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MODULES IN GENOME

Jarkko Toivonen, Department of Computer Science

The basic question is why gene expression dif-
fers between cells of single organism even though
the cells contain the same DNA.

What affects the gene expression of a cell?

e Condition
- For example, increased temperature
or stress to cell causes Heat Shock
Factor (HSF) to be activated.
e Cell type: neuron, germ, blood cells, etc

o The stage of development of an organism:
Embryo, Fetus, Adult, etc

What mechanism regulates the expression of genes?

e A promoter is an area in DNA close to the
beginning of a gene. Transcription of a
gene starts here.

o Certain proteins that chemically bind to
this promoter area can regulate the tran-
scription of the gene

o These proteins that bind to DNA and reg-
ulate the transcription are called transcrip-
tion factors (TF). They can be either Activa-
tors or Repressors.
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Binding sites of transcription factors

e In order to understand how the regula-
tory system works, it is important to be
able to describe and predict the binding
sites of transcription factors in the genome

e A model that describes the binding sites
where the TF prefers to bind is called mo-
bf.

o There are several ways to represent a mo-
tif:

— A consensus sequence of a TF is the
DNA sequence with the highest bind-
ing affinity to the TF

— Regular expression (like ACG[GC]TT)

— Position Weight Matrix (PWM) and
its sequence logo

An example of a PWM logo for the ERG factor:
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We need a large set of sequences where we know
that a fixed transcription factor has bound. From
this dataset we want to learn a motif model for
the transcription factor in question.

The SELEX procedure (Systematic evolution of lig-
ands by exponential enrichment) is a high-throughput
in vitro method for selecting those sequences that
get bound by a TE.

o Starts with a library of random sequences
of constant length: for instance 14 or 20

bp
o The proteins are let to bound to the ran-
dom sequences

e The unbound sequences are removed
o Theselected sequences are cloned by PCM

o The selection process is repeated for the
cloned sequences

o The selected sequences can be sequenced
after each round of selection
Why use SELEX?
o To make high precision motifs, lots of bound
sequences are needed

e Fast and relative inexpensive

o Results from several different experiments
can be sequenced in parallel using bar-
coding

Using the SELEX data

e The SELEX procedure results in a set of
fixed length sequences that were bound
by the transcription factor

o The length of the binding site is usually
shorter than the length of the SELEX win-
dow

o Therefore, the sequences are fed to a mo-
tif finding program

e Analignment for the sequences is produced

e An example of counts from the aligment
of the SELEX experiment with the ERG
transcription factor

1 2 3 4 5 6 7 8 9
A 164 22 23 0 0 164 164 98 6
C 10 164 164 0 0 1 1 9 42
G 37 23 0 164 164 0 1 164 21
T 31 3 0 0 1 1 40 2 le4

o These counts are then normalized column-
wise, resulting in a multinomial distribu-
tion in each of the columns. This matrix
can be visualised as the previously shown
sequence logo.

The simple model isn’t enough because of co-
operation of transcription factors and the chro-
matin structure of DNA.

Our plan is to create a model for regulatory ar-
eas.

e We try to take a simple model for single
isolated motif and combine these to cre-
ate a more complex system that tries to
describe the co-operation of a set of tran-
scription factors

o Distances between transcription factors and
their orientation can affect the strength of
binding.

e This more complicated model can be used
to predict clusters of binding sites in the
genome

o The validity of the model can be tested
with in vivo data, like ChIP-seq

Even though understanding of regulatory sys-
tem is important in it self, still the main objective
is cancer research.

e Oncogenes promote cell growth and re-
production

o Tumor suppressor genes inhibit cell divi-
sion and survival

e Mutations in the DNA can affect the ex-
pression of these genes

o This can result in unrestricted growth, i.e.
cancer

I

Arttu Jolma, Teemu Kivioja, Jarkko Toivo-
nen, et al. Multiplexed massively paral-
lel selex for characterization of human
transcription factor binding specificities.
Genome Res. 20, 861-873 (2010).

This is joint work with Arttu Jolma, Teemu Kiv-
ioja, Pasi Rastas, Mikko Sillanpad, Jussi Taipale
and Esko Ukkonen.
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Major part of star formation, be it low- or high-

mass stars, takes place in clusters. The clusters
are not bound and will eventually disrupt e.g.
because of the Galactic differential rotation. The
stellar clusters trace therefore the recent
Galactic star formation. The younger the clusters
are the more compact they are and the more
closely they are associated with the interstellar
gas and dust clouds they formed in. Detailed
study of young clusters still associated with their
parent cloud will provide information on the star
formation process and the stellar initial mass
function (IMF).

At the moment some 2000 Galactic stellar
clusters are known. This is only a small fraction
of the estimated total population of which a
major part is obscured by interstellar dust to us
and can not be observed in optical wavelengths.
However, the extinction decreases at longer
wavelengths and already at 2.2 microns in the
NIR the extinction in magnitudes is only 11
percent of that in the V' band.

The aim of this research is to develop methods to
locate previously unknown stellar clusters from
the UKIDSS Galactic Plane Survey catalogue
data release 7.

otto.solin@helsinki.fi

The search method takes pre-filtered catalogue data, divided into overlapping bins, and performs a
maximum likelihood fitting of a mixture of a Gaussian density and a uniform background. On each
bin the fitting is done using the standard Expectation Maximization (EM) algorithm. In addition to
the UKIDSS GPS catalogue, stars brighter than 10™ in K from the 2MASS survey are used, because
the brighter stars saturate in UKIDSS and moreover tend to produce false positives around them.

Scrutiny of the data base and the survey images reveals that the UKIDSS pipeline source detection
algorithm tends to classify most of the objects within regions of variable surface brightness as non-
stellar (parameter mergedClass=+1), whereas objects with intensity profiles similar to the
UKIDSS WFCAM point spread function are classified as star-like (mergedClass=-1). Clustering
non-stellar sources directs the search to stellar clusters either embedded in or near molecular/dust
clouds. Besides stellar clusters, the search targets also the locations of non-clustered star formation
and single embedded stars with associated nebulosities. The surface brightness, either due to
outflow activity or reflection, will produce "cluster" detections.

A fraction of the catalogue sources are due to data artefacts. The artefacts cause highly varying
extended surface brightness which causes the pipeline to classify most of the sources within the
artefact as non-stellar sources. In addition sharp features in the artefacts produce nonexistent
sources.

As expected most of the detected new clusters (137) or sites of star formation (30) are tightly
concentrated on the Galactic plane. Relatively few new clusters were detected in the direction of the
northern Galactic plane.

Most images of the new cluster candidate areas show clear signs of reflected light in particular in in
the K band thus indicating embedded clusters or sites of star formation.

The results are in press for the journal Astronomy & Astrophysics (http://arxiv.org/abs/1203.5292).

New cluster candidates identified previously as infrared point sources

In the leftmost panel are the UKIDSS catalogue entries in the cluster area.
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This candidate is not associated with any object in the SIMBAD data base.
The bright star in the NE corner of the image causes non-stellar

The red points are UKIDSS non-stellar sources brighter than 17™ in K,
black points other sources brighter than 17 in K, yellow points sources
fainter than 17™ in K, and brown points sources listed in 2MASS but not in
UKIDSS GPS. The red confidence ellipse is the cluster area given by the
EM-algorithm. In the two middle panels are the K band and JHK false
colour images of the cluster area. In the 2MASS image (the rightmost
panel) of the same area no cluster can be seen.

The two candidates above are reflection nebulae in optical images
(rightmost panels). The object NW of the candidate in the upper middle
panel is either another cluster or part of this larger cluster.

classifications that produce false positive clusters: the algorithm removes
the sources overplotted with a cross. In the 2MASS image (the rightmost
panel) of the same area no cluster can be seen.

Besides an IRAS point source a millimetre source, a maser and an infrared
dark cloud are detected in the direction of the candidate in the upper panels,
and towards the candidate in the lower panels an MSX source, an HII region
and a submillimetre source.

The number of indicators seen in the direction of many candidates gives
confidence the new clusters or embedded star formation locations are real
entities and not produced by chance nor are due to catalogue artefacts. In
general radio surveys find circumstellar dust envelopes and disks, and cold
cores of molecular clouds. In areas where a radio telescope sees only a point
source or signs of e.g. an ultracompact HII region, the UKIDSS images show
structures of surface brightness and single stars thus verifying the results of
the millimetre/submillimetre radio surveys of suspected star forming
regions.
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ACCELERATING BURROWS-WHEELER COMPRESSION WITH

Juha Kérkkainen, Pekka Mikkola and Dominik Kempa

The speed of text compressors based on the Burrows—Wheeler transform (BWT) — such as the popular bzip2 — is limited by the time needed
to compute the BWT during compression and its inverse during decompression. We propose to speed up Burrows—Wheeler compression by
performing a grammar-based precompression before the BWT. We have developed a fast grammar precompressor as a part of an experimental
Burrows—Wheeler compressor, and show with experiments that it accelerates compression and decompression without affecting compressibility.

The grammar precompressor has been implemented as a part of an experimental We ran three sets of experiments to test three hypotheses:

Burrows-Wheeler compressor [2] that has three main stages: 1. Precompression improves the total compression time.

Grammar BWT Entropy 2. Precompression improves the total decompression time.
/ precompression encoding 3. Precompression does not hurt the compressibility.
Text Compressed The timing experiments use the fast entropy coder and the com-
text pressibility experiments use the slow but good entropy coder. The
Grammar Inverse Entropy . .

) : x-axis labels from 0 to 6 are the number of precompression rounds.

decompression BWT decoding <-/ . .
Other well-known compressors are included as a reference point.

The idea of the precompressor is to quickly reduce the 1000MB, o = 206

data before more expensive stages. Grammar com-
pression is well-suited for the task as it can achieve
some compression without harming final compress-
ibility. Grammar compression has been studied as a
standalone compression method but not as a precom-
pression method before.

compression time decompression time compressibility
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We use Yuta Mori’s divsufsort algorithm [3] for N
computing the BWT and mt 1-sa-8 algorithm from [1] 8
for computing the inverse. -
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We use two experimental entropy coders of our own.
One compresses well but is relatively slow. The other

is fast but does not compress quite as well. 404MB, ¢ = 16
compression time decompression time compressibility

The grammar precompressor performs one or more i :
rounds of the following: ° S e |
1. Compute the frequencies of symbol pairs by 2 , |
scanning the text. g o °
2. Choose a set of frequent pairs that cannot over- °- ° 3
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lap (see below).

3. Add therule X — AB for each chosen pair AB,
where X is a new non-terminal symbol. 258MB, ¢ = 160

4. Replace all occurrences of chosen pairs with compression time decompression time compressibility
the corresponding non-terminal symbols in a
single sequential pass over the text.

100 120 140
L
0
L

Pairs A1B; and AjB; can overlap iff Ay = B or
B = Aj. We avoid pairs that can overlap to ensure
that all occurrences of all pairs are replaced.

sec/GB
sec/GB

0
L

10
L

Occurrences of rare symbols may be replaced by pairs &1 °1 T
of bytes to free those rare symbols to be used as non- R — o
terminals. '

bits/char
000 002 004 006 008 010 0.12
|

o - N ® % 0w o © - & ™ ¥ 0 ©

bzip2
gzip
7zip
bzip2
gzip
7zip
Izma
ppmd

Here is an example with two rounds:

Text Rules added [1] J.Karkkainen, D. Kempa, and S. J. Puglisi. Slashing the time for
singing do_wah diddy diddy.dum diddy.do A — .d, B —id, C — in BWT inversion. In Data Compression Conference, pages 99—
sCgCgAo_wahABdyABdy AumABdyAo D — AB,E —dy, F =+ Ao, G — Cg 108. IEEE Computer Society, 2012.

sGGF_wahDEDEAumnDEF

[2] P. Mikkola. https://github.com/pjmikkol/bwtc, bwtc, May 2012.
The decompressor computes the full expan- Expanded rules [9.5.2012].
sion of all rules and then replaces all occur- A—d,B—1id, C—in [3] Y. Mori. http://code.google.com/p/libdivsufsort/, libdivsufsort,

rences with a single scan of the text. D — .did, E — dy, F — do, G — ing Nov. 2010. [9.5.2012].
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The Burrows-Wheeler transform (BWT) is a powerful tool for data com-
pression used for example in the popular bzip2 compressor. We de-
scribe new algorithms for inverting the BWT, which is a bottleneck in
the decompression phase due to a high number of CPU cache misses.

The Burrows—Wheeler transform (BWT) is an in-
vertible text transform defined as follows.

Input: text T = BANANA$

1. Build a matrix with the
text rotations as rows

F
BANANAS $/B AN
AN Al$ B A
A AINA S
N AN AN
A B|A N A
$ N(A $ B
$B N|A N A

Output: BWT L = ANNBS$AA (the last column)

2. Sort the rows

>Z> 2
>wWe > Z>
Z>We > Z
> Z > e >
Z>Z> W
WZ>r>e>>2
EEXXEES [

>Z>Z>W
“®wr>Z>WZ>

The properties of the BWT make it easier to com-
press than the original text. It is used as the first
stage in many compression programs including
the widely used bzip2.

Assume L[i] is the k-th occurrence of a in L. We
define LF[i] = j, where F[j] is the k-th occurrence
of ain F.

Algorithm SIMPLEINVERSE
COMPUTELF
p < locate(L, $)
fori <+ Oton —1do
TX[i] + L[p]
p < LF[p]

Computing LF is very fast, but the main loop
suffers from multiple cache misses due to irreg-
ular memory access pattern hence it is slow in
practice. Even with the optimized memory lay-
out (see picture below) it can perform ~ 1 cache
misses. This algorithm is used in bzip2.

[ LFjo] [ Lo] [ LFOA] [ L] [ ---

Our algorithms can be divided into general pur-
pose inversion algorithms (fast for all strings) and
algorithms optimized for repetitive input.

To reduce the number of cache misses in a gen-
eral case we add a very fast (cache-friendly) pre-
processing stage that allows restoring two char-
acters at a time in the main inversion loop. We
precompute for each position i:

LF?[i] = LF[LF[{]]
LL[i] = L[{]L[LF[i]]
The main loop of the inversion then becomes:

3: fori< Oton/2do
4; TR[2i.2i +1] < LL[p]
5: p < LF?[p]

Assuming we use a similar memory layout as
with SIMPLEINVERSE (LF2 and LL stored inter-
leaved) the number of cache misses is halved.

This is illustrated in the picture below (solid arcs
represent the paths traversed in the main loop).

L

r

> > e W ZZ >
/

Byte-by-byte approach [3]
~ n cache misses

Super-alphabet [1]
~ n/2 cache misses

To reduce the cost of cache misses we start the
inversion from several positions simultaneously.
Such computations are independent hence could
be parallelized.

