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Scientific goals of the centre

¥ The Algorithmic Data Analysis CoE develops new
concepts, algorithms, principles, and frameworks for
data analysis.

¥ The work combines strong basic research in computer
science with interdisciplinary work in a variety of

scientific disciplines and industrial problems.

B Theory <=> Applications
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Five research teams (state of 2012)

® Combinatorial pattern matching
m Ukkonen, Méakinen (-12/2011), Karkkainen, Lemstrom, Yangarber, 4
postdocs, 8 PhD students
® Data mining: theory and applications
B Mannila (- 2/2012), Hollmen, Koivisto, Kaski, Puolamaéki, 2 postdocs, 6
PhD students
W Pattern and link discovery
¥ Toivonen, 1 postdoc , 7 PhD students
@ Machine learning
® Kivinen, Rousu, 1 postdocs, 3 PhD students
B Neuroinformatics
W Hyvarinen, Hoyer, 4 postdocs, 3 PhD students

W about 70 persons in total: 58 Univ Helsinki, 12 Aalto Univ
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Profile in Computer Science

Combinatorial Data mining
pattern matching ‘Heikki Mannila
-Esko Ukkonen

-Hannu Toivonen
-Veli Makineri

Machine learning
-Aapo Hyvarinen
-Jyrki Kivinen
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Organization chart of Algodan

ALGODAN

CoE leader
-E.Ukkonen
-H. Toivonen

Management team
-E. Ukkonen

-A. Hyvérinen

-J. Kivinen

-H. Toivonen

Administrative services
University of Helsinki

Dept. Of Computer Science
-Administrative services
-Computing services
-Library services

Administrative office

Administrative services

Aalto University /UT, CIS
-Administrative sevices
-Computing services

Team Team Team Team Team
Hyvarinen/ Kivinen/Rou Mannila/Holl| |Toivonen Ukkonen/Ma
Hoyer su men/Koivist -12 members | |kinen/Kérkk
-9 members -8 members o/Puolam &ki dinen/Lemst
-18 members rom/Yangar
oer
-22 members Themes ‘

Applications‘

Home institutions

University of
Helsinki

Helsinki Institute
for Information
Technology HIIT

Aalto University




Funding

W Basic funding from the Academy of Finland (2010-
2013): 520 k€ / year

W Basic funding from the home universities: 300 k€ / year
¥ Home universities: infrastucture, salaries
W Academy: researcher positions

¥ Project funding: Academy; TEKES; EU; NIH; private
foundations; industry; ...
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Four main research themes

m Sequence analysis (S) cgccgagtgacagagacgctaatcaggctgt
gttctcaggatgcgtac...

¥ Learning from and mining structured
and heterogeneous data (L)

® Discovery of hidden structure in high- . H |
dimensional data (D) e

¥ Foundations of algorithmic data
analysis (F)
ALGODAN




Scientific activity & progress: indicators

2008 [2009 [2010 12011 |2012 [Total ___

Journal + conf
publications + books

PhD degrees

External funding (incl.
Academy) k€

Software
Foreign personnel
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Algodan seminars

Oct 2011

Jan 2010
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International visibility

¥ International conference organization
MICML 2008, COLT 2008, UAI 2008, IDA 2010, DS 2011, ALT
2011, SWAT 2012, CPM 2012, IDA 2012, ...

¥ International calls for PhD students and postdocs

W Hirings from abroad: 21 / 70 (~ 30 %)

ALGODAN

10



Researcher career development

W Former Algodan postdocs/PhDs now elsewhere
W Academia: G Garriga, E Terzi, C Pizzi, F Nicolas, U Koster, E
Pitkanen, P Rastas, W Hamalainen, ...
M Industry: T Mielikainen, M Kaariainen, A Gionis, P Sevon, A Rantanen,
S HyvoOnen, | Autio, J Makkonen, J Lindgren, S Ruosaari, J Tikka, ,J
Seppanen, K Laasonen, J Kollin, E Junttila, P Hintsanen, M Lukk,...
® New professors: Veli Makinen (2010), Juho Rousu (2012), Petteri
Kaski (2012)

2008 2009 2012

Prof & Senior researcher 13 15 (0 females) 13 (0)
PostDoc 16 19 (2) 12 (2)
PhD student 26 32 (7) 27 (2)
Student 15 20 (5) 18 (3)

ALGODAN
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Collaboration in computer science

® Longer visits in and out in 2011: about 40 person months
W European Union research consortia:
® Pattern Analysis, Statistical Modeling and Computational Learning (J
Shawe-Taylor, London)

® Numerous collaborations with individual researchers (D Gunopulos (Athens),
F Fomin (Bergen), T Husfeldt (Lund), J Nederlof, S. Szeider, A Apostolico
(Padua & Georgia Tech), G Navarro (Chile), P Ferragina (Pisa), G Wiggins
(London), C lliopoulos (Kings C), N Lavrac (Ljubjana), L De Raedt (Leuven),
J Shawe-Taylor (UCL), S M Smith (Oxford), F Eberhardt (Canegie Mellon), D
Janzig (Max Planck Instit), S Ishii (Kyoto), ... )

ALGODAN
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Collaboration in applications:
Bioinformatics, neuroinformatics

W International & European Union projects
W EU-Project: Systems biology of colorectal cancer (J Taipale)
¥ European Bioinformatics Institute, UK: Dr Alvis Brazma
m Center for Neurobehavioral Genetics at the University of California Los
Angeles (UCLA)
WS Luyssaert & | Janssens, Univ Antwerp (carbon balance)
W University of Helsinki:
B CoE on Translational Genome-Scale Biology: J Taipale, L Aaltonen
M CoE in Microbial Food Safety (A Palva)
W prof Sakari Knuutila (genetics), prof Liisa Holm (bioinformatics), prof. A
Urtti (pharmacology), P Hari & E Nikinmaa (forestry)
M Institute for Molecular Medicine in Finland (FIMM) and National
Institute of Health and Welfare (THL)

W Aalto University
B CoE on systems neuroscience and neuroimaging (Riitta Hari, S Vanni)

® VTT Biotechnology:
W prof H Soderlund, prof M Penttila (CoE )

ALGODAN
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Collaboration In applications:
Environmental research

W University of Helsinki:
W CoE on Metapopulation research: prof | Hanski
W CoE on Physics, Chemistry and Biology of Atmospheric Composition
and Climate Change: prof M Kulmala
® CoE on Developmental Biology: prof. M Fortelius, prof. J Jernvall
W ESO project with astronomers: prof. K Mattila

ALGODAN
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Collaboration in applications:
Linguistics and language technology

W University of Helsinki
B CoE on Language Variation and Changes: prof T Nevalainen
M Univ Helsinki: prof. K Koskenniemi (computer linguistics), L Carlson

(computer linguistics)

B Research Institute for the Languages of Finland:
W prof R-L Pitkdnen

B European Commission's Joint Research Centre (JRC, Ispra), EC Frontex

Agency , Global Health Security Initiative (GHSI), European Center for
Disease Control (ECDC) , Russian Academy of Sciences

ALGODAN
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Influence Attribution in
Citation Networks

Panagiotis Papapetrou
Postdoctoral Researcher
Department of Information and Computer Science

Aalto University
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Problem description

W People always intrigued by characterizing
iIdeas, books, scientists, politicians, etc
B Main question: who is influential?

W Examples:

who are the most influential scientists?

which actors influence a movie rating the most?

ALGODAN
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Our setting

®Windividuals accomplish tasks in a collaborative

manner

Winfluence attribution: each individual is assigned

with a score based on performance
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Instantiation: author-publication

¥ Individual == author
W Task == publication
W Impact score:

CC: citation count of the publication

PR: PageRank score of the publication
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Example: author-publication

W Two researchers A and B
B Question: who is more influential?

