;Eg of event types, two
event sequences

S1 = h(A; 1); (B; 3); (A; 4); (C; 6); (B; 9); (D; 11)i

and
S2 = h(A; 2); (B; 5); (C; 8); (C; 12); (A; 13); (D; 16)i;

and the operation setOS : Assume further that we have the unit costs for the
Ins- and Del-operations, i.e., c (Ins (ei; ti)) = c (Del (ei; ti)) = 1, for every
event type in the set E , and in computing the costs of the Move-operations
we use the parameter value V = 0:5.

The dynamic programming table r used in the computation of the edit
distance between the event sequences S1 and S2 is given in Figure 4.4.
The value r(3; 5) in the table, for instance, is 5:5. The third event of the
sequence S1 and the �fth event of the sequence S2 are both of the type
A. The value of r(3; 5) can be obtained either from r(3; 4) by inserting an
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r j 0 1 2 3 4 5 6
i (A,2) (B,5) (C,8) (C,12) (A,13) (D,16)

0 0 1 2 3 4 5 6
1 (A,1) 1 0.5 1.5 2.5 3.5 4.5 5.5
2 (B,3) 2 1.5 1.5 2.5 3.5 4.5 5.5
3 (A,4) 3 2.5 2.5 3.5 4.5 5.5 6.5
4 (C,6) 4 3.5 3.5 3.5 4.5 5.5 6.5
5 (B,9) 5 4.5 4.5 4.5 5.5 6.5 7.5
6 (D,11) 6 5.5 5.5 5.5 6.5 7.5 8.5

Figure 4.4: The dynamic programming table used to compute the edit
distance between event sequences S1 and S2 in Example 4.14.

event of type A, or from r(2; 5) by deleting an event of type A. The value
cannot, however, be obtained from r(2; 4) because adding k(3; 5) = 4:5 to
r(2; 4) would be more than the value with the other two alternatives.

The weighted edit distance between two event sequences is computed
by using Algorithm 4.1. The algorithm uses a dynamic programming table
where the cells are �lled according to the base conditions and the recurrence
relation given in De�nition 4.10. Its input are the two event sequences and
the parameter values for computing the costs of edit operations: the value
of the parameter V and the values w(e) for each e 2 E . The output of the
algorithm is the edit distance between the two sequences. If this algorithm
is applied to computing edit distances between event type sequences, the
input of the algorithm are the two event type sequences and the values w(e)
for each e 2 E .

Algorithm 4.1 Edit distance between event sequences

Input: Two event sequences S1 and S2, and values w(e) for each e 2 E and a
value of the parameter V .
Output: Edit distance dS(S1;S2) between the given sequences.
Method:

1. r(0; 0) = 0;
2. for i = 1 to m do
3. r(i; 0) = r(i� 1; 0) + w(e); od;
4. for j = 1 to n do
5. r(0; j) = r(0; j � 1) + w(f); od;
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6. for i = 1 to m do
7. for j = 1 to n do
8. r(i; j) = min f r(i� 1; j) + w(e);

r(i; j � 1) +w(f);
r(i � 1; j � 1) + k(i; j) g;

9. od;
10. od;
11. output r(m;n);

To extract the optimal operation sequence leading to the computed edit
distance, we can add a traceback method to Algorithm 4.1. This is the third
element of the dynamic programming approach. The easiest way to do this
is to establish pointers in the dynamic programming table as the table
values are computed [Gus97]. When the value r(i; j) is computed, we set a
pointer from the cell (i; j) to the cell (i; j � 1) if r(i; j) = r(i; j � 1) +w(f);
a pointer from the cell (i; j) to the cell (i�1; j) if r(i; j) = r(i�1; j)+w(e);
and a pointer from the cell (i; j) to the cell (i � 1; j � 1) if r(i; j) = r(i �
1; j� 1)+ k(i; j): Each cell in the zeroth row has a pointer to the cell on its
left, and each cell in the zeroth column a pointer to the cell just above it.
In all the other cells, it is possible (and common) to have more than just
one pointer. An example of a dynamic programming table with pointers is
given in Figure 4.5.

The pointers in the dynamic programming table allow an easy recovery
of the optimal operation sequence: simply follow any path of pointers from
the cell (m;n) to the cell (0; 0). Each horizontal pointer is interpreted as an
insertion of an event (fj; uj) into S2, and each vertical pointer as a deletion
of an event (ei; ti) from S1. Each diagonal edge is interpreted as a move,

r j 0 1 2 3 4 5 6
i

0 0  1  2  3  4  5  6
1 " 1 - 0.5  1.5  2.5  3.5  4.5  5.5
2 " 2 " 1.5 - 1.5  2.5  3.5  4.5  5.5
3 " 3 " 2.5 " 2.5 - " 3.5 - " 4.5  " 5.5 - " 6.5
4 " 4 " 3.5 " 3.5 - 3.5  4.5  5.5  6.5
5 " 5 " 4.5 " 4.5 " 4.5 - " 5.5 - " 6.5 - " 7.5
6 " 6 " 5.5 " 5.5 " 5.5 - " 6.5 - " 7.5  " 8.5

Figure 4.5: A dynamic programming table used to compute the edit dis-
tance between event sequences S1 and S2 in Example 4.14 with pointers
for extracting the optimal operation sequence Ô.
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if the corresponding event types match (ei = fj), and as a deletion and an
insertion if the event types mismatch (ei 6= fj). If there is more than one
pointer from a cell, then a path can follow any of them. Hence, a traceback
path from the cell (m;n) to the cell (0; 0) can start by following any pointer
out of the cell (m;n) and then be extended by following any pointer out of
any cell encountered. This means that we can have several di�erent optimal
traceback paths corresponding to di�erent optimal operation sequences.

The traceback of an optimal operation sequence can be done with Al-
gorithm 4.2. This algorithm is given the dynamic programming table with
pointers as input, and it outputs one optimal operation sequence. A call
to this algorithm can be added to Algorithm 4.1 before Line 11, i.e., before
outputting the edit distance.

Algorithm 4.2 Extracting an optimal operation sequence

Input: A dynamic programming table r used to compute the distance between
event sequences S1 and S2.
Output: An optimal operation sequence transforming the event sequence S1 into
the event sequence S2 .
Method:

1. i = m; j = n;
2. while (i > 0) and (j > 0) do
3. if r(i; j) = r(i� 1; j � i) + k(i; j) do
4. if ei = fj do

5. push Move (ei; ti; uj) into the sequence Ô;
6. i = i� 1; j = j � 1;
7. od;
8. else do

9. push Del (ei; ti) and Ins (fj ; uj) into the sequence Ô;
10. i = i� 1; j = j � 1;
11. od;
12. od;
13. else do
14. if r(i; j) = r(i� 1; j) + w(e) do
15. push Del(ei; ti) into the sequence Ô;
16. i = i� 1;
17. od;
18. else do
19. if r(i; j) = r(i; j � 1) + w(f) do
20. push Ins(fj ; uj) into the sequence Ô;
21. j = j � 1;
22. od;
23. od;
24. od;
25. od;
26. output the optimal operation sequence Ô;
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For extracting an optimal operation sequence of transforming an event
type sequence into another, Line 5 of Algorithm 4.2 should simply be omit-
ted.

Assume then that we have a set SI of interesting sequences, instead
of just two sequences, and we want to �nd out similarities between the
sequences in this set. This means that we have to compute the edit distances
between these sequences. If the sequences in the set SI are event sequences,
these distances can be computed using Algorithm 4.3. The input of this
algorithm is the set SI of interesting event sequences, and its output are
the pairwise edit distances between the sequences in this set. The kind
of edit operation costs that are used in determining the edit distances is
omitted from this algorithm, but when implementing the algorithm they
should be taken into account. Given a set SI of event type sequences, a
similar algorithm could also be used to compute pairwise edit distances
between these event type sequences.

Algorithm 4.3 Distances between a set of event sequences

Input: A set SI of interesting event sequences.
Output: Pairwise edit distances between the sequences of the set SI .
Method:

1. for all sequence pairs (Si;Sj) where Si and Sj 2 SI do
2. calculate dS(Si;Sj);
3. od;
4. output the pairwise edit distances dS(Si;Sj);

Complexity considerations

In Algorithm 4.1 the size of the dynamic programming table is
(m + 1) � (n + 1), where m and n are the lengths of the sequences
S1 and S2, respectively. Filling in one cell of the table requires a constant
number of cell examinations, arithmetic operations and comparisons.
Therefore, the time and the space complexities of the algorithm are both
O(mn). If the sequences are fairly short, the quadratic behavior of Algo-
rithm 4.1 is not a problem. However, if the sequences are typically very
long, we can use more e�cient algorithms than just dynamic programming
to compute similarities between event type sequences; see [Ste94] for
some examples of such algorithms. Unfortunately, there are not yet the
same kind of e�cient algorithms for computing similarities between event
sequences.

On each iteration in Algorithm 4.2 either the index i, the index j, or
both of them are decremented. This means that the maximum number
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of iterations is m + n, and that the time complexity of the extraction of
the optimal operation sequence is O(m+n). Because this algorithm uses a
similar dynamic programming table to Algorithm 4.1, the space complexity
of the algorithm is O(mn).

Assume that we have a set SI of sequences. When there are jSIj
sequences in this set, the number of the pairwise edit distances computed by

Algorithm 4.3 is
�
jSIj
2

�
. Each edit distance computation with Algorithm 4.1

takes O(mn) time, and therefore, the time complexity of Algorithm 4.3 is
O(jSIj2mn). When each edit distance between two sequences is computed
with Algorithm 4.1, and the pairwise edit distances are �rst output when
they all have been computed, the space complexity of Algorithm 4.3 is
O(mn+ jSIj2):

4.4 Experiments

In this section we present some results of experiments on similarity between
event sequences. In Section 4.4.1 we describe the data sets used in these
experiments. After that, the results obtained with these data sets are
presented in Section 4.4.2. All these experiments were run on a PC with a
233 MHz Pentium processor and a 64 MB main memory, under the Linux
operating system.

4.4.1 Data sets

The experiments on similarity between event sequences use two real-life
data sets: an alarm data set from a Finnish telecommunication company,
and a log of WWW page requests collected at the Department of Computer
Science at the University of Helsinki. Both these data sets resided in 
at
text �les.

Telecommunication alarm data

The telecommunication data set consists of 73 679 alarms. The data was
collected during 50 days, i.e., a time period covering over seven weeks. On
three days there were no alarms at all, and on one day a total of 10 277
alarms. The number of di�erent alarm types in this data set is 287. The
numbers of occurrences of alarm types vary a lot: from one occurrence to
12 186 occurrences, with an average of 257 occurrences per alarm type.

We selected several alarm types from the set of 287 alarm types. For
each of those alarm types we extracted all the subsequences preceding their
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Interesting Number of Number of non-empty
alarm type occurrences preceding subsequences

W = 30 W = 60 W = 120

1400 9 6 9 9

2402 16 14 14 14

7272 10 10 10 10

7712 101 83 88 92

Table 4.2: The numbers of occurrences of the chosen four alarm types and
their non-empty preceding subsequences with the chosen window widths.

occurrences using three window widths. That is, we extracted subsequences
where the alarms occurred within 30, 60 or 120 seconds at the most before
the occurrences of the given alarm type. For each selected alarm type we
experimented with two sets of preceding subsequences: a set of event type
sequences and a set of event sequences.

In the following we present results obtained with four alarm types that
represent di�erent groups of alarm types, namely, the alarm types 1400,
2402, 7272 and 7712. Table 4.2 presents, for each of these alarm types,
the numbers of occurrences of these four alarm types and the numbers of
the non-empty subsequences preceding them with the chosen three window
widths W . The set of event subsequences preceding alarms of the alarm
type 1400 with the window width W of 60 seconds is shown in Figure 4.6.
In this set there are nine sequences whose lengths are at least two alarms,
i.e., all these sequences are non-empty sequences. Note that the number of
empty preceding subsequences depends on both the window width and the
interesting alarm type.

WWW log data

The log of WWW page requests used in our experiments was col-
lected during twelve days at the University of Helsinki from the requests
for the pages in the WWW server of the Department of Computer Science.
We �rst �ltered out from the raw data all the unsuccessful page requests
and all the references to pictures located at pages, because we wanted
to concentrate on the successful page requests. After that, the data set
still consists of 45 322 successful page requests for 6 023 di�erent WWW
pages. The number of requests per page varies from one to 1 848, with a
mean of 7.5 requests. A total of 2 563 pages are requested only once. The
number of requesting hosts is 7 633, and the number of requests from one
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S1 = h(690; 43); (1001; 43); (690; 47); (1567; 49); (1567; 49); (1567; 49);

(1567; 49); (690; 51)i

S2 = h(690; 38); (1001; 38)i

S3 = h(1553; 8); (691; 39); (690; 39); (690; 39); (1001; 39)i

S4 = h(2263; 19); (7161; 28); (7161; 28); (7161; 28); (691; 38); (690; 38);

(690; 38); (1241; 38); (1001; 38); (2263; 44)i

S5 = h(691; 39); (690; 39); (690; 39); (1001; 39)i

S6 = h(7161; 27); (7161; 27); (691; 38); (690; 38); (690; 38); (1001; 38);

(421; 58)i

S7 = h(1241; 15); (1903; 24); (1241; 25); (7161; 28); (7161; 28); (1578; 32);

(691; 39); (690; 39); (690; 39); (1001; 39); (1585; 54)i

S8 = h(7161; 28); (7161; 28); (2250; 35); (691; 38); (1001; 38); (690; 39);

(690; 39)i

S9 = h(2470; 28); (2250; 28); (691; 29); (690; 29); (690; 29); (1001; 29);

(7705; 38)i

Figure 4.6: The set of subsequences preceding alarms of the type 1400
with the window width W = 60. The occurrence times of alarms in the
sequences present how many seconds before the alarm of the type 1400 they
occurred.

host varies from one to 4 656 requests. A total of 4 189 hosts have made
only one request, whereas the mean of requests per host is six requests.

We selected from this data set several WWW pages. For each page we
extracted all subsequences that preceded requests for the given page with
the same requesting host. In extracting these subsequences we used window
widths of one, �ve and ten minutes, i.e., 60, 300 or 600 seconds. For each
selected page we experimented with two sets of preceding subsequences: a
set of event type sequences and a set of event sequences.

In this thesis we present results for sets of sequences preceding requests
for four chosen WWW pages. The CSUH project page is the page describ-
ing di�erent research projects in the yearly report of the Department of
Computer Science, the Data mining page the main page of the Data Min-
ing research group, the KDD link page the page of KDD related links on the
Data Mining research group page, and the \What is Linux" page the page
that brie
y describes the Linux operating system and its birth. Table 4.3
shows the numbers of requests for these pages as well as the numbers of
the non-empty subsequences preceding these requests with the chosen win-
dow widths. Figure 4.7 presents the event subsequences preceding requests
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Interesting Number of Number of non-empty
WWW page occurrences preceding subsequences

W = 60 W = 300 W = 600

CSUH project 24 8 10 11

Data mining 88 37 41 42

KDD link 15 12 15 15

\What is Linux" 96 37 61 65

Table 4.3: The numbers of requests for the chosen four WWW pages and
their non-empty preceding subsequences with the chosen window widths.

S1 = h(../abstracts/km-pskd-94.ps.Z; 33)i

S2 = h(../dm/group.html; 23); (../aaps/Eliot/uutta.html; 44)i

S3 = h(../dm/publications.html; 18)i

S4 = h(../dm/toc.html; 19); (../dm/logo.html; 19);

(../dm/datamine.html; 19); (../dm/counter.html; 19);

(../dm/; 19)i

S5 = hi

S6 = h(../dm/counter.html; 26); (../dm/logo.html; 27);

(../dm/toc.html; 29); (../dm/datamine.html; 29)i

S7 = h(../dm/datamine.html; 36); (../dm/toc.html,58);

(../dm/logo.html; 58); (../dm/counter.html,58)i

S8 = h(../dm/publications.html; 29); (/cgi-bin/form-mailer.pl/; 39)i

S9 = h(../dm/comments.html; 15)i

S10 = h(../dm/publications.html; 53)i

S11 = h(../mannila/postscripts/sigmodworkshop.ps; 47)i

S12 = h(../dm/toc.html; 23); (../dm/logo.html; 23);

(../dm/datamine.html; 23); (../dm/counter.html; 23);

(../dm/; 24); (/research/; 60)i

S13 = hi

S14 = hi

S15 = h(../dm/comments.html; 5); (../mannila/dm-publications.html; 28);

(../mannila/luokiteltu.ps; 35)i

Figure 4.7: The set of event subsequences preceding requests for the KDD
link page with the window widthW = 60. The occurrence times of requests
in the sequences present how many seconds before the request for the KDD
link page they occurred.
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for the KDD link page using the window width W of 60 seconds3. This
set contains �fteen sequences, of which three are empty sequences. Note
that in this case the number of empty preceding subsequences also depends
largely on the window width and the interesting WWW page.

4.4.2 Results

In our experiments we computed edit distances between sequences in each
test set both with the unit and the alphabet-weighted costs. These oper-
ation costs were de�ned according to De�nition 4.10 so that with the unit
costs w(e) = 1 and with the alphabet-weighted costs w(e) = occ(e)�1. The
exact numbers of the occurrences of each alarm type were obtained from
the whole telecommunication alarm sequence, and the number of requests
for each WWW page from the WWW log of successful page requests.

The basic value for the window width W in the alarm data set was
60 seconds and in the WWW data set 600 seconds. In addition, some
experiments on the sets of alarm sequences were done with window widths
W = 30 and W = 120, on the sets of WWW page request sequences with
window widths W = 60 and W = 300.

For the parameter V we used the basic value 1
W with the unit opera-

tion costs and 2�min w

W with the alphabet-weighted operation costs. With
these parameter values, moving an event is always preferred to deleting
and inserting one. We also wanted to study the in
uence of the parameter
V on the edit distances. Therefore, we made additional experiments with
other values of the parameter V . The parameter values used with alarm
sequences are given in Table 4.4, and the values used with WWW page
request sequences in Table 4.5.

In all our experiments, the lengths of sequences varied a lot. As dis-
cussed in Section 4.2, computing the basic edit distance between sequences
may in such a case lead to a situation where two sequences that have no
common events at all have a short distance, whereas two sequences that
contain quite a long common subsequence have a long distance. To elim-
inate the in
uence of the lengths of the sequences on the distances, we
normalized the edit distances. This normalization means that the basic
value of the edit distance between the event sequences S and S

0

was di-
vided by the sum of the operation costs of deleting all the events of the
event sequence S and inserting all the events of the event sequence S

0

; i.e.,
by the factor

P
(ei;ti)2S c (Del (ei; ti))+

P
(fj ;uj)2S

0 c (Ins (fj ; uj)): Similarly,
the basic value of the edit distance between the event type sequences S and

3We chose to present the subsequences with the shortest chosen window width, since
some of the subsequences with the other two window widths were extremely long.
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Type of operation costs Values of the parameter V

Unit costs 1
W ; 2

W ; 4
W ; 8

W ; 24
W ; 120

W

Alphabet-weighted costs 2�min w

W ; 4�min w

W ; 8�min w

W ;

16�min w

W ; 48�min w

W ; 2 �min w

Table 4.4: Values of the parameter V used in alarm sequence experiments.

Type of operation costs Values of the parameter V

Unit costs 1
W ; 2

W ; 4
W ; 8

W ; 24
W ; 60

W ; 120
W

Alphabet-weighted costs 2�min w

W ; 4�min w

W ; 8�min w

W ; 16�min w

W ;

48�min w

W ; 120�min w

W ; 240�min w

W ; 2 �min w

Table 4.5: Values of the parameter V used in WWW log experiments.

S
0

was divided by the sum of the operation costs of deleting all the events
of the event type sequence S and inserting all the events of the event type
sequence S

0

; i.e., by the factor
P

ei2S c (Del (ei)) +
P

fj2S
0 c (Ins (fj)): In

this way all the edit distances between sequences were scaled between zero
and one.

All the edit distances were computed using the algorithms of Section 4.3.
Similarly to Section 3.5.2, we here give only a few examples of the actual
edit distances. Because the actual distance values are often irrelevant, we
mainly concentrate on the orders of the edit distances given by the di�erent
measures.

Event sequences versus event type sequences

We started our experiments by studying how edit distances between
event type sequences are related to edit distances between event sequences.
In these experiments we used the basic values of the parameters W and V
(see page 91).

Figure 4.8 illustrates how edit distances between event type sequences
and event sequences preceding alarms of the type 1400 are related to each
other. The plot in Figure 4.8a describes the relationship between edit
distances with the unit costs, and the plot in Figure 4.8b the relationship
between edit distances with the alphabet-weighted costs. In both cases
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Figure 4.8: Comparison of edit distances between event type sequences and
event sequences preceding alarms of the type 1400 within 60 seconds when
a) the unit operations costs with V = 1

W , and b) the alphabet-weighted
costs with V = 2�min w

W are used.

the edit distances are positively linearly correlated, and the orders of the
distances are nearly the same. Also when a pair (S;S

0

) of event sequences
has the shortest edit distance dS , the corresponding event type sequence
pair (S; S

0

) has the shortest edit distance dS : This is true for both the
unit and the alphabet-weighted operation costs. The measures dS and dS
also agree on the pair of sequences that have the longest edit distance with
both types of edit operation costs. The same kind of phenomena could also
be observed with the sets of alarm sequences preceding occurrences of the
other chosen alarm types with the window width W = 60.

Corresponding experiments were also made with the sets of sequences
from the WWW log. Figure 4.9 presents how the edit distances between
event type sequences preceding the requests for the KDD link page are re-
lated to the edit distances between the corresponding event sequences. In
this case the measures dS and dS are also positively correlated. Besides,
these measures agree both on the pairs of sequences with the shortest and
the longest edit distances, regardless of the type of operation costs used.
Actually, with both types of operation costs, the longest edit distance be-
tween pairs of sequences is one, and there are a total of 24 such pairs of
sequences, both event sequences and event type sequences. The same holds
good for the experiments with the other test sets of WWW page request
sequences. In the case of the sequences preceding requests for the \What is
Linux" page the edit distances are also positively correlated. However, as
Figure 4.10 shows, in this case there are many pairs of event type sequences
that have the same edit distance, whereas the edit distances between the
corresponding event sequences vary a lot.
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Figure 4.9: Comparison of edit distances between event type sequences
and event sequences preceding requests for the KDD link page within 600
seconds when a) the unit operation costs with V = 1

W , and b) the alphabet-
weighted operation costs with V = 2�min w

W are used.
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Figure 4.10: Comparison of edit distances between event type sequences
and event sequences preceding requests for the \What is Linux" page within
600 seconds when a) the unit operation costs with V = 1

W , and b) the
alphabet-weighted operation costs with V = 2�min w

W are used.

