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Reads

Genome size: 350 Mbp

Melitaea cinxia
Photo: Niclas Fritzén

454 SOLiD Illumina

Number of reads 10 million 200 million 300 million

Read length 400–800 bp 50 bp 75-150 bp

Errors Indels Mismatches Mismatches

Paired end - - 600 bp, 800 bp

Mate pairs 7 kbp, 16 kbp 2 kbp, 3 kbp 1 kbp, 2-4 kbp

Other - Color coding -

Total input data size: 45000 Mbp

Error Correction

Remove sequencing

errors by aligning the

reads with each other

Hybrid SHREC

• Based on SHREC

by Schröder et al.

• Build a suffix trie

of the read set.

• Correct low weight

nodes in the trie

by comparing to

siblings

• Support for simul-

taneous correction

of color coded and

base coded reads

node with low weight
node with higher weight A T

level=r

L. Salmela: Correction of sequencing errors in a mixed set of

reads. Bioinformatics 26:10(1284–1290), 2010. (Award for best

paper submitted to HiTSeq 2010).

Overlap Computation

Find suffix-prefix

overlaps between reads.

Represent the overlaps

in an overlap graph.

Coral

• Build multiple

alignments of reads

that share k-mers

• Correct reads based

on these multiple

alignments

• Sequencing error

model can be spec-

ified by setting gap

penalty and mis-

match penalty for

multiple alignments

G T A A – G T T G A A C C C T T A

A A A G T T G A A C C C T T A C C

G T T G A A C C – T T A C C C G G

G A C C C C T T A C C C G G T T C A

L. Salmela and J. Schröder: Correcting errors in short reads

by multiple alignments. Bioinformatics 27(11):1455–1461, 2011.

(Also in HiTSeq 2011).

Contig Assembly

Report paths in the

overlap graph as contigs,

i.e. contiguous sequences.

Overlap Tool

• Supports mis-

matches and indels

in the overlaps

• Based on Burrows-

Wheeler transform,

backward backtrack-

ing (Lam et al.

2008) and suffix fil-

ters (Kärkkäinen et

al. 2008)

• Easy to parallelize

• Scales up to mil-

lions of reads

N. Välimäki, S. Ladra, and V. Mäkinen: Approximate all-

pairs suffix/prefix overlaps. Information & Computation

10.1016/j.ic.2012.02.002. Available online, 2012.

Scaffolding

Mate pairs and proteins

give links between contigs.

Remove minimum

number of mate pairs

so that the remaining

ones are consistent.

MIP Scaffolder

• Cleaning input:

– Keeping only more reliable mate pairs

– Bundling mate pairs that connect the same

contigs together

– Estimating the distance between contigs

based on the mate pairs

• Partitioning the problem into smaller

subproblems of restricted size

• Solving each subproblem as a mixed integer

program (MIP)

L. Salmela, V. Mäkinen, N. Välimäki, J. Ylinen, and E. Ukko-

nen: Fast scaffolding with small independent mixed integer

programs. Bioinformatics 27:23(3259–3265), 2011.

Validation

Genetic map, Map

ESTs to scaffolds,...

Gap Closing

Use paired end reads

to fill the gaps

between contigs.

Annotation

Validation with ESTs

• Align ESTs against scaffolds:

– Find local maximal approximate matches

(swift by Rasmussen et al. 2006)

– Produce maximal colinear chains of the

above matches (Abouelhoda 2007)

• Compute the coverage of ESTs

(Error corrected)

Mate pairs

Protein links
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IDENTIFYING REGULATORY MODULES IN GENOME
Jarkko Toivonen, Department of Computer Science

REGULATION OF GENES

The basic question is why gene expression dif-

fers between cells of single organism even though

the cells contain the same DNA.

What affects the gene expression of a cell?

• Condition

– For example, increased temperature

or stress to cell causes Heat Shock

Factor (HSF) to be activated.

• Cell type: neuron, germ, blood cells, etc

• The stage of development of an organism:

Embryo, Fetus, Adult, etc

What mechanism regulates the expression of genes?

• A promoter is an area in DNA close to the

beginning of a gene. Transcription of a

gene starts here.

• Certain proteins that chemically bind to

this promoter area can regulate the tran-

scription of the gene

• These proteins that bind to DNA and reg-

ulate the transcription are called transcrip-

tion factors (TF). They can be either Activa-

tors or Repressors.