®

ALGODAN



Example: author-publication

B One common collaborator: Y

P.

P:8
8

e

Y

P: number of papers

C: number of citations per paper
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Example: author-publication

B One common collaborator: Y

P: number of papers
C: number of citations per paper
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Example: author-publication

¥ Three additional collaborators for A and B

QU [OT|OT
w ol [waoal |~ o
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Example: author-publication

¥ Three additional collaborators for A and B

P:5 P: 3
C: 4 C:0
P:5]| P:3
C: 3|; C:0
P:5 P: 6
C:3 C: 1

 Researcher | _Papers _|_Citations | _H-index _
A 20 70 4

ALGOEAN B 20 70 8
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Example: author-publication

¥ Three additional collaborators for A and B

P:5 P: 3
C: 4 C:0
P:5( P: 3
C: 3|; C:0
P:5 P: 6
C:3 C: 1

But 1s B indeed that influential?
akaemnaN Or 1s B just being favored due to the fame of Y?



Example: author-publication

W Drop Y out of the picture

w O1 w O A~ O

QU |OT QT
— O o W o W

QU QT OT

T'he performance of A remains quite high

AksamaN The performance of B 1s weakened a lot



Example: author-publication

W Drop Y out of the picture

P:5 P: 3
C: 4 C:0
P:5( P: 3
C: 3|; C:0
P:5 P: 6
C:3 C: 1

Researcher

AbLEGEBAN B 12 6 1



Observation

® Most existing bibliometrics indicators are
—based on the publication or citation count

—simple to compute

W Ignore the underlying structure of
—the citation graph

—the co-authorship graph

ALGODAN



Solution

W For each individual compute:
what difference does an individual make to the

coalition if dropped from it
W Individuals who form many strong coalitions are

favored against those who form weak ones

ALGODAN



Shapley value

W V: set of individuals
¥ u: gain function

m ¢: Shapley value
sum of marginal gains contributed by each individual to a

coalition (subsets of V)

o) = 3 SHS =R (s U (1)) - o))

ALGODAN



Our approach

® Not all coalitions may be available or defined

® We compute the marginal gains u(S) by averaging only
over coalitions for which impact scores are available

™ For the author-publication case: iterate over all papers

® We approximate the rest

ALGODAN



lterative method

® We choose to take into account all cases for which

S UA{V.} is available

-

(v)
\_

ALGODAN




lterative method

® We choose to take into account all cases for which

S UA{V.} is available

-

(v)
\_
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lterative method

® Then compute the gain of S

/ 1—-—» u(S)

(v)
ALEGBAN K /




lterative method

® What if for some set S we have no complete information

about the coalitions?

/ 1_.—» u(S)

(v)
AbGGDAN k /




lterative method

M There should be some “known” coalitions inside S

W The rest are considered “unknown’

4 R

O
P ki N \ /




lterative method

® Compute the gain function for the “known” coalitions

4 R

@ ) uSh
ALGODAN k /




lterative method

B Approximate the “unknown” coalitions

u(S)=max (P,(w))

V.€unknown

@ ) uSh
ALGODAN k /




Monotonicity requirement

® Monotonicity of the gain function
—Dbigger coalitions should have higher impacts

—not always the case: e.g., author-publications

®We impose it using a heuristic

ALGODAN



Datasets

mIS| Web of Science:

—Publication years 2003 and 2009

—ICS Aalto University & Yahoo! Research, Barcelona

—1212 authors and 4506 publications

¥ Internet Movie Database:

—2000 male actors and 4560 comedy/action movies

ALGODAN



IS| Web of Science

Naive-PR vs. Shapley-PR
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Naive-PR vs. Shapley-PR
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Proof of concept

Shapley-PR Naive-PR
1 183 :
2 225
3 35 \
4 215
5 192 v 4
6 272
7 04
8 141
9 208
10 114
Panagiotis Papapetrou, Aris Gionis, and Heikki Mannila, “A Shapley
A\ BooffnméOadrseis N value Approach for Influence Attribution” ECML-PKDD 2011




Future work

¥ Monotonicity property

W Investigation of other domains such as:
—user-blogs

—social media sites
B How additional information about the individuals can
affect/be taken into account

W Further evaluate the quality of the obtained rankings by

performing user studies

ALGODAN
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A statistical significance
testing approach to mining
the most informative set of
patterns

Jefrey Lifffijt

Doctoral Student @ ICS Department, Aalto University

Joint work with: Panagiotis Papapetrou, Kai Puolamaki




Introduction

W Early pattern mining: focus on efficient enumeration
W Apriori / Level-wise algorithm (Agrawal et al. 1994, Mannila et
al. 1994), ECLAT (Zaki et al. 1997), FP-GROWTH (Han et al.
2000), Etc.
W Result: zillions of patterns

® Next approach: condensed representations
B Maximal patterns (Bayardo Jr. 1998), Closed patterns (Pasquier
et al. 1999), Non-derivable patterns (Calders et al. 2002),
Significant patterns (Webb 2007, Gionis et al. 2007), Etc.
m Still too many and redundancy in pattern set

ALGODAN



Introduction

m AB, AC, AD, AE, BC, BD, BE, CD, CE, DE, ABC, ABD,
ABE, ACD, ACE, ADE, BCD, BCE, BDE, CDE, ABCD,
ABCE, ABDE, ACDE, BCDE, ABCDE

¥ These could all be significant and non-derivable

® Can all these subsets be explained by ABCDE?

ALGODAN



Non-Redundant Sets of Patterns

® Approach 1: Local objective function / heuristics

B Mining top-k patterns using ranking / iterative mining
(Mielikainen & Mannila 2003, Bringmann &
Zimmermann 2007, Gallo et al. 2007, Hanhijarvi et al.
2009)

® Approach 2: Global objective function

¥ ‘Intuitive’ quality measures (Knobbe & Ho 2006), Krimp
(Siebes et al. 2006), MaxEnt (Kontonasios & De Bie
2010)

ALGODAN



Our Approach (Lijffijt et al. submitted)

1. Define null hypothesis

® What we currently know about the data

2. Choose test statistic
W Patterns that we want to explain

3. Choose possible constraints
W Patterns that we want to find

® Algorithmic challenge: find k constraints that maximize
the p-value of the data

W P-value p=Pr(T ,=T,,)
ALGODAN



1. Null Hypothesis

® What you currently know about the data
W |.e., what is not interesting to find

® Examples of used null hypothesis
® Data matrix: retain marginal distributions
- Binary: exact, expectation
- Real-valued: limit on Kolmogorov-Smirnov statistic
® Graph data: retain degree distributions, connected components
W Time series: retain power spectrum

® More advances hypothesis: cluster structure, etc.