The strong correlation between the edit distances between event type
sequences and event sequences with the basic values of the parameters W
and V might lead us to a conclusion that with these parameter values it is
enough to restrict our attention only to event type sequences, or event se-
quences. However, when we looked at the actual edit distances more closely,
we found that the situation was not that simple. There were namely several
pairs of event type sequences that had exactly the same edit distance, but
when we took into account the occurrence times of the events, the edit dis-
tances between the corresponding event sequences di�ered from each other.
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In the set of event type sequences preceding alarms of the type 1400, for
example, there are �ve pairs of sequences whose edit distance with the unit
costs is 0:4286, whereas the edit distances between the corresponding pairs
of event sequences with the unit costs vary between 0:4317 and 0:4714:
Similar examples could be found from any of the test sets considered. The
di�erences between the edit distances of pairs of event sequences depend
on how long moves of events we need to make. If the moves are short, the
di�erences between the distances are also small, whereas the di�erences
can be remarkable, if the lengths of the moves vary a lot. Because the edit
distances between event sequences more clearly �nd di�erences between the
pairs of sequences than the edit distances between event type sequences,
it should be clear that taking the occurrence times of the events into ac-
count is often important. Still, edit distances between event type sequences
should not be disregarded completely.

Unit versus alphabet-weighted operation costs

We also compared how edit distances between sequences change when
di�erent operation costs are used. In these experiments we again used the
basic values of the parameters W and V (see page 91).

Figure 4.11 describes how the edit distances dS of event subsequences
preceding alarms of the type 1400, 2402, 7272 and 7712 are related to
each other when di�erent types of operation costs are used; the results
for the sets of corresponding event type sequences are very similar. The
distributions of points in these four plots are wide, indicating that the
operation costs really have an in
uence on how similar two event sequences
are. In the case of the sequences preceding alarms of the types 1400 and
7272, the measures with di�erent types of operation costs do not agree on
the most similar or the most dissimilar pair of sequences. With alarm types
2402 and 7712, the situation is somewhat di�erent. Among the sequences
preceding alarms of the type 2402, one pair of empty sequences is completely
similar with both the unit and the alphabet-weighted operation costs, but
with both types of operations costs the pair of sequences that has the
second shortest distance is also the same. On the other hand, in this
set of sequences 71 pairs of sequences are completely dissimilar, i.e., their
edit distance is one, with both types of operation costs. In the set of
sequences preceding alarms of the type 7712, 80 pairs of sequences are
completely similar, and a total of 2 867 pairs of sequences are completely
dissimilar, with both types of the operation costs. So, in these two cases,
the edit distances with di�erent types of operation costs agree on the most
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Figure 4.11: Comparison of edit distances between event sequences pre-
ceding alarms of the type a) 1400, b) 2402, c) 7272, and d) 7712 with the
window width W = 60 using the unit costs with V = 1

W and the alphabet-
weighted costs with V = 2�min w

W .

similar pair and the most dissimilar pair of sequences. Despite this, the
distributions of the edit distances in Figures 4.11b and 4.11d show that it
makes a di�erence what type of operation costs are used in computing the
edit distances.

This same conclusion can also be made by studying the orders of the
edit distances obtained with the di�erent types of operation costs. Namely,
the actual edit distances show that two sequences, that have a rather short
edit distance with the unit costs, can have a long edit distance with the
alphabet-weighted costs. This phenomenon also holds good in the other
direction: even if the edit distance between two sequences is short with
the alphabet-weighted costs, their edit distance with the unit costs can be
much longer. Consider, for example, the set of event sequences preceding
an alarm of the type 1400 given in Figure 4.6, and especially the event
sequences S2; S3 and S5. The edit distance between the event sequences S2



4.4 Experiments 97

and S5 is 0:3389 with the unit costs, but with the alphabet-weighted costs
just 0:1886. On the other hand, the event sequences S3 and S5 have an edit
distance 0:1111 with the unit costs, but with the alphabet-weighted costs
their distance is as long as 0:5909. In the same way, two pairs of sequences
that have the same edit distance with one type of operation costs need not
to have the same edit distances when some other type of operation costs are
used. For example, with the unit costs the edit distance between the event
sequences S3 and S6 in Figure 4.6 is 0:3389, as is the edit distance between
the event sequences S2 and S5 in the same set of sequences. However, with
the alphabet-weighted costs the edit distances between these pairs of event
sequences are 0:6386 and 0:1886, respectively. Similar phenomena were also
observed with all the other sets of alarm sequences.

With the sets of WWW page request sequences, our conclusions were
also similar to the conclusions with the sets of alarm sequences. Figure 4.12
presents how the edit distances between event sequences preceding requests
for the four WWW pages using di�erent types of operation costs are re-
lated to each other. In these sets of event sequences there are typically
many pairs of sequences that are either completely similar or completely
dissimilar with both types of operation costs; only in the case of the KDD
link page there are no completely similar pairs of sequences, even though
the edit distances with both types of operation costs agree on the most
similar pair of sequences. Also the plot of the edit distances between the
sequences preceding the \What is Linux" page is di�erent from the other
plots. The explanation to this di�erence is simple: the number of sequences
preceding the requests for this page is higher than the numbers of sequences
in the other sets (see Table 4.3), and therefore, this set of sequences is also
more heterogeneous than the other sets. Still, in all these cases of WWW
sequences, using di�erent types of operation costs clearly leads to di�erent
kinds of similarity notions.

The results of the experiments with event type sequences preceding
the requests for the di�erent WWW pages were mainly the same as with
the sets of event sequences. However, with the \What is Linux" page the
results of these experiments with event type sequences di�er from the results
of the experiments with event sequences, as can be seen in Figure 4.13.
This di�erence is due to the nature of the sequences in these sets. In
the set of event type sequences there are several pairs of sequences that
have exactly the same edit distance when the unit costs are used, but with
the alphabet-weighted costs their edit distances are very di�erent. In the
corresponding event sequences, the occurrence times of the common events
of these sequences are di�erent. This means that the lengths of Move-
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Figure 4.12: Comparison of edit distances between event sequences preced-
ing requests of the a) CSUH project, b) Data mining, c) KDD link, and
d) \What is Linux" page with the window width W = 600 using the unit
costs with V = 1

W and the alphabet-weighted costs with V = 2�min w

W .

operations vary much, and thus, the probability that two pairs of event
sequences have exactly the same edit distance is smaller than in the case
of event type sequences, even with the unit costs.

Our experiments show that by using di�erent types of costs for edit op-
erations we can obtain distance measures that describe the set of sequences
from di�erent viewpoints. Using some other set of alphabet-weighted op-
eration costs could also have led to a very di�erent kind of edit distances.
Because di�erent types of operation costs may suit di�erent situation and
di�erent applications, it is not, unfortunately, possible to give any general,
application independent rules, how the set of operation costs should be
chosen.
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Figure 4.13: Comparison of edit distances between a) event type sequences
and b) event sequences preceding requests of the \What is Linux" page
with the window width W = 600 using the unit costs with V = 1

W and the
alphabet-weighted costs with V = 2�min w

W .

E�ect of the window width W

Let us now study how changing the window width W in
uences edit
distances between sequences. For each of the chosen alarm types and
WWW pages we used three window widths in extracting subsequences
preceding their occurrences. In the telecommunication alarm data we used
window widths of 30; 60 and 120 seconds, and in the WWW page request
log window widths of 60; 300 and 600 seconds. For the parameter V we
used the basic value 1

W with the unit costs and the basic value 2�min w

W with
the alphabet-weighted costs.

When the window width changes, the sequences themselves also change.
Therefore, the �rst problem to be solved was, whether it is reasonable to
compare the edit distances obtained from such sets of sequences at all.

When a small window width is used, the sequence preceding a certain
type of an event is typically rather short, or even an empty sequence. When
we use a greater window width, the sequence is usually longer, but it is
also possible that the length of the sequence does not change at all. The
way the sequence changes is highly dependent on the data set as well as
on the type of the event that the sequence precedes. Note that also the
number of empty sequences often alters when the window width changes;
see Tables 4.2 and 4.3 for the exact numbers. In addition, given two window
widths W1 and W2, where W1 < W2, a sequence preceding an event of a
certain type extracted using the window width W1 is always the end part
of the corresponding sequence extracted using the window width W2: This
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means that the sets of sequences preceding events of the given type with
di�erent window widths are connected to each other, and thus, comparing
their edit distances is justi�ed.

Figure 4.14 presents edit distances between event sequences preceding
alarms of the type 1400 using both the unit and the alphabet-weighted
operation cost with di�erent window widths. The plots in Figures 4.14a
and 4.14c compare the edit distances dS between event sequences with
the window widths W = 30 and W = 60, and the plots in Figures 4.14b
and 4.14d the edit distances dS between event sequences with the window
widthsW = 30 andW = 120. The di�erences between the plots a and b (c
and d) indicate that the window width really in
uences the edit distances.
The di�erences between the plots a and c with respect to the plots b and
d, however, are due to the di�erent operation costs used. The results of
the experiments with event type sequences were very similar.

We also compared the edit distances between sequences preceding
alarms of the other interesting alarm types. The general conclusions about
the in
uence of the set of operation costs, and especially the in
uence of
the window widthW also hold good for each of these test cases. Moreover,
the results of the experiments with the sets of event type sequences are
similar to these results with these sets of the event sequences.

We also made the same kind of experiments with the WWW log data.
Figure 4.15 shows comparisons of edit distances dS between event sequences
preceding requests for the KDD link page with the chosen window widths
W . The plots in Figures 4.15a and 4.15c compare the edit distances dS
between event sequences with the window widths W = 60 and W = 300,
and the plots in Figures 4.15b and 4.15d the edit distances dS between
event sequences with the window width W = 60 and W = 600. The
conclusion that we can make from these plots are similar to the case of sets
of alarm sequences, namely, that the window width W truly in
uences the
edit distances. Note that the relationship between the edit distances with
the window widths W = 300 and W = 600 is nearly linear (Figures 4.15b
and 4.15d). The results of experiments with the corresponding event type
sequences are similar to these results.

When we compared the edit distances between sequences preceding re-
quests for the other chosen WWW pages, we found out, similarly to the
case of sets of alarm sequences, that the edit distances in each case are
very dependent on the set of the sequences we are studying. In general, the
results of the experiments with the di�erent window widths W and with
the di�erent types of operation costs vary. Unlike with the sets of alarm
sequences the results of experiments with the sets of event type sequences
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Figure 4.14: Comparison of edit distances between event sequences preced-
ing alarms of the type 1400 when the window widthW is varied using (a-b)
the unit and (c-d) the alphabet-weighted operation costs.

and with the sets of event sequences were not always very similar, espe-
cially with the unit operation costs. Particularly, with the sets of sequences
preceding requests for the \What is Linux" pages the results of these ex-
periments di�er quite remarkably from each other. This is due to the fact
that the sequences change a great deal when the window width increases,
and even if the event type sequences with the di�erent window widths are
similar, the event sequences contain many long moves, leading to greater
di�erences between the edit distances.

What then actually happens to the edit distances when the window
width W changes? Let us start by studying a case where two sequences
do not change at all, while the window width alters. Consider for example
the set of sequences preceding requests for the KDD link page given in
Figure 4.7. The sequences S4 and S6 are the same with every chosen window
width W . Therefore, the corresponding event type sequences S4 and S6
are also always the same. The edit distance between these event type
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Figure 4.15: Comparison of edit distances between event sequences preced-
ing requests for the KDD link page when the window width W is varied
using (a-b) the unit and (c-d) the alphabet-weighted operation costs.

sequences is 0:5556 with the unit costs, and 0:5540 with the alphabet-
weighted costs. The edit distances between event sequences, however, vary
with the di�erent window widths. This can be explained by the fact that
when the window width W increases, V decreases, and therefore, the costs
of moving events is also lower. This means that, with greater window
widths, the edit distance between the event sequences is shorter than with
smaller window widths. This conclusion is true with both the unit and
the alphabet-weighted operation costs. Similar pairs of sequences were also
found in our other test sets.

Consider now two sequences, either event sequences or event type se-
quences, that change when the window width is altered. Assume that we
know the edit distance between these sequences with some small window
width. When the window width increases, the edit distance can either stay
the same, or it can become shorter or longer, depending on how the se-
quences change, e.g., how much their lengths increase and what types of
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events are added to the sequences. Because it is impossible to predict what
the actual changes in each case will be like, we cannot give any general rules
on how the edit distances change, when the window width changes. The
results of our experiments still show that the edit distances between the se-
quences change, and that the order of the edit distances between di�erent
pairs of sequences is also altered, when the window width changes.

E�ect of the parameter V

In the �rst set of our experiments, we compared the edit distances
dS between event type sequences to the edit distances dS between event
sequences. In those experiments we used the parameter value V = 1

W with
the unit costs, and the parameter value V = 2�min w

W with the alphabet-
weighted costs. This means that moving an event was always preferred
to deleting an event �rst and then inserting one, i.e., all Move-operations,
regardless of the length of the move, were considered to be cost-e�ective.
The results of the experiments showed that in such cases the edit distances
dS and dS are in most cases positively linearly correlated.

The parameter V in
uences the cost of Move-operations. This means
that the optimal operation sequence can also depend on V , and therefore,
changing the value of V can also alter the edit distance dS between event
sequences. In order to �nd out what this change in edit distances dS is really
like, we made some new experiments using the sets of alarm sequences with
the window widthW = 60, as well as the sets of WWW page requests with
the window widthW = 600. The values of V used in these experiments are
given in Tables 4.4 and 4.5. With the smallest values of V , i.e., the values 1

W
and 2

W with the unit costs, or the value 2�min w

W with the alphabet-weighted
costs, all Move-operations are cost-e�ective, regardless of the length of the
move. However, with all the other values of V the longest moves are not
cost-e�ective. If we use the value V = 4

W with the unit costs, for example,
any type of an event can be moved at maximum by a half of the window
width W used. In the case of the alphabet-weighted costs, the situation
is more complicated, because the length of a cost-e�ective move depends
both on the value of V and the type of the event (see Section 4.2.2).

Figure 4.16 describes how edit distances dS between event type se-
quences and edit distances dS between event sequences preceding alarms
of the type 1400 in the telecommunication alarm data are related to each
other, when the unit operation costs are used. The edit distances dS in
Figure 4.16a are computed using the parameter value V = 8

W , and in Fig-
ure 4.16b using the parameter value V = 120

W . The relationships between
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Figure 4.16: Comparison of edit distances between event type sequences
and event sequences preceding alarms of the type 1400 within 60 seconds
using the unit costs with a) V = 8

W and b) V = 120
W .

the edit distances dS and dS are not linear, and the same conclusions holds
good with all the other values of V that restrict the lengths of moves. The
absolute values of the edit distances dS typically increase, when the value
of the parameter V increases. Especially with the value V = 120

W , when the
maximum length of a move is one second, there are many pairs of sequences
that are completely dissimilar, i.e., their edit distance has the value one.

The results of these experiments with the sets of alarm sequences also
clearly indicate that the order of the edit distances dS changes when dif-
ferent values of V are used. Consider, for example, the event sequences
S5; S6; and S9 in the set of alarm sequences in Figure 4.6. With the pa-
rameter value V = 8

W , their edit distances are dS(S5;S6) = 0:3212 and
dS(S6;S8) = 0:3238; but with the parameter value 120

W their edit distances
are dS(S5;S6) = 1:0000 and dS(S6;S8) = 0:7143: And further, as Fig-
ure 4.16 shows, the orders of the edit distances dS and dS are di�erent.

Similarly, Figure 4.17 describes how edit distances dS between event
type sequences that precede requests for the KDD link page are related
to edit distances dS between the corresponding event sequences, with the
unit operation costs. The edit distances dS in Figure 4.17a are computed
using the value V = 24

W , and in Figure 4.17b the value V = 120
W . In these

cases, as well as with the other sets of WWW page request sequences, the
relationships between the edit distances dS and dS are not linear, when
all Move-operations are not cost-e�ective. Moreover, the orders of the edit
distances dS and dS as well as the orders of the edit distances dS with
di�erent values of V vary in these sets of WWW page request sequences.

The same kind of experiments were done using edit distances with the
alphabet-weighted costs. Figure 4.18 describes how edit distances dS be-
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Figure 4.17: Comparison of edit distances between event type sequences
and event sequences preceding requests for the KDD link page within 600
seconds using the unit costs with a) V = 24

W and b) V = 120
W .
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Figure 4.18: Comparison of edit distances between event type sequences
and event sequences preceding alarms of the type 1400 within 60 seconds
using the alphabet-weighted costs with a) V = 16�min w

W and b) V = 2�min w.

tween event type sequences and edit distances dS between event sequences
preceding alarms of the type 1400 in this case are related to each other.
The edit distances dS in Figure 4.18a were computed using the value
V = 16�min w

W , and in Figure 4.18b the value V = 2 �min w. Similar plots for
the sets of sequences preceding requests for the KDD link page are given
in Figure 4.19. The parameter values used in computing the edit distances
dS in these two plots are V = 48�min w

W (Figure 4.19a), and V = 2 � min w

(Figure 4.19b).
Earlier, in our �rst set of experiments on sequence similarity we noticed

that, with the alphabet-weighted operation costs, the correlation between
edit distances dS and dS is even more clearly linear than with the unit oper-
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Figure 4.19: Comparison of edit distances between event type sequences
and event sequences preceding requests for the KDD link page within 600
seconds using the alphabet-weighted costs with a) V = 48�min w

W and b)
V = 2 �min w.

ation costs, presuming that all moves of events are cost-e�ective, regardless
of their lengths; see Figure 4.8b and 4.9b. Still, we assumed that when
all moves are not cost-e�ective, the relationship between edit distances be-
tween event type sequences and event sequences would not be linear any
more, similar to the case of the unit operation costs. This assumption,
however, turned out to be wrong, especially with the sets of sequences
from the telecommunication alarm data. Namely, the edit distances dS be-
tween event sequences preceding the chosen type of alarms turned out to
be also clearly linearly correlated with the edit distances dS between event
type sequences with the highest values of V , when the alphabet-weighted
operation costs were used. This means that the orders of the edit distances
were also generally the same. The only exception to this were the sets of
sequences preceding alarms of the type 7712. In this case, the edit distances
dS and dS di�er with the parameter value V = 16

W already, and di�er even
more with all the higher values of V: The order of the edit distances also
changed in all these cases. These di�erences in the behavior with this alarm
type perhaps depend on that the number of occurrences of the alarm type
7712 is quite high (see Table 4.2), and that the set of the sequences preced-
ing these occurrences is quite heterogeneous. Thus, the large variation in
the edit distances is only natural. Another reason for the wide distribution
of the edit distances is that the variation in the lengths of the moves is
larger than in the other three cases of alarm sequences.

With the sets of sequences preceding requests for the chosen WWW
pages, the edit distances dS and dS were also linearly correlated with the
small values of V . However, a certain kind of a threshold value for these
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cases was typically V = 48
W . With this value and all the higher values of

V , the relationship between the edit distances dS and dS was no longer
linear. Moreover, these results mean that with small values of V; the order
of the edit distances is mainly the same, but when the higher values of V
are used, the order also alters. In the sets of sequences from the WWW
log data there was also one exception. The edit distances dS between se-
quences preceding requests for the \What is Linux" page started to di�er
from the edit distances dS with the smallest parameter value V = 2�min w

W
already, as we saw in the �rst type of experiments with sequence similar-
ity. The explanation to this phenomenon is the same as with the sets of
sequences preceding alarms of the type 7712 above. That is, the number
of sequences in these sets is high (see Table 4.3), and thus, the distribution
of the edit distances becomes wide. And even if the sequences have a long
common event type subsequence, the di�erences in the occurrence times,
and therefore, also in the lengths of the moves vary a lot, leading to greater
di�erences between the edit distances.

Why do the edit distances with the alphabet-weighted costs then di�er
from the edit distances with the unit costs? One reason for this probably
lies in the values of the parameter V used with the alphabet-weighted costs;
all the values used are multiples of the value 2 �min w. In the telecommu-
nication alarm data one alarm type occurs 12 186 times in the whole alarm
sequence, and thus, the value of the constant min w in this case is extremely
low. This in turn means that all the values of V are also very low, and even
if we use the maximum possible value V = 2 � min w, only the lengths of
the moves of the 39 most common alarm types are restricted, when there
are a total of 287 alarm types and the window widthW used is 60 seconds.
This explains why changing the value of V cannot make any remarkable
di�erence in the edit distances between alarm sequences.

In the WWW log data the situation with the alphabet-weighted costs
was slightly closer to the case of the unit costs. This can also be explained
with the value of the constant min w: in this case the highest number of
references to one WWW page was 1 848, which means that the value of
min w was rather low, but not at all as low as in the case of the telecommu-
nication alarm data. When we used the window width W of 600 seconds,
this in practice meant that for the 1 802 most common WWW pages out
of 6 023 pages at least some moves were not cost-e�ective. In other words,
those pages that are referred to more than three times could not be moved
freely. If we would have liked to restrict the lengths of moves of several
event types in either of the data sets, we should have either eliminated the
most common types of events from the sequence considered, or violated
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the restriction that V � 2 � w(e) for all e 2 E . How such changes would
in
uence the edit distances is left for future study.

As stated already, the results of these experiments with the various test
sets were mainly the same. There are, however, some cases where the value
of the parameter V is known to have only a small e�ect on edit distances.
For the �rst, assume that two sequences have exactly the same subsequence,
i.e., no events in this subsequence need to be moved, and in addition to
that they have only a few non-common events. Then the edit distance
between these sequences is always constant with respect to the value of
V . An example of such a sequence pair is the pair of the event sequences
S3 and S5 given in Figure 4.6. These sequences di�er only by the alarm
(1553; 8), and therefore, their edit distance dS(S3;S5) with the unit costs is
always 0:1111 and with the alphabet-weighted costs 0:5909: On the other
hand, an edit distance between two sequences can always have a high value.
In such a case, the sequences do not have many common events and/or the
moves needed are very long. An example of such a sequence pair is the pair
of the event sequences S1 and S9 given in Figure 4.6. In neither case does
the value of V have any particular in
uence on the edit distances.