We use no explicit parallelism, but interleave the
computations. Modern CPUs allow out-of-order
execution: while one computation is waiting for a
cache miss, others (independent) can proceed.

Strings containing lots of repeated factors offer
a possibility of saving cache misses: once a fre-
quent factor has been restored, other occurrences
can be sequentially copied from that first one.

BWT captures repeating factors in the form of
runs of equal symbols which affect LF mapping:

Lemma ([2]). Foranyi € 1.n — 1 such that L[i] =
L[i —1], LF[i] = LF[i — 1] + 1.

LL
Consequently, LF tends to con- AN
tain lots of “parallel paths” AN
(see example on the right).
Such structure can be recog-
nized from the BWT string and A
used to reduce cache misses. A

The copy algorithm [2] detects local parallel paths
in the main loop, halving the number of cache
misses in the best case.

Our new algorithm called precopy [1] prepro-
cess the data to detect more parallel paths and
can reduce the asymptotic cache complexity.

One of the algorithms is consistently 2.3—4 times as fast as the previ-
ous state-of-the-art. Another algorithm achieves an asymptotic reduc-
tion in cache misses in theory and is the fastest algorithm in practice
for highly repetitive data.

The graphs below show the runtime of the inver-
sion algorithms (prior and new) on three files.

Name Description

mtl algorithm used in bzip2 [3]
mtl-sa mtl with super-alphabet
mtl-8 mtl with 8 starting positions
mtl-sa-8 | combination of preceding two
copy local parallel path search [2]
precopy | precomputing parallel paths

Part of human genome (100MiB)

140 183
120
100
80
60
40
o <o R W W S— N

mtl mtl-sa mtl-8 mtl-sa-8 copy precopy

Time [sec/GB]

100 x 1MiB english + mutations

Time [sec/GB]

copy precopy

mtl-8 mtl-sa-8

mtl mtl-sa

36 versions of Linux kernel sources (246MiB)

140

mtl mtl-sa mtl-8 mtl-sa-8 copy precopy

Time [sec/GB]

[1] J. Kéarkkainen, D. Kempa, and S. J. Puglisi. Slashing
the time for BWT inversion. In DCC, pages 99-108.
IEEE, 2012.

[2] J. Karkkainen and S. J. Puglisi. Cache friendly
Burrows-Wheeler inversion. In CCP, pages 38—42.
IEEE, 2011.

[3] J. Seward. Space-time tradeoffs in the inverse B-W
transform. In DCC, pages 439-448. IEEE, 2001.
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Compressed full-text indexes [6] based on the Bur-
rows-Wheeler transform (BWT) are widely used in
bioinformatics. Their most succesful application so
far has been mapping short reads to a reference
sequence (e.g. Bowtie [3], BWA [4], SOAP2 [5]).
These indexes use the BWT to simulate the suffix
tree or the suffix array (SA), while using much less
space than either of them. A simple generalization
allows indexing a set of sequences.

We propose a biologically motivated generalization
of the BWT to finite languages. Given a multiple
alignment of sequences (e.g. individual genomes),
we build a compressed index capable of simulating
the suffix array over plausible recombinations of the
sequences. Alternatively, we start from a reference
sequence and a set of mutations, and build the in-
dex over sequences containing any subset of the
mutations.

Our approach is based on finite automata. We start
with an automaton recognizing the input language.
This automaton is transformed into an equivalent
automaton, where each state corresponds to a lexi-
cographic range of suffixes of the language. A gen-
eralization of the XBW transform for labeled trees
[2] is used to index the transformed automaton.

T G T A G

OO O ©

> '> >» >

C

Suffix Tree

O 4 O O

D O

- S

> > > »

G A ©
SA

10 $
2 A
6 A
3 ©
7 C
9 G
1 G
4 G
5 T
8 T
T G
- G
G
G

$ ACC ACG ACTA ACTG AG AT CC CG CTA CTG G$ GA GT TA TG$ TGT #

BWT G T G G T
Edges 1 1 1 1 1 1 1 1

1

1

T G A A A AC AT # CT CG C
100

1

A S

Basic operations are about 2 times slower than in regular BWT-based indexes. For reasonable mutation
frequencies f, the expected size of the sorted automaton is (1 4 £)°(°8") where n is the length of the
reference sequence. For 1/f = Q(logn), this becomes O(n). In our experiments, an index built for the
human reference genome and the genetic variation found in the Finnish population sample of the 7000

Genomes Project took approximately 2.8 gigabytes.

G T A CTG §$
Sorted Suffixes BWT
G
C GTACTG $ G
C T G $ T
G T A T G $ A
T G-$% A
$ T
A C ACTG.S $
T A G $ Cc
A C T $ G
G $ C

e  With our current algorithm, the construction of
a genome-scale index requires 12 hours and
192 gigabytes of memory. We are currently in-
vestigating other algorithms, such as external
memory construction and distributed construc-
tion in the MapReduce framework [1].

e Inprinciple, our index can be used in any algo-
rithm using a regular BWT-based index. What
can be done efficiently in practice?

e We are currently investigating several ways to
use the generalized index in read alignment.
Are there other applications, where our index
could be superior to the existing approaches?

[1] J. Dean, S. Ghemawat: Simplified Data Pro-
cessing on Large Clusters. OSDI 2004.

[2] P. Ferragina et al.: Compressing and indexing
labeled trees, with applications. Journal of the
ACM, 2009.

[38] B.Langmead et al.: Ultrafast and memory-effi-
cient alignment of short DNA sequences to the
human genome. Genome Biology, 2009.

[4] H. Li, R. Durbin: Fast and accurate short read
alignment with Burrows-Wheeler Transform.
Bioinformatics, 2009.

[5] R.Lietal.: SOAP2: an improved ultrafast tool
for short read alignment. Bioinformatics, 2009.

[6] G. Navarro, V. Makinen: Compressed full-text
indexes. ACM Computing Surveys, 2007.
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MINING ALGORITHM

FOR HIGH-THROUGHPUT SEQUENCING DATA

Niko Viliméaki

(or more) datasets.

Tt={ I ampositive, T~ ={ I amnegative,
I am also positive,

I am also positive}

e Substring I am is highly frequent but makes no difference.

e Substrings positive and negative clearly
differentiate 7 from 7.

o The goal is to extract emerging substrings that discriminate two

I am also negative,
I am not neqative}

Method Time

O(N)

Space (in bits)
Fischer-Huen-Kramer’06 O(NlogN)
Kiigel-Ohlebusch’08 O(RN) O(max; || 7;|| - log N)
Fischer-Mikinen-Vilimidki'08 ~ O(NlogN) O(Nlogo+ RlogN)
O(Nlog*N) O(Nlogo + RlogN)

Dhaliwal-Puglisi-Turpin’12

e Existing methods are practical up to a few gigabytes of input.

e We introduce a distributed algorithm that requires less space
than KO’08 per node and has a competitive time complexity.

INPUT
e Sets T1,72,..., TR
of total length
N =Y |7l
® fmin and fmax

® Pmin and Prmax
- J

divide

clienty client, ] T clientc

serverq servery } te serverg

concatenate

s )
OUTPUT
e Substring P is said
to occur in 7; if P’s
frequency in 7; is
fmin Sﬂ Sfmax~
e Substring P is outputted,
if it occurs in at least
Pmin and in at most
Pmax Sets.

# of datasets (R) 124 individuals

# of reads 2.8 billion
Read length (¢) 44-75 bases
Alphabet (c) {a, c, G T}

Total size (N) 0.4 terabases

1. Simulate a suffix tree traversal via suffix array & LCP array.

2. Compute frequencies and check against fmin and fmax-

Worst-case Expected
Time O (XtlogN) O(Xlog?N)
Space (in bits) O (X logo) O (Xlogo)

In practice, about ten hours using fmin = 10, fmax = o0, C = 274

and each client requiring ~0.5 GB of main memory.
(. J

e N

1. Merge the (sorted) input from clients on the fly.
2. Output substrings that obey the constraints pmin and pmax-

Worst-case Expected
Time O (N¢) O (XlogN)
Space (in bits) O(CllogN)  negligible
Transmission bit-load O (2¢) 0 (L logN)

In practice, about ten hours using S = 4 servers for any pmin, Pmax-
A\ J

e N

Time and output size, varying f .,

e Sequence classifi- 1o}

cation, knowledge g al

discovery, compar- 3 +

ative metagenomics ? 620 s 6 4 3
e Collaboration with :J‘} 4

Antti Honkela and £ 2|

Samuel Kaski’s Q

group. 0 1 2 3 4 5] 6
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COMPRESSION-BASED CLUSTERING OF
CHROMAGRAM DATA: NEW METHOD AND
REPRESENTATIONS

Teppo E. Ahonen

teahonen@cs.helsinki.fi

ABSTRACT

We approach the problem of clustering
chromagram data by presenting two new
single-dimensional representations and using
a compression-based distance metric for the k-
medians clustering process. The method is
evaluated using real-world audio cover
version data.

CLUSTERING

We cluster the chromagram data with a
modified version of the well-known k-medians
algorithm. The distances between the strings
are calculated using normalized compression
distance (NCD) [1]. In the clustering phase, the
new cluster centroid median is selected
according to length-increasing, lexicographical
order of the strings.

For two strings x and y NCD is denoted

C(xy)—min{C(x),C(y)]
max(C(x),C(y))

NCD(x,y)=

where C(x) is the length of the string x when
compressed using compression algorithm C,
and xy is the concatenation of x and y.

For compression, we use the bzip2 algorithm.

OPTIMAL
TRANSPOSITION
INDEX (OTI)

OTI [2] is the value of the most likely semitone
transposition between two chromagrams. For
two global chroma profiles (chromagrams
summed over time and normalized) G, and G,
the OTT is denoted

OTI(G,,G,)=arg max{G ,cireshifi (G,,i—1),1<i<12}

REFERENCES

REPRESENTATIONS EVALUATIONS

We apply OTI to produce a sequnce of
characters from the chromagram data. For each
chroma frame, we calculate the OTI value
between the frame and the global chromagram
of the piece, resulting to a sequence of values
from 0 to 11. For the lack of a better term, we
call this chroma contour. Formally, for a
chromagram g, of length i and its global
chroma profile G,, the chroma contour
sequence is

ces(i)=0TI (g,(i),G,)

The representation has the advantage of being
key-invariant. However, when comparing two
pieces of music, it would seem fruitful to use
their similarities already when processing the
sequences. Here, we apply OTI to the
chromagram of the target and the global
chroma profile of the query. Again, for the lack
of a better term, we call this cross-chroma
contour. Formally, for a target chromagram g,
of length i and a query global chroma profile
G,, the cross-chroma contour sequence is

cees(i)=0TI (g, (i), G,)

The cross-chroma contour is not key invariant.
In order to transpose two chroma sequences to
the common key, we apply OTI to their global
chromagrams and transpose the query
according to the OTI value before producing
the cross-chroma sequence.

As the sequences produced by the method
seemed to oscillate rapidly between values, we
experimented reducing the noise of the data by
using median filtering. The filtering was
applied to both chromagram data and the
contour sequences. However, based on the
evaluation results, it seems that the noisy
sequences actually produce higher results,
suggesting that the noise contains
distinguishing information.

[1] R. Cilibrasi and P. M. B. Vitanyi: Clustering by Compression. IEEE Trans. Information Theory 51:4(2005)
[2]1J. Serra, E. Gomez and P. Herrara: Transposing Chroma Representations to a Common Key. IEEE CS Conference on The Use of Symbols to Represent Music and Multimedia

Objects 2008

In order to validate the performance of our
system, we constructed a dataset of 10 cover
versions of 12 pieces of music, thus totaling
120 pieces of music. We experimented with
subsets of 30, 60, and 120 pieces, with k values
of 3, 6, and 12, respectively.

The clustering performance was measured
using cluster purity, and as the k-medians
algorithm selects the initial cluster centroids
randomly, the tests were run five times, and the
averaged results are reported here.

METHODS SET30 SET60 SET120
ICHROMA 0.367 0.283 0217
ICONTOUR
C:’\(:TiSL;EHROMA 0374 0317 0.257
gfm;.ilmm 0.310 0.231 0.162
chTSR;éHROMA 0.344 0.312 0.228
o 0331 0.258 0.189
o 0337 0.294 0212
Cermes, 0.133 0.104 0081
e 0.192 0162 0132
:::Emﬁg 0.233 0.117 0.067

CONCLUSIONS

The proposed method has potential for
chromagram clustering. Using cross-chroma
contour provides slightly higher accuracy than
chroma contour, and processing data too much
causes over-simplification. The method seems
[obust, as increase in the data does not result

in significantly worse results.
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Automatic chord transcription is a problem of extracting the harmonic content from a music signal and representing it through chord symbols.
We focus on distinguishing between major and minor chords in automatic chord transcription. We are especially interested in the role of the
musical context in this process. We conduct an experiment where human listeners are asked to classify chords which a computer transcriber
has failed to recognize when evaluated using a collection of Beatles songs. Based on this experiment and our analysis, we conclude that the
musical context is often needed in distinguishing between major and minor chords. Furthermore, sometimes the quality of a chord cannot be
unambiguously determined even if the full musical context is available.

Automatic chord transcribers are usually combi-
nations of low-level signal processing methods
and high-level probabilistic models.

The most popular evaluation dataset for auto-
matic transcribers has been the Beatles dataset
[5] which offers hand-made reference chord an-
notations for a collection of Beatles songs.

The best automatic transcribes have achieved a
transcription rate of about 80% in MIREX chord
transcription task [4]. One of them is Mauch’s
MML1 [3] which is purely based on the audio data
without using the musical context.

We collected a set of 454 audio segments from
the Beatles material where the chord proposed
by MM1 differs from the ground truth.

o In 202 segments (45%), a major chord was
recognized as a minor chord or vice versa.

e In 93 segments (20%), there are problems
with chord alignment or tuning, or there
is no clear chord content.

o In 159 segments (35%), there is a mean-
ingful chord in the ground truth, but the
proposed chord is different in some other
way than in the first class.

The melody, the chords and the key of a musical
piece are connected with each other. For exam-
ple, if the melody of a piece is known, there are
usually only a couple of typical chords to choose
from. These factors affecting the probabilities of
chords are called the musical context.

Important parts of the musical context are:

e Chord transitions: a G major chord is of-
ten followed by a C major chord. An E
major chord would be a big surprise.

e Key: Typical chords in C major key are C,
F, and G majors and D, E, and A minors.

e Structure: Especially in popular music,
there are repeating chord sequences.

e Melody: The melody significantly limits
the set of possible chord sequences.