ALGODAN



3. Constraints

® The patterns that we allow as output
B [temsets (see example later)

W Clusters / Segments / Tiles
W Group of objects that are similar (tiles: for restricted set of vars)

® Constraint correspond to enforcing some statistic over
these objects

™ Frequency of an itemset
® Distance between a set of objects

ALGODAN



2. Test Statistic

W The patterns that we want to explain

B [temsets

B Sum over statistic of some chosen set of itemsets
- See example later

W Clusters / Segments / Tiles
W Total clustering/segmentation cost
W Description length of the data

®m Often directly related to the constraints

ALGODAN



Our Approach (Reminder)

1. Define null hypothesis

2. Choose test statistic

® 1and 2 give a p-value for the data p=pPr(T ,=T,,,)
3. Choose possible constraints

® Algorithmic challenge: find k constraints that maximize
the p-value of the data

ALGODAN



Complexity

¥ NP-Hard in general (as are Krimp and MaxEnt)

W There can exist no general fixed-ratio approximation
scheme

® Greedy algorithm:
1. Select constraint that maximizes the p-value of the data
2. In case of ties, prefer higher test statistic

W Greedy algorithm is optimal if constraints are independent

W Greedy algorithm has approximation ratio if constraints are
approximately independent

ALGODAN
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Application Example:
Mining Itemsets with High Lift (1/3)

W Paleo data set (Fortelius 2005, Puolamaki et al. 2006)

™ Genus of fossils in Europe and Asia
W 124 sites, 139 genus

® Null model: uniform distribution over all binary matrices
with same row and column margins

B Constraints: itemsets with support =0.1 and [lift = 1
W 118 possible constraints

118

u Test statistic T(w)= Y lift(X,,w)
i=1

ALGODAN
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Application Example:
Mining Itemsets with High Lift (2/3)

® NB. We should be able to compute a p-value for the
data under any combination of constraints
W Preferably analytically

M |f not 2 randomization
® ‘Only’ a constant factor slower

W Here: randomize data with itemset-swap algorithm
(Hanhijarvi et al. 2009)

ALGODAN
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Application Example:
Mining Itemsets with High Lift (3/3)

® Result: initial p=10"""
B P-value rapidly increases with first 4 itemsets p=10""

B P-value is maximal after 17 itemsets p=10"""
¥ Low p-value due to maintaining frequency approximately

W Set of patterns does not simply contain the patterns
with highest lift

» Redundancy is well accounted for

ALGODAN
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Conclusions

® Other application examples in the paper
W Clustering, segmentation

® Novel general approach to mining a small set of
interesting and non-redundant patterns

¥ Open questions include:
® Null models that lead to analytical p-values (such as MaxEnt)
® What if we mix various types of constraints (itemsets, clusters)
- Should we weight constraints according to complexity?

ALGODAN
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On Analyzing Environment:
Natural and Man-Made

Jaakko Hollmén
Parsimonious Modelling
Aalto University School of Science




Parsimonious Modelling

® Monitoring and diagnosis of man-made engineered
structures, such as bridges

® Analysis and monitoring of the natural environment:
climate studies in the context of forest and tree growth

M Parsimonious modeling aims at learning simple,
compact, or sparse models from data

W Showcases: learn parsimonious models from data in
environmental informatics area

ALGODAN



Recent Research and Publications

¥ Three-way analysis of structural health monitoring data.
Miguel A. Prada, Janne Toivola, Jyrki Kullaa, Jaakko Hollmén.
Neurocomputing, April 2012.

® Collaborative filtering for coordinated monitoring in wireless
sensor networks. Janne Toivola and Jaakko Hollmeén. In
Proceedings of International Conference on Data Mining
Workshops, December 2011. poster!

¥ Environmental proxy selection in temperature reconstruction.
Mikko Korpela et al., Manuscript in preparation. poster!
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Three-way analysis of structural health
monitoring data

® Monitoring and diagnosis of man-made structures by
modeling the vibration profile

W Invariant features: ratios of frequency amplitudes of
sensors s; and s;

W Represent data as tensors: <sensors, frequencies, time>

® Matrix factorization, or signal decomposition methods

®Model: X=2._, ra;ob;0oc;+ E

ALGODAN



Three-way analysis of structural health
monitoring data

Component

®Model: X=2., ra;ob;oc;+ E

W Alternating least squares estimation (PARAFAC)
¥ Projection of the data onto the factors, here, time

ALGODAN



Interpretability of the results

nnnnnnnnnnnnnnnnnnnn

7w

I‘ \' I'A!/l-mm‘i"‘
,,A; LT
i

’_wlx\/wmnl\Y

A'll!tl'/ ""

|/IA\IAW\7_'¢M\Y
i/ I i r‘ri

A

W Resulting three factors in -
terms of sensor pairs (up)
®Novelty detection (right) o
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Coordinated monitoring in sensor
networks

¥ Wireless sensor network
environment: constrained
communication and computation -

I I I I I I I I I
0 0.1 0.2 03 0.4 0.5 0.6 0.7 08 0.9 1

Time (s)

¥ Coordinated monitoring: sensors ;- “AJL
recommend features, features P

recommend sensors o
W Rating algorithm ﬁ
. . 0 1 | || I\ L |
®Unsupervised feature selection e e W ®
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Coordinated monitoring in sensor

networks: Results

Sensors
a1

features

Sensors

Frequency bin

features

W Resulting selection of sensor-feature pairs

® Controlled sparsity of the solution (left vs. right)

¥ Reduction of communication, measurement, and
computation poster!

ALGODAN




Environmental proxy variable selection

Monthly temperatures Aggregate temperatures Monthly temperat res Aggregate temperatures
A r—’%

Jan Feb Nov Dec "Spring" Summe

7N

Proxies (ice, flowers, trees, ...) Proxies (ice, ﬂowers trees, .

W Learn prediction models for temperature reconstruction

¥ Proxy variables store temperature information indirectly

® Explosion of the space of models, aim at compact models

W Search-based feature selection: include suboptimal
models in the family of solutions poster!
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Environmental proxy variable selection

) / 1 W
: AN
y g N VL | [In |
2 a7, WRNAN
..... % VV \ v \'1 Y v"ﬂ \\ '
model selection Reconstruction of temperature

W Example of temperature reconstruction with a prediction

model identified with a search procedure in model-space.

M poster!

ALGODAN
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Summary and Conclusions

® Environmental data analysis problems

® Parsimonious modelling
W Signal decomposition by three-way analysis
M Collaborative filtering for sensor-frequency selection poster!
M Search-based feature selection in model space poster!

® Further exploration of the parsimonious modelling in

application areas of cancer genomics and environmental
informatics

ALGODAN
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Relevant and Non-redundant
Object Retrieval

Laura Langohr and Hannu Toivonen

Aalto University



Motivation

¥ How to identify objects that are relevant w.r.t. Barcelona
and Helsinki, but non-redundant w.r.t. each other?

(Antoni GaudD Wabs 5an architect
lived i ] ' 0.5 Was an
was twice Xhlblted at ’
held in exhibited at

Barcelona Alvar Aalto

05 World’s fair } 0.7

member of /.

0.8 Finland ‘
. has 7
( Catalonia ) union ~Tocated in 0.7

(FC Barcelona) play\edfor played for (HJK HelsinkD

0.6 (Jari Litmanen) 0.7

capital
of

0.9| autonomous member of

COl

based in
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Other application domains include ...

¥ Obtaining an overview of different term contexts
W Query term: root
® Result: plant, equation, word - a representative set of terms
representing different contexts (botany, mathematics, linguistics)

W Understanding co-authorship relations
W |dentify authors that are relevant w.r.t. query authors,
but non-redundant w.r.t. each other

¥ Biomedicine
W |dentify phenotypes that are relevant w.r.t. query genes,
but non-redundant w.r.t. each other

ALGODAN



Related Work

W Identifying relevant objects (typically documents) is a
classical problem in information retrieval (IR).
M Our problem differs from these as in our work as:
1. Objects are not assumed to have any attributes
2. Relevance is based solely on a proximity function
3. Queries are specified by objects, not by keywords
¥ A variant of random walk with restart addresses
non-redundancy (Tong et al. 2011)
m We could alternatively use these relevance
and non-redundancy measures
m However, negative query nodes are not considered

ALGODAN



Some Concepts

W Relevance: Anode is relevant if it is closely related
to all positive query nodes.