Hierarchies of sequences of events

The edit distances between sequences give us important information
about how similar the sequences are. The edit distances can also be used
to build hierarchies of sequences. Such hierarchies are needed, for example,
if we want to make a query to a collection of event sequences and e�ciently
�nd all sequences similar to the query. Methods for building such indexes
for time series and other numerical sequences have been proposed, for
example, in [AFS93, BY�O97, B�O97, FRM93]. One way of constructing
such an index in the case of sequences of events is to cluster the sequences
with respect to their edit distances.

On the other hand, an interesting problem in analyzing sequential data
is to predict an occurrence of an event of a given type. This problem can also
be considered as �nding explanations for what usually happens before an
event of a given type occurs. In telecommunication network monitoring, for
example, we could use such information to detect the probable occurrence of
a severe fault early enough to prevent it, or at least to be prepared to �x its
consequences. We could try to solve this prediction problem, for example,
by searching from the sequence all episode rules [MTV95, MTV97, Toi96]
that tell us what is the probability of an occurrence of an event of the given
type, if some other kind of events are known to have occurred. Another
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possible solution to this problem would be to search for typical situations
that precede occurrences of the given event type. Such situations can be
found, for example, by clustering the sequences preceding the occurrences
of the events of the given type within a given time period.

Such a hierarchy of sequences can be constructed, for example, us-
ing the standard agglomerative hierarchical clustering. Similarly to the
case of binary attributes (Section 3.5), we tested building clustering trees
of sequences using the three hierarchical clustering methods presented in
Appendix A, namely, the single, the complete, and the average linkage
methods. In the following we present some results on clustering of event
sequences. In most cases the clusterings of event type sequences are the
same, or at least very similar to the clusterings of event sequences.

The sequences of events in our experiments were often very long. Thus,
when we draw a clustering tree, it is not possible to give the actual sequences
in these trees. Instead, we represent the sequences by symbols like Si where
i indicates the ordinal of the sequence when the set of sequences are given
as a list of sequences like in Figures 4.6 and 4.7. However, the clustering
trees where the sequences are represented with the symbols Si as such are
not very informative to the reader. In order to be able to really evaluate
the naturalness and the goodness of the clustering trees the reader must be
able to see the actual sequences at the same time. Therefore, we present
here just a few examples of clusterings of event sequences in the set of alarm
sequences preceding occurrences of the alarm type 1400 with the window
width W = 60, and in the set of WWW page request sequences preceding
requests for the KDD link page with the window width W = 600.

Earlier in this section we found that the edit distances with the unit
and the alphabet-weighted costs can di�er a lot. This leads to the assump-
tion that the clustering trees resulting from the edit distances with these
costs should also be di�erent. This assumption was con�rmed by our ex-
periments. To name an example, in Figure 4.20 we have two clustering
trees of the event sequences preceding alarms of the type 1400 using the
window width W = 60 (see Figure 4.6), and the unit costs with V = 1

W
(Figure 4.20a) and the alphabet-weighted costs with V = 2�min w

W (Fig-
ure 4.20b). Both the clustering trees were produced with the single linkage
clustering method. These clustering trees really are dissimilar, because the
edit distances on which the clustering of the sequences was based were com-
puted with di�erent operation costs. With other sets of sequences and other
clustering methods, the results were typically similar. This tells us that the
choice of the type of the operation costs have quite an in
uence on whether
two sequences are grouped together or not. Note that the clustering tree
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Figure 4.20: Clustering trees of event sequences preceding alarms of the
type 1400 produced with the single linkage clustering method when the
window width is 60 seconds and a) the unit costs with V = 1

W , and b) the
alphabet-weighted costs with V = 2�min w

W are used.

produced with the single linkage method by using the edit distances with
the unit costs is a good example of the chaining of clusters.

Clustering experiments were also made with the sets of WWW page
request sequences. In Figure 4.21 there are two clustering trees of sequences
preceding requests for the KDD link page with the window widthW = 600.
The clustering trees were produced with the single linkage method, and
the edit distances between event sequences were computed using the unit
costs with V = 1

W (Figure 4.21a), and the alphabet-weighted costs with
V = 2�min w

W (Figure 4.21b). In this case, the clustering trees produced
with the same clustering method, but using edit distances computed with
di�erent operation costs, are not exactly similar, although some parts of
the trees are alike. Further, the results with the other sets of WWW page
request sequences and with the di�erent clustering methods con�rm the
idea that the choice of the type of operation costs strongly in
uences the
resulting clustering tree.

In Figure 4.22 there are six clustering trees of event sequences preceding
alarms of the type 1400 when the window width used is 60 seconds. The
clustering trees in the upper row of the �gure are based on the edit distances
computed using the unit operation costs with V = 1

W , and in the lower row
of the �gure on the edit distances computed using the alphabet-weighted
operation costs with V = 2�min w

W . In producing the trees in Figures 4.22a
and 4.22d we used the single linkage method, the trees in Figures 4.22b
and 4.22e the complete linkage method, and the trees in Figures 4.22c
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Figure 4.21: Clustering trees of event sequences preceding requests for the
KDD link page produced with the single linkage method when the window
width is 600 seconds and a) the unit costs with V = 1

W , and b) the alphabet-
weighted costs with V = 2�min w

W are used.

and 4.22f the average linkage method. The clustering trees produced using
edit distances computed with di�erent edit operation costs are di�erent, as
noted earlier in this section. This conclusion holds good for each of the
sets of sequences considered in our experiments. In addition to that, the
trees produced with di�erent clustering methods are typically also di�erent,
even though the di�erences in the tree structures may not always be very
large. Exceptions to this rule are the clustering trees in Figures 4.22e
and 4.22f: they are produced with di�erent methods, but their structures
are exactly the same. However, as stated already with the clustering of
binary attributes, the more typical situation is that clustering trees based
on the same set of edit distances, but produced with di�erent clustering
methods, are dissimilar to each other.

Above we presented clustering trees produced with di�erent clustering
methods and using edit distances computed with di�erent edit operation
costs. In these cases, however, we considered only edit distances computed
using the chosen basic values of the window width W and the parameter
V . Because our experiments with the di�erent values of these parameters
earlier showed that the edit distances are greatly in
uenced by these values,
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Figure 4.22: Clustering trees of event sequences preceding alarms of the
type 1400 produced with the single (left column), complete (center column),
and average (right column) linkage methods, when the window width is 60
seconds, and the unit costs with V = 1

W (upper row) and the alphabet-
weighted costs with V = 2�min w

W (lower row) are used.

it should be intuitively clear that also the clustering trees based on these
various edit distances would be di�erent from those presented here.

4.5 Discussion

In this chapter we have studied how similarities between sequences of events
can be determined. Our approach to this problem is based on computing
edit distances between sequences. To de�ne an edit distance between two
sequences, we have to �nd the sequence of edit operations that transforms
one sequence into another and has the minimum cost. We de�ned such an
edit distance between both sequences of events with and without occurrence
times.
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The results of our experiments on edit distances between both event
type sequences and event sequences using real-life data sets showed that
using this kind of distance measures we can �nd similar sequences. In
addition to that, the choice of the parameter values needed in computing
the edit distances turned out to be very important. In the real-life data
sets, the window width W , and especially the type of the edit operation
costs had a remarkable e�ect on what kind of sequences were considered to
be similar or dissimilar. With the sets of sequences from the WWW page
request log, the parameter V needed in computing costs of moving events
also had a great in
uence on the edit distances. On the other hand, with
the sets of sequences from the telecommunication alarm data the parameter
V did not have that much in
uence on the edit distances.

As our experimental results indicate, with di�erent choices of the pa-
rameter values we can achieve very di�erent notions of event sequence sim-
ilarity. What these experiments do not give us, unfortunately, is a general
rule how to choose the values of the parameter for each situation. There-
fore, we should have enough domain knowledge to be able to select the
right parameter values for each application area, or we have to �nd such
values experimentally.
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Chapter 5

Similarity between event types in

sequences

In the previous chapter we considered how similarity between sequences of
events could be de�ned. Another interesting question concerning sequential
data is how to de�ne a useful notion of similarity between event types occur-
ring in event or event type sequences. Such a similarity notion can provide
us with important information about the relationships between event types,
for example. Our main idea in de�ning similarity between event types in
sequences is that two event types are similar if they occur in similar con-
texts in the sequences. Therefore, we �rst study di�erent ways of de�ning a
context of an occurrence of an event type, and then, how similarity between
two event types is deemed based on similarity between the sets of contexts
of all their occurrences. We also present some experimental results with
di�erent measures of event type similarity, and show how these similarities
can be used to build hierarchies of event types.

We start this chapter by giving some de�nitions on event types in Sec-
tion 5.1. Then in Section 5.2 we consider ways of de�ning the context of
an occurrence of an event type, and in Section 5.3 we present ways of com-
puting similarity between sets of contexts. After that, in Section 5.4 we
give algorithms for computing these similarities between event types. Ex-
perimental results on event type similarity are represented in Section 5.5.
Parts of the work described in this chapter are presented in [MM99].

5.1 Event types in sequences

In this chapter we consider the same model of event sequences (and event
type sequences) as in Chapter 4. But instead of the sequences themselves,
we now focus on the types of events occurring in the sequences.
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The set E of all possible event types depends on the domain area, and
even on the application considered. In telecommunication network moni-
toring, for example, a log of alarms occurring in the network can been seen
as an event sequence. Here the set of possible event types is formed by
the types of the alarms that network elements can send. A log of WWW
page requests from the single session of a user can also be viewed as an
event sequence. In this case, the WWW pages are the possible event types.
Yet another example of real-life event type sequences are protein sequences
studied in molecular biology. Each protein sequence is a chain of amino
acids, and therefore, in this setting, the set of possible event types consists
of the twenty amino acids listed in Table 5.1. Note that these twenty are
the amino acids typically found in the protein sequences; exceptionally a
few non-standard amino acids might be present in the sequences [SM97].

When we look at a particular event sequence (or event type sequence),
there seldom occur events of every type in the set E . Moreover, if we
consider di�erent sequences over the same set E , the sets of event types oc-
curring in these sequences typically vary a lot. Thus, we have the following
de�nition of a subset of event types.

De�nition 5.1 Let E be a set of all possible event types. The number
of event types in this set, i.e., the size of the set is denoted by jEj. Then
assume that S is an event sequence over E . The set of types of events
occurring in the sequence S is de�ned as

ES = f e j 9 (ei; ti) 2 S so that ei = e g:

This set ES is a subset of the set E . The number of event types in the set
ES is the size of the set, and it is denoted by jES j. Similarly, a set of types
of events occurring in an event type sequence S over E is de�ned as

ES = f e j 9 ei 2 S so that ei = e g:

This set ES is also a subset of E with a size jES j.

In examples and experiments of this chapter we use both arti�cial and
real-life data. The real-life data sets used in examples are a telecommuni-
cation alarm sequence and a set of protein sequences.

Example 5.1 Consider the example event sequence S in Figure 5.1 (the
same sequence as in Figure 4.1). The set of event types occurring in this
sequence is ES = fA;B;C;D;E; Fg:
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One-letter code Three-letter code Name

1 A Ala Alanine

2 C Cys Cysteine

3 D Asp Aspartic Acid

4 E Glu Glutamic Acid

5 F Phe Phenylalanine

6 G Gly Glycine

7 H His Histidine

8 I Ile Isoleucine

9 K Lys Lysine

10 L Leu Leucine

11 M Met Methionine

12 N Asn Asparagine

13 P Pro Proline

14 Q Gln Glutamine

15 R Arg Arginine

16 S Ser Serine

17 T Thr Threonine

18 V Val Valine

19 W Trp Tryptophan

20 Y Tyr Tyrosine

Table 5.1: The twenty amino acids commonly found in proteins [SM97].

Example 5.2 The telecommunication alarm sequence Salarm given in Fig-
ure 5.2 (the same sequence as in Figure 4.2) consists of 23 alarms. Types
of all these alarms belong to the set

ESalarm = f7002; 7010; 7030; 7127; 7172; 7177; 7201; 7311; 7312; 7401g:

Note that this set of ten alarm types is only a small set of all possible alarm
types. Typically, in alarm sequences there are hundreds, or even thousands
of di�erent types of alarms.

Example 5.3 The SWISS-PROT protein sequence database [SWI99] con-
tains information about 78 350 protein sequences. One of the protein se-
quences in this set is the sequence

V LSAA DKGHV KGIWG KVGGH AGEYA AEGLE R

which is a fragment of the hemoglobin alpha chain of a Tammar wallaby

(Macropus eugenii).
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time30 35 40 45 50 55 60 65

ADFE C DAF CDB EDAF BFC EDB CF DE

Figure 5.1: An event sequence on the time axis.

Protein sequences can also be seen as event type sequences or event
sequences; we can think of amino acids as event types and occurrences of
amino acids as actual events. Presenting a protein sequence as an event
type sequence then is straightforward. To name an example, an event type
sequence corresponding to the protein sequence above is a sequence

Sprotein = hV;L; S;A;A;D; : : : ; L;E;R i

when we use the one-letter codes of the amino acids.
Viewing protein sequences as event sequences is more complicated be-

cause the amino acids in protein sequences have no occurrence times. How-
ever, there is a simple solution to this problem: an occurrence time of each
event can be de�ned as the ordinal of the event in the sequence. Using this
de�nition, the protein sequence above would be represented as the event
sequence

Sprotein = h (V; 1); (L; 2); (S; 3); (A; 4); : : : ; (E; 30); (R; 31) i:

These constructed occurrence times of events are, however, very arti�cial,
and thus, sequences where the events do not originally have occurrence
times are treated only as event type sequences in the following.

Both the event type sequence Sprotein and the event sequence Sprotein
consist of 31 occurrences of amino acids. The set of amino acids occurring
in these sequences is the set

ESprotein = ESprotein = fA;D;E;G;H; I;K;L;R; S; V;W; Y g:

of thirteen amino acids.

In De�nition 5.1 we only considered event types occurring in one event
sequence or event type sequence. The de�nition, however, also applies to
a set of sequences. For example, given a set S of event sequences, a set of
event types occurring in these sequences would be

ES = f e j 9 S 2 S so that 9 (ei; tj) 2 S and ei = e g:
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2 4 6 8 10 12 14

7010 7172
7177

7311
7312

7172
7312

7401 7177

16 18 20 22 24 26 28

7201 7177 7401 7002
7030

7177

time30 32 34 36 38 40

7002
7127

7030 7127 7201 7010
7312

7401

Figure 5.2: An example alarm sequence on the time axis.

Note that in most cases the set ES is di�erent from the set ES of any single
event sequence S 2 S.

When we want to determine similarity between sequences, or make a
query to a database of sequences, we can, of course, consider only equality
and inequality of event types. In some cases, like when comparing protein
sequences [SM97], this is, however, not enough. This means that we need a
way of de�ning similarity between event types occurring in the sequences.
Such similarities between event types can, for example, be used in de�ning
the cost of replacing an event with an event of a similar type, when we
compute how one sequence of events could be transformed into another
(see Section 4.2.4). Information of similarities between event types can also
be valuable as such, as it provides insight into the data. In the following
we give a general de�nition of similarity between event types by using a
complementary notion of distance.

De�nition 5.2 Let E be a set of event types, and S a set of all possible
event sequences over E . Then a distance measure d between event types is
de�ned as d : E �E �S! IR. Given two event types A 2 E and B 2 E , and
a set S of sequences over E where S 2 S, a distance between the two event
types A and B is denoted by d(A;B;S). If there is no risk of confusion, we
just write d(A;B).

The actual distance function d can, of course, be chosen in many dif-
ferent ways. The intuitive idea behind our approach is simple: two event
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types are similar, if they occur in similar contexts. That is, two event types
A and B are similar, if the situations in which they occur in sequences
resemble each other. Hence, we de�ne similarity between event types A
and B by computing the similarity between their sets of contexts.

The idea of using contexts in de�ning similarities between objects is
not new. For example, a method for automatic word sense disambiguation
presented in [KE98] is based on word and context similarity measures. In
this method words are considered to be similar, if they appear in similar
contexts, usually sentences, and contexts are deemed as similar, if they
contain similar words. Using contexts in judgments on similarity has also
been considered in the behavioral and psychological studies [Tve77]. And
in a way, determining similarity between binary attributes using external
similarity measures (see Section 3.3) is also based on using contexts of
attributes.

Computing similarity between event types using our approach requires
us to have answers to two questions:

1. What is the context of an occurrence of an event type?

2. How is similarity between sets of contexts de�ned?

In the next two sections we discuss alternative answers to these questions.
The problem of de�ning contexts of occurrences of events is studied in
Section 5.2, and after that, in Section 5.3 we describe ways of de�ning
similarity between sets of contexts.

In real-life sequences the number of possible event types is typically tens,
hundreds, or even thousands. Especially, if there are thousands of event
types, computing similarity between all of them can be tedious. On the
other hand, there are cases in which we are not even interested in �nding
similarities between all event types, not even between those occurring in
the single sequence, or in the set of sequences considered. This means that
we should choose the event types that interest us and compute similarities
only between them.

De�nition 5.3 Let E be a set of all possible event types. A set of event
types e 2 E whose pairwise similarities we want to compute is called a set

of interesting event types, and it is denoted by EI. The size of the set EI,
i.e., the number of interesting event types, is denoted by jEIj.

Example 5.4 The types of alarms that can occur in a telecommunication
network vary depending on the network management system used. Yet,
the set of all possible alarm types can typically consist of thousands of
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alarm types. If we look at a certain alarm sequence, the number of types
of alarms occurring in it can, however, be only some tens or hundreds. But
still, in most cases, the size of such a set of alarm types is too large, so that
it would be reasonable to consider similarity between all the alarm types
within the set.

Each (sub)component of the telecommunication network can produce
alarms. Therefore, one possibility for a set EI are the types of alarms sent
by a certain type of subcomponents, or even by a particular subcomponent.
As a criterion for alarm types to be accepted into the set EI, we could also
use frequencies of the alarm types, i.e., how many occurrences of the alarm
types there were in the sequence or in the set of sequences considered. We
might, for example, be interested in how similar to each other the alarm
types are whose occurrence frequencies are at least hundred.

Example 5.5 In protein sequences there are usually occurrences of twenty
di�erent amino acids (see Table 5.1). In addition to these twenty amino
acids, in the sequences of the SWISS-PROT data set [SWI99] there are
also occurrences of three non-standard symbols: B, X and Z. Of these the
symbol B codes an occurrence of Aspartic acid or Asparagine. On the other
hand, the symbol Z means that either Glutamine or Glutamic acid occurs
in the sequence, whereas the third non-standard symbol X can correspond
to an occurrence of any of the twenty amino acids.

The number of the standard amino acids is a rather reasonable number
of event types, and therefore, it is possible to consider all twenty of them
as the set EI of interesting event types. Also the non-standard symbols B,
X and Z can be part of the set EI, if measuring similarities between them
and the standard amino acids is considered to be relevant. Yet another
possibility is to study only a set of some amino acids that have similar
biochemical properties; similar size, or similar tendency to bind with water
molecules, for example.

The selection of interesting event types depends on the application and
the situation we are considering. A natural requirement would be that the
interesting event types should be intuitively similar. But when choosing
the interesting event types (similarly to the case of choosing interesting
attributes in Chapter 3), it is important to remember that if we consider just
the event types known to be associated with each other, some interesting
and new relationships between event types may be lost.
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5.2 Contexts of events

The �rst problem to be considered in de�ning similarity between event
types is, how we should de�ne the context of an occurrence of an event
type. Usually, the sequence we are studying is too long to be used as
a context as such. In the following we introduce a notation that restricts
which events of the sequence studied are taken into account when extracting
the context from the sequence.

De�nition 5.4 Let E be a set of event types. A context of an event (ei; ti)
in an event sequence S over E is denoted by

conf((ei; ti);S;W );

where W 2 IR is a time parameter, called a window width, that restricts
which events are examined in forming the context of the event (ei; ti). Sim-
ilarly, a context of an event ei in an event type sequence S over E is denoted
by conf(ei; i; S;K); where i 2 IN is the ordinal of the event ei, and K 2 IN
is a parameter, called a context size, that limits the number of events that
are considered when computing the context of the event ei.

There are, of course, several ways of choosing the actual function conf .
A simple solution to this problem is to de�ne the context of an event in a
sequence as a set of types of events preceding the occurrence in question.
Another natural approach is to de�ne the context of an occurrence of an
event type as a sequence of events preceding it. In the following we consider
both these approaches.

5.2.1 Sets of event types as contexts

We start by considering the case where the context of an occurrence of an
event type is de�ned as a set of event types.

De�nition 5.5 Let E be a set of event types, and S an event sequence over
E . A set context of an event (ei; ti) in the event sequence S is an unordered
set of all the types of events that occur within W time units before ti, i.e.,
the set

conset((ei; ti);S;W ) = f ej j (ej ; tj) 2 S and ti �W � tj � ti and j < i g:

Further, a set context of an event ei in an event type sequence S over E is
an unordered set of all the types of the maximum K events preceding the
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event ei in the sequence1. That is, for the event ei, its set context with the
given parameter values is the set

conset(ei; i; S;K) = f ej j ej 2 S and i�K � j < i g:

An empty set context is denoted by ; in both cases.

Example 5.6 Let E = fA;B;C;D;E; Fg be the set of event types, and
S the event sequence in Figure 5.1. With a window width W = 3, the set
context of the event (A; 38) in the sequence S is

conset((A; 38);S; 3) = fC;Dg:

This means that events of types C and D occurred within three time units
before the event (A; 38) in the sequence S.

Then consider the event type sequence S = hA;E; F; : : : ; F;Ei obtained
from Figure 5.1. Now an event that corresponds to the event (A; 38) in the
event sequence S is the seventh event of the event type sequence S. Then,
with a context size K = 3, a set context of this event is

conset(A; 7; S; 3) = fC;D;Eg:

On the other hand, the context conset((A; 30);S; 3) of the event (A; 30) in
the sequence S is an empty set, as is the context conset(A; 1; S; 3) of the
corresponding event in the event type sequence S.

Assume that we have an event sequence S and an event type sequence
S, over the same set E of event types, so that they correspond to each other.
As Example 5.6 shows, contexts conset((ei; ti);S;W ) and conset(ei; i; S;K)
obtained from such corresponding sequences S and S can either be the same
or they can be di�erent from each other, even if the window width W has
the same numerical value as the context size K. If the original sequence is
an event sequence, in most cases conset((ei; ti);S;W ) 6= conset(ei; i; S;K);
although W and K have the same value. However, if the original sequence
is an event type sequence, and occurrence times of the events in the cor-
responding event sequence are formed from the ordinals of the events, it
always holds good that conset((ei; ti);S;W ) = conset(ei; i; S;K); when the
values of W and K are the same. This is true regardless of the type of the
event considered, the original sequence S and the parameter values W and
K used.