While there are several ways to estimate chord
probabilities in a musical context [1, 2, 6], it is
not clear how important the probabilities are in
chord transcription. Professional human tran-
scribers also make guesses but they never pub-
lish transcriptions that do not sound good. The
reason for this is that a guess is always followed
by verification: if the guessed chord does not
sound good, it is simply rejected.

There are often several good chord transcriptions
for a musical piece. Consider the following two
transcriptions of the Beatles’ Yesterday.

First transcription:

The first transcription is a rather accurate tran-
scription from the original studio album, while
the second transcription contains three different
chords. However, both the transcriptions sound
good and an average listener can hardly notice
any difference between them. It would be mis-
leading to state that the first transcription is “cor-
rect” and the second one is “incorrect”.

We conducted an experiment to study the ability
of human listeners to distinguish between major
and minor chords without the musical context.
A total of 81 people with a musical background
participated in our experiment.

The experiment consisted of 30 audio segments
randomly selected from our collection. At each
segment, the participants were asked to deter-
mine whether the chord is major or minor. The
following diagram shows the number of correct
answers. Surprisingly, there is only a slight im-
provement over a totally random choice.
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We found out that the segments we examined
can be divided into three groups:

e Easy chords which almost all participants
recognized correctly. An usual problem
on the signal processing level is that even
in a pure minor chord, the fifth harmonic
of the root note is a major third.

e Unclear chords which contain both ma-
jor and minor elements. One interpreta-
tion is that the third in the accompani-
ment determines the chord, but the prob-
lem is that the third in the melody is often
played more strongly.

e Erroneous chords where we disagree with
the ground truth. The reference chords
should not be used without caution. Of
course, the quality of a chord is often a
subjective decision.

The first two groups cover most of the segments
we examined. In the experiment, there were four
segments that fall in to the third group.

So far, automatic chord transcribers have been
evaluated using a ground truth with a single ref-
erence chord for each audio segment. However,
even in distinguishing between major and minor
chords, there are often valid arguments for both
interpretations. This suggests that the traditional
goal to maximize the number of chords match-
ing the ground truth only partially captures the
properties of a good chord transcription.

[1]]. Bello and J. Pickens: ”A Robust Mid-level Repre-
sentation for Harmonic Content in Music Signals,” Proc.
ISMIR 2005

[2] M. Mauch and S. Dixon: ”“Approximate Note Tran-
scription for the Improved Identification of Difficult
Chords,” Proc. ISMIR 2010

[3] M. Mauch: “Simple Chord Estimate: Submission to
the MIREX Chord Estimation Task,” 2010

[4] http:/ /www.music-ir.org /mirex /wiki/

[5] http:/ /isophonics.net/content/reference-
annotation-beatles

[6] M. Ryynanen and A. Klapuri: ”“Automatic Transcrip-
tion of Melody, Bass Line, and Chords in Polyphonic
Music,” Computer Music Journal, 32(3), 2008
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We develop MDL-based models for studying etymological data. The data consists of cognate sets: sets of genetically related words—words
deriving from a common (unobserved) ancestor in the proto-language—in different (observed) languages within a language family. One goal is
to find the best possible alignment of all the words in the data. The alignment must respect the Principle of Regular Sound Correspondence:
sound changes that occur as a given language evolves are not random, but apply deterministically throughout the language, typically conditioned
on the features and the context of the sound. Thus, a complementary goal is to discover the rules of sound change that best describe the data.

1-1 n-n
Context

Alignment

Model

Projgction +
pop
model

Imputation

Normalized
edit dis

UPGMA

Distances
ComplLearn

We have several databases of cognate sets from
different language families, including the Uralic
family. The databases may conflict with regard
to inclusion of specific words in a cognate set.

ID EST FIN KHN KOM MAN MAR MRD SAA UDM UGR
91 - - cepel 7 - caweste 7 - Cepilt 2 csip ?
92 - - eve ? - csépp ?
93 - - - fovia 2 suls 7 - - - -

94 - - - Suz? - - cisku ? - sas ?
95 - - - 303 - - - - %i%ol -

96 - - catd® c¢uz  So$ay Sata Saco - -

97 ammak hama ¢ama - Somay - - - -

98 - - - - - - - cuo3'3d -

99 - - s - NN - Sasto -

100 - - cony - Sapk  canye cavo -

101 - - - - Sapka ? - sépad ?
102 hape ? hapan ? - - - Sapd Capamo 7 - - savanyu
103 - - caken Zagal sakat - - Zokal ik
104 hind  hinti  ¢ene - §is - -

NeighborJoin
Trees
NeighborNet | Networks

§

Samoyed

We begin with pairwise alignment—one language
pair at a time.

According to the Minimum Description Length
(MDL) principle, we can compress the data ef-
fectively if we can discover regularity in the data.
This regularity is the laws of sound change that
we seek.

Thus, the objective function that we optimize is
the MDL codelength; using Bayesian marginal
likelihood, or prequential coding:

L(D) = — ) logT(c(e)+a(e)) + Y logI(a(e))

ecE ecE
+10g1"[ EE (c(e) +zx(e))] — logl"[ EEuc(e)}

Using Normalised Maximum Likelihood (NML)
gives somewhat better compression overall.

For a given word-pair, many alignments are pos-
sible: Finnish and Hanty words meaning year:

v ou o0 s i v ou o0 s i
I
a I . .. A

(The symbol “.” indicates deletion or insertion.)
Search algorithm: begin with a random align-
ment, and iteratively realign one word pair at a
time via Dynamic Programming, using the cur-
rently best alignment of the remainder of the data.
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Estonian

The algorithm converges to a (locally optimal)
alignment of the complete data. The area of the
circle is proportional to the probability mass of
each 1-1 symbol alignment.

We code each sound ¢ as a vector of phonetic fea-
tures, and coding is conditioned on (features of)
sounds in the context of c—the model can query
the history that has been coded so far.
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The test of the model “goodness” is compression
power: the cost of the complete (aligned) data:

20000

The model learns one tree for coding each fea-
ture of a sound, minimizing the tree cost. Each
node queries the history to help prediction.

(521, 801
SOURCE ITSELF VOICED

We obtain pairwise language distances in sev-
eral ways from the alignment models, and in-
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duce trees using, e.g., UPGMA, Neighbor]Join:
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NeighborNet (SplitsTree) helps identify the un-
certainty in the phylogenetic reconstructions:

man

Applying to other language families: Turkic
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Analysis of Linguistic Variation
Jefrey Lijffijt
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Abstract

. Many medium to large text corpora have been compiled and annotated
. This enables the study of more diverse and detailed aspects of language

. E.g., differences between writing style of various age groups/gender/media
. New computational and statistical challenges arise

Burstiness

. In linguistics it is often assumed that all words in a corpus are independent
. It has been argued that this is not problematic when there are many samples
. Figure 1 shows how false this statement is

. This effect is known as burstiness [2]

I (n = 868907) for (n = 879020)

I Observed distribution
- Predicted by bag—of-words model

I Observed distribution
- Predicted by bag—of-words model

Number of texts

0

03 >=0.040 03 >=0.04

0.01 0.02 0. 0.01 0.02 0.
Normalised frequency Normalised frequency

Figure 1: Frequency histograms of the words / and for in the British National Corpus. The
distributions predicted under the bag-of-words assumption are very poor. The pronoun / is much
burstier than the grammatical word for ; the Weibull shape parameter B is 0.57 and 0.93, for 7 and
Jfor respectively, see the paragraph below. Adapted figure from [4].

Inter-arrival times

. An inter-arrival time of a word is the number of words between two
consecutive occurrences

“ Finnair believes that it will be able to resume its scheduled service to and from New York on Monday,
after two days of cancellations caused by hurricane Irene. All three airports serving New York City have
been closed because of the hurricane and Finnair was forced to cancel flights on Saturday and Sunday. The
airline is not certain when its scheduled service can be resumed, but the assumption is that Monday
afternoon's flight from Helsinki will depart. Some Finnair passengers whose final destination is not New
York have been rerouted and some have delayed travel plans. The company has also offered ticket holders a
refund. YLE ™

. IAT,, = {29,9, 39,29}

. The distribution of inter-arrival times describes the burstiness of a word
. A summary is obtained by fitting a Weibull distribution [1]

Comparison of word frequencies

. We can use statistical testing to find significant variations in writing styles
. Le., between time periods, between people or between text types
. Tests commonly employed are based on the bag-of-words assumption (y>-test)
. Burstiness leads to over-estimation of the significance [4]
. Improved tests based on inter-arrival times or bootstrapping are proposed [4]

o

.6

p-value Log-likelihood

o
] 0.1

0 0.2 0.8 1 0

0.4 06 0.4 06
p-value Bootstrap p-value Inter-arrival time
Figure 2: Comparison of p-values for the null hypothesis that the word is equally frequent in the
two periods (1600-1639 and 1640-1681) of the Parsed Corpus of Early English Correspondence,
for all words in the corpus. Both the bootstrap and inter-arrival time tests are often much more
conservative than the log-likelihood ratio test.

Noun ratio
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. Research interests include analysis of sequential data and mining bursty
patterns
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Classification of text genres

. Models for genre classification are complex and difficult to interpret
. It appears the main genres (of British English) can be recognized using a
simple model and easy to compute surface level features [3]

e !

+ Fiction . dl

---Decision-tree

Type/token ratio

5.8

Pronoun ratio Average word length

Figure 3: Two models for classification of the main genres of British English. The model was
trained using the C4.5 algorithm on the British National Corpus, using both the original features
and their cross-terms. Figure taken from [3].

Learning complex queries

. Linguists would often like to query a corpus for complex constructs
. For example, premodifying -ing participles [5]
. These are -ing participles that modify a noun, e.g., 'the barking dog'

. Straightforward queries have low recall because parsers and part-of-speech
taggers are imperfect

. A query is essentially the same as a binary classifier

. We can learn complex queries just like training a classifier

Accuracy of rules for finding premodifying -ing participles
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CLAWS-5 + RASP POS + GRAM
50 50 % PRECISION
V RANDOM -ING
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Figure 4: Precision and recall for classifiers based on several sources of information, based on a
sample of 2902 -ing words, of which 351 are premodifying -ing participles, from the British
National Corpus. Figure taken from [5].
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WITH OR-

AND SUM-CIRCUITS

An ensemble consists of a set of variables P and a
family Q of subsets of P. For example:

Matti Jarvisalo, Petteri Kaski,
Mikko Koivisto and Janne H. Korhonen

ARITHMETICCIRCUITS

P = {21, 20, 23,24, Ts
{z1, 20, 23, T4, T5} INPUT GATES 1
Q = {{z1, 2}, {1, w2, 23}, {21, 24}, ( )
{z1, 24,25}, {21, 02,23, 74,25} }
The task is to compute either OR or of variables ARITHMETIC GATES
in each set in Q using an arithmetic circuit. 1V
. OR 1 2\a
";3 45' x1 VgV T3
T1V To 2 & ~
x1 Vg Vas g 3 T2 VI3
. 1V y
(Boolean variables) 21V s Vs z “
1V xVazVagVas @—vﬂ?1+$2
1+ X9 20
1+ @9 + 3 $1+ﬂ72\
(natural numbers) 1+ 24 T + 229 + 3
T+ x4+ 25 1724-&03/'
1+ T2+ T3+ T4+ 25
unbounded fan-out fan-in two SUM-gates require disjoint inputs

There are ensembles for which the optimal OR-circuit has less gates that the optimal

gives ensembles for which the SUM-circuit requires almost twice as many arithmetic gates. Finding better upper

and lower bounds for the separation is an open question.

G/K----V x1 Vg Vs

®->x1V3:2\/fL'3\/:U4\/:c5

5 arithmetic gates vs. 6 arithmetic gates

OR-circuit for (P, Q) ~circuit for (P, Q)

transformation
algorithm
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g gates (g%¢) gates

Ensemble computation instances often arise in the context of exact exponential-time
algorithms. In these cases, small OR-circuits are easy to find, but small SUM-circuits
remain elusive.

In particular, existence of a sub-quadratic algorithm that transforms a given OR-cir-
cuit into a SUM-circuit for the same ensemble would violate the Strong Exponential

Time Hypothesis and give improved algorithms for many NP-hard problems such as
CNF-SAT.
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v
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An OR-circuit of size g exists for ensemble (P, Q) if and only if there is a [P X g bina-
ry matrix M that satisfies the formulas above. A similar encoding works for SUM-
circuits.

We have used this encoding along with state-of-the-art Boolean satisfiability solvers
to find the optimal circuits for all small non-isomorphic ensembles. Processing
1,434,897 ensembles took about 4 months of processor time. We did not find any
larger separations between OR- and SUM-circuits than in the example above.

FOR MORE |NFORMAT|ON, see our paper: M. Jarvisalo, P. Kaski, M. Koivisto, J. H. Korhonen. Finding Efficient Circuits for Ensemble Computation. SAT 2012
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We present a new Markov chain Monte Carlo method for estimating posterior probabilities of structural features in Bayesian networks. The
method samples partial orders on the nodes; for each sample, the conditional probabilities of interest are computed exactly. Compared to
previous methods our algorithm obtains a significant reduction in the size of sample space with negligible increase in computation time.

Learning the structure A of a Bayesian net-
work from given data D is a problem that
arises from the need to understand the de-
pendencies or possible causality relations
between the variables corresponding to the
nodes of A.

variables
sample [1 2 3 4 5 6 7 8
1 2 1 0 1 2 2 2 1
2 2 0 2 2 0 2 2 0
3 2 01 1 1 1 1 0

5000 (2 2 1 2 0 2 0 1

Instead of finding the most probable net-
work structure (MAP) we want to compute

the posterior probability of each arc by av-
eraging over all structures.

The goal is to compute p(f|D), where f(A)
is a binary feature function of interest, for
example indicating whether a structure A
contains given arc or not.

Structure prior:

For computational efficiency we assume an
order-modular structure prior: The joint
prior probability p(A, L) of the structure A
and a linear order L on the nodes factor-
izes to a product of local prior probabilities
po(Lo)qo(Ay) over the nodes.

Ly

@lojololo; 11010

Similarly, the feature f(A) is assumed to be
a product of local features f,(Ay).

In addition we limit the sizes of parent
sets | Ap| to be at most k.

Why sampling?

Known exact methods scale up to about 30
nodes. For larger instances sampling based
approximation is a natural choice.

The state of the art methods are based on
sampling linear orders of nodes by MCMC
(Friedman and Koller, 2003). The result-
ing time requirement O(nf*1) per sample
is proportional to the number of possible
parent sets.