W Irrelevance: Anode is irrelevant if it is closely related
to any negativ query node.

W Redundancy: A node is redundant if it is closely related
to any other selected node.

ALGODAN



Relevance

WV, a set of objects

M qeV, apositive query object

md:VxV > R", adistance measure for objects in V
® Alternatively: s:V xV — R™, a proximity function

W Relevance of an object u eV w.r.t. the query object g eV

rel ,(u,q)=s(u,q)=1/d(u,q)

ALGODAN



Relevance

¥ Relevance of an object u
w.r.t. a set Q, <V of query objects

-1/ a
rel, (u,Q:)=| > d(u,q)
qup

® With larger values of a =21, larger distances
dominate the functlon

0.07 20 r ___________ 0.07 20 0.07 20 0.07
0.06 15 , 0.06 15 0.06 15 0.06
0.05 0.05 [ 0.05
005 10 W 7 — e 10 10 [
0.04 B 0 U 0.04 004 | 0.04
5 -| ‘,L \ Y . "— 5 5
0.03 B oo (Sl 0.03 0.03 0.03
o B . /. __,*'_, ok
0.02 k. + e 002 ° 0.02 Y 0.02
0.01 - N 001 S 001 S| - 0.01
6 T 0 -10 0 -0 — 0
0 5 10 15 20 10 5 0 5 10 15 20 0 5 0 5 10 15 20

-0 -5 0 5 10 15 20

o=14 o=1 o=4

o=1
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Irrelevance

® Negative query objects to specify subjective
irrlevance (uninterestigness) of objects

W Irrelevance (negative relevance) of an object u
w.r.t. a negative query object g eV

rel , (u,g)=s(,q)=1/d(u,q)

ALGODAN



Irrelevance

™ Irrelevance of object u
w.r.t. a set Q, <V of negative query objects
rel, (uQy)= > d(u,d@)” = > s(u,g)
qeQy qeQy
W Increasing f =1, increases the local concentration
around negative query nodes:

20 T T T T T 0 20

15 . \ 1Ld 01 15 F

10

5 10 15 20

,3_ ,3_

o 1
10 5 5 10 15 20 10 5
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Non-redundancy

W We want to retrieve a list of relevant objects, but
we also want them to be mutually non-redundant.

W This is similar to the effect of negative query objects.
Hence, we define redundancy of a set R —V of objects

similarly.
red (R)= > d(uv)”= > s(v)
u,veR, u,veR,

ALGODAN
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Relevance and Non-redundancy

W Overall relevance and non-redundancy
of a set of objects RcV

REL (R,Qr,Qy )= D rel;(u,Qp)

ueR
> rely (U,Qy)
ueR
= e 0.4 20 (e T 01 20 — —
15 S o sfF < v s e s}
T N T o1 10 R N R 01 10 [ N
BN | EEE RN | BRI
0 b -0.3 0 B 1 \‘\ B -0.3 il - Y\
5 E | 04 5| A 04 518 \
-10 L 12 -0.5 -10 - ’; : L 05 10 i ! . : |
10 5 0 5 10 15 20 40 50 10 15 20 40 5 0 5 10 15 20

o=1, f=2 o="4, =2 o=4, p=4
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Probabilistic Relations

W We proposed alternative measures for relevance and
non-redundancy with a probabilistic interpretation.
(Langohr and Toivonen 2012)

W This is especially interesting in a setting of uncertain
networks, where edge weights describe probabilistic
relations between nodes.

ALGODAN
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Greedy Algorithm

M The overall relevance REL () is submodular
W Hence, a greedy algorithm is guaranteed to find a set
which achieves at least 1/k of the optimal score
(Nemhauser 1978)
1.Repeat until k representatives has been retrieved:
a. Find the most relevant object rw.r.t. Q, and Q,
b. Output rand add it to Q,

T T——T T —_1 T T I § T T T T T T
— = “ - = o

ALGODAN
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lterative Algorithm

1.Get an initial solution R of k objects (e.g. random)
2.Repeat while R changes:
a. Find the optimal swap of any object I in R
to any object not in
0. If the swap improves the result, implement it

ALGODAN
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Word Relations and Senses

¥ Problem: Identify an overview of different senses or
contexts of words

¥ Proximity: word co-occurrence within sentences

word(s) |bank star root branch, root
contexts |[reserve planet plant tree
river trek equation indo
gaza cluster word mathematics
credit sirius irrationality  |line
international |movie unity equation

ALGODAN
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Co-authorship Relations

¥ Problem: Identify authors that are relevant w.r.t J. Han
and C. Faloutsos, but non-redundant w.r.t. each other.
¥ Proximity: proportional to the number of co-authorships
(Potamias et al. 2012)

Rel. and non-redundancy |Relevance only

P.S. Yu IL, USA P.S. Yu IL, USA
D. Srivastava  NJ, USA R.T. Ng Canada
H.J. Zhang China S. Papadimitriou  NY, USA
Y. Tao Hong Kong [L.V.S. Lakshmanan Canada
C. Liu WA, USA H.V. Jagadish MI, USA
B. Chin Ooi Singapore [X. Yan CA, USA
T.K. Sellis Greece J. Yang OH, USA
J. Gao IL, USA W. Fan NY, USA

ALGODAN
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Co-authorship relations

¥ Problem: as before ...
¥ Proximity: as before ...

1

T 1F T

LT RELW,OpQy)

I | | [ 9
o — i REL(R,Qp.Qy) Alg. 1 —— —

REL(R,OP,(SN) Rig 42 mmmmm ]

0.9

- rely(u,Qy) ------ 0.1 REL(R.Qp.Qy) random ------- .
g 08F nonred(u,R\u) e - E; ,Qp,Qy) random+AIg.2 e ]
] F _— 1
T o7k 4 g 001 |
3 : 2 [ A
2 06 [ =1 o I
& : Z 0.001
o H E
€ 05 pi . 2
o i B
5 oa i 4 B o000 |
8 " PRV ,"\ 3 I -
b _ L « J
o 0.3 v i\ ] 1e-05 | 3
o e N CI>) B s T
e 02p- 717 © : B .
o " | 16-06 - T
[ LA feg7 L—L 1 11111 |
5 10 15 20 25 30 35 40 45 50 1 2 3 4 5 6 7 8 9 10
k k

=> The Iiterative algorithm produces only marginally
better results than the greedy ranking.
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Biomedicine

¥ Problem: Identify phenotypes that are relevant w.r.t.
guery genes, but non-redundant w.r.t. each other.
¥ Proximity: probabilistic proximities from Biomine

15 | —— 200 ————T—T— (Sevon et al. 2006)
REL(u,Qp.Qp)

relp(u,Op) ------ g 0 | ]

rely(u,Qy) ------
cc>>‘ 1 red(u,Rw) oo L °;:>” -200 - .
3 : 3 -400 -
c c
= 3
® 05 Fam | & ®or i
c Aot k3 = - .
5 ; of . 5 800
© o -1000 |- -
© = — ©
8 g -1200 - .
= c
g S 1400 | -
(0] [0)]
2 85 71 2 -1600 |

71800 el (R.0p.QY)
A | | | | | | | | -2000 | | | | | | | ] ]
1 2 38 4 5 6 7 8 9 10 10 20 30 40 50 60 70 80 90 100

=> The quality decreases in quite a similar manner
for different cases

ALGODAN
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Conclusion

¥ Problem: Find a non-redundant set of relevant objects,
given positive and negative query objects

¥ Relevance, irrelevance, and non-redundancy definitions
are based on object distance/proximity.

W Greedy and iterative algorithms produce a good set of
objects, with high relevance and low redundancy.