1If the event ei occurs in the beginning of the sequence S, there can be less than K

events preceding it.
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In the following, we use the arti�cial sequence of Figure 5.1 to present
examples of both an event sequence and an event type sequence. In the
examples from the real-life data sets, however, we study only contexts ob-
tained from the original sequences. In other words, we consider only con-
texts conset((ei; ti);S;W ) when the original sequence is an event sequence,
and contexts conset(ei; i; S;K) when the original sequence is an event type
sequence.

Example 5.7 Consider the alarm sequence Salarm in Figure 5.2. Then a
set

conset((7401; 10);Salarm ; 5) = f7172; 7177; 7311; 7312g

is the set context of an alarm (7401; 10) in the sequence Salarm with a
window width W = 5.

Example 5.8 Consider the protein sequence Sprotein in Example 5.3 and
the amino acid Histidine whose one-letter code is H. The �rst occurrence
of H is the ninth amino acid in the sequence Sprotein. With a context size
K = 5, the set

conset(H; 9; Sprotein; 5) = fA;D;G;Kg:

represents a set context of that occurrence of the amino acid H.

5.2.2 Sequences as contexts

Now we move on to consider another approach to de�ning contexts of oc-
currences of event types. In this approach contexts of events are de�ned as
sequences, instead of sets of event types.

De�nition 5.6 Let E be a set of event types, S an event sequence over E ,
and W a window width. A sequence context of an event (ei; ti) in the event
sequence S is de�ned as the event sequence preceding the occurrence of the
event within the given W time units, i.e., the sequence context of the event
(ei; ti) is the event sequence

conseq((ei; ti);S;W ) = h (ej ; t
0

j) j (ej ; tj) 2 S; ti �W � tj � ti;

t
0

j = jti � tjj and j < i i:

A sequence context of an event ei in an event type sequence S over E with
a context size K, on the other hand, is de�ned as an event type sequence

conseq(ei; i; S;K) = h ej j ej 2 S and i�K � j < i i:

An empty sequence context is denoted by hi in both cases.
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Note that according to De�nition 5.6, a sequence context
conseq(ei; i; S;K) is always an event type subsequence of the sequence S 2.
This is, however, not the case with a sequence context conseq((ei; ti);S;W ).
The types of events (ej ; t

0

j) of such a sequence context are, of course,

the same as in the sequence S, but the occurrence times t
0

j are di�erent.

Namely, each occurrence time t
0

j of an event (ej ; t
0

j) in the sequence context
is the relative time distance between the occurrence time tj of the event
(ej ; tj) and the occurrence time ti of the event (ei; ti) in the sequence S.
Therefore, the sequence context conseq((ei; ti);S;W ) is not a real subse-
quence of the event sequence S. The reason why we use the relative time
distances t

0

j, instead of the times tj, is that we want the occurrence times
in all sequences contexts to be of the same magnitude. Otherwise, when
comparing context sequences, sequences such as h(A; 5); (B; 3); (C; 2)i and
h(A; 105); (B; 103); (C; 102)i would be considered to be very far from each
other, even though the event types in them match exactly (see Section 4.2).

Neither the sequence context conseq((ei; ti);S;W ) is a real event se-
quence; according to De�nition 4.2 in Section 4.1 the events of a sequence
should be in increasing temporal order. This means that if we would like
the sequence context conseq((ei; ti);S;W ) to be a real event sequence, we
should reverse the order of the events in it. In the following we use, how-
ever, the context sequences as they were de�ned, i.e., the event of these
sequences are in decreasing temporal order.

Example 5.9 Consider the event sequence S in Figure 5.1. The sequence
context of the event (A; 38) in the sequence S with a window widthW = 3
is

conseq((A; 38);S; 3) = h (C; 3); (D; 1) i:

On the other hand, the sequence context of the corresponding event in the
event type sequence S with a context size K = 3 is

conseq(A; 7; S; 3) = hE;C;D i:

However, sequence contexts conseq((A; 30);S; 3) and conseq(A; 30; S; 3) are
both empty sequences, i.e., conseq((A; 30);S; 3) = conseq(A; 30; S; 3) = hi:

Example 5.10 Consider the alarm sequence Salarm in Figure 5.2, and
assume that events having the same occurrence time are written in the
alarm log in such order that the event on the top comes later, i.e., that

2Actually conseq(ei; i; S;K) is an event type substring of the sequence S, i.e., it is a
continuous part of the sequence S.
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events (7172; 5) and (7177; 5) come in that order. The sequence context of
the alarm (7401; 10) in the sequence Salarm is, with a window widthW = 5,
the event sequence

conseq((7401; 10);Salarm ; 5) = h (7172; 5); (7177; 5); (7311; 3);
(7312; 3); (7172; 1); (7312; 1) i:

Example 5.11 Now consider the protein sequence Sprotein in Example 5.3
and the amino acid H. As an event type sequence, the context of the �rst
occurrence of H in the sequence Sprotein is

conseq(H; 9; Sprotein; 5) = hA;A;D;K;G i:

with the context size K = 5:

5.2.3 Sets of contexts

Typically, there are several occurrences of each event type in a sequence.
In computing similarity between event types we need to take into account
contexts of all these occurrences. This brings us to the de�nition of a set
of contexts.

De�nition 5.7 Let E be a set of event types, S an event sequence over E
and W a window width. Given an event type A 2 E , a set of contexts of all
occurrences of the event type A in the sequence S, with the window width
W; is de�ned as

contextsf(A;S;W ) = f conf((ei; ti);S;W ) j 9 (ei; ti) 2 S and ei = A g;

where f de�nes whether the contexts are sets of event types or sequences
of events.

Then let S be an event type sequence over E and K a context size.
Now, given an event type A 2 E , a set of contexts of the event type A in
the sequence S, with the context size K; is de�ned as

contextsf(A;S;K) = f conf(ei; i; S;K) j 9 ei 2 S and ei = A g;

where f indicates the type of the contexts studied.
If there is no risk for confusion with the sequence, and the parameter

value W or K, we can simply write the set of contexts of the event type A
as contextsf(A). The size of the set of contexts is denoted by jcontextsf(A)j.
Because the set the set contextsf(A) can contain several contexts that are
exactly the same, the set contextsf(A) is a multiset, and its size is the same
as the number of the occurrences of the event type A in the sequence.
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Example 5.12 Let E = fA;B;C;D;E; Fg be the set of event types and
S the event sequence in Figure 5.1. If contexts are de�ned as sets of event
types and the window width is W = 3, the set

contextsset(A;S; 3) = f conset((A; 30);S; 3); conset((A; 38);S; 3);
conset((A; 49);S; 3) g

= f ;; fC;Dg; fD;Eg g;

represents the set of contexts of the event type A in the sequence S. Looking
at the sequence with the same window width W = 3 and considering set
contexts, we can see that the set of contexts of the event type B is exactly
the same as the set of contexts of the event type A, i.e., in this case,
contextsset(A) = contextsset(B).

Now assume that contexts are de�ned as sequences. Then, with the
window width W = 3, the set of contexts of the event type A in the event
sequence S is the set

contextsseq(A;S; 3) = f conseq((A; 30);S; 3); conseq((A; 38);S; 3);
conseq((A; 49);S; 3) g

= f hi; h (C; 3); (D; 1) i; h (E; 2); (D; 1) i g:

Furthermore, the set of contexts of the event type B in the sequence S,
with the window width W = 3, is the set

contextsseq(B;S; 3) = f conseq((B; 44);S; 3); conseq((B; 54);S; 3);
conseq((B; 60);S; 3) g

= fh (C; 2); (D; 1) i; hi; h (E; 2); (D; 1) i g:

This means that now the sets of contexts of the event types A and B are
nearly the same; only the occurrence times of the �rst events in the sequence
contexts h (C; 3); (D; 1) i and h (C; 2); (D; 1) i are not equal.

Let us now study what kind of sets of contexts we obtain for the event
types A and B in the corresponding event type sequence S. If contexts are
de�ned as sets of event types, the sets of contexts of the event types A and
B, with a context size K = 3, are

contextsset(A;S; 3) = f conset(A; 1; S; 3); conset(A; 7; S; 3);
conset(A; 14; S; 3) g

= f ;; fC;D;Eg; fB;D;Eg g

and

contextsset(B;S; 3) = f conset(B; 11; S; 3); conset(B; 16; S; 3);
conset(B; 21; S; 3) g

= f fC;D;Fg; fA;D;Fg; fC;D;Eg g:
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In other words, the sets contextsset(A;S; 3) and contextsset(B;S; 3) are very
di�erent from each other. Consequently, the sets contextsseq(A;S; 3) and
contextsseq(B;S; 3) of sequence contexts of the event types A and B cannot
be similar either.

Example 5.13 Consider the alarm sequence Salarm in Figure 5.2. If con-
texts are de�ned as sets of event types, a set of contexts of the alarm type
7401 in the alarm sequence Salarm, with a window width W = 5, is the set

contextsset(7401) = f conset((7401; 10);Salarm ; 5);
conset((7401; 22);Salarm ; 5);
conset((7401; 42);Salarm ; 5) g

= f f7172; 7177; 7311; 7312g; f7177g; f7010; 7312g g:

On the other hand, when contexts are de�ned as sequences, a set

contextsseq(7401) = f h (7172; 5); (7177; 5); (7311; 3); (7312; 3); (7172; 1);
(7312; 1) i; h (7177; 4) i; h (7010; 4); (7312; 4) i g:

represents the set of three sequence contexts of the alarm type 7401 with
the same window width W = 5.

Example 5.14 Consider the protein sequence Sprotein in Example 5.3. A
set of set contexts of the amino acid H in the sequence Sprotein, with a
context size K = 5, is the set

contextsset(H) = f conset(H; 9; Sprotein; 5);
conset(H; 20; Sprotein; 5) g

= f fA;D;G;Kg; fG;K; V g g:

On the other hand, a set

contextsseq(H) = f hA;A;D;G;K i; hG;K; V;G;G i g

of two event type sequences describes the set of sequence contexts of the
amino acid H with the context size K = 5.

In De�nition 5.7, only contexts of occurrences of an event type in one
particular sequence were taken into account. Instead of just one sequence
we could, however, include in the set contextsf(A) all contexts of occurrences
of the event type A in a set S of event sequences (or event type sequences).
In the examples of this thesis we mainly consider contexts obtained from
one sequence, but in Section 5.5 we describe experimental results on cases
where the contexts are extracted from a set of sequences.
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5.2.4 Variations

Above we considered only one-sided contexts of occurrences of event types.
An alternative would be to de�ne a context of an event (ei; ti) so that events
occurring both before and after the event (ei; ti) were taken into account,
i.e., use two-sided contexts. Then the choice to be made is, whether we
consider events which occur during a time period between times ti � W
and ti + W , or events that occur between times ti � W1 and ti + W2;
where W1 6= W2. In the case of event type sequences a similar approach
would mean considering those events that have ordinals between i � K
and i + K, or between i � K1 and i + K2; where K1 6= K2. Such two-
sided contexts could be useful, for example, for genome or protein data,
where both directions of the sequence are equally meaningful. The main
applications we consider are, however, in sequences where there is a natural
direction, that of advancing time, and hence, in this thesis we concentrate
on using one-sided contexts.

We would also get di�erent contexts, if we restricted the types of events
that are considered when the contexts are extracted. In extracting contexts
of amino acids from protein sequences, for example, we could take into
account only amino acids having certain similar biochemical properties and
disregard occurrences of all other amino acids, even if they belong to the
K preceding amino acids of the amino acid considered. In a way this
approach resembles the choice of the probe attributes used in computing
external similarities between binary attributes (see Section 3.3). In this
thesis, we focus on the case where all possible types of events are taken
into account when computing contexts, and hence, leave this possibility of
restricting the set of event types for further study.

Yet another variation of contexts concerns the way of de�ning a se-
quence context that is obtained from an event sequence. In De�nition 5.6
such a context was de�ned as an event sequence. We could, alternatively,
de�ne it as an event type sequence. Then, a sequence context of an event
(ei; ti) in a sequence S would be an event type sequence

conseq((ei; ti);S;W ) = h ej j (ej ; tj) 2 S; ti �W � tj � ti; and j < i i:

But since the original de�nition of conseq((ei; ti);S;W ) is in our view more
natural than this new one, we cover only sequence contexts computed ac-
cording to De�nition 5.6 here.
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5.3 Similarity between sets of contexts

In the previous section we considered some ways of de�ning contexts of
occurrences of event types. We now move on to study how similarity be-
tween two event types could be de�ned as similarity between their sets of
contexts. In the following, we give a general de�nition for such a similarity
measure by using, once again, a complementary notion of distance.

De�nition 5.8 Let E be a set of event types, and S a set of sequences
over E . If the sequences in the set S are event sequences, then the distance
between two event types A 2 E and B 2 E is de�ned as

dF(A;B;S) = dF(contextsf(A;S;W ); contextsf(B;S;W ));

where W is a given window width, and contextsf(A;S;W ) and
contextsf(B;S;W ) are the sets of contexts of the event types A and B.
Further, when the sequences in the set S are event type sequences, the dis-
tance between the event types A and B, given a context size K, is de�ned
as

dF(A;B;S) = dF(contextsf(A;S;K); contextsf(B;S;K));

where contextsf(A;S;K) and contextsf(B;S;K) are the sets of contexts of
the event types A and B.

If there is no risk of confusing the sequence considered or the parameter
value W or K used, we may in both cases write dF(A;B).

In De�nition 5.8 we did not exactly specify what function dF is used in
de�ning the distance between two sets of contexts. In Chapters 3 and 4 we
noticed that there is seldom a single notion of similarity between binary
attributes or event sequences that would be natural and useful, and that
the situation in hand often determines what notion to use. This conclusion
also holds good with similarity between event types. Therefore, it is only
natural that, when contexts of occurrences of event types are de�ned as sets
of event types, or as sequences of events, we get di�erent similarity notions.
Furthermore, if we considered just one kind of contexts of occurrences of
event types (sets or sequences), we get di�erent similarity notions by using
di�erent functions dF:

5.3.1 Distance between two sets of set contexts

We start by studying the case of set contexts. Every set context is a subset
of the set E of all possible event types. In the following, we describe how
such a context can be represented as a binary vector.
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De�nition 5.9 Let E be a set of m event types, S an event sequence over
E , and W a window width. A set context conset((ei; ti);S;W ) of an event
(ei; ti) 2 S can be represented as an m-dimensional context vector

vcon((ei; ti);S;W ) = [ue1 ; ue2 ; : : : ; uem ]

where ej 2 E for all j = 1; : : : ;m. A coordinate uej of the vector is 1, if the
event type ej occurs in the context conset((ei; ti);S;W ), and 0, if it does
not occur in the context. The coordinates uej are ordered in an ascending
alphabetical or numerical order of the corresponding event types ej .

Now consider an event type sequence S over E . An m-dimensional
context vector that describes a set context conset(ei; i; S;K) is a vector

vcon(ei; i; S;K) = [ue1 ; ue2 ; : : : ; uem ] :

where ej 2 E for all j = 1; : : : ;m. In this context vector, an item uej is also
1, if the event type ej belongs to the set context conset(ei; i; S;K), and 0,
if it does not.

When a set context is an empty set, it is described by an empty context

vector, i.e., a vector [ 0; 0; : : : ; 0 ]. On the other hand, a vector [ 1; 1; : : : ; 1 ]
represents a set context that contains all the event types in the set E :

When all the set contexts of the occurrences of an event type are rep-
resented as context vectors, we get a collection of vectors. In the following
we give a notation for such a set of context vectors.

De�nition 5.10 Let E be a set of m event types, S an event sequence
over E , and W a window width. Given an event type A 2 E and a
set contextsset(A;S;W ), we denote by V(A;S;W ) the collection of con-
text vectors corresponding to the set contextsset(A;S;W ). Similarly, given
an event type sequence S over E and a context size K, we denote by
V(A;S;K) the collection of context vectors describing set contexts of a
set contextsset(A;S;K). If the sequence and the parameter values W and
K are unmistakable, we may in both cases use the abbreviation V(A). Such
a vector set is a multiset, and its size, that is denoted by jV(A)j, is the same
as the number of contexts in the set contextsset(A):

Example 5.15 Let E = fA;B;C;D;E; Fg be the set of event types, and
S the event sequence in Figure 5.1. The set contextsset(A;S; 3) given in
Example 5.12 would now be presented as a set of context vectors as

V(A) = f vcon((A; 30);S; 3); vcon((A; 38);S; 3);
vcon((A; 49);S; 3) g

= f [0; 0; 0; 0; 0; 0] ; [0; 0; 1; 1; 0; 0] ; [0; 0; 0; 1; 1; 0] g:
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Exactly the same set of vectors would be obtained, if we had considered
the set contextsset(B;S; 3) of contexts of the event type B.

Consider then the corresponding event type sequence S and a context
size K = 3. Now the sets

V(A) = f [0; 0; 0; 0; 0; 0] ; [0; 0; 1; 1; 1; 0] ; [0; 1; 0; 1; 1; 0] g

and
V(B) = f [0; 0; 1; 1; 0; 1] ; [1; 0; 0; 1; 0; 1] ; [0; 0; 1; 1; 1; 0] g

of context vectors would represent the sets contextsset(A;S; 3) and
contextsset(B;S; 3) given in Example 5.12, respectively.

Assume that set contexts of occurrences of event types are represented
as m-dimensional vectors. Then a similarity between two such vectors
could, for example, be de�ned as the number of positions in which the
vectors di�er, i.e., as the Hamming distance [Ham50] of the vectors. This
measure corresponds to using a symmetric di�erence between the sets of
event types. Also any of the Minkowski metrics [Nii87, KR90] could be used
as a distance measure between two context vectors. Given two event types
A and B 2 E ; their sets V(A) and V(B) of context vectors are, however,
two sets of vectors in an m-dimensional space. Therefore, we have to de�ne
similarity between these sets, not just between two context vectors in them.

A statistical approach to de�ning a distance between two sets of context
vectors would be to view the sets V(A) and V(B) as samples from two dis-
tributions gA and gB of the m-dimensional hypercube and de�ne similarity
between the event types A and B as similarity between gA and gB . This
can, in turn, be de�ned for example by using the Kullbach-Leibler distance
[KL51, Kul59, Bas89]:

d(gA k gB) =
X

x2f0;1gm

gA(x) � log
gB(x)

gA(x)

or its symmetrized version d(gA k gB) + d(gB k gA): In these measures the
summation variable x varies over all of the 2m points of the hypercube, and
hence, direct application of the formula is not feasible.

Another related alternative is to view the set V(A) as a sample from a
multivariate normal distribution and compute the likelihood of obtaining
the set V(B) as a sample from the same distribution. For determining such
a likelihood, we need the following.

De�nition 5.11 Let E be a set of m event types, S an event sequence
over E , and W a window width. Then assume that we have an event type
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A 2 E , and a set V(A;S;W ) of context vectors of the event type A. For
each ej 2 E , the mean of the values uej in the vectors of the set V(A;S;W )
is denoted by

�Aej =

Pk
i=1 ui;ej
k

;

and the variance of the values uej by

�Aej =

Pk
i=1(ui;ej � �Aej )

2

k
;

when k = jV(A;S;W )j.
Now consider an event type sequence S over E and a context size K.

Then, in the same way as above, we denote by �Aej the mean of the values

uej in the vectors of the set V(A;S;K); and by �Aej the variance of the
values uej in the vectors of the set V(A;S;K).

Assume that we have a set V(A) and, for every event type C 2 E , the
values �AC and �AC . Given a vector vcon;i 2 V(B), the likelihood of obtaining
the vector vcon;i from the distribution of the set V(A) is proportional to

Y
C2E

exp (�((ui;C � �AC)
2=�AC )) = exp (�

X
C2E

((ui;C � �AC)
2=�AC)):

Using this, the logarithmic likelihood `log(BjA) of the whole set V(B) is

`log(BjA) = �
kX
i=1

X
C2E

((ui;C � �AC)
2=�AC);

where k = jV(B)j. This formula or its symmetrized version, `log(BjA) +
`log(AjB), could now be used as a distance measure between event types.

A problem with this approach of likelihood functions is that these mea-
sures can impose a high value of dissimilarity on the basis of a single event
type. Namely, if we have for some event type C 2 E such that the set
contextsset(A) contains no set with the event type C in it, then the values
of both the mean �AC and the variance �AC are zero. If now at least one con-
text of the event type B contains C, we have `log(BjA) = �1, indicating
that the event type B is very far from the event type A. In a way this con-
clusion is, of course, justi�ed: no context of the event type A included the
event type C, but at least one context of the event type B did. However,
in most cases we would not like to draw such an extreme conclusion on the
basis of di�erence in one event type.
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A way of alleviating this problem is to use some assumptions of the
presence of an event type in a context. This could, for example, be done by
adding to each set of contexts an empty context and a context containing
all the event types in E , i.e., by adding vectors [0; 0; : : : ; 0] and [1; 1; : : : ; 1]
to each set V. Then the variance �AC cannot be zero for any event type
C 2 E , and the value of the likelihood function `log cannot be in�nite only
because of one event type.

Our solution for de�ning similarity between event types when their con-
texts are sets of event types is, however, even simpler: we �rst compute for
each set of contexts a centroid vector, and then de�ne a distance between
two event types as a distance between the centroid vectors of their sets of
contexts. We �rst de�ne the centroid vector of a set of contexts.

De�nition 5.12 Let E be a set of m event types, and A an event type in
the set E : Given an event sequence S over E , a window widthW , and values
�Aej , for all ej 2 E , we can identify each set V(A;S;W ) with its centroid
vector cev(A;S;W ), i.e., a vector

cev(A;S;W ) =
h
�Ae1 ; �

A
e2 ; : : : ; �

A
em

i
:

Similarly, given an event type sequence S over E , a context size K, and
values �Aej , for all ej 2 E , a centroid vector of a set V(A;S;K) is a vector

cev(A;S;K) =
h
�Ae1 ; �

A
e2 ; : : : ; �

A
em

i
. If the sequence and the parameter

values W and K considered are obvious, we use an abbreviation cev(A) for
both types of centroid vectors.