The general algorithm is as follows:
1. Sample orders Ly, ..., Lt from p(L|D).
2. Estimate p(f|D) ~ %Z?:l p(f|D, L;).

Instead of linear orders L we suggest sam-
pling partial orders P on nodes of which
sampling of linear orders is a special case.
This has two consequences:

e The sample space can become signifi-
cantly smaller as a single partial order
sample usually corresponds to multiple
linear orders samples. This can lead to
better mixing in MCMC.

e The time complexity per sample becomes
O(nk*1 + n?|Z(P)|) where |Z(P)| is the
number of ideals of P (Parviainen and Koi-
visto, 2010). For “thin” partial orders the
first term dominates and the increase of
the computational cost is negligible.

As partial orders we use bucket orders.

order of buckets ——

Sampling is based on Metropolis—-Hastings
MCMC algorithm with swaps of nodes be-
tween buckets as transitions.

ol

order of buckets ——

S\ -
[ \
\ /
~o

The convergence of log-probability for
MUSHROOM-dataset (8 independent runs):

bucket size 1 (linear order)

The worst-case accuracy of estimates (8 in-
dependent runs) and time consumption for
different bucket sizes:

1.0 F - - 4 ++ 0.09
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o + —
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Q
2 3 o}
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IN THE PRESENCE OF
UNOBSERVED VARIABLES

Pekka Parviainen, Mikko Koivisto

We present an exact dynamic programming algorithm for computing posterior probabilities ancestor relations, that is, directed paths in Bayesian
networks. Our experimental results show that ancestor relations can be learned with good power even when a majority of involved variables are

unobserved.

A Bayesian networks consists of two parts:

o The structure is a directed acyclic graph
(DAG) that represents conditional inde-
pendencies between variables.

o The parameters specify local probability
distributions.

bus, overs. no

yes, yes 09

alarm yes no yes, no 02 08

i S S yes 0.1 0.9 no, yes 03 07
no 09 0.1 no, no 09 0.1

Compact, flexible and interpretable representa-
tions of a joint probability distribution.

Sometimes arcs are interpreted as cause-effect
pairs.

Construct the DAG from observational data.
Challenges:

o The set of conditional independencies can
be represented by a number of different
DAGs (Markov equivalence class).

e There may be unobserved variables.

e Computational complexity.

There may be several almost equally good DAGs
(or Markov equivalence classes) and the optimal
DAG may be highly unlikely. Therefore, instead
of learning an optimal DAG, it may be useful re-
port probabilities of some structural features of in-
terest, e.g., arcs.

Node s is an ancestor of node t in a DAG if there
is a directed path from s to t in the DAG in ques-
tion.

Ancestor relations are interpreted as (direct or
indirect) causal relations.

Can ancestor relations be learned reliably if there
are some unobserved variables at work?

Does learning ancestor relations yield more in-
formation than learning arcs?

Can ancestor relations be learned significantly
faster than by a brute force algorithm?

Compute the posterior probability of s being an
ancestor of t given the data on a node set N.

A (full) Bayesian averaging approach, based on
dynamic programming.

Assumptions: a modular likelihood score, an
order-modular structural prior.

Idea: for every node set X C N and Y C X com-
pute gs(X,Y), the contribution of the DAGs on
X that have a directed path fromstoallu € Y
and to no other node.

Time requirement: O(3"n?) for all possible pairs
sand t.
Space requirement: O(3").

Simulation procedure:
o Generate data from a ground truth.

e Hide the data on some (unobserved)
nodes, form a shrunken ground truth.

e Learn ancestor relations from the data on
observed nodes.

o Compare the learned ancestor relations to
the shrunken ground truth.

Full Bayesian averaging seems to be more pow-
erful than the deducing of ancestor relations from
a single MAP DAG or the constraint-based FCI
algorithm.

Results with real-life data are in agreement with
the simulations.

500 samples

Ancestor Relations

Directed Arcs

0 01 02 03 04 05 0O 0.1 02 03 04 05

10,000 samples

Ancestor Kelations Directed Arcs

——14/14 obs.
12/14 obs.
10/14 obs.

- - 8/14 obs.

== 6/14 obs.

——4/14 obs.

02 03 04 05

02 03 04 05 00 0.1

0 0.1

Bayesian learning of ancestor relations is compu-
tationally feasible (when the number of nodes is
moderate).

Ancestor relations can be discovered with rea-
sonable power even in the presence of unob-
served variables.

Partial Bayesian averaging, that is, deducing an-
cestor relations from the arc probabilities seems
to work almost as well as full Bayesian averag-
ing.
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FINITE MIXTURE MODELS

Finite mixture model (FMM) of multivariate Bernoulli distributions are defined as:
d )
]HG (1—6;) 7,
i=1

The likelihood function with the model parameters {], 7r, ®} is

J

p(x]®) = Z

MODEL SELECTION

M If number of components, |, is known a priori EM algorithm can be used to

maximize the log-likelihood
(1) B Model selection aims at selecting an appropriate J as it is unknown
B Trade-off between complex models (large J often a reason for Overfitting)

and simple models (small ], often a reason for Underfitting)
M Cross-validated likelihood can be used as a model selection criterion

B We choose 10-fold cross validation

N . . . . .
L©) = 2 log 2 - HOX’“ Y | o) | O.the.r cnteno.n such as Penah.zed likelihood, AIC, BIC, .MDL.couId be used
= = J Pl B Aim is to achieve maximally simple, and compact parsimonious models.
MERGING MIXTURE COMPONENTS PROPOSED ALGORITHM NUMBER OF COMPONENTS(J)
J =7 and d=8 J =6 and d=8 Algorithm 1 Backward Model Selection in Finite Mixture Models
] Input: Dataset . No. of folds in cross-validation K, and -5
O] O L0 (T ashmass M of Componesee
D _j:- I:l _j:- Output: Mixture model mm f; with appropriate Juptimar mixture -6
components - 7
a m [T I 1: D; ¢ Partition D into K equal sized parts E
| _:|:|:|]—P-|:| -:|:|:|:| 2: mm [y + Best of 100 mixture models trained on data D having T -8
n . <
|:|:|:|:- J components based on likelihood on D =
Mereed C ) 3 for jin J to 1 do g
erge omponents 4: foriinlto K do —

. . ) . e h =10 —=—Training Set
Progressively merge mixture components having minimum 5 if j! =7 then ) ) ) e~ Validation Set
KL divergence using Equation 3 and their parameters us-  © mmf; < A trained mixture model on D\D; using 11 Training 1QR
: : mimi; as initialization Validation IQR
ing Equation 4 o 1 3 5 7 9 11 13 15 17 19

T an lfl'k —— f D Number of Components
_ ) ) ] i + likelihood of mm f; on D;
”rnﬂged = Tlkmin1 + TClmin,2 (3) 9: ifJ! =1 then We use 10-fold cross validation over different components
10: (k",17) < argmin D(p(x; O)); p(x; 1))
Here 7Tyergea is the merged component and 7ty,,i,,1 and k.t IMPORTANCE OF RETRAINING
TTamin2 are the two candidate components with minimum Trajectories of Log-likelihood
- where k,l€ (1... )k #1
KL divergence selected to merge.
1 mmij—1 < Mlx[urc model where components my-, T~
in mmf; are merged 6
12: end if

_ Tkimin1 X ®k1min,1 + Tkiming X ®k1min,2 1 DATASETS 3

Opereed = 13:  end for . <]

& Tming + Tkimin,2 K Two chromosomal aberration data £ g Merge

14 LieY |Di| L/ D were used in the experiments. The < Retrain

In Equation 4, ©yegeq are the parameter vectors of the |5, andfor data describes the DNA copy num- ]
COMPONENt 7T,ergeq Obtained by merging two Components 1. 7, st < argmax D(L,) ber amplification pattern of 4590 =10
in Equation 3. Similarly, Ojyin,1 and Ogyyin o are the pa- L cancer patients and are same as
rameter vectors of the two components having minimum in [3,6] i ‘ ‘ ‘ ‘
KL divergence selected for merging. 17: return Joptimat and mm i, ) 2 4 6 8 10 12

Number of Components

KULLBACK LEIBLER DIVERGENCE BETWEEN MIXTURE COMPONENTS

In a mixture model, the KL divergence between two mixture components can be derived to

d ik (1 — —Xj
KLyg = 22: Hﬁ (eli(ik(l _ 9k>(1fxik)) _ ﬁ (ﬂ?ik(l _ ﬁk)“*xik))} log li[ 9 (1 — ) 1 Xi) }
k=1

i=1 k=1

We derive data driven approximation of KL divergence as

Kleg = ), {ﬁ (95”‘(1 - Gk)(lfxz‘k)) — ﬁ (ﬁi(ik(l _ /Sk)“*Xw)}
k=1

x*cx Lk=1

— Bi) %)

APPROXIMATIONS USED

B Dropping the log-term : log% ~ 0

B Using only unique samples in the data instead
of full state-space

B Approximating state-space by unique samples
X* C X provides data driven approach of ap-
proximation of KL divergence

APPROXIMATIONS IN KL DIVERGENCE

95 i :
N\ one component Matches
© 90 E=Both Components Match ||
=]
B
2 85f
5
3
<
o 80f
Z
k=
3]
e o751
70

Using Data Samples Dropping Log Term
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Introduction

Direct temperature measurements are only available from
the past few hundred years. Therefore, proxy measure-
ments must be used. We study the use of different envi-
ronmental proxy variables for temperature reconstruction.
Differences in both the time coverage of the proxies (Fig. 1)
and the temperature signal pre-
sent in them pose a challenge
to the recovery of reliable tem-
perature records (Fig. 2).

Flowering / bud burst |:

Lake ice (dates of first and last ice) []
Measured temperatures [_]

Baltic sea ice cover area [_]

River ice (breaking up of) |:

Carbon isotopes in trees [

Tree ring width |
Temperature from diatom algae in lake sediments

[ Length of open water season in lakes ]
r T T T T 1

-8000 —-6000 —-4000 —2000 0 2000

Year
Fig. 1: Rough availability of different proxy measurements

Reconstructed Temperature

« Search based solutions, e.g. working on an R version of
the backward selection type algorithm SISAL [2].

+ Extend [2] by exploring more states by branching
« Issues to solve: ill-conditioned problem when number
of variables is small compared to number of samples
(Fig. 4, Fig. 5), ...

The dpIR package for R

The dendrochronology program library in R (dpIR) [1] is
an add-on package for the R Project for Statistical Comput-
ing. These are open source software.

We use the package for preprocessing of tree ring meas-
urements and do active development to make it better suit
our needs. Some of our contributions include:

+ Improved performance

« Bug fixes, especially corner cases

+ Support for additional data formats (e.g. TRiDaS)
« Other new functionality (example below)

Problem

Name Tree Core In tree ring databases, metadata is
PO101A| 101 | 1 scarce. Need to identify which

PO101B| 101 2 measurements are from the same

tree. Manual labeling is cumber-
PO102A| 102 | 1 some.

0.6
Medieval 2004% .

o 2 Wzn'ﬁva Fig. 2: Different tem-
© 02 Period perature reconstruc-
z tions.
£ o Mw Image created by
£ o uK Robert A. Rohde /
< -0.2 /WY /5‘ .
o A \u?b( Global Warming Art.
204 http://www.globalwarming
% o6 art.com/wiki/File:1000 Ye
B ar_Temperature Compari
.08 son.png

-1 Little Ice Age

1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Environmental Proxy Selection Problem

Monthly temperatures Aggregate temperatures

— —
Jan Feb Nov Dec "Spring" "Summer"

Proxies (ice, flowers, trees, ...)
Fig. 3a: Full model (no variable selection)

Monthly temperatures Aggregate temperatures

—— ——

Jan Feb Nov Dec "Spring" "Summer"

X4 X2 X3 Xy Xs Xs X7 Xg Xq Xa1  Xg
'

Proxies (ice, flowers, trees, ...)
Fig. 3b: Most informative proxies found (variable selection performed)
« Identify the most informative proxy variables for recon-
struction of temperature in Finland (Fig. 3)
- Different time of year or different geographic location
= alternative set of good proxies

Solution

Derive tree and measurement
536011 \

1 1 (=core) IDs from record names (in

536012 | 1 2 very uncertain cases, use correla-

tions, too). Function ‘autoread.ids’

536021 2 1 does this automatically. Intelligent
536022 | 2 2 discovery of naming schemes,

fixes small typos

10 variables selected: tree-ring widths (2) and den-
sities (4), melting of lake ice (2), budburst of birch,

\ . Baltic sea ice extent

Too few samples relative *~ o _ .
tonumber of unknowns e,

MSE
I

02 04 06 08 10 12

Number of inputs
Fig. 4: Progress of backward selection type algorithm (SISAL with branching).
Training (smaller values) and validation (larger values) error.

|
o Measurement | Training Test |
—— Reconstruction il \ I

Temperature (deg. Celcius)

1880 1900 1920 1940 1960 1980 2000
Year

Fig. 5: Temperature reconstruction (mean of April and May temperatures in
Jyvéskyld) with the model of Fig. 4. Adjusted R? = 0.74.
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Unknown input

Structure with
accelerometer sensors

g ™

- Feature extraction

+ Dimensionality

reduction

—

- Novelty detection

methods

Measured output

-Damage detection
performance

\. J

Vibration-based SHM

«Structural Health Monitoring;:
assessing the condition of
physical structures

«Damages are assumed to
change the structure as a
medium for vibrations caused
by the environment.

«Wired sensors: expensive to
maintain for large structures

«Wireless sensors: limited
energy and bandwidth

e CIIVIFONMeEnNt
«Input:
electronic
shaker

«Output: time series data from
wireless and wired
accelerometers

«Hardware and software
developed in the
multidisciplinary ISMO project

«Controlled test

Damage detection based on
machine learning methods

*Models based on acquired
data: avoid complex physics-
based models, geometry etc.

«Parsimonius detection
algorithms required for online
computation

«Dependencies between data
from separate sensors are
important for detecting

damages in a structure

Feature extraction
+Online frequency

domain features with
the Goertzel algorithm

»Running on a WSN
node: [Bocca: ICCPS 2011]

+Transmissibility:
propagation of
vibrations between
two sensors

»Large, but redundant
feature space:

[Toivola: IDA 2009]

Dimensionality
reduction

«Combinations of

projection and novelty

detection methods

assessed for accuracy:

10 10 10 10
sssssssssssssssssss

[Toivola: IDA 2010]

«Three-way analysis
over time, sensor
pairs, and vibration

frequency:
[Prada: IEEE MLSP 2010]

«Collaborative filtering

method for using

SHM-specific locally
computed ratings for

selecting a global set
of sparse features:

- ——
- - -
-

- —mm

nnnnnnnnnnnn

Dimensiona
reduction

|
| Transmissibility
1 F features

| DFT: Goertzel
1D features/sensor |

lity !