¥ The iterative algorithm produces only marginally better
results than the greedy ranking.

ALGODAN
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Future Work

W A deeper analysis of the problem and its properties
¥ The proposed algorithms are simple but efficient if the
proximities are given. For more complex and larger

cases faster algorithms are needed.

¥ More extensive experiments to understand the practical
behaviour of the methods and parameters

® Adaption of the approach to different applications

ALGODAN

20



AkLGODAN

Discovering Knowledge about the
Evolution of Bacterial Metabolism:
Weighted Graphs and Compression

Fang Zhou

PhD student, Discovery group

P i m
Aalto University HELSINGIN YLIOPISTO
‘ HELSINGFORS UNIVERSITET
u

IIIIIIIIIIIIIIIIIIII




Tree of life
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We are interested in the biodiversity within metabolism in
Archaea and Eubacteria, two main branches of life.
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Problem

¥ Question: whether the evolution process is constrained
by the environment and biochemistry oritis a
stochastic process?

B The central problem of this question is that it is not possible to
repeat the experiment — evolution.

B However, it is possible to get some understandings of the
stochasticity of the problem by looking at cases where
evolution started from similar starting points.

W Goal: understand the conservative of metabolisms.

Wldea: compare the essential part of metabolisms.

ALGODAN



Metabolism

B The metabolism of one species.

imThe metabolism contains thousands of enzymes. The
network is too complex to easily analyzed.

ALGODAN




Metabolism

W Different species have different metabolisms.

® Given a large number of species, how can we compare
their essential parts?

¥ Our method:
M Integrate metabolisms of species into one graph.
B Extract essential parts by using graph compression.
B Compare essential parts of graphs.

ALGODAN



Outline

W Representing metabolism with graphs

ALGGBAN



Weighted metabolic networks

¥ How to integrate metabolic networks into one graph?
W Represent the meta-metabolic network as
a graph with enzymes as nodes. Two
enzymes are connected if they catalyze
reactions that share metabolites.
B Assign weights to enzymes based on how
frequent they are in the species.

Genome 1

Genome &

Genome N Weighted metabolic network
A B adig: N



Outline

¥ Weighted graph compression

ALGGBAN



Weighted graph compression

®Weighted graph compression= 0 9
grouping nodes that have 18 y
similar link structure. (KDD2011) (C)

W A supernode represent all original

nodes within it.
B A superedge represent all L
possible edges between the

corresponding original nodes. @

® The superedge weight is the mean
of the original edge weights.
W Differs from clustering or community @
detection.

19
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Compression based on node
importance

®We extend the definition of graph compression to also
consider node importance.
® The goal is to produce a smaller graph with less error related
to more important nodes.
® Nodes are merged to supernodes, and edges to superedges.
¥ Low-weight edges and unimportant nodes are removed.

(Cat (0.9) gjm

uman at (0.9) Human
(e 00 [Dog (07) 050
S

(Dog (0.7) — (Wolf (0.1))
|

G
ALGODAN
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Compression error

B Possible compression error
® Missing edges and nodes;
W Extra edges;
¥ |Inaccurate edge weights.

B Compression error = Euclidean distance between the
original and the compressed graphs weighted by node
importance

ALGODAN
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Algorithms

B Agglomerative process: execute one operation per time
until the specific compression ratio is reached.

W Operation 1: node-pair merger (with possible omission of
(super)edges and (super)nodes)

W Operation 2: individual (super)edge deletion.
® Two basic algorithms

B Brute-force executes the best possible operation in each
iteration.

B Randomized algorithm randomly picks a node u, and then

chooses v whose combination with u gives the best possible
result.

ALGODAN
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Results on synthetic datasets

® Node importances can guide the process to a better
compression.

v without—-importance
,-. O with—importance

0.010

dist / pair of nodes (RMSE)

0.1 0.3 0.5 0.7 0.9
AbGCEEN Compression ratio

0.000
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Outline

¥ Application to metabolic networks

ALGGBAN
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Correlation between two kingdoms

¥ Question: whether the evolution process is constrained
by the environment and biochemistry?

66
64
62 _

Y 60
j =
8 58

7]
0O 56

54
52
50 -

0.01 0.03 0.05 0.07 0.09
Compression ratio

¥ The compressed graph gives the essential part of
metabolism.

¥ Results show: more compression actually gives a
Ahﬁ&'ﬁﬂﬁr distance. The evolution process is constrained.
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Outline

B Representing metabolism with graphs

B \Weighted graph compression

B Application to metabolic networks

M Conclusion

ALGODAN
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Main contributions

®'We presented the weighted graph compression
problem, and also extended and generalized the
problem definition to also consider node importances.

¥ Two compression operations and four algorithms are
proposed, and are evaluated on real datasets.

¥ The use of weighted graphs and compression provides
a framework to investigate the existence of constraints
In the evolution of metabolism.

ALGODAN
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Future work

W Develop more effective compression methods.

® Apply the compression method to compare the
importance of pathways in the different kingdoms.

¥ Extract an approximate ancestral metabolism, which is
a connected subgraph with enzymes that are common
to both kingdoms.

ALGODAN
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Variation calling

T

I S

Reference DNA — ..ACGATGAGTCGGAT.. —
- T _
— — -
W ! \
— SNP A->T
Short reads of donor DNA
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Enhanced variation calling

® Why always only one reference is used?
W We propose to use reference + known variations as the

basis for read alignment: H

N

AC-TT 'acTT,
ACCGT actT! ¢ o
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Enhanced variation calling pipeline

Genome automaton

l project to reference (.sam)

Automaton
refinement = - = = — Information on
o - o alignments to
SNP calling Larger variant calling known larger
/ variants
y
Hypothesis: better accuracy? Our big challenge for next years!
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Feasibility of the approach?

M Sirén, Valimaki, Makinen. Indexing Finite Language Representation of Population
Genotypes. WABI 2011.
B Generalization of Burrows-Wheeler transform for acyclic finite automata -> Generalized
compressed suffix array (GCSA)
Based on our work in RECOMB 2009 for multiple genomes.
B Supports alignment of reads alike the other read aligners
Given a read P of length m, one can count the paths starting with P in O(m) time
Extends to approximate search with the general backtracking & branch-and-bound mechanism.
B Similar space usage as for other read aligners
3.3 GB for Human Genome + Finnish subpopulation of 1000 genomes data!

- Construction requires 173 GB and takes 18 hours....

Y=
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Alignment experiment

% reads mapped
/ \

86,3% 1,5h 82,7% 0,5h
1 91,9% 1,9h 91,4% 0,8 h
2 94,1% 7,0h 93,9% 54h

yd T

: BWT index on reference genome,
BWT index on automaton, ) .
Supports k-errors search faithfull alike Bowtle, BWA, SOAP2.
PP Y- Supports k-errors search faithfully

-> petter yardstick for GCSA.

10 million reads of length 56 using one thread

ALGOBAN
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Some insights

Search GT
Search CT

0 G~

1] 2¢ | AC

4C

LC
CGT
C

AbGEBAN

Distinguishing prefixes

#
A
CC
CG

{CT

1G

{ T#
TT

P RPRPNRREPRNPR

All paths in lex order

#
ACCGT#
ACCTT#
ACGT#
ACTT#
CCGT#
CCTT#
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Summary

® Make finite automaton from reference + SNP data or
from multiple alignment.

W Make it reverse deterministic (skipped detalils).

W Sort distinguishing prefixes (prefix doubling, bucket
sort, others?)

B QOutput GBWT.

® Read alignment almost identical to normal BWT read
aligners (like bowtie, bwa, SOAP2).

ALGOBAN %% 1



What now?