Example 5.16 Consider the set E = fA;B;C;D;E; Fg of event types,
and the sets V of context vectors in Example 5.15. The centroid vector of
the set V(A;S; 3) is

cev(A;S; 3) =

�
0; 0;

1

3
;
2

3
;
1

3
; 0

�
;

which is the same as the centroid vector cev(B;S; 3). On the other
hand, a centroid vector of the set V(A;S; 3) is a vector cev(A;S; 3) =h
0; 13 ;

1
3 ;

2
3 ;

2
3 ; 0

i
; whereas a vector cev(A;S; 3) =

h
1
3 ; 0;

2
3 ; 1;

1
3 ;

2
3

i
represents

the centroid vector of the set V(B;S; 3):

Now we are ready to de�ne similarity between two event types when
their contexts are sets of event types. We de�ne their similarity as a dis-
tance between the centroid vectors of their sets of contexts.
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De�nition 5.13 Let E be a set of event types, A and B two event types in
the set E , and contextsset(A) and contextsset(B) their sets of set contexts in
an event sequence S over E , with a given window width W , or in an event
type sequence S over E , with a context sizeK. When the sets contextsset(A)
and contextsset(B) are described by centroid vectors cev(A) and cev(B), a
centroid vector distance between the event types A and B is de�ned as

dcev(A;B) = j cev(A)� cev(B) j =
X
C2E

j�AC � �BC j:

The domain of the distance measure dcev is [0;m], where m is the num-
ber of event types in the set E considered. This distance measure resembles
the Manhattan distance [Nii87, KR90], that is known to be a metric. The
measure dcev is, however, only a pseudometric, because its value can be
zero even if the event types compared are not identical, i.e., A 6= B. This
happens when the centroid vectors cev(A) and cev(B) are the same. Note
that, even if the centroid vectors cev(A) and cev(B) are identical, the sets
contextsset(A) and contextsset(B) can still di�er from each other.

Example 5.17 Consider the event type set E = fA;B;C;D;E; Fg, and
the event sequence S in Figure 5.1. As we have seen in Example 5.16, the
sets of contexts of the event types A and B in the sequence S with a window
width W = 3 are exactly the same. Therefore, also the centroid vectors of
their sets of contexts are the same, and the centroid vector distance between
these two event types is dcev(A;B) = 0. However, for the corresponding
event type sequence S and a context sizeK = 3, the centroid vector distance
between the event types A and B is

dcev(A;B) = j cev(A)� cev(B) j

= j
h
0; 13 ;

1
3 ;

2
3 ;

2
3 ; 0

i
�
h
1
3 ; 0;

2
3 ; 1;

1
3 ;

2
3

i
j

= 1
3 +

1
3 +

1
3 +

1
3 +

1
3 +

2
3 = 213 :

This indicates that the sets contextsset(A;S; 3) and contextsset(B;S; 3) are
not particularly similar.

Then consider the event type E 2 E . The set of contexts of the event
type E in the sequence S, with the window width W = 3, is

contextsset(E;S; 3) = f conset((E; 33);S; 3); conset((E; 47);S; 3);
conset((E; 58);S; 3); conset((E; 66);S; 3) g

= f fA;D;Fg; fBg; fC;Fg; fD;Fg g:
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For this set of contexts the centroid vector is cev(E) =
h
1
4 ;

1
4 ;

1
4 ;

1
2 ; 0;

3
4

i
: The

centroid vector distance between the event types A and E (and between
the event types B and E) is then

dcev(A;E) = j
h
0; 0; 13 ;

2
3 ;

1
3 ; 0

i
�
h
1
4 ;

1
4 ;

1
4 ;

1
2 ; 0;

3
4

i
j = 156 :

On the other hand, if we look at the corresponding event type sequence S
and use the context size K = 3, the set of contexts of the event type E is

contextsset(E;S; 3) = f conset(E; 4; S; 3); conset(E; 12; S; 3);
conset(E; 19; S; 3); conset(E; 25; S; 3) g

= f fA;D;Fg; fB;C;Dg; fB;C; Fg; fC;D;Fg g:

For this set of contexts we get a centroid vector cev(E) =
h
1
4 ;

1
2 ;

3
4 ;

3
4 ; 0;

3
4

i
:

Now the centroid vector distance between the event types A and E is

dcev(A;E) = j
h
0; 13 ;

1
3 ;

2
3 ;

2
3 ; 0

i
�
h
1
4 ;

1
2 ;

3
4 ;

3
4 ; 0;

3
4

i
j = 213 ;

whereas the distance between the event types B and E is

dcev(B;E) = j
h
1
3 ; 0;

2
3 ; 1;

1
3 ;

2
3

i
�
h
1
4 ;

1
2 ;

3
4 ;

3
4 ; 0;

3
4

i
j = 113 :

If we compare these centroid vector distances between the chosen event
types, we can see that when the set contexts are extracted from the event
sequence S, the event types A and B are more similar than the other two
pairs of event types. On the other hand, when the set contexts are extracted
from the event type sequence S, the most similar pair of event types are the
event types B and E. From this we can conclude that similarity between
two event types may depend very much on, whether their contexts are
extracted from an event sequence, or an event type sequence.

The centroid vector distance dcev has the advantage of being a robust
measure in the sense that a single event type cannot have an unbounded
e�ect on its value. This measure is also very fast to compute. Its drawback
is that the sizes of the sets contextsset(A) and contextsset(B) are not di-
rectly taken into account in computing it. However, if the sets of contexts
considered are of the same magnitude, this problem is not severe.

Instead of the Manhattan distance of centroid vectors we could use any
other measure from the family of Minkowski metrics [Nii87, KR90] to de�ne
the distance between centroid vectors. Other possible measures considering
a distance between two vectors could also be used as a distance measure
between two centroid vectors. Analyzing e�ects of these variations of the
centroid vector distance is, however, left for future study.
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5.3.2 Distance between two sets of sequence contexts

We now move on to study how similarity, or distance between two event
types could be de�ned when their contexts are de�ned as sequences, instead
of unordered sets of event types. To make the rest of the de�nitions in this
section more legible, we start by giving a simpler notation for sequence
contexts.

De�nition 5.14 Let E be the set of event types, S an event sequence over
E , and W a window width. Assume that we have an event type A 2 E
and a set contextsseq(A;S;W ) of sequence contexts of the event type A
with the window width W . Assuming also that the sequence contexts in
the set contextsseq(A;S;W ) have some kind of an order, a sequence context
conseq((ei; ti);S;W ) in the set contextsseq(A;S;W ) is denoted by Sa, where
a 2 f1; 2; : : : ; jcontextsseq(A;S;W )jg is the ordinal of this sequence context
in the given order.

Now let S be an event type sequence over E , A an event type in the
set E , and K a context size. Given a set contextsseq(A;S;K) of sequence
contexts of the event type A; with the context size K, in some kind of an
order, a sequence context conseq(ei; i; S;K) in the set contextsseq(A;S;K)
is denoted by Sa, where a 2 f1; 2; : : : ; jcontextsseq(A;S;K)jg is the ordinal
of this sequence context in the given order.

Intuitively, it is clear that a measure determining the distance between
sets of sequence contexts should be based on similarities or distances be-
tween sequences in those sets. A distance between two event sequences,
or similarly between event type sequences, can be computed using an edit
distance type of an approach, for example, as studied in Chapter 4. Deter-
mining a distance between sets of sequences is, however, more complicated.

One possibility to solve this problem is, of course, to consider an ap-
proach resembling the centroid vector distance used in the case of set
contexts. Representing event sequences and event type sequences as m-
dimensional vectors would be quite di�cult and quite unnatural. Instead
of that, we could try to �nd some kind of a centroid sequence for each set
of sequence contexts, but �nding such a sequence may be di�cult. Assume
that a centroid sequence of the set contextsseq(A) of sequence contexts of
an event type A is de�ned as a maximal common subsequence of all the se-
quence contexts in the set contextsseq(A), i.e., as a sequence of those events
that are common to all the sequence contexts in the set contextsseq(A).
If now the sequence contexts in the set contextsseq(A) are very di�erent
from each other, the resulting centroid sequence may easily be an empty
sequence. And when two sets of contexts are both identi�ed with an empty
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centroid sequence, the distance between these centroid sequences is zero,
even though their sets of contexts in fact can be completely di�erent. More-
over, if there are many such pairs of event types, we cannot get any real
information about distances or similarities between the event types. Alas,
the measure would be worthless.

A more appropriate approach for de�ning similarity between sets of
sequence contexts is based on computing pairwise distances between the
sequences in two sets of contexts, and then determining the distance be-
tween two sets of sequence contexts as some function of these pairwise
distances. This leads us to the following de�nition.

De�nition 5.15 Let E be a set of event types, A and B two event types
in the set E , and contextsseq(A) and contextsseq(B) their sets of sequence
contexts. If the sequence contexts are event sequences, then the distance
between the event types A and B is de�ned as

dF(A;B) = F(f d(Sa;Sb) j Sa 2 contextsseq(A) and Sb 2 contextsseq(B) g);

where F is a function of the set of pairwise distances between the event
sequences in the sets contextsseq(A) and contextsseq(B). Similarly, when the
sequence contexts in the sets contextsseq(A) and contextsseq(B) are event
type sequences, the distance between the event types A and B is de�ned
as

dF(A;B) = F(f d(Sa; Sb) j Sa 2 contextsseq(A) and Sb 2 contextsseq(B) g):

The function F in De�nition 5.15 is used for combining the pairwise
distances between sequences belonging to two di�erent sets of sequence
contexts. The choice of the function F is, however, not obvious. Three
simple alternatives would be functions, by using which, the distance be-
tween two event types would be de�ned as the minimum, the maximum, or
the average of the pairwise distances between the sequences in their sets of
contexts. In the following, we denote the corresponding distance measures
of event type similarity by dmin, dmax and davg, respectively.

Now we give some examples of distances dmin, dmax and davg between
sets of context sequences. In these examples, as in all the other exam-
ples after them, the pairwise distances between context sequences are their
edit distances. In computing these edit distances we used the unit op-
eration costs, especially in the case where the sequence contexts are event
sequences, the unit operation costs with the parameter value V = 1

W , where
W is the window width used in extracting the sequence contexts. All the
edit distances were also normalized in the way explained in Chapter 4.
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Example 5.18 Consider the event type set E = fA;B;C;D;E; Fg, and
the event sequence S in Figure 5.1. Using the sets contextsseq(A) and
contextsseq(B) of event sequences given in Example 5.12, the distance dmin

between the event types A and B is

dmin(A;B) = min f1; 0; 1; 0:08; 1; 0:50; 0:50; 1; 0g = 0:

This means that according to this measure dmin the event types A and B
are exactly alike. This result does not seem very natural, because when
we look at the corresponding sets of sequence contexts, they really are
very similar, but not exactly the same. The distance davg between the
sets contextsseq(A) and contextsseq(B) would, however, be 0:56; meaning
that the event types A and B are considered neither very similar nor very
dissimilar. This result is natural in a way, because the sequences within
each of the sets of contexts are not particularly homogeneous. On the other
hand, the result dmax(A;B) = 1; which means that the event types A and
B are completely dissimilar, does not seem to be very reasonable at all.

Then consider the corresponding event type sequence S and the sets

contextsseq(A;S; 3) = f conseq(A; 1; S; 3); conseq(A; 7; S; 3);
conseq(A; 14; S; 3) g

= f hi; hE;C;Di; hB;E;Di g

and

contextsseq(B;S; 3) = f conseq(B; 11; S; 3); conseq(B; 16; S; 3);
conseq(B; 21; S; 3) g

= f hF;C;Di; hD;A;F i; hC;E;Di g:

that are obtained from the sequence S using the context size K = 3. With
these sets of event type sequences, the event types A and B have distances
dmin(A;B) = 0:33; dmax(A;B) = 1; and davg(A;B) = 0:67: This means
that according to the measure dmin the event types are more similar than
dissimilar, whereas they are more dissimilar than similar according to the
measure davg: On the other hand, according to the measure dmax these
attributes are completely dissimilar. When we look at the sequences in the
sets contextsseq(A) and contextsseq(B), we can notice that they are rather
di�erent, although they have some similarities. Thus, it seems that, in
this case, the measure davg of these three measures describes the similarity
between the event types A and B in the best way.

The distance measures dmin; dmax; and davg are simple, but using them
is not really an alternative when we want to de�ne similarity between event
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types. Namely, there are rather obvious problems with each of them. First
consider the measure dmin. If we now want to de�ne similarity between two
event types A and B and there is at least one empty sequence in both sets
contextsseq(A) and contextsseq(B), the distance dmin between these event
types is zero. In real-life data sets this can be true for many pairs of event
types, and therefore, the measure dmin cannot �nd any di�erences between
the pairs of event types.

On the other hand, if we consider a sequence in the set contextsseq(A)
and compare it to the sequences in the set contextsseq(B), it is almost
certain that there is at least one sequence in the set contextsseq(B) so that
the edit distance between these two sequences is one, i.e., these sequences
have nothing in common. In such a case, the distance measure dmax says
that these two event types are completely dissimilar, i.e., dmax(A;B) = 1,
and in the set of event types, there can easily be many such pairs of event
types. This, in turn, means that neither the measure dmax can �nd any
di�erences between the pairs of event types. Because such a result is by no
means desirable, the measure dmax is not a good choice for the measure of
the distance between event types.

At �rst glance, the distance measure davg seems to be a better alterna-
tive for such a distance measure. However, if the sets of contexts of two
event types A and B are equal, the distance davg(A;B) is not zero, as one
would expect. The value of the measure davg can be zero only when both
the sets contextsseq(A) and contextsseq(B) contain only one equal sequence,
or when there are several sequences in these sets and all these sequences
are identical. In real-life data sets, such situations, however, occur very
seldom, and thus, neither the measure davg is a particularly good similarity
measure for our purposes.

Instead of the simple functions F above, we could also consider more
complex ways of de�ning the distance between sets of sequence contexts.
One such an approach is based on using a concept of the minimum distance
between a sequence in one of the sets of contexts, and the other set of
contexts.

De�nition 5.16 Let E be a set of event types, A and B two event types in
the set E , and contextsseq(A) and contextsseq(B) the sets of contexts of the
event types A and B. The minimum distance between an event sequence
Sa 2 contextsseq(A) and the set contextsseq(B) is de�ned as

dmd(Sa; contextsseq(B)) = minf d(Sa;Sb) j Sb 2 contextsseq(B) g:

Similarly, when sequence contexts are event type sequences,

dmd(Sa; contextsseq(B)) = minf d(Sa; Sb) j Sb 2 contextsseq(B) g
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is the distance between an event type sequence Sa 2 contextsseq(A) and the
set contextsseq(B). If there is no risk for confusion, we may use abbrevia-
tions dmd(Sa; B) and dmd(Sa; B) for these minimum distances.

Using the minimum distances dmd(Sa; B) for each Sa 2 contextsseq(A),
and similarly, the minimum distances dmd(Sb; A) for each Sb 2
contextsseq(B); we can de�ne the distance between the sets contextsseq(A)
and contextsseq(B) as some function of these minimum distances. One well-
known measure that uses such minimum distances is the Hausdor� distance

[Nii87, EM97]. In the case of event sequence contexts, this distance between
the event types A and B is

dh(A;B) = max fmax
Sa

fdmd(Sa; B)g; max
Sb

fdmd(Sb; A)g g;

where each Sa is an event sequence in the set contextsseq(A) and Sb is an
event sequence in the set contextsseq(B): Similarly, in the case of event type
sequence contexts, the Hausdor� distance between the event types A and
B is

dh(A;B) = max fmax
Sa

fdmd(Sa; B)g; max
Sb

fdmd(Sb; A)g g

where each Sa is an event type sequence in the set contextsseq(A) and Sb is
an event type sequence in the set contextsseq(B):

Example 5.19 Consider the event type set E = fA;B;C;D;E; Fg, and
the event sequence S in Figure 5.1. Using the sets contextsseq(A) and
contextsseq(B) of event sequence contexts given in Example 5.12, the Haus-
dor� distance dh between the event types A and B is

dh(A;B) = max fmaxf0; 0:083; 0g; maxf0:083; 0; 0g g
= max f0:083; 0:083g = 0:083:

According to this measure the event types A andB are rather similar, which
is a natural result. However, if we use the sets of sequence contexts obtained
from the corresponding event type sequence S and given in Example 5.18,
the Hausdor� distance between the event types A and B is

dh(A;B) = max fmaxf1; 0:333; 0:333g; maxf0:333; 0:667; 0:333g g
= max f1; 0:667g = 1;

which means that according to this measure, the event types A and B are
said to be completely dissimilar.
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The Hausdor� measure is known to be a metric [Nii87], and it is used
in many application areas such as computational geometry (e.g., [HK90,
HKK92]) and image matching (e.g., [HR92]). However, because it is very
sensitive to outliers, as the second part of Example 5.19 shows, it is not a
good choice for a distance measure between sets of sequence contexts. To
alleviate the problem with outliers, we use the following measure as the
distance between the sets of sequence contexts.

De�nition 5.17 Let E be the event type set, A and B two event types
in the set E , and contextsseq(A) and contextsseq(B) their sets of sequence
contexts. If the contexts are event sequences, and we have all the minimum
distances dmd(Sa; B) and dmd(Sb; A), for each Sa 2 contextsseq(A) and each
Sb 2 contextsseq(B), then an average minimum distance between the event
types A and B is de�ned as

davm(A;B) =
1

2
� ( avg

Sa

fdmd(Sa; B)g+ avg
Sb

fdmd(Sb; A)g ):

Similarly, when the contexts are event type sequences, we denote the dis-
tance between the event types A and B by

davm(A;B) =
1

2
� ( avg

Sa

fdmd(Sa; B)g+ avg
Sb

fdmd(Sb; A)g ):

To obtain the measure davm, the means of the minimum distances
dmd(Sa; B) and dmd(Sb; A) are added, and this sum is normalized to give
distance values between zero and one. The extreme value zero is obtained
only when the sets contextsseq(A) and contextsseq(B) are identical, and the
other extreme value one, when the sequence contexts in the two sets have
nothing in common. The measure davm is also a symmetric measure. Un-
fortunately, it does not ful�ll the triangle inequality property, and thus, it
is only a semimetric. As already stated in Chapter 2, it still can be used
as a distance measure between sets of sequence contexts of event types.

Example 5.20 Consider the event type set E = fA;B;C;D;E; Fg, and
the event sequence S in Figure 5.1. The sets of the contexts of the event
types A and B 2 E as event sequences were given in Example 5.12. With
the given sets contextsseq(A) and contextsseq(B), the distance davm between
the event types A and B is

davm(A;B) = 1
2 � ( avg

Sa

fdmd(Sa; B)g+ avg
Sb

fdmd(Sb; A)g )

= 1
2 � ( avg f0; 0:083; 0g + avg f0:083; 0; 0g )

= 1
2 � ( 0:028 + 0:028 ) = 0:028:
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This means that the event types A and B are very similar according to this
measure. This is a natural result, as the sets of contexts are almost the
same.

If we then look at the sets of the sequence contexts of the event types
A and B obtained from the corresponding event type sequence S and given
in Example 5.18, the average minimum distance between the event types
A and B is

davm(A;B) = 1
2 � ( avg f1; 0:333; 0:333g + avg f0:333; 0:667; 0:333g )

= 1
2 � ( 0:556 + 0:444 ) = 0:500:

Now, according to this measure, the event types A and B are considered to
be neither similar nor very dissimilar, which well describes the similarity
between their sets of contexts.

5.4 Algorithms for computing event type similar-

ity

In this section we present algorithms needed for computing similarities
between event types. We also brie
y study the time and space complexities
of these algorithms.

Algorithm for extracting contexts of events

We start by presenting Algorithm 5.1, which is used to extract con-
texts of occurrences of event types from an event sequence.

Algorithm 5.1 Contexts of event types

Input: A set E of event types, a set EI of interesting event types, an event
sequence S over E and a window width W .
Output: Sets of contexts contextsf(A;S;W ) for all A 2 EI.
Method:

1. for all event types A 2 EI do
2. for all events ei of type A in S do
3. compute conf((ei; ti);S;W );
4. add conf((ei; ti);S;W ) in the set contextsf(A;S;W );
5. od;
6. od;
7. output the sets contextsf(A;S;W ) of contexts for each A in EI;

The input of Algorithm 5.1 are a set E of all possible event types, and
a set EI of interesting event types when EI � E . In addition to this, Al-
gorithm 5.1 requires as input an event sequence S from which contexts of
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occurrences of events are extracted, and a window width W within which
events, that are taken into account when extracting the contexts, are sup-
posed to occur. Instead of only one event sequence S, the input of the
algorithm can also consist of a set S of event sequences. The output of the
algorithm are the sets of contexts for each event type in EI. Computing a
context conf((ei; ti);S;W ) on Line 3 of the algorithm depends on whether
the contexts are supposed to be sets of event types, or sequences of events.

An algorithm similar to Algorithm 5.1 could be used to extract contexts
from an event type sequence S, or from a set S of event type sequences.
In such a case, the input of the algorithms are a set E of all possible event
types, and a set EI of interesting event types when EI � E , in addition to
the event type sequence S or the set S of sequences. This algorithm also
requires a context size K as input, instead of the window width W . The
output of the algorithm are also the sets of contexts for each event type
in the set EI. And similarly to the case of event sequences, computing a
context conf(ei; i; S;K) in the algorithm depends on whether the contexts
are supposed to be sets of event types, or sequences of events.

Algorithm for computing centroid vector distances

Centroid vector distances dcev between event types in a set EI are
computed using Algorithm 5.2. The input of this algorithm are a set E of
all possible event types (needed in computing the centroid vectors), a set
EI of interesting event types, and sets contextsset(A) of set contexts for all
the event types A 2 EI. The output of the algorithm are all the pairwise
distances dcev between the event types in the set EI.

Algorithm 5.2 Centroid vector distances dcev between event types

Input: A set E of event types, a set EI of interesting event types, and sets
contextsset(A) for each A 2 EI.
Output: Pairwise centroid vector distances between the event types in the set
EI .
Method:

1. for all event types A 2 EI do
2. compute the centroid vector cev(A) of the set contextsset(A);
3. od;
4. for all event type pairs (A;B) where A and B 2 EI do
5. calculate dcev(A;B);
6. od;
7. output the pairwise centroid vector distances dcev(A;B);
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Algorithm for computing average minimum distances

Algorithm 5.3 is used for computing the average minimum distances
davm between event types in a set EI. The input of this algorithm are a set
EI of interesting event types and sets contextsseq(A) of sequence contexts
for all the event types A 2 EI. The output of the algorithm are all the
pairwise distances davm between the event types in the set EI.