A MODEL FOR A BINDING SITE

Binding sites of transcription factors

• In order to understand how the regula-

tory system works, it is important to be

able to describe and predict the binding

sites of transcription factors in the genome

• A model that describes the binding sites

where the TF prefers to bind is called mo-

tif.

• There are several ways to represent a mo-

tif:

– A consensus sequence of a TF is the

DNA sequence with the highest bind-

ing affinity to the TF

– Regular expression (like ACG[GC]TT)

– Position Weight Matrix (PWM) and

its sequence logo

An example of a PWM logo for the ERG factor:
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DATA

We need a large set of sequences where we know

that a fixed transcription factor has bound. From

this dataset we want to learn a motif model for

the transcription factor in question.

The SELEX procedure (Systematic evolution of lig-

ands by exponential enrichment) is a high-throughput

in vitro method for selecting those sequences that

get bound by a TF.

• Starts with a library of random sequences

of constant length: for instance 14 or 20

bp

• The proteins are let to bound to the ran-

dom sequences

• The unbound sequences are removed

• The selected sequences are cloned by PCM

• The selection process is repeated for the

cloned sequences

• The selected sequences can be sequenced

after each round of selection

Why use SELEX?

• To make high precision motifs, lots of bound

sequences are needed

• Fast and relative inexpensive

• Results from several different experiments

can be sequenced in parallel using bar-

coding

LEARNING A PWM FROM SELEX DATA

Using the SELEX data

• The SELEX procedure results in a set of

fixed length sequences that were bound

by the transcription factor

• The length of the binding site is usually

shorter than the length of the SELEX win-

dow

• Therefore, the sequences are fed to a mo-

tif finding program

• An alignment for the sequences is produced

• An example of counts from the aligment

of the SELEX experiment with the ERG

transcription factor

1 2 3 4 5 6 7 8 9

A 164 22 23 0 0 164 164 98 6

C 10 164 164 0 0 1 1 9 42

G 37 23 0 164 164 0 1 164 21

T 31 3 0 0 1 1 40 2 164

• These counts are then normalized column-

wise, resulting in a multinomial distribu-

tion in each of the columns. This matrix

can be visualised as the previously shown

sequence logo.

MODEL FOR REGULATORY AREAS

The simple model isn’t enough because of co-

operation of transcription factors and the chro-

matin structure of DNA.

Our plan is to create a model for regulatory ar-

eas.

• We try to take a simple model for single

isolated motif and combine these to cre-

ate a more complex system that tries to

describe the co-operation of a set of tran-

scription factors

• Distances between transcription factors and

their orientation can affect the strength of

binding.

• This more complicated model can be used

to predict clusters of binding sites in the

genome

• The validity of the model can be tested

with in vivo data, like ChIP-seq

CAUSES OF CANCER

Even though understanding of regulatory sys-

tem is important in it self, still the main objective

is cancer research.

• Oncogenes promote cell growth and re-

production

• Tumor suppressor genes inhibit cell divi-

sion and survival

• Mutations in the DNA can affect the ex-

pression of these genes

• This can result in unrestricted growth, i.e.

cancer

[1] Arttu Jolma, Teemu Kivioja, Jarkko Toivo-

nen, et al. Multiplexed massively paral-

lel selex for characterization of human

transcription factor binding specificities.

Genome Res. 20, 861–873 (2010).

This is joint work with Arttu Jolma, Teemu Kiv-

ioja, Pasi Rastas, Mikko Sillanpää, Jussi Taipale

and Esko Ukkonen.
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ACCELERATING BURROWS–WHEELER COMPRESSION WITH
GRAMMAR PRECOMPRESSION Juha Kärkkäinen, Pekka Mikkola and Dominik Kempa

The speed of text compressors based on the Burrows–Wheeler transform (BWT) — such as the popular bzip2 — is limited by the time needed

to compute the BWT during compression and its inverse during decompression. We propose to speed up Burrows–Wheeler compression by

performing a grammar-based precompression before the BWT. We have developed a fast grammar precompressor as a part of an experimental

Burrows–Wheeler compressor, and show with experiments that it accelerates compression and decompression without affecting compressibility.

COMPRESSOR OVERVIEW

The grammar precompressor has been implemented as a part of an experimental

Burrows–Wheeler compressor [2] that has three main stages:

Grammar

precompression
BWT

Entropy

encoding

Grammar

decompression

Inverse

BWT

Entropy

decoding

Text
Compressed

text

The idea of the precompressor is to quickly reduce the

data before more expensive stages. Grammar com-

pression is well-suited for the task as it can achieve

some compression without harming final compress-

ibility. Grammar compression has been studied as a

standalone compression method but not as a precom-

pression method before.