I
| Centralized user

Novelty detection
methods
«Nearest neighbor vs

Parzen, Gaussian, and
Mixture of Gaussians

density models
«Static: independent

detections across time

Performance

«Accuracy assessed in

terms of ROC AUC,
energy in terms of

feature vector length

Alternative: change

detection framework

» Better criteria for

accuracy and energy

efficiency..?

«Jaakko Hollmén: supervisor
«Jyrki Kullaa: data & expertise

«Miguel A. Prada: projections
and three-way analysis

eMaurizio Bocca: embedded
WSN implementations

«Hecse: funding conf. trips

+MIDE / Aalto University:
funding ISMO project

«Algodan Centre of Excellence




with NML Histograms
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We compare empirically four histogram meth-
ods for density and entropy estimation. They
include the normalized maximum likelihood
(NML) histogram by Kontkanen and Mylly-
maiki, and its novel variant that is based on
NML as well. As an extension to irregular
histograms, we also test the new MDL based
clustgram.

Irregular histogram. A histogram in
which the widths of the bins are not neces-
sarily equal.

How many bins? The model class selec-
tion problem is here to choose the most
appropriate number of bins.

Risk minimization. A statistical approach,
in which the goal is to minimize e.g. the
KL or squared Hellinger distance from an
assumed unknown true distribution to the
estimated distribution.

Minimum description length (MDL)
principle. An information-theoretic cri-
terion that does not require that a true
distribution should exist. The best model
class is the one that allows the most effec-
tive encoding of the data.

Normalized maximum likelihood
(NML). Maximum likelihoods turned into
a distribution through normalization:

__px é(X))A
Pyexp(y: 0(y))

)

P, (%)

where 6(z") refers to the maximum like-
lihood parameters of x € X". If a NML
distribution exists, it minimizes the worst-
case excess code length compared to the
optimal code length in hindsight (only an
oracle can guess the ML parameters before
seeing the data).

Methods that choose the bin borders from a
regular grid:

NML-1: the histogram of Kontkanen and
Myllymaéki (2007), optimizing the choice of
k bins.

NML-2: a new version of the former, opti-
mizing the choice of k non-empty bins. We
also optimized the choice of the grid.

Methods that choose the bin borders from the
set of data points:

RMG: a method of Rozenholc, Milden-
berger and Gather (2010). Based on Mas-
sart’s results about risk bounds (2007) and
on empirical considerations.

MRT: a method of Menez, Rendas and
Thierry (2008). The penalty is BIC plus a
combinatorial term.

Clustgram: an MDL-based extension to
irregular histograms by Luosto and Kont-
kanen (2011) with many types of bins: uni-
form, normal, half-normal, exponential
and Laplace.

Mixture with 6 normal components.

[ —
o1 NML2 ——
G

0.001

50 100 200 400 800 1600 3200

Hellinger distances to the source distribution.

n=50 =100 n=200 n=400 n=800 n=1600 n=3200]

12

Estimated entropies (mean and standard devia-
tion). The true entropy is indicated with a hori-

zontal line.

o
B 0 ™ w0 ) 3 e

Hellinger distances to the source distribution.

Estimated entropies (mean and standard devia-

tion). The true entropy is indicated with a hori-

zontal line.

The performance of NML-1 was in terms
of the squared Hellinger distance similar to
RMG, which has been specially designed
to minimize the statistical risk. The novel
NML-2 seemed to work especially well with
ragged multimodal distributions.
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Identification of metabolites from tandem mass
spectrometry measurements is a prerequisite
step for metabolic modeling and network anal-
ysis.  Currently this task requires matching
of measured mass spectra against annotated
databases of reference spectra, and extensive
manual work. We propose a machine learn-
ing framework, which identifies the metabolite
structures based on the mass spectral signals.
Our approach is twofold (see Fig 1). First,
(1) we decompose the problem into binary sub-
problems each predicting an individual struc-
tural property of the unknown structure. Then,
(2) the complete structure is inferred from the
predicted fingerprints by searching candidate
molecules from databases matching these fin-
gerprints. The method’s performance is shown
with experiments using several real-life mass
spectral datasets.

ﬁ%yAYLM

NH,

output
Molecule MS/MS e

“(structured prgqi;gwgny
@) datak (1) SWM
filtering
Molecule's
fingeprints

true: 11000101...
pred: 11100101...

input
—>

Figure 1: Metabolite identification scheme. Instead of di-
rectly predicting the molecule from measured spectrum (struc-
tured prediction), we opt to predict an intermediate target of a
fingerprint vector, which is subsequently used to pinpoint the
molecule from a molecular database.

We predict as intermediate targets molecular finger-
prints, which are binary descriptors of a molecule. We
use 528 structural fingerprints, e.g. “does the molecule
contain an amino-group”, “does the molecule contain a
double bond”, etc.

Let an input mass spectrum x = {xq,...,xx} € X
be a collection of k peaks x; € R?. A peak tuple
x = (mass,int)T represents the mass-to-charge ratio
and the intensity of measured peak.

We use SVM to predict m binary fingeprints (y;)!"; =
y as independent classification tasks f; : X — {0,1}.
In SVM a kernel function K : & x X — R de-
fines a feature mapping ¢(x) such that K(x,x') =
(@(x) o(x'))-

We experiment with a simple discrete kernel and also
with a high resolution continuous probability product
kernel. First, we represent spectra x and x’ with prob-
abilistic models p and p’, respectively. Then, we define
the kernel similarity of spectra x and x’ as similarity
between the corresponding distributions p and p’ as

Ko ) =Kip,p') = [, p0p’ (00

R2
A natural probabilistic distribution over the set of peaks
is a gaussian model p(x) = & Y, pi(x), where each
peak contributes density according to a gaussian p; ~
N (x;,£) centered at the peak (mass, int) (see Fig 3).

We use three classes of mass spectral features, and
their combinations:

e peaks {x;}

o neutral losses {(prec — mass;,int;)T } measure
the mass distance from the precursor peak

o peak differences {x; — x; : Vi < j} measure
the mass distance between any two peaks

The SVM learns a mapping from the spectral fea-
tures to individual structural characteristics y of the
measured molecule. We employ the fingerprints as
filters on molecular repositories, such as PubChem,
which contain millions of molecules. The candidate
molecules are suggested according to the Poisson-
Binomial probability of the fingerprint prediction, given
the crossvalidation accuracies p = (p;)",

m {:—1: 0:—1:
p(§lp,y) = le}*\yl vil(q — pi) il
i=1

We conducted experiments on predicting 528 finger-
prints of three mass spectral datasets, containing 514,
403 and 293 molecule-spectrum pairs, respectively.
We trained an SVM using the probability product kernel
for each fingerprint individually using 5-fold crossvali-
dation. The average fingeprint prediction accuracies for
the three datasets were 91.1%, 91.1% and 99.5% with
baselines of 87.3%, 78.7% and 88.3%, respectively.

Figure 4 indicates the individual fingerprint prediction
accuracies using the two kernels on a high resolution
mass spectral dataset. Figure 5 indicates the ROC
curves indicating the proportions of data achieving cer-
tain identification ranks.

0.9 o
0.8 / OH
HN

7F NH
0 ! 1451

L mother ion
08 205.2
117.0

169.3

| L

0 20 40 60 80 100 120 140 160 180 200
m/z

0.1 73

Figure 2: MS/MS spectrum of Tryptophan (mass 204.23).
Each peak represents the mass of a fragment of Tryptophan.
The red peak indicates the non-fragmented mother ion.
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Figure 3: The 2D gaussian mixture density of mass spectrum
of Fig 2.
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Figure 4: Prediction accuracies of individual fingerprints using
two different kernels.

Figure 5: The rank of the correct metabolite in our prediction.
The colors indicate three different datasets, while the linetype
indicates querying from either PubChem database (largest
repository of molecules) or from KEGG (a small database of
metabolites).

Heinonen, M., Shen, H., Zamboni, N., Rousu, J. Metabolite identification and molecular fingerprint prediction via machine learning. ECCB’12, submitted.
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We propose the first efficient path-based graph
kernel for classification of reaction graphs. The
path kernel utilizes efficient compressed path in-
dex data structure. In our experiments we out-
perform state-of-the-art graph kernels in predic-
tion of the EC code of organic reactions.

We consider labeled undirected graphs G = (V,E, L),
where a labeling function L applies to both nodes v €
V and edges (v,u) € E. A walk w is a sequence of
adjacent vertices, possibly infinite. A path p is a finite
walk with no repeats. A graph kernel K: G x G — Ris
a positive semi-definite similarity function over pairs of
graphs, which implicitly defines some feature mapping
¢(G) such, that K(G, G") = (¢(G), $(G')). Sequence
based graph kernels are

Kwalks(c' G/) = 2 /\‘w“l’(c)w : ‘P(Gl)w
weW
;mths G G Z )‘lp“P ( )
peP
Ksp(G/Gl) = Z )‘W‘P(G)p “P(G/)pr
peSP

where length decay A < 1, ¢(G)y is count of walk w in
G and W, P and SP are the universes of walks, paths
and shortest paths.

1. Enumeration of paths. We traverse the graphs
using depth-first search and enumerate all
paths up to length k.

2. Path index construction. We store the set of
paths as a path-sorted XBWT.

3. Computing path frequencies.

4. Computing the kernel. The kernel matrix K is
computed as a dot product between path fre-
quency vectors ¢(G) and ¢(G’).
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Figure 1: (a) Example graph. (b) Paths originating from node

A. (c) An XBWT representation of the tree in (b). The rows are
lexicographically sorted.
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Figure 2: Reaction ~ R00986 Chorismate
pyruvate-lyase with EC code 4.1.3.27. The reac-
tion and its atom correspondences highlighted with color (top).
The reaction graph produced by taking the union of edges
from both sides (bottom).

We evaluate the performance of the various graph ker-
nels on a task, where the EC number of a reaction is
predicted. The EC number is a hierarchical code defin-
ing the semantic function of the enzymatic reaction.
Our dataset is 17430 reactions from KEGG database,
with graphs Gy, ..., Gi7a30 . The EC hierarchy of each
reaction is encoded as 270 binary targets variables
Yi,...,Ya70. Our classification task is to predict the
three level EC code as a binary multiclassification prob-
lem. A result was deemed correct if the correct root-to-
leaf branch is predicted.

We ran the experiments with MMCREF hierarchical mul-
tilabel classification algorithm. All kernels use A = 0.90
and are quadratic kernels as they acchieved consis-
tently best results. A five-fold cross-validation proce-
dure was used.

We experimented with upper bounds of 15 and 50 on

the path lengths. We also experimented with core paths,

paths that go through modified edges only. These paths
are likely to contain most relevant information regarding
the reaction. Finally, we experimented with indicator
features, where all features are binary irrespective of
the path frequencies.

Oxidoreductase reactions
Tran: e reactions

spinerases
cis-trans-Isomerase:
Tneramolecular oxidoreductases
Intramolecular transferase:

5.1
5.2
5.3
5.4
5.5 Intramolecular lyases
5.99 Other isomerases
5.-

L
6.1
6.2

cia-thiol ligases
1

AT? + Acstate + Con <> MMP + Diphosphats + Acetyl-Con
oh <=> A on

ATP + Propancate + Coh <o> AP + Diphosphate + Propanoyl-Coh
Propi cnyladenylate + CO <=> AMP + Propanoyl-Coh

late

2
AT? + Acid + Coh <=> AMP 4 Diphosphate + Acyl-C
RO1176 ATP + Butanoic acid + CoA <=> Hiphosphate s Butanoyl-Co

Figure 3: EC hierarchy consists of 6 main classes, 63 second
level and 201 third level categories, a total of 270.

# of reaction graphs 17,430
# of trees 746,438
# of tree nodes 279 mil.
# of tree leaves 91 mil.

max. tree depth 50

Index construction time 1.1 hours
Index construction space 4.4 GB
Final index size 1.1GB
# of unique paths 21 mil.
Index frequency computation 176's
Kernel computation (path length 50) 12 min
MMCREF run (average, 5-fold cv) 10 hours

Table 1: Characteristics of the test data and performance re-
sults.

Kernel k T error (%)  Ts. error (%)
Walk 15 52.9 61.1
RGK inf 27.8 35.0
Shortest paths 215 36.4
Core paths 50 14.9 28.9
Core paths, ind 50 14.5 27.8
All paths 50 19.6 34.2
All paths, ind 50 9.1 25.6
Core paths 15 15.0 28.3
Core paths, ind 15 14.7 27.3
All paths 15 20.0 33.7
All paths, ind 15 9.2 24.3

Table 2: Prediction of full EC class. Core path kernel only
includes paths with “+1” or “-1” edges, while indicator kernels
contain only binary values.

Figure 4: Prediction errors for the six main EC classes.

Heinonen, M., Véalimaki, N., Makinen, V., Rousu, J. Efficient Path Kernels for Reaction Function Prediction. BIOINFORMATICS’12, Vilamoura, Portugal.
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e protein interactions: important for system-level
understanding of biological processes

e BIOLEDGE project: BIO knowLEDGe Extrac-
tor and Modeler for Protein Production, focus on
secretion proteins

e target species: Saccharomyces cerevisiae,
Pichia pastoris, Trichoderma reesei

e in silico prediction of protein interactions based
on sequence features

e investigation of biological network reconstruction
tools

Figure 1: Feature coverage for secretion proteins in
Saccharomyces cerevisiae with reliable interactions.

- Sparse, High-Dimensional, Few Instances -

1D NAME #
1 BLAST SCORE 113.798
2 PROTEIN CLUSTERS 559
3 GTG 108.810
4 PFAM 860
5 PANTHER 898
6 SUPER FAMILY 431
7 GENE 3D 360
8 PROSITE PROFILE 243
9 SMART 231
10 PROSITE PATTERN 299
11 PIR FAM 74
12 TIGRFAM 119
13 FINGERPRINT 62
14 PRODOM 20
15 HAMAP 6

226.770

Feature selection has to be performed because mod-
eling with the full fused feature set gives classification
accuracies close to random.