Algorithm 5.3 Average minimum distance davm between event types

Input: A set EI of interesting event types and sets contextsseq(A) for eachA 2 EI.
Output: Pairwise average minimum distances between the event types in the set
EI.
Method:

1. for all event type pairs (A;B) where A and B 2 EI do
2. calculate davm(A;B);
3. od;
4. output the pairwise average minimum distances davm(A;B);

Complexity considerations

Using Algorithm 5.1 we can extract contexts of jEIj event types.
The time required for extracting a context depends on the window width
W , but also on how many events occur within it. Assuming that the most
important factor is the length of the window width, extracting a context
takes O(W ) time. In the case of event type sequences, the time required for
extracting a context in turn depends on the context size K, and, therefore,
it takes O(K) time. The numbers of occurrences of interesting event types
in the set EI vary a lot. If we denote by e the maximum number of occur-
rences of an interesting event type, i.e., e = maxA2EI f jcontextsf(A)jg; the
time complexity of Algorithm 5.1 is at most O(e jEIjW ). In the case of
event type sequences, the time complexity of the corresponding algorithm
is at most O(e jEIjK). Algorithm 5.1 needs space for all the event types
in the set EI and the event sequence S (or the event type sequence S).
Because the contexts of the event types in the set EI are �rst output when
they all have been computed, the total space complexity of this algorithm
is at most O(jEIj + jSj + e jEIjW ): On the other hand, if the input
sequence of the algorithm is an event type sequence S, the total space
complexity of the algorithm is O(jEIj+ jSj+ e jEIjK): If the input of the
algorithm consists of a set S of sequences, the symbols jSj and jSj above
should be replaced by the space needed for the whole set S of sequences.
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For calculating the centroid vector distances between event types, Al-
gorithm 5.2 �rst computes a centroid vector for each set contextsset(A) of
contexts, where A 2 EI. If the maximum size of these sets contextsset(A)
is denoted by e as above, and there are jEj possible event types, then com-
puting a centroid vector of a set contextsset(A) takes O(e jEj) time, and
when there are jEIj interesting event types, computing all the centroid
vectors takes O(jEIj e jEj) time. Assuming that computing the centroid
vector distance dcev between two event types takes O(jEj) time, computing

the centroid vector distances dcev between
�
jEIj
2

�
pairs of interesting event

types takes O(jEIj2 jEj) time. This means that the total time complexity
of Algorithm 5.2 is O(jEIj e jEj + jEIj2 jEj). Because the algorithm needs
space for all the context vectors, the centroid vectors, and the pairwise
centroid vector distances between the event types in the set EI, the space
complexity of Algorithm 5.2 is at most O(jEIj e c+ jEIj jEj+ jEIj2); where
c is the maximum size of a context.

In order to compute the average minimum distance davm between two
event types A and B in a set EI, all the pairwise distances of sequences be-
longing to the sets contextsseq(A) and contextsseq(B) have to be computed.
If nmax is the maximum length of sequence contexts, the computation of an
edit distance between two sequence contexts takes at most O(n2max) time
and space, as was observed in Section 4.3. Assume that, when A 2 EI,
the maximum size of the sets contextsseq(A) is e as above. For determining
the average minimum distance davm between two sets of sequence contexts

we have to compute at most
�
e
2

�
edit distances, and thus computing the

average minimum distance davm between two event types takes O(e2 n2max)
time. In Algorithm 5.3 we compute the average minimum distances davm
of
�
jEIj
2

�
pairs of interesting event types. Thus, the total time complexity

of Algorithm 5.3 is O(jEIj2 e2 n2max). Algorithm 5.3 needs space for all the
sequences in the sets of contexts, the edit distances between pairs of such
sequences, and the average minimum distances between pairs of the event
types in the set EI. Therefore, the space complexity of this algorithm is
O(jEIj e nmax+ jEIj

2 e2+ jEIj2). Because the set of interesting event types,
and especially the sets of contexts, can be very large, computing the aver-
age minimum distances davm of event types can, therefore, lead to severe
computational problems, as will be observed in the following section.
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5.5 Experiments

In this section we present some results of experiments on similarity between
event types. We describe the data sets used in these experiments in Sec-
tion 5.5.1, and then study the results of the experiments in Section 5.5.2.
The experiments were run under the Linux operating system using either
a PC with 233 MHz Pentium processor and 64 MB main memory, a PC
with 400 MHz Celeron processor and 128 MB main memory, a PC with
600 MHz Pentium III processor and 512 MB main memory, or a 275 MHz
Alpha EV4 server with 512 MB main memory.

5.5.1 Data sets

The experiments on similarity between event types were made with both
synthetic and real-life data. The real-life data sets were a telecommunica-
tion network alarm data, a protein sequence data, and a course enrollment
data. All the data sets resided in 
at text �les.

Synthetic data

We constructed four synthetic event sequences for our experiments
on similarity between event types. The exact process of generating these
sequences is described in Appendix B. The numbers of possible event
types and actual events in the four synthetic event sequences are given
in Table 5.2. Each synthetic sequence contains two event types B and
C so that the types of events preceding their occurrences are about the
same, bar the e�ects of random variation. In the experiments with these
synthetic event sequences we used all the possible event types as the set
EI of interesting event types.

Telecommunication alarm data

We used the same telecommunication alarm sequence in our exper-
iments on event type similarity as in the event sequence similarity
experiments in Chapter 4. In this sequence there are occurrences of 287
alarm types. The length of the alarm sequence is 73 679 alarms. The
numbers of occurrences of di�erent alarm types in this set vary a great
deal: from one to 12 186 occurrences.

From the set of 287 alarm types we selected several sets EI of interesting
alarm types. However, here we present results on only two of these sets.
The �rst of these sets consists of all 23 alarm types that occurred from
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Event sequence Event types Events

S1 13 6 038

S2 23 29 974

S3 33 94 913

S4 43 142 433

Table 5.2: The number of event types and actual events in the four synthetic
event sequences.

100 to 200 times in the whole alarm sequence. The second alarm type set,
on the other hand, is a set of eight alarm types. These alarm types were
chosen so that the numbers of their occurrences are of di�erent magnitude.
The actual numbers of the occurrences of these alarm types vary between
10 and 1 000 occurrences. The alarm types belonging to these two sets EI
are given in Table 5.3.

Protein sequence data

The protein data set is obtained from the SWISS-PROT Protein Se-
quence Database [SWI99], whose 37th release contains information about
78 350 protein sequences. Each entry in the database has 23 attributes,
e.g., an identi�cation number, a general description of the sequence, and
an actual protein sequence. The set of possible event types in this case of
protein sequences consists of the twenty amino acids given in Table 5.1,
and the three non-standard symbols: B, X and Z. When experimenting
with the protein sequence data, we de�ned the set EI of interesting event
types as the set of all the twenty standard amino acids, i.e., we excluded
from the set EI the non-standard symbols B;Z and X.

To form our basic data set of protein sequences we �rst selected from
the SWISS-PROT database 585 entries containing a word hemoglobin in
their descriptions, and then from each entry the actual protein sequence.
In the set of 585 protein sequences, there are 85 824 occurrences of amino
acids and the other three symbols. The numbers of occurrences of the 23
di�erent event types vary between 34 and 9 853, whereas the numbers of
occurrences of the real amino acids vary between 960 and 9 853 occurrences.
The lengths of the protein sequences, in turn, vary between 19 and 453
events. The mean number of events per a protein sequence is nearly 147.

Computing the average minimum distances davm between event types
turned out to be very time-consuming. Therefore, for experiments on the
average minimum distances davm between the amino acids, we chose ran-
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Set of alarm types Alarm types

23 alarm types 715, 1001, 1072, 1132, 1547, 1564,
1571, 2200, 2535, 2558, 2583, 2733,
2902, 2909, 2915, 7001, 7007, 7010,
7030, 7172, 7194, 7700, 7712

8 alarm types 1571, 1886, 1940, 2263, 2692, 7701,
7414, 9301

Table 5.3: The sets EI of the chosen 23 and 8 alarm types in the telecom-
munication alarm data.

domly from the set of 585 protein sequences one hundred protein sequences
to our second data set of protein sequences. In this set there are occurrences
of 14 282 amino acids and the three non-standard symbols. The numbers
of occurrences of the 23 event types vary between 7 and 1 606, whereas
the numbers of occurrences of the real amino acids vary between 129 and
1 606 occurrences. The lengths of the protein sequences in the second data
set vary between 24 and 399 events. The average number of events per a
protein sequence in this set is almost 143.

Course enrollment data

In the experiments on similarity between event types we used the
same course enrollment data as in the attribute similarity experiments
in Chapter 3. Recall that this data set contains information about 6 966
students at the Department of Computer Science at the University of
Helsinki, and it was collected between 1989 and 1996.

The original data set was a sequence where each event describes a course
enrollment of one student. If each course is thought to present an event
type, the enrollments of each student can also be seen as a sequence of
events. If the terms, when the enrollments are made, are taken into ac-
count, we can regard such a sequence as an event sequence, and when the
enrollment terms are omitted, it can be viewed as an event type sequence3.
The lengths of these enrollment sequences vary a lot, from one to a total of
33 course enrollments, with an average of close to �ve courses per student.

3In our experiments we only took into account the exact order of courses in which
they were written into the data set. The courses that a student enrolls in during the
same term are, however, ordered alphabetically by their course codes. Considering all
the possible orders of the course enrollments would have been interesting, but it was still
left for future study.
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The number of di�erent courses in this student enrollment data set is 173,
and, as stated earlier, the courses are divided into three classes: basic, in-
termediate and advanced level courses. The numbers of occurrences of the
courses vary from one to 3 902.

From the set of 173 courses we selected several sets EI of interesting
courses, but here only present results on two of them. The �rst set of
interesting courses contains 18 frequently occurring courses, for which the
numbers of occurrences vary between 357 and 3 902. Of these 18 courses,
nine are basic level courses and nine intermediate level courses. The courses
in this set are given in Table 5.4. The time span of the data is seven years.
During such a long time period the courses given at the department change.
Therefore, in the set of the 18 courses some courses contain similar issues,
for example, the course C Language and Unix Programming Environment
from the beginning of the time period was later divided into two courses
Introduction to Unix and Programming in C.

The other set EI of courses considered here is the set of nine advanced
level courses already studied in Chapter 3. The courses in this set covering
courses from the sections of computer software, information systems, and
general orientation in computer science are given in Table 5.5. In this set
the numbers of occurrences of courses vary between 84 and 342.

5.5.2 Results

In this section we �rst consider the centroid vector distances dcev between
event types in our test sets. After that we describe the average minimum
distances davm between event types, and then compare these average min-
imum distances to the centroid vector distances dcev. At the end of the
section we also show some hierarchies of event types obtained by using the
di�erent similarity measures.

The distances between event types are computed using programs corre-
sponding to the algorithms of Section 5.4. Like in Sections 3.5.2 and 4.4.2
where we describe results on attribute and event sequence similarity, re-
spectively, we give some examples of the actual distance values here, but
mostly study changes in the orders of distance values given by the measures.

Centroid vector distances with �xed values of K and W

We started our experiments by computing centroid vector distances
dcev between event types in the four synthetic event sequences. The
window width W used in extracting the contexts of di�erent event types
was 5 time units. Figure 5.3 presents four histograms describing the



5.5 Experiments 151

Course level 18 courses

basic C Language and Unix Programming Environment,
Computer Systems Organization, Fundamentals
of ADP, Information Systems, Introduction to
Unix, Programming in C, Programming (Pascal),
Programming Project, Social Role of ADP

intermediate Arti�cial Intelligence, Computer Graphics,
Computers and Operating Systems, Data
Communications, Database Systems I, Data
Structures, Data Structures Project, Information
Systems Project, Theory of Computation

Table 5.4: The set EI of 18 frequently occurring courses in the student
enrollment data grouped by course level.

Section 9 courses

computer Compilers, Computer Networks, Distributed
software Operating Systems

information Database Systems II, Object-Oriented
systems Databases, User Interfaces

general Design and Analysis of Algorithms, Neural
orientation Networks, String Processing Algorithms

Table 5.5: The set EI of 9 advanced level courses in the student enrollment
data grouped by section.

distributions of the centroid vector distances dcev between the event types
in these four event sequences. All these distributions roughly resemble
the normal distribution. When looking at the exact distances, we noticed
that in each case the most similar event types were B and C. This was an
expected result, because the synthetic event sequences were generated so
that they contained this pair of event types which have very similar sets of
contexts. This means that by using the centroid vector distance measure
we can truly recognize event types with similar contexts.
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Figure 5.3: Distributions of centroid vector distances dcev between the event
types in the synthetic event sequence a) S1, b) S2, c) S3 and d) S4.

We then experimented with the set of 23 alarm types occurring from
100 to 200 times in the telecommunication alarm sequence. We extracted
for each alarm type its set contexts using a window widthW of 60 seconds,
and computed the centroid vector distances dcev between these 23 sets of
contexts. Figure 5.4 presents a histogram of the distribution of these dis-
tances. From the histogram we can see that the absolute values of the
centroid vector distances are quite high. This indicates that the sets of
contexts of these alarm types, and thus the alarm types themselves, are
not in general very similar. However, they are not extremely dissimilar
either. The most similar pair in this set are the alarm types 2583 and 2733.
These alarm types occur 181 and 102 times in the whole alarm sequence,
respectively. On the other hand, the most dissimilar pair of the alarm types
is the pair (1564; 7172), where the alarm type 1564 occurs 167 times, and
the alarm type 7172, in turn, 101 times in the whole alarm sequence. The
number of occurrences does not seem to explain, why the �rst two alarm
types are deemed similar and the other two very dissimilar. A more prob-
able explanation is that the alarm types 2583 and 2733 belong to the same
group of alarm types, whereas the alarm types 1564 and 7172 describe very
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Figure 5.4: Distribution of centroid vector distances dcev between the 23
alarm types with the window width W = 60.

di�erent kinds of failures in the telecommunication network. The centroid
vector distances dcev also show that the alarm type 7172 is quite dissimilar
to all the other 22 alarm types; its smallest centroid vector distance is to
the alarm type 7010.

For the second experiment with the alarm data we chose some of the
23 alarm types, and considered one of the chosen alarm types at a time.
We modi�ed the alarm sequence so that every occurrence of the chosen
alarm type A was independently changed to an event of the type A

0

with a
probability of 0:5. Then, we extracted the set contexts for each of the now
24 alarm types with the window widthW = 60, and computed the centroid
vector distances dcev between these sets of contexts. Our assumption was
that the alarm types A and A

0

should be the most similar alarm type pair,
similarly to the case of the event types B and C in the synthetic event
sequences. This assumption, however, showed to be wrong with all the
chosen alarm types. The reason for this is simply that the sets of contexts
of the original alarm types were not very homogeneous. Therefore, the sets
of the contexts of the alarm types A and A

0

could not be that, either.
We also studied the centroid vector distances dcev between the twenty

amino acids occurring in the set of protein sequences. In extracting the
set contexts for each of the amino acids from the set of 585 event type
sequences, we used a context size K = 5. Figure 5.5 presents a histogram
of the centroid vector distances dcev between the twenty amino acids. The
distribution of the distances roughly resembles the normal distribution.
Similarly to the case of the 23 alarm types, the centroid vector distances
between amino acids are quite long, indicating that the sets of contexts of
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Figure 5.5: Distribution of centroid vector distances dcev between the
twenty amino acids occurring in the set of protein sequences with the con-
text size K = 5.

di�erent amino acids are not very similar to each other. The most similar
pair of amino acids according to the centroid vector distance measure is
the pair (Glutamic acid, Lysine), but the centroid vector distance between
the amino acids Glutamic acid and Leucine is nearly as short. The most
dissimilar amino acids according to this measure, on the other hand, are
Cysteine and Tryptophan.

To better evaluate the centroid vector distances dcev between amino
acids, we compared them with the values of amino acid similarity given in
two amino acid substitution matrices: the PAM 250 matrix [Pam99] and
the BLOSUM 62 matrix [Blo99]. There are several PAM and BLOSUM
matrices, but especially these two matrices are widely used in sequence
alignments computed for protein database searches [Gus97]. The values in
these matrices are based on the observed amino acid substitutions during
evolution. These values are positive if a substitution of the amino acids con-
sidered has occurred by chance during evolution more often than expected,
and negative if such a substitution has happened more seldom than ex-
pected. In general, the di�erence between PAM matrices and BLOSUM
matrices is that PAM matrices are extrapolated from data obtained from
very similar sequences, whereas BLOSUM matrices were developed explic-
itly to represent more distant, but still important relationships between the
amino acids [Gus97].

Figure 5.6 presents two plots that describe how centroid vector distances
between the amino acids are related to their PAM 250 similarities and their
BLOSUM 62 similarities. In both cases the correlation between the values
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Figure 5.6: Comparison of centroid vector distances dcev between the twenty
amino acids with the context size K = 5 and the similarity values given in
a) the BLOSUM 62 matrix and b) the PAM 250 matrix.

of the measures is slightly negative. This result is still natural, because
the PAM 250 matrix and the BLOSUM 62 matrix give us information
about similarities between the amino acids, whereas the centroid vector
distances describe their distances. In other words, if all the measures would
describe similarities between the amino acids, the correlation between them
would be slightly positive. The distributions of the points in both of the
plots in Figure 5.6 are quite wide, and even if several pairs of amino acids
have exactly the same similarity value in the PAM 250 matrix, or in the
BLOSUM 62 matrix, their centroid vector distances can be very di�erent.
The measures disagree on the most similar and the most dissimilar pair of
the amino acids, and in general the orders of their values are also di�erent.
Therefore, it is clear that the measures describe the data di�erently.

As the last case, we computed centroid vector distances dcev between
the 18 frequently occurring courses in the student enrollment data. As
mentioned in Section 5.5.1, a sequence of course enrollments can be seen
either as an event type sequence or an event sequence. Thus, we extracted
set contexts for each of the 18 courses from both types of sequences. When
the sequences were treated as event type sequences, we used a context size
K = 5 in extracting the set contexts, i.e., each context contains at the most
�ve courses that the student has enrolled in before enrolling in the course
considered. On the other hand, when the sequences were treated as event
sequences, in selecting the set contexts we used a window width W = 2.
This, in turn, means that each set context contains all the courses that the
student has enrolled in during two terms at the most before enrolling in the
course considered; note that of the courses the student enrolled in during
the same term, only those whose course code in the alphabetical order is
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before the code of the considered were taken into account in extracting the
set contexts. The reason for the choices of these parameter values is simple.
The students at the department typically enroll in two or three courses per
term, and thus, the set contexts with W = 2 are on average similar to the
set contexts with K = 5.

We compared the centroid vector distances dcev between the 18 courses
computed using the two types of set contexts with each other. Figure 5.7
presents the relationship between these distances and shows that the dis-
tances have a clear positive linear correlation. The measures agree on the
most similar pair of courses which is formed by the courses Fundamentals
of ADP and Programming Pascal. This is a very natural result, because
these courses are the �rst two courses recommended to be taken. Their
set contexts are very often empty sets, or contain only the other course.
Therefore, it is understandable that their sets of contexts are nearly the
same. Many other pairs of the �rst year courses also have short centroid
vector distances. On the other hand, the centroid vector distances between
the �rst year courses and the courses that are supposed to be taken later
during the studies are rather long, indicating very di�erent sets of contexts,
which is natural.

Despite the facts above, these two measures do not describe the rela-
tionships between the 18 courses exactly the same way: the orders of the
distances are somewhat di�erent. These measures disagree on the most
dissimilar pair of courses, for example. With the context size K = 5 the
courses Social Role of ADP and Programming Project have the longest cen-
troid vector distances, whereas with the window width W = 2 the courses
Computer Systems Organization and Theory of Computation are the most
dissimilar pair of courses. This shows that the centroid vector distances
dcev between the courses vary depending on, whether we take into account
the exact terms when the enrollments are made or not.

Intuitively, we can expect that two courses should be similar, if they
are located approximately at the same stage of the curriculum. To �nd
out how the centroid vector distances ful�ll this expectation, we wanted to
compare them to some kind of background distances of courses. Each course
given at the department has a recommended term in which the department
suggests it should be taken. Thus, we de�ned the background distance
between two courses as the di�erence of the ordinals of their recommended
terms. In our set of 18 courses the background distances have values from
zero to seven terms. The comparisons of the background distances and
the centroid vector distances dcev are shown in Figure 5.8. In both cases
there is a positive correlation between the background distances and the
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Figure 5.7: Comparison of centroid vector distances dcev between the 18
courses, when the set contexts are extracted from the event type sequences
with K = 5 and from the event sequences with W = 2.
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Figure 5.8: Comparison of background distances and centroid vector dis-
tances dcev between the 18 courses, when the set contexts are extracted a)
from the event type sequences with K = 5, or b) from the event sequences
with W = 2.

centroid vector distances dcev. This means that in a large perspective the
centroid vector distances satisfy the intuition that two courses are similar,
if they are supposed to be taken approximately at the same time during
the studies.

The centroid vector distances, however, do not entirely agree with the
background distances. For example, the centroid vector distance dcev be-
tween the courses Social Role of ADP and Introduction to Unix is long, even
though they are recommended to be taken during the same term. Similarly,
the courses Information Systems and Information Systems Project have a
long centroid vector distance, even though they are compulsory courses
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that are supposed to be taken during consecutive terms. This means that
the set contexts of such courses vary a great deal, indicating that not all
the students follow the recommended study plan. Because the data set was
collected during seven years, the recommended study plan has also changed
a few times, which may explain some of the variation in the set contexts.

Centroid vector distances with varying values of K and W

Our expectation was that, when the context size K or the window
width W used in extracting the set contexts changes, the centroid vector
distances dcev between event types also vary. To �nd out, if this expectation
is true, we selected some of our test sets of event types and computed the
centroid vector distances dcev for these event types with di�erent window
widths W or context sizes K.

We started these experiments with the set of eight alarm types occurring
from 10 to 1 000 times in the telecommunication alarm sequence. For these
alarm types we extracted set contexts using eight window widths W , and
computed the centroid vector distances dcev for each of these cases. The
values of W used were 10; 20; 30; 60; 120; 300; 600 and 1 200 seconds.