We use Yuta Mori’s divsufsort algorithm [3] for

computing the BWT and mtl-sa-8 algorithm from [1]

for computing the inverse.

We use two experimental entropy coders of our own.

One compresses well but is relatively slow. The other

is fast but does not compress quite as well.

GRAMMAR PRECOMPRESSION

The grammar precompressor performs one or more

rounds of the following:

1. Compute the frequencies of symbol pairs by

scanning the text.

2. Choose a set of frequent pairs that cannot over-

lap (see below).

3. Add the rule X → AB for each chosen pair AB,

where X is a new non-terminal symbol.

4. Replace all occurrences of chosen pairs with

the corresponding non-terminal symbols in a

single sequential pass over the text.

Pairs A1B1 and A2B2 can overlap iff A1 = B2 or

B1 = A2. We avoid pairs that can overlap to ensure

that all occurrences of all pairs are replaced.

Occurrences of rare symbols may be replaced by pairs

of bytes to free those rare symbols to be used as non-

terminals.

Here is an example with two rounds:

Text Rules added

singing do wah diddy diddy dum diddy do A → d, B → id, C → in

sCgCgAo wahABdyABdyAumABdyAo D → AB, E → dy, F → Ao, G → Cg

sGGF wahDEDEAumDEF

The decompressor computes the full expan-

sion of all rules and then replaces all occur-

rences with a single scan of the text.

Expanded rules

A → d, B → id, C → in

D → did, E → dy, F → do, G → ing

EXPERIMENTS

We ran three sets of experiments to test three hypotheses:

1. Precompression improves the total compression time.

2. Precompression improves the total decompression time.

3. Precompression does not hurt the compressibility.

The timing experiments use the fast entropy coder and the com-

pressibility experiments use the slow but good entropy coder. The

x-axis labels from 0 to 6 are the number of precompression rounds.

Other well-known compressors are included as a reference point.

Wikipedia XML (enwik9), 1000MB, σ = 206
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SLASHING THE TIME FOR BWT INVERSION
Juha Kärkkäinen
Dominik Kempa
Simon J. Puglisi

The Burrows-Wheeler transform (BWT) is a powerful tool for data com-

pression used for example in the popular bzip2 compressor. We de-

scribe new algorithms for inverting the BWT, which is a bottleneck in

the decompression phase due to a high number of CPU cache misses.

One of the algorithms is consistently 2.3–4 times as fast as the previ-

ous state-of-the-art. Another algorithm achieves an asymptotic reduc-

tion in cache misses in theory and is the fastest algorithm in practice

for highly repetitive data.

BURROWS–WHEELER TRANSFORM

The Burrows–Wheeler transform (BWT) is an in-

vertible text transform defined as follows.

Input: text T = BANANA$

1. Build a matrix with the

text rotations as rows

B A N A N A $

A N A N A $ B

N A N A $ B A

A N A $ B A N

N A $ B A N A

A $ B A N A N

$ B A N A N A

2. Sort the rows

F L
$ B A N A N A

A $ B A N A N

A N A $ B A N

A N A N A $ B

B A N A N A $

N A $ B A N A

N A N A $ B A

Output: BWT L = ANNB$AA (the last column)

The properties of the BWT make it easier to com-

press than the original text. It is used as the first

stage in many compression programs including

the widely used bzip2.

INVERSE BWT

Assume L[i] is the k-th occurrence of a in L. We

define LF[i] = j, where F[j] is the k-th occurrence

of a in F.

Algorithm SIMPLEINVERSE

1: COMPUTELF

2: p← locate(L, $)

3: for i← 0 to n− 1 do

4: TR[i]← L[p]

5: p← LF[p]

L

N

N

B

$

A

A

A
F
$

A

A

B

N

N

A

Computing LF is very fast, but the main loop

suffers from multiple cache misses due to irreg-

ular memory access pattern hence it is slow in

practice. Even with the optimized memory lay-

out (see picture below) it can perform ∼ n cache

misses. This algorithm is used in bzip2.

LF[0] L[0] LF[1] L[1] · · ·

FASTER ALGORITHMS FOR INVERSE BWT

Our algorithms can be divided into general pur-

pose inversion algorithms (fast for all strings) and

algorithms optimized for repetitive input.