1D NAME ACCURACY #FS TOP 1000
1 BLAST SCORE 71.3(£3.9) 28.3(+20.1)
2 PROTEIN CLUSTERS 71.6(+2.5) 3.7(+1.9)
3 GTG 74.1(+4.3) 901.9(+39.1)
4 PFAM 75.7(45.2) 10.4(+4.7)
5  PANTHER 74.3(+3.7) 7.0(+3.6)
6 SUPER FAMILY 73.7(+5.4) 9.6(£3.2)
7 GENE3D 73.6(+4.3) 20.1(+7.5)
8 PROSITE PROFILE 68.6(+2.9) 5.6(+3.7)
9 SMART 70.4(+3.3) 6.1(+4.1)

10 PROSITE PATTERN 71.8(+4.3) 4.1(+2.0)

11 PIR FAM 66.9(+0.5) 0.5(+0.8)

12 TIGRFAM 68.5(+1.5) 0.6(£0.7)

13 FINGERPRINT 66.8(£0.4) 19(+1.8)

14 PRODOM 66.7(+0.0) 0.0(+0)

15 HAMAP 66.7(£0.0) 0.0(+0)

Classification accuracy when the individual feature sets
are used for modeling and number of variables included
in the top 1000 by feature selection (# FS TOP 1000)
when modeling over the fused feature set.

Given a set of proteins V = (vy, ..., v ),

a set of feature vectors ®(vy), ..., P(v,) € Ry,

a set of known interactions S = ((e1,y1), ..., (€m, Ym))
as pairs of vertices: ¢; € V x V with y; = [1; —1].

1. choose a seed vertex vgey € V

2. create local training set

3. feature selection with Mutual Information measure
over all feature-label pairs

4. train SVM on the local training set

5. predict label of any vertex that has no label

6. repeat step 1.-6. for each vertex v,y € V

7. combine the predicted edges

STRING is a data base of known and predicted pro-
tein interactions (string—-db.org). Links are given
as probability scores [0, ..,1000] for genetic neighbor-
hood, fusion, co-occurrence, co-expression, experi-
ments, databases, text mining as well as a combined
score (cs).

120

250

Figure 2: Number of reliable interactions (cs>500) for

Figure 3: PPI network of secretory pathway proteins in
Saccharomyces cerevisiae (by M. Oja@VTT).
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@ o
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(IT) for model evaluation lassifcation accurace
CS  ACCURACY #FS
> 500 80.3(+6.2) 29.300(+5.900)
+ inference with local models gives accurate results >600  82.0(+£59)  6.300(£10.700)
when trained on reliable interactions > ;gg Zéggiig; 54688?11‘;3888;
- choice of seed vertices is limited to proteins with 2000 88.5(138) 1.400(+1.000)

enough known interactions

e local modeling has no good scalability, training
a model for each seed is cumbersome

e instead: inference on global models

e visualize interactions predicted on hold out
dataset with Cytoscape and evaluate their bi-

ological relevance
e improve feature selection

e more experiments i.e. different STRING scores

s BIOLEDGE

The work was financially supported by the BIOLEDGE project (FP7-KBBE-289126), the Helsinki Doctoral Programme in Computer Science (Hecse), Academy of Finland
grant 118653 (ALGODAN), and in part by the IST Programme of the European Community under the PASCAL2 Network of Excellence, ICT-2007-216886.
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We present an ensemble of multi-task classifiers
for multilabel classification. As the base classi-
fiers of ensemble, we use Maximum Margin Con-
ditional Random Field (MMCRF) Model. Source
diversity of base classifiers arises from the dif-
ferent random output structures, a different ap-
proach from boosting or bagging. Experimental
result shows that ensembles of random networks
outperforms other approaches.

011001 100001
5)
Random tree
@ /4 ensemble
()
110001 ee 110110
bl
@) oeicion (5)
3 4
-\
110001

Input: Training sample S = {(x;,y;)}/",, ensemble
size T, n the number of nodes in the output graph,

Output: Multi-task learner ensemble (f“),. o fD
=0
while t < T do

t=t+1

Gt = randomGraph(n)

ft = learnBaseClassifier({x; Y/, (vi)iz , Gt)
: end while

ZF:(fl,...

Noahswb 2>

,fr)

Table 1: Multilabel datasets from biological and text
classification fields used in our empirical studies. Statis-
tics include multilabel density (D), label balance (B) and
label correlation (Co).

We consider data from a domain X x ), where X is a
set of objects and V) = Y; x - -+ x ) is a Cartesian
product over the set J; € {+1,~1}. A training data
set is given as {(x;,y;)}/; C & x V. Apair (x;,y)
where x; is a training object and y is an arbitrary multi-
label is called a pseudo-example.

The MMCREF takes a joint feature map

P(x,y) = (Pe(x,¥))ece = @(x) @ ¢(y),
where ® is the tensor product over input feature map
¢(x) and output feature map ¢ (y).

As model family, we use exponential family

) = 75y TP (e ye)

1r

defined on edges ¢ € £ of a Markov network G.
Margin-based learning takes the form
1 n
w=argmin | Z||w|*+C)_ ¢
w 2 i=1

stwlAp(x;,y) > Ualyiy) — &Yy,

where A¢(x;,y) = ¢(x;,yi) — ¢(xi,y), and £a(yi,y)
encodes the loss of the pseudo-example, as shown in
left part of Figure 1.

"

7

JVUAN

o(x;,y" )& LI ¢(x;,y;)
»

Py

Figure 1: Maximum margin optimization.

Intuitively, it maximizes the margins between the real
example and the pseudo-examples. The margins are
scaled according to loss function ¢4 (y;, y).

Once we get the edge-labeling specific feature weight
w, we can make prediction by maximizing the scoring
function

§(x) = argmaxwT¢(x,y).
yey

Table 2: Multilabel loss (top) and Hamming loss (bot-
tom) with standard deviation of the different classifica-
tion methods.

Table 3: F; score (top) and balanced accuracy (bot-
tom) with standard deviation of the different classifica-
tion methods.

DATASET INSTANCES LABELS D B co
GENEBASE 662 27 125 0.05 0.07
CANCER 4547 60 11.05 0.18 0.73
FINGERPRINT 490 286 49.1 0.17 0.08
ENRON-F 1694 53 3.42 0.06 0.03
SLASHDOT-F 3749 22 118 0.05 0.03
LLOG-F 1460 75 137 0.02 0.02
WIPO 1710 188 4 0.02 0.01
REUTERS 7500 34 148 0.04 0.05
BIBTEX 2515 159 2.43 0.02 0.02
BOOKMARKS 2000 208 2.06 0.01 0.02

We have studied the potential of structured output learn-
ing on random graphs as the basis of constructing ac-
curate multilabel classification models. Our investiga-
tions indicate that models thus created have favorable
predictive performance on a heterogeneous collection
of multilabel datasets. The results of this paper indicate
that structured output prediction methods can be suc-
cessfully applied to problems where no a priori known
output structure exists.

DATASET MULTILABEL LOSS DATASET B
” ENSEMBLE SINGLE SVM MLKNN ENSEMBLE SINGLE SVM MLKNN
GENEBASE 18+1 18+1 21411 8.6+21 GENEBASE 99.2+0.3 99.2+0.3 98.9+0.6 95.1+17
CANCER 615+2 64.54+1.2 66.1£1.5 55.9+1.6 CANCER 59.74+22 594£19 54.8+2.8 41+£32
FINGERPRINT 95.7 £ 1.8 959+ 1.6 96.7+0.9 100+0 FINGERPRINT 67.9+21 67.7+19 66.5+1 63+22
ENRON-F 86 +£0.8 86.24+0.9 872+13 90.1+1.4 ENRON-F 578+ 15 571+11 56.5+1.8 543+15
SLASHDOT-F 758 +1.8 76.6 =14 729+18 781+1.1 SLASHDOT-F 444+1 43.3+09 40942 32508
LLOG-F 787+13 78.8+14 79.7+12 81.5+15 LLOG-F 315+14 31+15 305+12 258+19
WIPO 72+24 722+24 74418 80.3+£27 WIPO 77.5+12 77.5+12 77408 713+£15
REUTERS 31.8+0.7 321408 32+12 351432 REUTERS 76.8+0.7 76.7+0.8 76.8+0.5 69.8+1.7
BIBTEX 85.6+2 862422 84.6+13 86+12 BIBTEX 357421 354419 385+1.1 315+15
BOOKMARKS 83.2+2 83.3+1.7 84+23 84.7+23 BOOKMARKS 19.8 £2.1 192+19 192+23 16.6 2.1
average 67.2+1.6 67.8+1.5 68+ 1.4 70+1.7 average 57+1.5 56.7 +1.4 56+ 1.4 50.1+1.8
HAMMING LOSS BALANCED ACCURACY
DATASET DATASET
ENSEMBLE SINGLE SVM MLKNN ENSEMBLE SINGLE SVM MLKNN
GENEBASE 01+0 01+0 01+0.1 04+0.1 GENEBASE 99.5+03 99.5+0.3 9+06 96 +£0.9
CANCER 13.6 £0.4 13.8+0.3 13.8+£05 157 +0.3 CANCER 741+16 74+15 70+ 1.6 63.1+15
FINGERPRINT 10.2+£0.7 10.2+0.6 102+03 1+07 FINGERPRINT 79+£12 789 £1.1 776 £0.7 75412
ENRON-F 48+0.1 49401 4601 49+0.1 ENRON-F 747 +£1 742407 72741 71.9+12
SLASHDOT-F 6.5+02 67+0.2 44401 4740 SLASHDOT-F 72.4+0.8 71.9+07 64+0.8 60.3+04
LLOG-F 1.9+0.1 1.9+0.1 16+0 16+0 LLOG-F 61.9£0.7 61.8+£0.7 59.5+0.4 57.7+£0.7
WIPO 09+0 0940 09+0 1+0 WIPO 845408 844408 83.9+0.5 794+1.1
REUTERS 1.8+0 1840 1.8+0 2240 REUTERS 842405 842+06 842406 787+18
BIBTEX 1.6+0.1 1.6+0.1 13+0 13£0 BIBTEX 63.9+£05 63.8+0.4 63404 59.8+0.5
BOOKMARKS 12+0 12+0.1 09+0 0.9+0 BOOKMARKS 57.4+0.9 572408 555+0.7 54.6+0.6
average 4.28+0.2 43+£02 4401 44+0.1 average 75.240.8 754+0.7 729407 69.7 -1

Figure 2: Winning model with respect to Hamming loss as the function of label balance and label correlation.
Color scheme: red-ensemble MMCRF, orange-single MMCRF, green-ML-kNN, blue-SVM, gray-default classifier.
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Introduction

We use MEG-based decoding approach to investigate the
organization of neural activity in the brain during natural
hearing, vision, touch and rest. Unlike fMRI, MEG offers a
possibility to investigate spectral signatures of neural
activationrelevant in information encoding.

We hypothesized that spectrospatial information present
in MEG is useful in separating different stimulus categories
from each other. To this aim, we designed four classifiers
and evaluated their performance in a four-category
decoding task.

Decoding Sensory Modalities from MEG Signals on the
Basis of Spectrospatial Information

Jukka-Pekka Kauppi', Lauri Parkkonen?,
Riitta Hari?, Aapo Hyvirinen’

"University of Helsinki, Helsinki, Finland 2Aalto University, Espoo, Finland
e-mail: jukka-pekka.kauppi@helsinki.fi

Conlusions

UOur results indicate that spectral information s useful
in decoding stimulated sensory modalities from MEG data
UEspecially, relatively fine-grained spectrospatial
information (utilized by our models C2 and C3) is useful
Udecoding based on unspecified spectral information
(C1) did not result in results better than the baseline
classifier not utilizing spectral information (C0)

Tactile Faces Hands Places [l Beeps Instructions History
( J \ J
Y Y
visual auditory

Figure 1. Stimulus sequence (12-min) [1]. The used categories were: 1. auditory, 2. visual, 3. tactile, 4. rest.
White spaces denote rest blocks. Two sessions were recorded (training set and test set).

Experiment and preprocessing

UNine healthy adults exposed to 6-33-s blocks of auditory,
visual and tactile stimuli that were interspersed with rest
blocks (see Figure 1) [1]

UTwo 12-min sessions recorded: session 1 for the classifier
training and session 2 for the performance evaluation

QShort-time Fourier transform (STFT) applied to 2-sec MEG
traces followed by independent component analysis [2]

QAC = 64 independent components (ICs) estimated
UFrequency range from 5 to 30 Hz

Classifiers

USparse multinomial logistic regression was used to
perform classification of N spectral epochs

QFour classifies (C1-C4) built based on varying degree of
spectral information:

»C0 did not use spectral information at all (features were
the total energies of the ICs)

»C1 used unspecific spectral information (features were
the standard deviations of the spectra of the ICs)

»C2 used category-wise spectrospatial information by
treating each spectrospatial epoch as a matrix (C x N) [3]
»C3 used spectrospatial information by estimating
frequency coefficients for each [C with principal
component analysis (PCA) prior to classification

Results

OThe (min/mean/max) classification accuracies of the 9
subjects for our models were:

»>C0: 0.24/0.40/0.63 (no spectral information)
»C1:0.25/0.43/0.68 (unspecific spectral information)
»C2:0.31/0.50/0.70 (category-wise spectral information)
»(3:0.35/0.51/0.64 (IC-wise spectral information)

Uthe mean accuracies were clearly above the chance level
(0.25) for each classifier

UWThe classification rates of C2 and C3 were significantly
higher than those from the baseline CO (matched pair t-
test; p < 0.01, uncorrected)

UC0 > C1 not significant
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Introduction

generative model

T = As

— t — t
:Bf(ml,wg,..‘,md) S—(Sl,SQ,...,Sd)
¢ ICA is a statistical model to estimate independent non-Gaussian
components.

* In ICA, the order of the sources cannot be estimated.

Relaxation of the assumption

/ independent \

s1  S9 S4 S5 Sg S7
0000000
d\cpendem

* In topographic ICA (TICA) proposed by Hyvirinen et al [1],
the assumption in ICA was slightly relaxed, and the order can be
estimated.

* We proposed a new model for topographic representations.
*Adjacent components in source signals are linearly correlated.

E { SiSi+1 } >0
Distant components are as independent as possible.

Practical situation and motivation

-

convolution

*In practice, the outputs of two co-linear Gabor functions for
natural image input can be linearly correlated.

* Topographic representations allow us to visualize the
interrelation between components.

* Topography of natural stimuli may be related to cortical
representations.

Model and its estimation
generative model

S=u®v

The key properties of this generative model are:

*It generates super-Gaussian (sparse) components S [1].

«]t generates correlated sparse components S when the
components in  are independent but the adjacent components
in v are linearly correlated.

Probability Density Function

1
ps)=~ EeXp(—lsil) exp(—|[si — sit1])
Likelihood for the estimation of the model
J(W)= Ji (W) + JQ(W)
JI(W :——szw )| + log | det W|
=1 4=l
Jo(W :——E:Z]ww wiyz(t)|
f=14=1
x(t): t-th observation ¢ = 1,2,....,T
W = (w. wo,... ,w(l)t =A""!