Figure 5.9 presents how the centroid vector distances dcev between the
eight alarm types vary when the window width W increases; Figure 5.9a
shows the distances between the alarm type 2263 and the seven other alarm
types, and Figure 5.9b the distances between the alarm type 9301 and the
seven other alarm types. Similar results were also obtained with the other
chosen alarm types. The alarm type 2263 occurred about 1 000 times in
the whole alarm sequence, and the alarm type 9301 about 500 times. In
both these cases, with the window width W = 60 already, the order of the
centroid vector distances dcev is rather stable; with longer time windows
there are only slight changes in the orders of the distances. When we
looked at the actual distance values, we could see that the centroid vector
distances dcev also indicate the di�erences in the numbers of occurrences of
the alarm types. The alarm type 7414 occurs only 10 times in the whole
alarm sequence, for example, whereas the alarm type 2263 occurs about
1 000 times, and the alarm type 9310 about 500 times. Thus, it is rather
obvious that, if the numbers of occurrences of alarm types are of a di�erent
magnitude, especially with greater window widths, the sets of the contexts
of these alarm types are di�erent, and the centroid vector distances between
them also become very long.

The same kind of experiments were also made with the protein sequence
data. In extracting the set contexts for each of the twenty amino acids we
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Figure 5.9: Comparison of centroid vector distances dcev between a) the
alarm type 2263, and b) the alarm type 9301 and the other alarm types
with the chosen window widths W .

used seven context sizes K. The values of K used were 1; 2; 3; 4; 5; 10 and
15. A comparison of the centroid vector distances dcev between the amino
acid Alanine and the other amino acids with these chosen context sizes
is presented in Figure 5.10a, and the comparison of the centroid vector
distances dcev between the amino acid Cysteine and the other amino acids
in Figure 5.10b. Very similar results would be obtained from comparisons of
the other 18 amino acids. In this set of protein sequences the orders of the
centroid vector distances dcev do not become stable with any of the context
sizes K used. This means that at least with small context sizes K, the
choice of the context size depends very much on the situation considered.
Typically the longest centroid vector distances dcev were found between the
amino acid Cysteine and the other amino acids, especially with the larger
context sizes K. The explanation for this is the same as with the set of
the eight alarm types: in the protein sequences, the amino acid Cysteine

occurs only 960 times, whereas most of the other amino acids occur over
2 000 times. Thus, in this case the centroid vector distances dcev also re
ect
the di�erences in the numbers of the occurrences of the amino acids.

We also studied the corresponding changes in the centroid vector dis-
tances dcev between the nine advanced level courses in the student en-
rollment data set with di�erent context sizes K and window widths W .
In extracting the set contexts of these courses we used �ve context sizes
K, when the sequences of course enrollments were seen as event type se-
quences, and �ve window widths W , when the sequences were regarded
as event sequences. The parameter values in both cases were 1; 2; 3; 4 and
5. Figure 5.11a presents how the centroid vector distances dcev between
the course Design and Analysis of Algorithms and the other eight courses
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Figure 5.10: Comparison of centroid vector distances dcev between a) the
amino acid Alanine and b) the amino acid Cysteine and the other amino
acids when the context size K is altered.
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Figure 5.11: Comparison of centroid vector distances dcev between the
course Design and Analysis of Algorithms and the other courses when a)
the context size K, and b) the window width W varies.

alter with the chosen context sizes K. The same kind of comparison of the
centroid vector distances dcev with the chosen window widthsW is given in
Figure 5.11b. The results of comparisons of the centroid vector distances
dcev for the other courses were very similar.

In general, the absolute centroid vector distances dcev between the nine
courses vary only a little with the di�erent values of K and W . The com-
parisons also show that there is no context size K, or window width W
after which the order of the centroid vector distances dcev between the nine
courses would become stable. An explanation for this is that the di�er-
ences in the absolute distance values are rather small, especially in the case
where the set contexts are extracted from the event type sequences. This,
in turn, indicates that the sets of contexts of the courses are rather similar
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to each other. Unlike the alarm data and the protein data, the centroid
vector distances dcev between these courses do not at all re
ect the numbers
of the occurrences of the courses.

Average minimum distances with �xed values of K and W

We also wanted to see how the average minimum distance measure
davm in practice succeeds in describing similarities between event types.
Unfortunately, computing the average minimum distances davm showed
out to be very complicated and time-consuming. An edit distance between
two sequences can be computed reasonably quickly as shown in Chapter 4.
However, the numbers of the occurrences of the chosen event types in
the data sets used were typically high, i.e., hundreds or thousands of
occurrences. In order to get the average minimum distances davm between
two such event types, we have to compute all the pairwise edit distances
between their sequence contexts, and these computations altogether take
a long time. Therefore, we had to use, in most of our experiments on
the average minimum distances davm, smaller sets EI of interesting event
types, smaller values of the context size K and the window width W , and
even smaller sets of original sequences. In computing the edit distances
between two sequence contexts we used the unit operation costs with the
parameter value V = 1

W , and the alphabet-weighted operation costs with
the parameter value V = 2�min w

W (see Chapter 4).
We �rst computed the average minimum distances davm between the 13

event types occurring in the synthetic sequence S1. For each event type
we extracted all its sequence contexts with the window width W = 5.
Figure 5.12 presents the distributions of the average minimum distances
davm between these event types when a) the unit operation costs, and b)
the alphabet-weighted operation costs are used. In both cases the absolute
distances are all less than 0:5. There are no remarkable di�erences between
the distances computed using di�erent operation costs. What surprised us
�rst was that in both cases the most similar pair of event types was the
pair (A1; A2), and not the pair (B;C) as in the case of the centroid vector
distances. If we, however, consider the way the synthetic event sequences
were generated (see Appendix B), it is quite clear that even if the set
contexts of the event types B and C are similar, their sequence contexts
do not have to be similar at all. Therefore, the results with the average
minimum distances still re
ect similarities between event types.

We also computed the average minimum distances davm between the 23
alarm types occurring in the telecommunication alarm sequence. Similarly
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Figure 5.12: Distributions of average minimum distances davm between the
13 event types in the synthetic event sequence S1 when a) the unit operation
costs and b) the alphabet-weighted operation costs are used.

to the case of the set contexts, we used the window width of 60 seconds for
extracting the sequence contexts of these alarm types. The distributions
of the average minimum distances davm between the 23 alarm types using
both the unit and the alphabet-weighted operation costs are presented in
Figure 5.13. The absolute distances are all more than 0:2, and both distri-
butions are roughly normal. Comparison of the average minimum distances
davm with di�erent types of operation costs showed that the distances are
positively linearly correlated, with slight di�erences in the absolute values.
The most similar alarm types with the unit costs are the alarm types 2558
and 7001, whereas the second shortest distance with these costs is found to
be between the alarm types 2583 and 2733. When the alphabet-weighted
operation costs are used, the two most similar pairs of alarm types are the
same, only the order of these pairs is di�erent. With both types of opera-
tion costs, the most dissimilar pair of alarm types is the pair (1564; 2200).
In fact, the average minimum distances davm between the alarm type 1564
and the other alarm types are all very long, only with two alarm types its
average minimum distance davm is less than 0:8.

Similar experiments on the average minimum distances davm were also
made with the set of the twenty amino acids. For these experiments we
extracted for each amino acid all its sequence contexts from the set of 100
protein sequences using the context size K = 5. We �rst compared the
average minimum distances davm between the twenty amino acids obtained
with the di�erent types of operation costs, and observed that, similarly
to the case of the synthetic event types and the chosen alarm types, the
distances are clearly positively correlated, and even their absolute values
are very close to each other. The distance measures also agree on the most
similar pair of amino acids which is the pair (Alanine, Serine), whereas
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Figure 5.13: Distributions of average minimum distances davm between the
23 alarm types using a) the unit operation costs and b) the alphabet-
weighted operation costs.

the two most dissimilar amino acids according to both the measures are
the amino acids Cysteine and Tryptophan. The absolute distances in both
cases were also very short, all less than 0:45.

We then compared the average minimum distances davm between the
amino acids with the corresponding similarity values given in the BLO-
SUM 62 and the PAM 250 matrices. Comparisons of the average minimum
distances davm computed using the alphabet-weighted operation costs and
the amino acid substitution scores are shown in Figure 5.14. In both cases
the average minimum distances davm are slightly negatively correlated with
the similarity values in the matrices. The situation now is the same as
with the centroid vector distances dcev: if the values of the PAM and the
BLOSUM matrices described distances between the amino acids, the cor-
relations between the average minimum distances davm and the similarity
values in the matrices would be positive. Therefore, we can say that the av-
erage minimum distances really describe similarities between amino acids.

As the last case, we studied the average minimum distances davm be-
tween the nine advanced level courses in the course enrollment data. In
extracting the sequence contexts of these courses we used the context size
K = 5 when the exact times of the course enrollments were omitted, and
the window width W = 2 when they were taken into account. Figure 5.15
presents comparisons of the average minimum distances davm between the
nine courses with these di�erent sets of sequence contexts using di�erent
types of edit operation costs. As in all the previous experiments, the aver-
age minimum distances davm between the nine courses with di�erent types
of operation costs are also highly linearly correlated. The order of the av-
erage minimum distances davm with the di�erent types of operation costs is
still slightly di�erent. In three of the cases the most similar pair of courses
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Figure 5.14: Comparison of average minimum distances davm between the
twenty amino acids with the context size K = 5 and the similarity values
given in a) the BLOSUM 62 matrix and b) the PAM 250 matrix.

a)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 m
in

im
um

 d
is

t. 
us

in
g 

al
ph

ab
. c

os
ts

, K
=

5

Average minimum dist. using unit costs, K=5

9 advanced level courses

b)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 m
in

im
um

 d
is

t. 
us

in
g 

al
ph

ab
. c

os
ts

, W
=

2

Average minimum dist. using unit costs, W=2

9 advanced level courses

Figure 5.15: Comparison of average minimum distances davm between the
nine advanced level courses with di�erent operation costs using a) the con-
text size K = 5 and b) the window width W = 2.

is the pair (User Interfaces, Database Systems II), but when the sequence
contexts are extracted using the window width W = 2 and the average
minimum distances are computed using the unit costs, the courses Design
and Analysis of Algorithms and Database Systems II have the shortest dis-
tance. On the other hand, when the unit operation costs are used, the most
dissimilar pair of courses with both the context size K = 5 and the window
width W = 2 is the pair (Object-Oriented Databases, Neural Networks),
whereas using the alphabet-weighted costs the courses Computer Networks
and Neural Networks have the longest average minimum distance davm with
both kinds of sequence contexts.
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The average minimum distances davm between the nine advanced level
courses were also compared with their background distances. These com-
parisons showed that the average minimum distances davm are not cor-
related with the background distances. This result can be explained by
several facts. None of these nine courses is a compulsory course, and they
all are courses from di�erent sections of the department. Thus, only a small
fraction of the students at the department enroll in each of these courses.
On the other hand, they are advanced level courses, and when students are
in that phase of their studies, they do not follow the recommended study
plan as tightly as in the beginning of their studies. All this means that the
sets of contexts of these courses are not particularly homogeneous. There-
fore, it is only natural that the background distances give a very di�erent
view of the relationships between the courses from the average minimum
distances davm, which actually describe the data in a better way.

Average minimum distances with varying values of K and W

Similarly to the case of centroid vector distances dcev, we studied
how the average minimum distances davm between event types vary when
the context size K, or the window width W is altered. In this case
also, the distances between two sequence contexts were computed using
the unit operation costs with the parameter value V = 1

W , and the
alphabet-weighted operation costs with the parameter value V = 2�min w

W .
In the experiments with the set of the eight alarm types occurring in

the telecommunication alarm sequence we used the window widths W of
10; 20; 30; 60; 120; 300; 600 and 1 200 seconds in extracting the sequence
contexts. Figure 5.16 presents how the average minimum distances davm
between the alarm type 2263 and the other alarm types vary, when the
window width W alters. The plots presenting the average minimum dis-
tances with the di�erent types of operation costs are very similar. When the
unit operation costs are used, the order of the average minimum distances
davm becomes stable with the window width W = 60 already. Using the
alphabet-weighted operation costs (Figure 5.16b), the order of the distances
becomes stable somewhat later, with the window width W = 120.

The previous result is not, however, true with the other chosen alarm
types. With them, the order of the average minimum distances davm does
not really become stable at all, i.e., there is a small variation in the orders
with every window width considered, both using the unit and the alphabet-
weighted operation costs. This can be seen in Figure 5.17 presenting the
average minimum distances davm between the alarm type 9301 and the other
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Figure 5.16: Comparison of average minimum distances davm between the
alarm type 2263 and the other alarm types with di�erent window widthsW
when a) the unit operation costs and b) the alphabet-weighted operation
costs are used.
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Figure 5.17: Comparison of average minimum distances davm between the
alarm type 9301 and the other alarm types with di�erent window widthsW
when a) the unit operation costs and b) the alphabet-weighted operation
costs are used.

alarm types, for example. One reason for this di�erence between the alarm
type 2263 and the other alarm types may be the di�erent numbers of the
occurrences of the alarm types. The alarm type 2263 occurs in the whole
alarm sequence a total of 1 000 times being the most common of the eight
alarm types, whereas the other alarm types occur 500 times in the whole
sequence at the most. Another reason for the di�erent behavior can be
that, when the window width changes, the individual sequence contexts,
and therefore, the sets of contexts of the alarm types other than the alarm
type 2263 also change more di�erently with respect to each other than the
set of contexts of the alarm type 2263. Note that, similarly to the case of
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Figure 5.18: Comparison of average minimum distances davm between the
amino acid Alanine and the other amino acids with di�erent context sizes
K when a) the unit operation costs and b) the alphabet-weighted operation
costs are used.

the centroid vector distances dcev, the alarm type 7414 typically has the
longest distance to all the other alarm types.

We also made comparisons of the average minimum distances davm be-
tween the twenty amino acids with di�erent context sizes K. The values
of the context size K used in extracting the sequence context of the amino
acids were 1; 2; 3; 4 and 5; the greater context sizes 10 and 15 used in the
case of the centroid vector distances dcev had to be omitted because of com-
putational limitations. Figure 5.18 presents the average minimum distances
davm between the amino acid Alanine and the other amino acids with the
chosen context sizes using a) the unit and b) the alphabet-weighted op-
eration costs. The average minimum distances davm are all very close to
each other; only the distances between Alanine and Tryptophan are slightly
larger than the distances between Alanine and the other amino acids. These
conclusions hold good for both types of edit operation costs. The order of
the distances in both cases alters when the context size changes. This
means that the order of the distances does not become stable with any
of the chosen context sizes. The conclusions from the comparisons of the
average minimum distances davm of the other amino acids were very similar.

Similar experiments on average minimum distances davm with di�er-
ent context sizes K and window widths W were also made in the course
enrollment data for the set of the nine advanced level courses. In these
experiments we used the same context sizes K and window widths W as
in the case of the centroid vector distances dcev, i.e., the values of K and
W were both 1; 2; 3; 4 and 5. The comparisons of the average minimum
distances davm between the course Design and Analysis of Algorithms and



168 5 Similarity between event types in sequences

a)

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

A
ve

ra
ge

 m
in

im
um

 d
is

ta
nc

e 
us

in
g 

un
it 

co
st

s

Context size K

D. and A. of Algorithms vs. 8 other courses

Computer Networks
User Interfaces

String Proc. Algorithms
Distr. Oper. Systems
Database Systems II

Compilers
Object-oriented DBs

Neural Networks

b)

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

A
ve

ra
ge

 m
in

im
um

 d
is

ta
nc

e 
us

in
g 

al
ph

ab
. c

os
ts

Context size K

D. and A. of Algorithms versus 8 other courses

Computer Networks
User Interfaces

String Proc. Algorithms
Distr. Oper. Systems
Database Systems II

Compilers
Object-oriented DBs

Neural Networks

Figure 5.19: Comparison of average minimum distances davm between the
course Design and Analysis of Algorithms and the other advanced level
courses with di�erent context sizes K when a) the unit operation costs and
b) the alphabet-weighted operation costs are used.
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Figure 5.20: Comparison of average minimum distances davm between the
course Design and Analysis of Algorithms and the other advanced level
courses with di�erent window widths W when a) the unit operation costs
and b) the alphabet-weighted operation costs are used.

the other courses with the chosen context sizes K is shown in Figure 5.19,
while corresponding comparisons with the chosen window widths W are
presented in Figure 5.20. In both cases, the absolute average minimum
distances davm are all rather close to each other. However, the order of the
distances does not become quite stable in any of these cases with any of
the parameter values considered; there is always some variation in the order
when we move from one parameter value to another. Similar conclusions
were also made from the comparisons of the average minimum distances
davm of the other eight courses.
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Centroid vector distances versus average minimum distances

The sets of contexts used in computing centroid vector distances
dcev and average minimum distances davm are di�erent, and also the
measures as such are di�erent. We assumed that these two measures
would describe similarities between event types in a di�erent way, and
thus, we wanted to compare these distances to see whether our assumption
is true. The average minimum distances davm used in these experiments
were computed using both the unit operation costs with V = 1

W and the
alphabet-weighted operation costs with V = 2�min w

W .
We �rst studied the set of the 13 event types occurring in the synthetic

event sequence S1. We used a window widthW = 5 to extract the di�erent
types of contexts for each of these event types. Figure 5.21 presents the
relationships between the centroid vector distances dcev and the average
minimum distances davm between these event types. The distributions of
the average minimum distances davm computed using the unit operation
costs (Figure 5.21a) and with the alphabet-weighted operation costs (Fig-
ure 5.21b) are rather similar, and the relationship between the centroid
vector distances dcev and the average minimum distances davm is positive in
both cases. Nevertheless, the most similar pair of event types according to
the centroid vector distance measure dcev is the pair (B;C), but the average
minimum distance measure davm �nds the event types A1 and A2 most sim-
ilar. Similarly, the measures disagree on the most dissimilar pair of event
types. In general the orders of these distances also alter, and thus, it is
clear that these measures give a di�erent view of the similarities between
these 13 event types.

We also compared the centroid vector distances dcev and the average
minimum distances davm between the 23 alarm types in the telecommuni-
cation alarm sequence. In these experiments, the contexts of the alarm
types were extracted using the window widthW of 60 seconds. Figure 5.22
presents the comparison of these distances when a) the unit operation costs,
and b) the alphabet-weighted operation costs were used in computing the
average minimum distances davm. The distributions of the points in these
plots are slightly dissimilar, indicating the di�erences in the average mini-
mum distances davm with the di�erent type of operation costs. The di�er-
ences are, however, small, and thus, both the average minimum distance
measures davm describe the distances between the 23 alarm types simi-
larly, as seen in our earlier experiments. In both cases, the centroid vector
distances dcev and the average minimum distances davm are positively corre-
lated. When the alphabet-weighted operation costs are used, the measures
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Figure 5.21: Comparisons of distances dcev and davm between the 13 event
types in the synthetic event sequence S1 when a) the unit costs and b)
the alphabet-weighted costs were used in computing the average minimum
distances davm.
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Figure 5.22: Comparisons of distances dcev and davm between the 23 alarm
types when a) the unit costs and b) the alphabet-weighted costs are used
in computing the average minimum distances davm.

dcev and davm agree on the most similar pair of alarm types, but disagree
on what are the most dissimilar alarm types. On the other hand, with
the unit operation costs, the measures dcev and davm agree neither on the
most similar nor on the most dissimilar pair of the alarm types. Because
the orders of the other values of the measures vary as well, in this case the
centroid vector distance measure dcev and the average minimum distance
measure davm also describe the similarities between the chosen event types
di�erently.
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Figure 5.23: Comparisons of distances dcev and davm between the twenty
amino acids when a) the unit costs and b) the alphabet-weighted costs are
used in computing the average minimum distances davm distances.

After that we focused on the distances between the twenty amino acids
in the set of 100 protein sequences. We extracted the contexts of amino
acids from these sequences using the context size K = 5. The comparisons
of the centroid vector distances dcev and the average minimum distances
davm between the amino acids are shown in Figure 5.23, when a) the unit
and b) the alphabet-weighted operation costs were used in computing the
average minimum distances davm. These two plots are very much alike. This
result is not surprising, because, as stated earlier in this section, the average
minimum distances davm with di�erent operation costs are very close to each
other. From the plots we can also see that the centroid vector distances
dcev and the average minimum distances davm are positively correlated, but
that the orders of the distances are not exactly the same. This result is
also indicated by the fact that these measures disagree both on the most
similar and the most dissimilar pair of amino acids. Hence, once again
we can say that these measures give us a di�erent view of the similarities
between event types.

As the last case of these experiments we considered distances between
the nine advanced level courses in the course enrollment data set. For these
courses we extracted both set and sequence contexts using the context size
K = 5 and the window width W = 2. Because the average minimum dis-
tances davm between these courses with the unit and the alphabet-weighted
operation costs are very similar, regardless of whether the contexts are ex-
tracted from event type sequences or event sequences, Figure 5.24 presents
only comparisons of the centroid vector distances dcev and the average min-
imum distances davm with the alphabet-weighted operation costs. The dis-
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Figure 5.24: Comparisons of distances dcev and davm between the nine ad-
vanced level courses with a) the context size K = 5 and b) the window
widthW = 2, when the alphabet-weighted costs are used in computing the
pairwise edit distances needed for davm distances.

tribution of the points in the two plots are very di�erent, indicating the
di�erences in the centroid vector distances dcev, when the set contexts are
extracted using either the context size K = 5, or the window widthW = 2.
In both cases, the centroid vector distances dcev are positively related to the
average minimum distances davm. However, the orders of the distances given
by the various measures in general are di�erent. This means that in this
case the centroid vector distance measure dcev and the average minimum
distance measure davm also describe the similarities between the chosen
event types in a di�erent way.

Hierarchies of event types

Similarities between event types as such provide us important infor-
mation about the data. These similarities can also be used in de�ning
similarity between event sequences, if we allow events to be substituted
with events of a similar type. In such a case using a hierarchy of event
types in addition to their actual similarity values may be useful. Such
a hierarchy of event types can be built, for example, using the standard
agglomerative hierarchical clustering [And73, JD88, KR90]. In the same
way as we constructed clustering trees of binary attributes and sequences
of events, we studied the clustering trees for the di�erent sets of event
types. In this case also, we used the three hierarchical clustering methods
presented in Appendix A, i.e., the single, the complete, and the average
linkage methods. In the following we give some examples of event type
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hierarchies constructed for the sets of the eight alarm types and the nine
advanced level courses.

Figure 5.25 presents two clustering trees of the eight alarm types occur-
ring in the telecommunication alarm sequence. Both the clustering trees
were produced using the single linkage method, and they are both based on
the centroid vector distances dcev between the alarm types. The centroid
vector distances dcev for Figure 5.25a were computed using the set contexts
of the alarm types with the window width W = 60, and for Figure 5.25b
the set contexts with the window width W = 600. As seen earlier in this
section, changing the window width W alters the order of distances which
results in di�erent clustering trees. Note that the clustering tree in Fig-
ure 5.25b is a typical example of the chaining e�ect of the single linkage
method.