W Distributed construction algorithm in progress -> no
need for massive main memory.

W Validation test -> can we get better accuracy for small
variant calling?

®ANnchored alignment -> projection to reference (done, just
running tests)

W Large variant calling directly from paths? -> Less data
for de novo calling -> should improve accuracy.

W Other applications: primer/adapter design

ALGOPAN =W



Validation test

_ Align reads with our
Align reads to A GBWT-index on A+D

™ Do variant calling identically with both approaches.
W Calculate precision/recall for both approaches.

‘‘‘‘‘‘‘‘‘‘‘‘‘‘
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Burrows-Wheeler Compression

¥ In 1994, the Burrows-Wheeler transform (BWT)
Introduced a completely new way to compress text
W Used in data compressors such as bzip?2

¥ In 2000, the FM-index based on BWT created a new
type of text index: the compressed full-text self-index
W Store text in compressed form
W Support fast pattern matching queries (index)
W Used in bioinformatics tools such as bowtie

ALGODAN



Burrows-Wheeler Transform (BWT)

¥ Invertible permutation of text
ABRACADABRA — RDARCAAAABB
W Easier to compress than text
¥ Indexing is easier too
® Pattern matching queries on text can be implemented using

simpler queries on BWT

rank(A,7) = 3 = number of A’s in first 7 characters

ALGODAN



Our Recent Improvements

B Grammar precompression
W Faster compression and decompression

W Faster algorithms for inverse BWT
W Faster decompression

¥ Fixed-block compression boosting
W Simpler, faster, smaller FM-index

ALGODAN



Grammar Precompression

™ Initial compression before BWT

/[ Grammar. BWT Entropy }\
precompression encoding

Text Compressed
Text

Grammar Inverse Entropy
decompression BWT decoding

W Less data to process by BWT and its inverse

ALGODAN



Grammar Precompression

compression time decompression time

g - 8
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7zip
bzip2
gzip
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Faster Inverse BWT

W Inverse BWT is bottleneck in decompression
™ Slow because of CPU cache misses
¥ Our new algorithms
® Algorithm that halves the number of cache misses
® Algorithm with asymptotic reduction in cache misses
for highly repetitive data
® Technique that reduces the cost of cache misses
W Based on
@ Combinatorics of BWT
® Cache complexity analysis
® Out-of-order execution

ALGODAN



Faster Inverse BWT
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Fixed-Block Compression Boosting

W Compression boosting improves FM-index compression
™ Divide BWT into blocks in a specific way

W Compress each block separately

B We show that blocks of fixed size work as well

M Simpler to implement, faster to construct
W Better compression, faster queries

ALGODAN



Fixed-Block Compression Boosting

ALGODAN
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Publications and Code

¥ Juha Karkkainen, Pekka Mikkola, Dominik Kempa.
Grammar Precompression Speeds Up Burrows-Wheeler
Compression. Submitted, 2012.

W Juha Karkkainen, Dominik Kempa, Simon J. Puglisi.
Slashing the Time for BWT Inversion.
2012 Data Compression Conference.

® Juha Karkkainen, Simon J. Puglisi.
Fixed Block Compression Boosting in FM-indexes.

SPIRE 2011.
]

W Experimental, open source Burrows-Wheeler compressor

ALGODAN
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https://github.com/pjmikkol/bwtc

Future work

¥ Improve entropy coding in compressor
® We have a good coder and a fast coder
W We want a coder that is both good and fast
B Completes the Burrows-Wheeler compressor

¥ Improve FM index entropy coding
® Entropy coding techniques are completely different
because of the need to support rank queries
W But the same properties of BWT are exploited
W Study both types of techniques together

ALGODAN
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Objective

DATA SOFTWARE BAYESIAN NETWORK
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i) :2 aﬂ Scalable?
o I Public?
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~150 variables

INPUT MODEL + ALGORITHM OUTPUT

_ *In collaboration with Dr. Tiina Paunio, Institute for Molecular Medicine
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Problem

Compute
posterior expectations Fit to the data ]

of structural features:
2111.@)

(DAG) on n nodes

D|rected acydﬁ i Node ¥|Parents of vin G
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Id ea. (Parviainen & Koivisto, AISTATS’10; Niinimaki, Parviainen, Koivisto, UAI'11)

2. 111.(G)

' Summation splitting for tradeoffs
() ~
3
> 21116
3 X G:X v

n
2 .
% DAG O(n) linear
3 linear order O(n**1)  polynomial
a partial order  O(nk*1+n2l) polynomial
void O(2"n) exponential
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Concepts

A DAG is compatible with a partial order
If they have a common linear extension

In a linear ord

Bucket order

ot sizes are one

A DAG has K A partial order has | ideals
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Analytics

B For a fixed partial order, time O(nk*1+n2|) suffices thanks to the fast
sparse zeta transform.

W Single bucket orders with large buckets yield a better tradeoff
between sample space size and per-sample runtime than parallel

bucket orders with smaller buckets.

W Bucket sizes larger than one reduce the sample space size
substantially. A reasonable bucket size is (k-2) log n.

ALGODAN



Experiments

"Mushroom” data; n=22; k=5; eight independent MCMC runs

bucket size 1 (linear order)

—80600
-80610
—-80620
—80630

—-80640 ¢

—-80580
—80590
—80600

-80610¢

80620 — |

10° 10*

MCMC step
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largest absolute error

0.001
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bucket size

0.1

10.09
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10.05
10.04
10.03
10.02
10.01

time (s / step)



Conclusion

¥ An important and inspiring sum-product problem.

¥ Our Partial Order MCMC is the most efficient Bayesian
method for structure discovery in Bayesian networks.

W Next: Implement some useful features to our publicly
available software (BEANDiscO0).

W Next: Approximation guarantees?

ALGODAN



ALGODAN

Fast Zeta Transforms for Lattices

Petteri Kaski

Joint work with

Andreas Bjorklund (Lund), Thore Husfeldt (Copenhagen),
Mikko Koivisto (Helsinki),  Jesper Nederlof (Utrecht),
Pekka Parviainen (Helsinki)

Aalto University -

HELSINGIN YLIOPISTO
‘ HELSINGFORS UNIVERSITET
UNIVERSITY OF HELSINKI



Background

W Mobbius inversion is a generalization of
the principle of inclusion and exclusion
to partially ordered sets

W Zeta transform  ~ Fourier transform
Mobius transform ~ inv. Fourier transform

B We know that fast Fourier transforms exist
— are there fast zeta/Mobius transforms?

W For lattices, yes (SODA 2012)
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(Finite) Lattices

e Combinatorial definition:
A (finite) partially ordered set (L,<)
such that
|) there is a minimum element; and
2) any two elements x,y € L have

a least upper bound (join) xvy

® Algebraic definition:
A (finite) commutative idempotent
semigroup (L,Vv) with identity

ALGODAN
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Example: Subset Lattice

® The set of all 2" subsets of an n-element set

e Partially ordered by subset inclusion

Join = Union
Meet = Intersection

ALGODAN



Example: Divisor Lattice

® The set of all positive
divisors of
a positive integer n

® Partially ordered by
divisibility

Join = lcm
Meet = gcd

ALGODAN



Mobius Inversion [Rota]

® Let (L,<) be a lattice
® Let be Ka field

® Forf:L — K, define the zeta transform
fC:L — Kforally € L by fC(y) = JxeL:x=<yf(X)

® The inverse of T is the Mobius transform p

ALGODAN



In the Language of
Linear Algebra ...