Flow of optimization

1. Estimation of W by the conjugate gradient method.

2. Optimization of order and signs.

3. Re-estimation of W by using optimized W, as the
initial input to the conjugate gradient method.

Validation on artificial data

¢ Artificial data are generated by two generative models.
* Preprocessing is to multiply a whitening matrix V.
* Absolute values | - | are approximated as log cosh(+).

Covariance matrix )
Estimated cov. ~ Estimated cov.

without DP with DP

1
...Io

Sample

Matrix: P = (WV)A
Random init. True init. Random init.
without DP without DP with DP
=—14.7014 J(W) = —14.5973 J(W) = —14. 5973

Comparlson of obj ectlve tunctlons

(b)
J(W ortho) -15.9319 -15.9503 —15.8137
Ji(Woptno) | -5.5700 | -5.5700 | -5.5700
Jo(Wortno) | -10.3619 | -10.3803 | -10.2437
« Constraint: W, = (WW)=05W

* J1(Wonno)is insensitive to the change of the order and
signs.
* Jo(W orino) Shows the maximum value in the correct
order and signs.

Formulation of a combinatorial optimization problem

T d
5 o 1 ,
k,¢c=arg max — 7 Z Z h(ciwy, zw(t)

t=1i=1

(Cipr Wi, T ()

J2(W)
h(a,b) = logcosh(a — b)
k=(ki....ka) ki €{1,....d} ki #kjforj+#i
c= (01 Cd) [CS {—1,1}

*A function .J,(W) has a remarkable property: summation of
functions of only two variables.

* The main problem can be divided into sub-problems.

* Dynamic programming (DP) would be an efficient method to
solve the combinatorial optimization problem.

Algorithm inspired by dynamic programming

1. First,we fix ¢, =land by =1.Fori=2,...,
function fi1(ci+1, kiv1) is defined as

T
fia(Cia higa) = max {f,(c;.k,) - %Zh(t'.'wi»,z(f)w:‘lwi»,“w(l‘))}

o(ca ko) =

77211(110,”1

Candidate functions for optimal values are also defined as

(owzzw(t))

”
1

ki (Cisrs K)o € € hign) = ma [f,m.k,) == ’;h(mw},Z(f)-r,+1wi,“w(f))

2. Fori = d, the optimal ¢4 and ]Acd can be obtained as

' §
ayka= argmax [fd(fd-kd) - ; ;’I(def:z(f)-ﬂlwil(f))}

3.Fromi=d—1toi=2, the optimal k and C canbe
found as

ki = K (@1, Kin), & = ¢ (@1, ki)
Experiments on real data
Natural image patches
* Data: 16 X 16 natural image patches.

* Preprocessing: the removal of DC components and whitening.
The dimension is reduced to 160.

Estimated basis vectors

|

Dependency of adjacent basis vectors
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Co-linearity of adjacent basis vectors

5 proposad mode!
o mea

proposed model | TICA
var(z) 0.1129 0.0593
var(z') 0.06535 0.0673

Complex cell outputs

* The outputs of complex cells are computed as

2 2
= (Z Wi, y)[(a:.y)) + (Z V[’,ff(z.y)[(z.y))
.y .y

. = log(x}, + 1.0)
*For preprocessing, we remove the DC components and
normalize the variances to one.

Natural images

Noise inputs

Connection to previous work

¢ Differences to TICA are:
1. Adjacent components have linear correlation.
2. Phases of basis vectors are non-random.
3. Stronger co-linearity.

* For complex cells outputs, the results of previous work lacked
topographic representations [2,3], while our model could
estimate them reflecting the properties of natural images.

Conclusion

* We proposed a new statistical model to estimate topographic
representations. In the model, adjacent components are linearly
correlated, while distant components are as statistically
independent as possible.

* To avoid local maxima in the likelihood, we proposed a new
optimization method inspired by DP.

* The application to real data showed the emergence of new
topographic representations.
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1. Motivation 2. Basic Idea

Problem: Identify causal effects from non-experimental data Unknown generating structure:
Challenge: Avoid inconsistent estimators due to confounding GOAL: Obtain a consis-
Solution: ‘Adjust for’ a suitable set Z of observed variables, ' tent estimator of «, the
if such a set exists: causal effect of x on y,
where x is the second
Snon-admis.  last and y the last vari-

1. Underlying causal structure known:
There exist graphical criteria and efficient algorithms to search

for a suitable set Z (Pearl, 2009). sets 2 able in the causal order.
. . © admissible
2. Underlying causal structure not known: set Z IDEA: Search for a so

» Possible Solution 1 - Learn complete structure (and use 1.)
« In the Gaussian case only possible up to equivalence (Spirtes et al.,
2000; Pearl, 2009)
eln Fheh linear non-Gaussian case possible |f.no latent variables (L{NGAM, to y other than the direct
Shimizu et al., 2006). If there are latent variables, only up to equivalence, . . . one. ‘Adiust for' this set
computationally challenging (IVLINGAM, Hoyer et al., 2008) Example in epidemiology: ; : btai Ju istent
. . . . —ri O ODtaln a consisten
» Possible Solution 2 - Restrict to certain effects only x = risk factor

_ indi estimator of «
How to search for a suitable set Z? — Subject of this poster y= healthfnndmatolrh ith diti
(for linear models) W = set of general health conditions

called ‘admissible’ set
Z C W ‘blocking’ all
information flow from x

3. Background (Graphical Criterion, Admissible Set)

Back-door Criterion (Pearl, 2009) A set Z fulfilling the back-door criterion is called admissible.
A set Z fulfills the back-door criterion w.r.t. the ordered pair (x, y) if If Z is admissible then the causal effect o of x on y can be
» Z does not contain any descendants of x consistently estimated by adjusting for Z in the regression:
» Z blocks (d-separates) every path between x and y that contains y=ax+ Z C:z 41y
an arrow into x (“x <) ez
4. Model 5. Simple Example
Assumptions: Unknown equations: Generating model = Z={w}
» acyclic structure (unknown) (for generating structure in Box 2) w, X, y observed X = rx X =bw +ry
» linear relationships U = ey Uy, U latent y=ax+r y=ax+cw+r,
» non-Gaussian, independent Up = ey, 4 inconsistent A consistent
error terms e (unobserved) wy = Buy + ol ster e e
= YUz + €
» a set of unobserved variables W, = 6y, " / ¢ rZ Tftradmlssmle rZ adr:us&ble
i X y X y
= set of observed varizb X Ce ke v
» a set of observed variables _
WU {x, y} Y= oxX il vwe 6y O 20 & consistent & inconsistent
» known partial causal order Observed variables: v @k Z admissible Z not admissible
W’\»X“»y W1,W2,xandy (:)—>(a y rXJ'Lr,V I’leil’y

6. Statistical Test for Consistency 7. Heuristics to Search for Z

Given a set Z, estimate the two regressions using OLS
X — Z b,z +r, » Brute force - go through all possible sets Z

ez » Forward selection - starting from the empty set, expand the

y=ax+y ezt “best” set from the previous round with the one variable

zez . .
. . . : . which makes ry and r, most independent
If r, is Gaussian — terminate without conclusion X Y P
If r 1L ry: @vis inferred to be a consistent estimator of a » Backward elimination - starting from the full set, leave out
If r JL 1,z &is inferred to be an inconsistent estimator of o the one variable of the “best” set from the previous round
Non-Gaussianity required since cov(ry, ry) = 0, thus for Gaus- which makes r, and r, most independent

sian variables the residuals are always independent

Main references

P.O. Hoyer, S. Shimizu, A.J. Kerminen, and M. Palviainen (2008). Estimation of causal effects using S. Shimizu, P.O. Hoyer, A. Hyvérinen, and A.J. Kerminen (2006). A linear non-gaussian acyclic model
linear non-gaussian causal models with hidden variables. IJAR 49: 362-378. for causal discovery. JMLR 7: 2003-2030.

J. Pearl (2009). Causality: Models, Reasoning, and Inference. Cambridge University Press, 2nd P. Spirtes, C. Glymour, and R. Scheines (2000). Causation, Prediction, and Search. MIT Press, 2nd
edition. edition.
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Noisy-OR Models with Latent Confounding 7
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1. On the Identifiability of Causal Models with Latent Confounding

We examine the identifiability of causal models with latent
confounding, given a set of experiments in which subsets
of the observed variables are subject to interventions.

In general identifiability is impossible on the basis of ex-
periments where only few variables are subject to inter-
vention per experiment, which is often the case.

Identifiability is possible for a class of causal models
whose conditional probability distributions are restricted
to a ‘noisy-OR’ parameterization.

Identifiability is preserved under an extension of the
noisy-OR CPD that allows for negative influences.

Several learning algorithms are introduced and tested for
accuracy, scalability and robustness.

2. Noisy-OR Model with Latent Confounding

Structural Equation Model

X1 :=E

X = (B]g A )(1) Vv Ep

X3 := (Bis A Xi) V (B2s A Xp) V E3
Binary random variables X;, X2 and X3 are observed.
Links By2, B3z and By3 and disturbances E;, E; and Ej
are all unobserved binary random variables, introducing
noise to the simple OR expressions.

Conditional Probability Distributions Links are inde-
pendently distributed with model parameters bz =
P(B12 = 1), b13 and b23.
P(Xi =0|E1) = (1 — Ey)
P(Xo = 0|Ez, X1) = (1 — E2)(1 — by2)™
P(X3 = 0|E3, X1, Xz) = (1 — Ea)(1 — b13)*'(1 — bp3)*

observed variable

dependence representing
latent confounding _,.-*"

disturbance E kY
(unobserved)-,—2

observed =3
variable

link B,, with link
probability b,,

Latent Confounding Latent confounding is represented
by an arbitrary distribution P(E?) (total of 23 parameters).
Any latent confounding (restricted by the noisy-OR CPD)
can be presented through E;, E; and Es.

Joint Distribution
P(X?) =" P(Xi|E1)P(Xa| X1, E2) P(Xs| X1, Xo, E3) P(EY)
E}

Passive observational data or experiments intervening on
only a few variables at a time are generally insufficient to
identify the parameters and the structure of a causal
model with latent confounding.

For example, the two graphs on the left imply the exact
same independences in single intervention experiments
and when passively observed.

Furthermore, there exist parameterizations for the two
graphs that produce the exact same distributions in those
situations as well.

Thus, the presence of the red direct link cannot be deter-
mined unless both X; and X, are subject to an interven-
tion in the same experiment.

Data Generation Draw a sample of disturbances E3 from
P(E3), links Bi2, B13, Bos from their independent distribu-
tions, and determine Xi,Xz and X; from the SEM equa-
tions.

Context Specific Independence Property Noisy-OR
CPDs have the following property.
XL E|X)=XLE|X2=0]| X1)

If parents X; and E, of variable X> are independent
in some context (here when intervening on Xj), then
additionally conditioning on their common child X = 0
does not destroy this independence. This is evident
from the SEM equations, if Xo = 0, then E, = 0 and
(Bi2 A X1) = 0, thus the value of E; does not provide
any additional information about the value of Xj.

3. Identifiability

The parameters of any three variable model can be iden-
tified from single intervention experiments and passive
observational data.

Step 1 Find a causal order from the ancestral relation-
ships directly observed in the experiments and rename
variables such that the causal order is Xi, X2, X3.

Step 2 Estimate link probability by by Cheng’s causal
power formula, using the intervention on Xy to make E;
independent of Xj. X, = 1 caused by
its other causes
_ P =1]X=1) - P =1X =0)
B 1= P(Xe = 1]1X; = 0)
renormalization
Similarly, estimate bys by intervening on Xa.
by = P(Xs=1[|Xa =1) — P(X3 =1||X2 = 0)
8= 1—P(X;=1|[X =0)

4. Learning Algorithms

Efficient Conditioning Conditioning reduces the effec-
tive sample size for estimating the link probabilities. How-
ever, if it happens in step 2 (above) that b1z = 0 or
boz = 0, then the blue path does not exist and condition-
ing on Xz is unnecessary when estimating byz. The cor-
rect conditioning sets for each link can always be deter-
mined based on links already estimated. In addition, the
experimental data can also be taken into account when
estimating P(E3).

EM-algorithm For up to eight variables, the model can
also be learned using a version of the EM-algorithm.

5. Extension to Negative Influences

In noisy-OR models, the parents X; and X, being ON has
a positive effect on their child X3 being ON. However, the
noisy-OR parameterization can be extended to also allow
for negative influences:

Xz := B3V (Biz A Xi) V (B A Xa),
where for positive/generative causes X; = X; and for
negative causes X; = —X;. Now X; = 0 can cause

X3 = 1. The context specific independence property and
the identifiability of the model are preserved.

b1z

Step 4 Estimate the noise distribution from the passive
observational data by solving a matrix equation:

Step 3 Estimate the link probability byz by additionally
conditioning on Xz = 0 s.t. the blue indirect path is inter-
cepted.
bis = P(X; =1|X2 = 0[|X; = 1) — P(X; = 1|X2 = 0||X; = 0)
: 1— P(X3 = 1|X = 0||X; = 0)
The context specific independence property guarantees
that the red path remains intercepted.

6. Simulations

A of Links

1.0

correlation
0.5 0.75
! !
0.75 1.0

correlation
0.5

0.25
!
0.25

= 1D

* EC

. 4 EM o T

T T T T T T T T
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Accuracy Accuracy of the learning algorithms with in-
creasing sample sizes. EM is most accurate, EC beats
the algorithm based on the identifiability proof (ID).

EM - Double interventions BN - Double interventions
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(= by 0 o| | P(E2=101)| _ |P(x2=101)
-+ 0 (1—bia)(1—by) 0| | P(E} =110) P(X3 = 110)
biz  biz+ by — bisbis 1] | P(Ej = 111) P(X3 =111)

The matrix on the left is lower triangular with a nonzero
diagonal, and thus invertible.

All parameters of a noisy-OR model with latent con-
founding are identified from the combination of a pas-
sive observational data set and a set of experiments
where for each ordered variable pair (X;, X;) there
is an experiment where X; is randomized and X; is
observed. This condition is often also necessary.

10 000 in total per experiment
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Scalability Structural errors when using the EC-
algorithm on models with different sizes. Some statisti-

cally insignificant links are deleted.

variables

Robustness Models were learned from single interven-
tion and passive observational data, generated by a
‘noisy-interactive-OR’ model while the amount of latent
confounding and interaction of the parents was varied.
The shade of each square represents the average predic-
tive accuracy in double intervention experiments. Lighter
shades indicate better results. Standard Bayesian Net-
work without hidden variables (BN) predicts accurately
when there is little confounding, noisy-OR (EM) predicts
accurately when there is only little interaction.
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We address a setting of information
retrieval where the user specifies query
objects and the problem is to identify
other objects that are relevant with respect
to the query objects, but non-redundant
with respect to each other.