In our experiments with the centroid vector distances dcev we also found
that di�erent kinds of similarity notions between event types can be ob-
tained depending on whether the set contexts of the event types are ex-
tracted from event sequences or from event type sequences. Therefore, the
clustering trees of these event types based on these di�erent similarity mea-
sures should be di�erent. This conclusion is supported by the event type
hierarchies in Figure 5.26. The trees present the clustering trees of the
nine advanced level courses based on their centroid vector distances dcev
when the set contexts of these event types are extracted a) from event type
sequences using the context size K = 5, and b) from event sequences using
the window widthW = 2. In neither clustering tree are the courses divided
into groups corresponding to the sections at the Department of Computer
Science. The clustering trees are also di�erent from the clustering trees of
the same courses based on the internal and external measures of attribute
similarity considered in Section 3.5.2.

Figure 5.27 presents six clustering trees of the eight alarm types oc-
curring in the telecommunication alarm sequence, based on the average
minimum distances davm between these alarm types. The window widthW
used in extracting the sequence contexts of the alarm types was 60 seconds,
and in computing the distances both the unit and the alphabet-weighted
operation costs were used. In producing the trees in Figures 5.27a and 5.27d
we used the single linkage method, the trees in Figures 5.27b and 5.27e the
complete linkage method, and the trees in Figures 5.27c and 5.27f the aver-
age linkage method. The clustering trees produced with the three methods
are not particularly di�erent. On the other hand, the di�erences between
the clustering trees based on the distances with the di�erent operation costs
are even smaller than the di�erences with the various clustering methods.
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Figure 5.25: Clustering trees of the eight alarm types produced with the
single linkage method when the centroid vector distances dcev are used, and
the window width is a) W = 60 and b) W = 600.
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Figure 5.26: Clustering trees of the nine advanced level courses produced
with the single linkage method when the centroid vector distances dcev are
used, and a) the context size is K = 5 and b) the window width is W = 2.

What is common to all the six clustering trees is that there are always
three pairs of alarm types, i.e., the pairs (1571; 9301); (1886; 2692) and
(1940; 2263), that are grouped together. All these clustering trees are also
di�erent from the trees in Figure 5.25.

As in the case of attribute hierarchies (Section 3.5.2) and in the case
of hierarchies of sequences (Section 4.4.2), the clustering trees presented
here also indicate that when we use di�erent similarity measures, we typ-
ically obtain di�erent clustering trees, even if we use the same clustering
method. On the other hand, if we consider the clustering trees obtained
with a certain similarity measure, but vary the clustering method, the clus-
tering trees are typically dissimilar. Still, in some cases the clustering trees
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Figure 5.27: Clustering trees of the eight alarm types produced with the
single (left column), the complete (center column), and the average (right
column) linkage methods, when the window width is W = 60, and the
average minimum distances davm with the unit costs (upper row) and the
alphabet-weighted costs (lower row) are used.

produced using either di�erent similarity measures or di�erent clustering
methods can be exactly the same. Note that even though we represented
here only clustering trees of some of the sets of interesting event types, all
these conclusions hold good for the other sets of interesting event types as
well.

5.6 Discussion

In this chapter we have discussed di�erent ways of de�ning similarity be-
tween event types occurring in sequences. The basic idea behind our ap-
proach was that two event types are similar, if they occur in similar contexts
in sequences. This means that we must �nd the contexts of event types,
and de�ne similarity between two event types based on the similarity, or the
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distance between their sets of contexts. We considered two basic ways of
de�ning the contexts: set contexts and sequence contexts. We then showed
how to de�ne the distance between two sets of set contexts as a centroid
vector distance, and the distance between two sets of sequence contexts as
an average minimum distance.

The results of our experiments on event type similarity were presented
in Section 5.5. In the experiments we used both synthetic and real-life data
sets. The results of these experiments show that the centroid vector dis-
tance and the average minimum distance describe the similarities between
event types in di�erent ways. This does not only indicate the di�erences
between the measures as such, but the di�erence in the type of the con-
texts, as well. On the other hand, the values of the context size K and
the window width W used in extracting the contexts also turned out to
in
uence the similarities between event types. In contrast, the operation
costs used in computing the average minimum distances did not seem to
have any particular in
uence on the distances. This was a bit surprising,
because in Section 4.4 the type of the edit operation costs was found to have
a remarkable in
uence on the edit distances between sequences of events.
The explanation to the completely opposite result of the previous section is,
however, rather simple: taking the average of the minimum edit distances
between the sequence contexts makes those di�erences disappear.

What similarity notion, then, should we use in each case? That is a
very di�cult question to answer. Depending on the choice of the type of
contexts and the values of the context size and the window width, needed
in extracting the contexts, we can obtain very di�erent notions of event
type similarity. Developing alternative distance measures for the centroid
vector distance and the average minimum distance would also make the
choice of the proper similarity measure more di�cult. In general, we must
either have enough domain knowledge to be able to select the best possible
similarity measure for each case, or we have to select such a measure and
the proper parameter values experimentally.



Chapter 6

Conclusions

Similarity is an important concept for advanced information retrieval and
data mining applications. In this thesis we have discussed the problem of
de�ning similarity or distance notions between objects, especially in the
case of binary attributes, event sequences, and event types occurring in
sequences.

We started in Chapter 2 by considering what similarity between ob-
jects is and where similarity notions are needed. We de�ned similarity in
terms of a complementary notion of distance and described properties that
we expect distance measures to have. A measure that can be used for
de�ning a distance between objects should be a metric, a pseudometric,
or at least a semimetric. It should also be easy and e�cient to compute.
Furthermore, such a measure should be natural, and it should capture the
intuitive similarity between objects.

Then, in Chapter 3, we presented various ways of de�ning similarity
between binary attributes. We started by considering internal measures
of similarity. The value of an internal measure of similarity between two
attributes is purely based on the values in the columns of those two at-
tributes. Such measures are often useful but, unfortunately, they cannot
re
ect all important types of similarity. Therefore, we moved on to discuss
other types of attribute similarity measures. We introduced an external
similarity measure that determines the distance between two attributes by
considering the values of a selected set of probe attributes in the same
relation.

Behavior of both internal and external measures of attribute similarity
were demonstrated on two real-life data sets: the Reuters-21578 newswire
data and the course enrollment data from the Department of Computer Sci-
ence at the University of Helsinki. The results of our experiments showed
clearly that the internal and external measures truly describe di�erent as-
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pects of the data. Using various probe sets also gave di�erent similarity
notions. This, however, is as it should be: the probe set de�nes the point
of view from which similarity between attributes is judged.

After that, in Chapter 4, we studied how to determine similarity be-
tween two event sequences. Our main intuition in de�ning similarity be-
tween sequences of events is that it should re
ect the amount of work that
is needed to convert one event sequence into another. We formalized this
notion as the edit distance between sequences, and showed that such a
measure can be e�ciently computed using dynamic programming.

We gave experimental results for event sequence similarity on two real-
life data sets: a telecommunication alarm sequence and a log of WWW
page requests. These results showed that our de�nition of the edit distance
between sequences produces an intuitively appropriate notion of similarity.
We also studied what the in
uence of associating di�erent costs to the
edit operations used in transformations is, and found that with di�erent
types of operation costs we get di�erent notions of similarity. Moreover,
the window width that describes the time period during which the events
in the sequences are supposed to occur, was found to have a noteworthy
e�ect on the distances between sequences.

Finally, in Chapter 5 we considered how similarity between event types
occurring in sequences could be de�ned. The intuitive idea behind our
de�nition of similarity between event types is that two event types are
similar if they occur in similar contexts. First we studied two main ways of
extracting contexts of occurrences of event types: set contexts and sequence
contexts. We then gave two measures for de�ning similarity between event
types. Of these, the centroid vector distance describes the distance between
two event types when the contexts are sets of event types, and the average
minimum distance when the contexts are event sequences or event type
sequences.

In our experiments on event type similarity we used four synthetic event
sequences and three real-life data sets: a telecommunication alarm se-
quence, a set of protein sequences, and a set of course enrollment data.
These experiments showed that with di�erent kinds of contexts we get dif-
ferent kinds of similarity notions. The context size and the window width
used in extracting the contexts were also found to have a noticeable in
u-
ence on the distances between event types. In general, these experiments
showed that our measures can produce intuitively appealing results, and
that they can locate similarities in various types of sequences.

Many interesting problems still remain open. Considering attribute sim-
ilarity, one of these questions is semiautomatic probe selection, i.e., how
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we could provide guidance to the user in selecting a proper set of probe
attributes. The in
uence of the proposed variations of the external mea-
sure could also be worthwhile to examine. Furthermore, more experiments
should be made to determine the usability of external distances in various
application domains. The use of attribute hierarchies in rule discovery and
extensions of the external measure for a distance between attribute values
are also worth investigating.

The event sequence similarity should also be developed further. An
important extension would be to include to the set of edit operations a
substitution of events, and then to examine how this change in
uences the
distances between sequences. This extension would mean that we make use
of event type similarity in determining similarity between event sequences.
In our experiments we considered the events that had the same occurrence
times in the sequences only in the exact order they were written in the
database. However, in the future the in
uence of all the possible orders of
such events on the edit distances between sequences should be examined.
Further experimentation is also needed to determine the usability of edit
distance in various application domains. Finally, considering other types of
measures than edit distance in de�ning similarity between event sequences
might be useful.

There is also a great deal of work to be done in the area of event type
similarity. For one thing, various types of contexts of events could be con-
sidered. One of these types are the two-sided contexts of events, where
events occurring both before and after the interesting event are taken into
account. On the other hand, giving a weight to each event considered in ex-
tracting a context of an event, so that the weight indicates how close these
events are to each other, might lead to interesting results. Studying the
behavior of our measures in other application areas might also be useful.
Similarly to the case of event sequence similarity, the in
uence of di�erent
orders of events that have the exactly same occurrence time in the sequences
to the distances between event types should be studied. Furthermore, al-
ternative measures for event type similarity should be considered. Because
computing the average minimum distance between event types turned out
to be extremely time-consuming, especially more e�cient ways of de�ning
similarity between sets of sequence contexts should be searched for in the
future.
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Appendix A

Hierarchical clustering

Discovering groups in data is an important problem in many application
areas. In analyzing market basket data, for example, it is interesting to �nd
market segments, i.e., groups of customers with similar needs, or to �nd
groups of similar products. Other examples of areas where clustering of
objects has been found important are medicine (clustering of patients and
diseases), biology (grouping of plants and animals), geography (clustering
of regions), and chemistry (classi�cation of compounds).

Research in the �eld of clustering has been extensive, and many di�erent
methods for grouping data have been developed; see [And73, JD88, KR90]
for overviews of cluster analysis. The main goals of every clustering method
are to �nd, for the given set of objects, a set of clusters where objects within
each cluster are similar and objects in di�erent clusters are very dissimilar
to each other. Each of the clustering methods, however, describes the data
from one point of view. This means that di�erent methods may produce
di�erent kinds of clusterings. Because a clustering produced by one method
may be satisfactory for one part of the data, and another method for some
other part, it may in many cases be useful to try several clustering methods
on the data. One should also remember that the data may contain just one
big cluster, or no clusters at all.

One group of widely used clustering techniques is the hierarchical clus-
tering methods. These hierarchical methods �nd partitions of objects such
that each cluster contains at least one object and each object belongs to
exactly one cluster, i.e., clusters are disjoint. Formally, the clusterings dis-
covered by these methods can be de�ned as follows.

De�nition A.1 Let O = f
1; 
2; : : : ; 
ng be a set of objects. A clustering

C of the object set O is a partition fc1; c2; : : : ; ckg where each cluster ci is
a subset of O so that

Sk
i=1 ci = O and ci \ cj = ; for i 6= j. The size of the
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clustering C, i.e., the number of clusters in the clustering, is denoted as jCj.
A cluster ci that contains only one object is called a singleton cluster.

Instead of one single partition of the given objects, the hierarchical
clustering methods construct a sequence of clusterings. Such a sequence
of clusterings is often given as a clustering tree, also called a dendrogram

[DJ76, DH73]. In such a tree, leaves represent the individual objects and
internal nodes the clusters. An example of a clustering tree is shown in
Figure A.1.

There are two kinds of hierarchical clustering techniques: agglomera-
tive and divisive. The di�erence between these techniques is the direction
in which they construct the clusterings. An agglomerative hierarchical clus-
tering algorithm starts from the situation where each object forms a cluster,
i.e., we have n disjoint clusters. Then in each step the algorithm merges the
two most similar clusters until there is only one cluster left. A divisive hier-
archical clustering algorithm, on the other hand, starts with one big cluster
containing all the objects. In each step the divisive algorithm divides the
most distinctive cluster into two smaller clusters and proceeds until there
are n clusters, each of which contains just one object. In Figure A.1 the
clustering trees produced by agglomerative and divisive methods are the
same, but usually they are di�erent [KR90]. In literature, the agglomerative
methods are sometimes referred to as bottom-up and the divisive methods
as top-down hierarchical clustering. A common algorithm for agglomerative
hierarchical clustering is given as Algorithm A.1.

E

C

B

A

D

1

3

2

4 root

agglomerative

divisive

leaves

Figure A.1: An example of a clustering tree.
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Algorithm A.1 Agglomerative hierarchical clustering

Input: A set O of n objects and a matrix of pairwise distances between the
objects.
Output: Clusterings C0; : : : ; Cn�1 of the input set O.
Method:

1. C0 = the trivial clustering of n objects in the input set O;
2. for k = 1 to jOj � 1 do
3. �nd ci; cj 2 Ck�1 so that the distance d(ci; cj) is shortest;
4. Ck = (Ck�1 n fci; cjg) [ (ci [ cj);
5. compute the distance d(ci; cj) 8 ci; cj 2 Ck;
6. od;
7. output C0; : : : ; Cn�1;

Algorithm A.1 gets as input a �nite set O of n objects and a matrix
of pairwise distances between these objects. This means that executing
the clustering algorithm is completely independent of how the distances
between the objects were computed. The algorithm starts with a trivial

clustering C0 with n singleton clusters. At each iteration phase the algo-
rithm searches those two clusters ci and cj that have the shortest distance
in Ck�1 and merges them. A new clustering Ck is formed by removing the
two clusters and adding the new merged cluster, i.e., Ck is Ck�1 with clusters
ci and cj merged. The merging of clusters is continued until there is only
one cluster left. The output of the algorithm is the sequence of clusterings
C0; C1; : : : ; Cn�1.

The time and space complexity of Algorithm A.1 can be estimated as
follows. The size of the distance matrix is n� n rows. This means that at
each phase of the algorithm searching of the closest pair of clusters takes
O(n2) time. Because there are n clustering phases, the time complexity
of the whole algorithm is O(n3). On the other hand, because the distance
matrix and the clusterings must be kept in the memory, the space complex-
ity of the algorithm is O(n2). More e�cient algorithms for agglomerative
hierarchical clustering methods are represented, for example, in [DE83].

On Line 3 of Algorithm A.1 the pair of clusters that has the shortest
distance is searched for. For �nding such a pair of clusters we have to be
able to de�ne the distance between two clusters.

De�nition A.2 Let ci and cj be two clusters in a clustering C. An inter-

cluster distance d(ci; cj) between two singleton clusters ci = f
ig and cj =
f
jg is de�ned as the distance between objects 
i and 
j, i.e.,

d(ci; cj) = df(
i; 
j)

where df is a distance measure de�ned for the particular type of objects

i and 
j . If at least one of the clusters ci and cj consists of two or more
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a)

b)

c)

Figure A.2: Inter-cluster distances with di�erent agglomerative methods:
a) single linkage, b) complete linkage, and c) average linkage method.

objects, the inter-cluster distance between the clusters ci and cj is a function
F of the pairwise distances between objects when one of them is in the
cluster ci and the other in the cluster cj , i.e.,

d(ci; cj) = F (fdf(
k; 
l) j 
k 2 ci and 
l 2 cj g):

This de�nition can also be applied to singleton clusters: there is only one
pair of objects to compare.

The choice of the distance function df depends on the type of the ob-
jects considered. In de�ning distance between binary attributes, for ex-
ample, any internal or external distance measure of attribute similarity
would be used as df . The function F de�ning the inter-cluster distance
between non-singleton clusters can also be chosen in di�erent ways. In
the following we describe brie
y three agglomerative hierarchical clustering
methods, namely the single linkage, complete linkage, and average linkage

method that use di�erent de�nitions for the inter-cluster distance between
non-singleton clusters.

The single linkage method, also referred to as the nearest neighbor

method, is the oldest and simplest of the agglomerative clustering methods.
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The inter-cluster distance in this method is de�ned as the distance between
the closest members of the two clusters, i.e.,

d(ci; cj) = min (fdf(
k; 
l) j 
k 2 ci and 
l 2 cj g):

The method is called single linkage because in each clustering phase two
clusters are merged by the single shortest link between them (Figure A.2a).
This method produces clusters where every object in a cluster is more simi-
lar to some other object in the same cluster than to any other object not in
that cluster. The problem with the single linkage method is its tendency to
form elongated, serpentine-like clusters. This tendency is called a chaining
e�ect [And73, DH73, KR90], and it can easily lead to a situation where
two objects at opposite ends of the same cluster are extremely dissimilar.
Of course, if the clusters really are elongated, this property of the single
linkage method causes no problems.

An opposite method to the single linkage is a complete linkage cluster-
ing, also called the furthest neighbor clustering. In this method the inter-
cluster distance between two clusters is de�ned as the distance between
their furthest members (Figure A.2b). That is, the inter-cluster distance
between clusters ci and cj is

d(ci; cj) = max (fdf(
k; 
l); j 
k 2 ci and 
l 2 cj g):

Now all the objects in a cluster are linked to each other at the longest
distance needed to connect any object in one cluster to any object in the
other cluster. This method tends to form compact clusters, but not neces-
sarily well separated clusters. In this method, forming elongated clusters
is highly discouraged, and if the real clusters are elongated, the resulting
clusters can be meaningless [DH73].

In the third agglomerative clustering method, the average linkage
method, the inter-cluster distance of the clusters ci and cj is de�ned as

d(ci; cj) = avg (fdf(
k; 
l) j 
k 2 ci and 
l 2 cj g);

i.e., the distance is the mean of the pairwise distances between the objects in
two clusters (Figure A.2c). This method is aimed at �nding roughly ball-
shaped clusters. In literature, this method is also referred to as average
linkage between merged clusters [And73] and unweighted pair-group average

method [DE83].
There are many reasons for the popularity of the hierarchical clustering

methods. For the �rst, they are conceptually simple and their theoretical
properties are well understood. Another reason for their popularity lies in
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their way of treating the merges, or the splits, of clusters. Namely, once
two clusters are merged by any agglomerative hierarchical algorithm, they
are joined permanently (similarly, when a cluster is split by a divisive al-
gorithm, the two smaller clusters are separated permanently). This means
that the number of di�erent alternatives that need to be examined at each
clustering phase is reduced, and a computation time of the whole sequence
of clusterings is rather short altogether. This property of keeping the merg-
ing and splitting decisions permanent is, unfortunately, at the same time
also the main disadvantage of hierarchical clustering methods; if the algo-
rithm makes an erroneous decision on merging, or splitting, it is impossible
to correct it later.



Appendix B

Generating of synthetic event

sequences

In our experiments on similarity between event types we used four synthetic
event sequences. These sequences were generated as follows.

First, we produced a basic event sequence S where occurrence times
of events were allowed to be between zero and a given parameter value n.
We generated to this basic sequence S an event to a time t 2 IN with a
probability of p, where 0 < p � 1. In other words, in the basic sequence
S there was no event at the time t with a probability of 1 � p. This
means that the probability distribution of the events generated followed
the Bernoulli(p) distribution. Assuming that there should be an event at
a time t, the type of the event was chosen to be one of the event types in a
set fA1; : : : ; Aqg with a probability of 1=q where q was the number of the
possible event types Aj . In turn, this means that the types of the events in
the basic sequence S came from the discrete uniform distributionDU(1; q).

After that, we added event showers to the basic sequence S. We started
this phase by generating r sets Zi, i.e., sets Z1; Z2; : : : ; Zr: Each of these
sets Zi contained k events. The types of these k events belonged to the
set fA1; : : : ; Aqg. Given the sets Zi, we then generated a total of m event
showers using Algorithm B.1. Each shower of events contained from one
to k events, where the types of these events were chosen from a randomly
chosen set Zi. And at the end of the shower there was an event of either
the type B or the type C with a probability of 0:5.

Finally, we generated to the sequences as many new events of a type
D as there were already events of the type B. Occurrence times of these
events of the type D were allowed to vary randomly between one and the
given parameter value n.
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Algorithm B.1 Event showers

Input: An event sequence S, sets Zi of k event types, and the parameter values
m, n, r and u.
Output: An event sequence where m event showers have been added to the given
sequence S.
Method:

1. for l = 1 to m do
2. generate a random starting time t

from the distribution DU(1; n� k);
3. generate a random number i from the distribution

DU(1; r) for selecting a set Zi;
4. for each Aj 2 Zi, j = 1; : : : ; k do
5. add an event of the type Aj to the sequence S

to the time t with a probability of 1� u;
6. t = t + 1;
7. od;
8. add with a probability of 0.5 either an event of a type

B or C to the sequence S to the time t ;
9. od;

The parameter values used in generating the four synthetic event se-
quences used are given in Table B.1. In the sets of event types in these
sequences there were always the event types B, C and D. However, the
number q of event types Aj varied. Given the values of the parameter q
in Table B.1, we can see that in the event sequence S1 the number of such
event types was 10, in the sequence S2 20, etc. This in turn means that in
the �rst sequence there were a total of 13, in the second 23, in the third 33,
and in the last sequence 43 event types. The total numbers of the events
generated in each of the sequences were 6 038, 29 974, 94 913, and 142
433 events, respectively. Note that in each of the sequences the number of

Event sequence n p q r k m u

S1 10 000 0.1 10 2 5 1000 0.3

S2 50 000 0.1 20 5 5 5000 0.3

S3 100 000 0.1 30 5 10 10 000 0.3

S4 150 000 0.1 40 5 10 15 000 0.3

Table B.1: The values of the di�erent parameters used in generating the
synthetic event sequences: the number n of time points, q of event types
Aj , r of sets Zi, k of event types in each set Zi, and m of generated event
showers, as well as the probability p of an event occurrence in the original
sequence, and u of not adding an event of type Aj into an event shower.
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events is less than the number of the possible time points; in the case of
the event sequence S2 remarkably less than the number of time points n.