® Suppose L has v elements

® fisarow vector of length v
with positions indexed by L

e Cisav by v matrix with

C(x,y)=1 if x<y;
C(x,y)=0 otherwise

® /eta transform:
Right-multiply f with T

ALGODAN
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Complexity of Evaluation

® Assume that L is fixed, [L| = v

P qQqr s twu

® Task: flo o 1 1 10

Given f: L — K as input, fcl? 2 21 1 2
compute C:L — K

e {C can clearly be computed Glpar s tu

in O(v?) arithmetic pp

S qglo 1 01 0 |

operations in K

r{f0O O I I | |

e But can we go faster? s|0 0 0Ol O I

t{0 O OO0 I |

ul0 0 00 0 I
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Arithmetic Circuits

® How many gates are sufficient / necessary in
an arithmetic circuit that computes fC from f ?

® Trivial circuit has O(v?) gates
——but do there exist smaller circuits?

\Gf/

L
I
~

0)

¥
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Main Result (Bjorklund et al., SODA12)

® |et (L,<) be a lattice with v elements,
n of which are nonzero and join-irreducible

® Then, there exist arithmetic circuits of size O(vn)
both for the zeta transform on L
and for the Mobius transform on L

® (The claim holds also if join-irreducible
is replaced with meet-irreducible)

Motivation: Many combinatorially useful
lattices have n = O(polylog v)

ALGODAN
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Why?

® Polynomial multiplication:
(Ix°+Ix"+3x?) - (Ix°+2x") = Ix°+3x'+5x2+6x°

® ... fast multiplication via the fast Fourier
transform (FFT)

® “Lattice polynomial” multiplication:

(1{a,b} + 3{c,d}) u (I{b,c} + 2{d}) =
= |{a,b,c} + 3{b,c,d} + 2{a,b,d} + 6{c,d}

® ...fast multiplication via the fast zeta transform
& fast Mobius transform (FZT/FMT)

ALGODAN

11



Applications (e.g.)

® (Currently fastest) exact algorithms for
many hard problems such as graph

colouring
[Bjorklund, Husfeldt & Koivisto 2009]

e Constructing FFTs for inverse semigroups
[Malandro & Rockmore 2010]

® Analysis of Markov chains on semigroups
[Bidigare, Hanlon & Rockmore 1999;
Brown 2000; Brown & Diaconis 1998]

ALGODAN
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Summary & Further Work

Main result:

There exist arithmetic circuits of size O(vn)

for the zeta & Mobius transforms on (L, <)

with v elements and n nonzero join-irreducibles

Can we go faster?
—Are there smaller circuits?
—Constructing the circuits efficiently

Is there a family of lattices L that does not
admit (monotone) circuits of size O(e), where
e is the number of edges in the diagram of L ?

Applications in algorithms for hard problems

ALGODAN
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Clustgrams: An Extension to
Histogram Densities Based on the
MDL Principle

Panu Luosto, Petri Kontkanen and Kerkko Luosto
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Panu Luosto and Petri Kontkanen:

Clustgrams: An extension to histogram densities based
on the MDL principle (Central European Journal on
Computer Science 2011)

Panu Luosto, Petri Kontkanen and Kerkko Luosto:
The normalized maximum likelihood distribution of the
multinomial model class with positive maximum likelihood
parameters (Manuscripi)
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Histograms and a Clustgram
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Model Classes in the Location-Scale
Family

Uniform Normal Laplace

ALGOBAN Half-normal Exponential



Main Problem

We would like to use normalized maximum
likelihood (NML) for model selection, but. ..

m How to handle the problem of the infinite
parametric complexity of a model class?
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Contributions

m Code lengths for model classes of the
location-scale family in the form

—log i (x") + Cc —log p(a(x"))

m NML code for a clustering sequence
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Clustering

In this talk,
m data are a one-dimensional sequence:
Xt = (x1,%,...,%,) € R"

m clusters are subsequences
m every point x; belongs to exactly one cluster

ALGOBAN



Quality of a Clustering (Clustgram)

Problem: Given a collection of model classes
(uniform, normal etc.), find

m the best number of clusters k € {1,2,... ko}
m the best clustering and
m the best types of clusters

Criterion: The best clustering enables the best
compression of the data and the clustering itself.
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Normalized Maximum Likelihood

m Normalized maximum likelihood (NML)
given a model class:

P(x"; f(x"))
> yrexe Py 0(y™))
yields the code length

—log P(x"; é(x”)) + log Z P(y"; é(]/n))

Py (x") =

parametric complexity

ALGODAN



Inifinite Parametric Complexity

m The normalizing sum (integral) diverges in
many interesting cases:

log > P(y; 0(y)) = oo

yeX

parametric complexity

m Then, no worst-case optimal solution exists
(uniform, normal, half-normal, exponential,
Laplace)

ALGOBAN



NML with Luckiness

m Allow the excess code length to grow as an
function of the ML parameters.

m NML (if it exists) has a code length
—logP,, (x")+C
m We get
—logP,, (x") + C. — logp(a(x"))

where p is an extremely flat density based

on Rissanen’s prior for integers
ALGOBAN



NML for a Clustering Sequence

m Given the number fo clusters k, we know
that there are no empty clusters

m For multinomial NML, calculating

n! £ m;\ M
Calk,n) = Z ml!...mk!,l}(?)

m1+"'+mk:n,
mi,...,mp>1

fast is untrivial
m Using the technique of generating functions
we can prove that

n
preopsif T 2m +20k+1.0) = <E B 1> Cy(k,n)



Two Normalizing Sums

m Is there a difference in practice between

n! £ ;N\ M
atkn= 3 G

my+---+m=n,
ml,...,mk21

and

n! £ i\ M

mi+---+mp=n,
mi,...,m>0
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Parametric Complexity as a Function
of k With a Fixed n = 100
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Neuroinformatics

Overview, incl. brain imaging

Aapo Hyvarinen
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Neuroinformatics Team

® Mission:
¥ Develop statistical data analysis methods, with focus on
- Unsupervised machine learning methods
- Neuroscience applications
® Non-Gaussianity a central theoretical framework

¥ Members:
¥ Aapo Hyvarinen, leader
¥ Patrik Hoyer, co-leader
W 4 postdocs, 3 PhD students
® From 2012, 30% in CoE of Inverse Problems Research
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Highlight 1:
Testing independent components

¥ In independent component analysis, testing almost inexistent
¥ Components could be local minima, or random effects
¥ We developed a method which uses a proper null hypothesis and
the theory of classical hypothesis testing (Neurolmage, 2011).
¥ Do ICA on multiple datasets (e.g. subjects), and see if you get the same component in

more than one data set
Distributio Distribution

¥ Applications in MEG here: n ' '

4990
00000

"o r
e r
e r
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Highlight 2:
Connectivity (causality) in fMRI

¥ Goal is to tailor our causal analysis framework for fMRI
¥ Adapt nonlinearities to the specific distributions in fMRI
¥ Develop methods which work with few data points

¥ Jointly with Stephen Smith

— Oxford Centre for Functional Imaging of the Human Brain
— Developer of simulated data for comparing algorithms

(Neurolmage, 2011)
® Our methods (under revision for JMLR)
®Have best performance on simulated data
®Are particularly simple, based on sign of
E g(x) y— E x g(y) where g is a nonlinearity,

such as g(u)=u?
ALGODAN
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Learning linear cyclic causal
models with latent variables

Patrik Hoyer
Academy Research Fellow
Neuroinformatics group
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Causal discovery

Pearl, 2000; Spirtes et al, 2000
® General problem ( g )

System Data

Data generation

< 1.23 1.25 3.66 232 ..
S w
Yy 0.11 0.10 0.19 0.08 ..