Consider, as example the graph on the

right, where nodes represent terms (objects),

edges relations between them, and weights
word co-occurrences within sentences.
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A user who wants to know how branch
and root are related might know some
relations. Other relations again might
be more interesting.

The relevance of an object u € V with respect to
a positive query object g € V is defined as their
proximity:

relp(u,q) = s(u,q) = 1/d(u,q).
The relevance of object u with respect to a set

Qp C V of query objects is defined as the inverse
of the p-norm with a > 1:

1
L3

relp(u,Qp) = ( ) d(u,q)*)"x.

q€Qp

The irrelevance (or negative relevance) of an
object 1 with respect to a negative query object
g € V is defined as their proximity:

reln(u,q) = s(u,q) = 1/d(u,q).

The irrelevance of object u with respect to a set
QN C V of negative query objects is defined as
the sum of similarities raised to the power of f>1:

rely(u,Qn) = Y d(w,q)F =Y s(u,q)f.

7€EQN J€QN

Given a set R C V of (retrieved) objects, the
redundancy of R is defined by
red(R) = Y d(u,0) P = ) s(u,v)P.

1,vER u,0ER

u#v u#v

We define the overall relevance and non-redun-
dancy of a set of objects R C V as

REL(R, QP! QN) = ZR Velp(u, QP) - VelN(u, QN)
ue
— red(R).

Greedy algorithm
1. Repeat until a sufficient number of
representatives has been retrieved:
1.1. Find the most relevant object r

w.r.t. Qpand Qy
1.2. Output r and add it to Qy

Iterative algorithm
1. Getan initial solution R of k objects
(e.g. random)
2. Repeat while R changes:
2.1. Find the optimal swap of any object r
in R to any object not in R
2.2. If the swap improves the result,
implement it

Word relations and senses: The proximity is

measured by word co-occurence within sentences.

Both algorithms produce a good set

Op | branch & root | bank star of objects, with high relevance and
1. | tree reserve planet low redundancy.
2. | indo river trek
. o The greedy algorithm seems to also
3. | mathematics gaza cluster X
. . . work well for any top k objects.
4. | line credit sirius
5. | equation international | movie e The iterative algorithm could in our

Biomedical graph and probabilistic node proximities.

experiments produce only marginally
better results than the greedy ranking.

1 — 0 —

S rlodal
REL(u.Gp.Qy)
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rely(uQy) ------
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What application can you think of?
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and its factors (relevance,
dashed; irrelevance, short
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dotted line).

top k nodes obtained

L
100 120

Overall relevance of set Ry of

by both

algorithms and random ranking.
(The lines corresponding to the
algorithms are indistinguishable.)



Corpus-Based Generation of Content and

Form in Poetry

Jukka M. Toivanen, Hannu Toivonen, Alessandro Valitutti, and

Background

We present a method for generation of novel poetry. The main idea is to use two
n one hand, to provide semantic content for new poems, and
on the other hand, to generate a specific grammatical and poetic structure, The

approach uses text mining methods, morphological analysis, and morphological
s to produce poetry in Finnish

different corpora

synthes
Computational poetry is a recent and challenging research area of computer

8¢ . he cross section of computational linguistics and artificial

Poetry is one of the most expressive ways to use verbal language
this reason, computational generation of texts recognizable as good poems
s difficult to achieve. Nevertheless, several Interesting research systems have
been developed for the task (see e.g. Manurung, Ritchie, and Thompson 2000
Gervas 2001, Manurung 2003). These systems vary a lot in their approaches, and
vany different computational and statistical methods are often combined in
order to handle the linguistic complexity and creativity aspects

telligence

For

Examples

Some example poems generated with the system are presented below with their
rough English translations

Kuinka han leikki silloin
uskaliaassa, uskaliaassa kuiskeessa
vaaleiden puiden alla,

Han oli kuullut huvikseen

kuinka hanen kuiskeensa

kantell helkkeina tuuloseen.

luo onnien, jumalin
hoiloa sielu!

Kirkkaus!

Tuo korkea herra huus:

Sing it to the thunder of great souls

to the blisses, with gods
sing out, you soul!
Brightness!

That high lord yelled:

How she played then

in a daring, daring whispering
under the pale trees.

She had heard for fun

how her whispering drifted as

jingle to the wind. chimed from us.”

Evaluation

We evaluated poetry using a panel of twenty randomly selected subjects. Each
subject independently evaluated a set of 22 poems. One half were human-written
poems from the grammar corpus and the other half computer-generated. The
subjects were not explicitly informed that some of the poems were computer-
a d. The first questi was if the subject considered the piece of
text to be a poem or not, with a binary yes/no answer. The figure shows also
dard of the s and averages for the best and worst poems in
the both groups,

M—-v
B sman-wrmen sowtry

R

Laula se ukkoseksi suurten sielujen

Oskar Gross
Methods

The topics and semantic coherence of generated poetry are controlled by
using a simple word assoclation network which is automatically
constructed from the background corpus using word co-occurence
analysis

The grammar, including the syntax and morphology of the generated
poetry, is obtained in an instance-based manner from a given grammar
corpus. Instead of explicitly representing a generative grammar of the
output language, we copy a concrete instance from an existing
sentence or poem but replace the contents

The current poetry generation procedure can now be outlined as follows
«(1) A topic is given (or randomly chosen) for the new poem. The topic is
specified by a single word
* (2) Other words assoclated with the topic are extracted from the
background graph
+(3) A piece of text of the desired length is selected randomly from
another corpus
« (4) Words in the text are analyzed morphologically (part of speech
singular/plural, case, verb tense, clitics etc.)

» (5) Words in the text are substituted independently, one by

one, by words associated with the topic. The substitutes are transformed
to similar morphological forms with the original words. The replacement is
applied only when a word in the expansion of the topic can be transformed
to the correct morphological form. In other cases the original word is left
intact.

+ (6) After all words have been considered, the novelty of the poem is
measured by the percentage of replaced words. If the poem is sufficiently
novel it is output,

Vaaleassa kourassa
sopusuhtaisessa kourassa ovat nuput niin kalpeita
kuvassasi lepaa lapsikulta jumala.

Pyha hehkuko meiltd soinut ois?>”

In a pale fist
in a well-balanced fist, the buds are so pale
in your image lies a dear child god

Jwonder if the holy blaze would have

Then each text was evaluated qualitatively along six dimensions
the text as a poem? (2) How understandable is it? (3) How good is
Does the text evoke mental images? (5) Does the text evoke em
much does the subject like the text? These dimensions were evaluate
from one (very poor) to five (very good). The whiskers indicate the standar
deviations of the answers.

How typical is
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Introduction

This work is aimed to investigate to what extent it
is possible to perform a feasible use of ambiguous
lexicon in computational humor.

The first core of a lexical database, characterized
as an extension of WORDNET 3.1 (Fellbaum,
1998), was developed in order to collect
ambiguous terms in the English lexicon for be
employed as resource for humor generation.

Humor and Ambiguity

‘ inconsistency, ambiguity ‘ linguistic level

‘ incongruity (perception) ‘ cognitive level

‘ physiological arousal ‘ affective level

Humor is a way to induce mirth, a specific emotion. In verbal humor, linguistic
ambiguity can affect the cognitive state, through the violation of expectation. The

corresponding state of can increase the level of emotional arousal and contribute

to the humorous effect.

Humor and Lexical Ambiguity

HES GONNA URGRADE
YOUR TABLETS...

|

| APV

Double-Edged Words (DEW)

A DEW can be characterized by the following
attributes:

1. WORD is the lexical unit (e.g. a single word or a
phrase).

2. AMBIGUITY is a list of two or more “meanings”
associated to the WORD.

3. DEPTH expresses the different typicality of the
two meanings. For example, a two fold ambiguity
will be associated to a main meaning (called
surface meaning, with depth 1) and a secondary
meaning (called hidden meaning, with depth 2).

4. SLANT is a set of additional semantic labels
associated to the hidden meaning, and
characterizing it as potentially humorous. Slant
labels can be used to emphasize the humorous
role of hidden meaning. For example, slant labels
can be selected in order to evoke ridiculous trait
of people.

University of Helsinki —

alessandro.valitutti@cs.helsinki.fi

Homonym|c DEWs

+ Homonymy is defined as the relation between
words that share the same spelling and
pronunciation but have different meanings.

In WordNet each word meaning is represented by
a set of synonyms (synset) and associated to a
specific ID in the database. Each word is
associated to one of more senses (i.e. ranked
synsets).

Homonymic DEWSs are words in WordNet with at
least two senses.

The sense number expresses the DEPTH
attribute. A list of 24167 DEWSs was extracted from
WordNet 3.1.

.

Homophomc DEWSs

+ Homophony is defined here as the relation
between words that are phonetically identical
(complete homophones) or similar (partial
homophones) but with different spelling.

The algorithm for the measure of the phonetic
distance is a specific implementation of the
Levenshtein distance.

A measure of the above described phonetic
distance was calculated for all pairs of words in
WordNet, in order to collect sets of homophones.
A number of 5400 total homophonic sets and
23050 partial homophonic sets were filtered.

.

Idlomatlc DEWs

Idiomatic ambiguity is a specific type of ambiguity
between literal and figurative language. Idioms
are defined here as multiword expressions whose
meaning cannot be inferred by the meaning of the
component words. The idiomatic meaning of a
word is the meaning associated to the idiom in
which the word is included.

A manual annotation of WordNet was performed
in order to identify lexical idioms (i.e. idioms con-
sisting of a composed word).

The collection includes 3541 WordNet synsets.
For each idiomatically ambiguous word, the
surface meaning (or literally meaning) was
defined as its first sense in Word- Net, and the
hidden (or idiomatic meaning) as the first sense in
the idiom in which the word is included.

Double-Edged WordNet (DEWN)

Items are defined according to three different
possible types of lexical ambiguity:

1. Homonymy is defined as the relation between
words that share the same spelling and
pronunciation but have different meanings (e.g.
tablet)

2. Homophony is defined here as the relation
between words that are phonetically identical
(complete homophones) or similar (partial
homophones) but with different spelling (e.g.
show/shop).

3. Idiomatic ambiguity is a specific type of
ambiguity between literal and figurative
language. Idioms are defined here as multiword
expressions whose meaning cannot be inferred
by the meaning of the component words. The
idiomatic meaning of a word is the meaning
associated to the idiom in which the word is
included. (e.g. cat/rain)

Department of Computer Science and HIIT

Examples
Punning Riddles

How do you define a pig?
It is a stout-bodied short-legged omnivorous policeman.

In order to obtain this joke, the homonymic DEW
“pig” was selected. The definition (in the form of an-
swer) is the gloss of the default meaning (i.e. first
WordNet sense of the corresponding noun), in which
the word “animal” was substituted by the first
synonym (“policeman”) of the hidden meaning (i.e.
third WordNet sense).

The creation of a punning riddle starting from a
“lexical core” is inspired to the JAPE system (Bin-
sted and Ritchie, 1994), in which the joke is
generally based on a couple of phonetically similar
words.

An analogue example is:

Who is a working girl?
A young streetwalker who is employed.

Funny Acronyms

CPU = Celibate Professing Untied (from “Central
Processing Unit”)

This type of acronym generation is modeled on the
HAHAcronym system (Stock and Strapparava,
2002). The acronym is generated through the
replacement of each word in the original expansion
(Central Processing Unit) according to phonetic
similarity (“processing” vs. “professing”) and
semantic opposition (“‘computer” vs. “religion”).

The following “hand-made” example, instead, cannot
be generated with the present resource because it
involve a model of the ambiguity propagated at the
phrase level:

IBM = Interpreting Bible Machines
(from the original International Business Machines)

Variation of Familiar Expressions
A chapel a day keeps the malefactor away.

This example is based on the FEVER program
(Valitutti, 2011). The pun is obtained through two
word replace- ments in which both phonetic
similarity and domain slanting (RELIGION)
constraints were applied.

Instead the following hand-made expression cannot
be generated without a model describing the am-
biguity at the sentence level:

An onion a day keeps everyone away.

Conclusion

Exploration of the connection between
computational humor and automatic discovery

Distinction between heuristic creativity and
narrative creativity

Distinction between ambiguity and “slanting”

Definition and collection of ambiguous lexical
units - DEWN

Integration of existing humor generators
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We are interested in better understanding the evolution of metabolic
biodiversity in bacteria- Archaea and the Eubacteria. To investigate this
question, we introduce the use of weighted graphs to integrate large oo
amounts of genomic data. We propose three ways of measuring the

importance of enzymes, and apply the weighted graph compression

method to measure the correlation between two kingdoms.

Archaea

Each species has a different metabolism. Given a large number of species,
how can we compare their metabolisms?

Bacteria

Awabolan o
G i

Goal: Integrate different species metabolisms into one
graph.

Solution:

Step 1: Represent the meta-metabolic network as a
graph with enzymes as nodes. Two enzymes are con-
nected with an edge if they catalyze reactions that share
metabolites.

Step 2: Assign weights to enzymes based on how fre-
quent they are in the species.

Genome 1

Genome &

Genome N Weighted metabolic network

Enzymes with high weights are ubiquitous, and those
with low weights rarely occur.

Such a weighted graph summarizes the information in
the set of these instantiations of the meta-metabolic
network.

no. of genomes that contain the enzyme
no. of genomes ’
- Protein similarity = average similarity of protein sequences of the enzyme.

- Average isoenzyme number = average number of isoenzymes.

- Taxonomy proportion =

o y Correlation coefficient between taxonomy ficient of isoenzyme

" TRaxonomy proportion _protei imiariy AcRaca Evbattera Archaea Eubactera

We found that the important enzymes, determined by their existence frequency, in Ar-
chaea are also important in Eubacteria. However, this importance is not presented by
neither sequence conservation nor average number of isoenzyme.

We apply the weighted graph compression method
to compress the metabolic network utilizing en- method to compare the importance
zyme weights, and decompress the compressed of pathways in the different king-
graphs to enable direct comparison between them. doms.

(1) Apply the graph compression

(2) Extract an approximate ances-
0.09 tor metabolism, which is a con-
nected subgraph with enzymes that
are common to both kingdoms.

Compression ratio
0.01 | 0.03 | 0.05 | 0.07
| Distance | 53.94 | 59.54 | 62.22 | 64.14 | 65.47
Mean distance between compressed graphs of Archaea
and Fubacteria at different compression ratios.

(3) Use simulations to produce a

Results show: more compression actually gives X
null-model for pathway evolution.

a smaller distance.