A zZ | 027 154 033 0.76 ..
w| 932 234 533 387 ..

Inference

W Using what type of data, what kind of algorithms, and under
what assumptions on the underlying system can we recover
the data-generating process in the large sample limit? What
procedures work well with realistic sample sizes?
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Causal discovery

e.g. Ramsey et al, 2011; Sachs et al, 2005
® Examples (.0 / )

Neuroinformatics Bioinformatics

2. 4-CD28
3. ICAM-2
4.PMA ,
5. B2CAMP (MAPKKK|
Inhibitors _
6. G06976 =
7. AKT inh (MEK4/T)
8. Psitect i :
9. U0126 :
10. LY 294002 | !NK_ @
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Linear cyclic model with latent variables

Hyttinen, Eberhardt, and Hoyer, JMLR, minor revisions
= Model: (Fy Y )

W Observed variables V grouped into a vector x

W Exogenous input given by the vector e (correlations allowed!)
¥ Linear generative model x := Bx + e

¥ Interventions ‘cut’ all arrows into that variable

@ (@)
57 @ @T’

Ir1 = €1 1 = €1
Iy — €9 Ty — €9
T3 = ary + Bra + e3 T3 = C3
T4 = YT3 T €4 Ty = YT3 T €4
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Linear cyclic model with latent variables

W Example:

012\

_b21%

b31 4 4bg0 B =
——bgz—sl
~—b34 -

b
-
034/

0
b21
b31
bs1

0
0
0

ba2

¥ Intervening on z; and z2:
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‘Passive observational’ data

Without additional assumptions, the model is not identifiable
if we do not intervene on the variables (i.e. if we only ‘passively
observe’ them)

Randomized controlled experiments

‘Gold standard’ for learning causal discovery

In experiment &, randomize the values of one or more

variables Jr € V and passively observe the remaining
ones Uy =V \ Tk

Allows computing experimental effects of each intervened

variable onto each passively observed variable (see next
slide)
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Experimental effects

W ‘Experimental effects’ measure the influence of each intervened
variable on each passively observed variable. Example:

t(xg ~ x4 || {z2,23}) =

t(xg ~ x1 || {22, 23}) = @ —|— v0
t(xg ~ x4 || {22, 23}) =

t(xg ~ T1 {ZEQ,$3}) = 5ﬁ

(Note: These are not influenced by latent variables)

® We can derive linear constraints on the direct effects, based on the
measured experimental effects:

by~ x| Ti) = bus + D tlag ~> i || Ti) bus
x; € Ug

(The constraints are valid for cyclic networks as well,
ALGOBAN and are not influenced by hidden variables.)



Algorithm:

Collect all constraints on the direct effects from all experiments
Solve the resulting linear system to estimate the coefficients

Theorem 1:

The outlined procedure identifies the generating model if and
only if for each ordered pair (i, ;) there exists at least one
experiment in which z; is intervened on and z; is passively
observed.

Theorem 2:

No procedure can identify the generating model unless the
condition of Theorem 1 is satisfied.

AL
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Experiment selection

W What sets of experiments satisfy the condition?
¥ n experiments each intervening on a single variable
W n experiments each intervening on all but a single variable
® O(logn) experiments for optimal designs!

variables (n)
2 3 4 7 11 21 36 71 127 253 463 925
™ | | ! | ! | | ! ! | )
- X -
o .
o o
(e} - O
< <
< 0 L o<
[2] [2]
c c
En - N E
g 5]
x © — © %
[0} | [}
Ie} : — 0
]

< — <
]

[so] - ™
]
|

(8} \ -
|

- T T T T T T l -

1 ] ] ] ] ] ] ]
] ] ] ] ] ] ] ]
| |
A hﬁ.@ﬁA N 2 3 5 9 17 33 65 129 257 513
variables (n)



Summary and outlook

Hyttinen, Eberhardt, and Hoyer, JMLR, minor revisions
¥ Summary (Hy / )

W Model class: linear cyclic models with latent variables

® Data needed: experiments intervening on the variables
¥ Learning algorithm: sound and complete

W |dentifiability conditions, selecting experiments

W Application to DREAM challenge data (check the paper!)

® Outlook
W Extends to ‘noisy-or’ binary variables (poster!)
W Background knowledge and faithfulness (poster!)
W Recent work on ‘overlapping’ datasets, and on
non-parametric approaches

ALGODAN
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Estimation of unnormalized
probabilistic models

Michael Gutmann
Postdoctoral researcher
Neuroinformatics group
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Motivation

W Data analysis often requires estimating the parameters
O of a probabilistic model p(x|8).
W A popular approach is to choose 6 such that the
probability of the data is maximized (MLE).
BMLE is only applicable if [p(x|8)dx=1 for all 6.
®Many models do not integrate to one (e.g. Markov random
fields). They are unnormalized.
® Normalizing unnormalized models is computationally
expensive in high dimensions (curse of dimensionality).
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Goal

Estimation procedure

» applicable to unnormalized models

» with a good trade-off between statistical and
computational efficiency

Statistical efficiency: small estimation errors
Computational efficiency: short running times

ALGODAN



Proposed procedure (basic idea)

¥ Intuitively, knowing
(1) the properties of a random variable y
(2) the differences between x and y
allows you to infer the properties of x.
W More concretely,
(1) Choosing a random variable y with known p(y) where
sampling is easy
(2) Performing logistic regression on the samples from x and vy,
with p(x|6)/p(y) in the regression function
allows you to estimate the parameters 0.
W See next slide: p(x|0) can be unnormalized!
(Gutmann & Hyvéarinen, JIMLR2012; Alternatives to logistic regr.: Pihlaja et al, UAI2010)

ALGODAN



Toy example

W Gaussian data with standard deviation 0=2:
mUnnormalized model: In p(x|o,c) = -||x||?/20% +c
W To be estimated: o, ¢ (normalizing parameter)
W Auxiliary “noise” distribution p(y): standard Normal

1

™ Contour plot of objective e
in logistic regression |
mBlack: loci of normalized models N
mGreen: optimization trajectories |
mCircle: optimum

ALGODAN



Properties

W Statistical efficiency:

W The estimates are consistent even if p(x|0) is unnormalized.
(There are mild conditions on the noise distribution p(y).)

MFor large ratios v of noise to data sample size, the estimates
become as good as those obtained with MLE.

(asymptotic Fisher efficiency)
® Computational efficiency:

MLogistic regression is performed by solving a well defined
unconstrained optimization problem. Standard optimization
tools are applicable.

WThe ratio v can be used to control computational complexity.

ALGODAN



Application in the modeling of Images

W Data: 80 million complete visual scenes (size: 32x32)
W Hierarchical model with

N | g N Y
three feature extraction Iayers e
(conference submission) .' gugg=g
u After learning:

M 1st and 2nd layer: “Invariant” detection of edges
m3rd layer: Features with enhanced selectivity to orientation/
space; Descriptors of overall image properties?

For three 3rd layer features, images giving maximal (top) and minimal activation (bottom)

(kN ~EFB
=R =

o -
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Summary

™ Problem studied:
Estimation of unnormalized probabilistic models
¥ Relevance:
M Estimation of probabilistic models is ubiquitous in data analysis.
®Many advanced probabilistic models are unnormalized.
® Our solution: (Gutmann & Hyvarinen, JMLR2012)
WBased on logistic regression between data and artificial “noise”
WGood statistical and computational properties
mConnection between supervised and unsupervised learning
WAllowed us to formulate and estimate novel models for images
Winspired the formulation of a general estimation framework
(Pihlaja, Gutmann & Hyvérinen, UAI2010; Gutmann & Hirayama, UAI2011 —poster)
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