SUPER ALPHABET TECHNIQUE

To reduce the number of cache misses in a gen-

eral case we add a very fast (cache-friendly) pre-

processing stage that allows restoring two char-

acters at a time in the main inversion loop. We

precompute for each position i:

LF2[i] = LF[LF[i]]

LL[i] = L[i]L[LF[i]]

The main loop of the inversion then becomes:

3: for i← 0 to n/2 do

4: TR[2i..2i + 1]← LL[p]

5: p← LF2[p]

Assuming we use a similar memory layout as

with SIMPLEINVERSE (LF2 and LL stored inter-

leaved) the number of cache misses is halved.

This is illustrated in the picture below (solid arcs

represent the paths traversed in the main loop).

A

A

$

B

N

N

A

L

Byte-by-byte approach [3]

∼ n cache misses

BA

NA

A$

$B

AN

AN

NA

LL

Super-alphabet [1]

∼ n/2 cache misses

MULTIPLE STARTING POSITIONS

To reduce the cost of cache misses we start the

inversion from several positions simultaneously.

Such computations are independent hence could

be parallelized.

We use no explicit parallelism, but interleave the

computations. Modern CPUs allow out-of-order

execution: while one computation is waiting for a

cache miss, others (independent) can proceed.

SPEEDUP FOR REPETITIVE INPUT

Strings containing lots of repeated factors offer

a possibility of saving cache misses: once a fre-

quent factor has been restored, other occurrences

can be sequentially copied from that first one.

BWT captures repeating factors in the form of

runs of equal symbols which affect LF mapping:

Lemma ([2]). For any i ∈ 1..n− 1 such that L[i] =

L[i− 1], LF[i] = LF[i− 1] + 1.

Consequently, LF tends to con-

tain lots of “parallel paths”

(see example on the right).

Such structure can be recog-

nized from the BWT string and

used to reduce cache misses. A

A

AN

AN

LL

The copy algorithm [2] detects local parallel paths

in the main loop, halving the number of cache

misses in the best case.

Our new algorithm called precopy [1] prepro-

cess the data to detect more parallel paths and

can reduce the asymptotic cache complexity.

EXPERIMENTAL RESULTS

The graphs below show the runtime of the inver-

sion algorithms (prior and new) on three files.

Name Description

mtl algorithm used in bzip2 [3]

mtl-sa mtl with super-alphabet

mtl-8 mtl with 8 starting positions

mtl-sa-8 combination of preceding two

copy local parallel path search [2]

precopy precomputing parallel paths

Part of human genome (100MiB)
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Indexing Finite Language Representation
of Population Genotypes Jouni Sirén, Niko Välimäki, Veli Mäkinen

ABSTRACT

Compressed full-text indexes [6] based on the Bur-

rows-Wheeler transform (BWT) are widely used in

bioinformatics. Their most succesful application so

far has been mapping short reads to a reference

sequence (e.g. Bowtie [3], BWA [4], SOAP2 [5]).

These indexes use the BWT to simulate the suffix

tree or the suffix array (SA), while using much less

space than either of them. A simple generalization

allows indexing a set of sequences.

We propose a biologically motivated generalization

of the BWT to finite languages. Given a multiple

alignment of sequences (e.g. individual genomes),

we build a compressed index capable of simulating

the suffix array over plausible recombinations of the

sequences. Alternatively, we start from a reference

sequence and a set of mutations, and build the in-

dex over sequences containing any subset of the

mutations.

Our approach is based on finite automata. We start

with an automaton recognizing the input language.

This automaton is transformed into an equivalent

automaton, where each state corresponds to a lexi-

cographic range of suffixes of the language. A gen-

eralization of the XBW transform for labeled trees

[2] is used to index the transformed automaton.

FULL-TEXT INDEXES FOR PATTERN MATCHING AND SEQUENCE ANALYSIS

A

Suffix Tree SA Sorted Suffixes BWT

10

2

6

3

7

9

1

4

5

8

$

$GTCATGCAG $

10

2

6

3

7

9

1

4

5

8

$GTCATGCA

$GTCATGC

$GTCATG

$GTCAT

$GTCA

$GTC

$GT

$G

GTCATGCA

A

C

C

G

G

G

T

T

G

G

G

G

G

G

G

G

G

A

A

A

A

A

A

A

C

C

C

C

C

C

G

G

G

G

G

T

T

T

T

A

A

A

C

C

T

AC

C

$

G

T

GTACTG$

TG$

GTACTG$

TG$

$

ACGTACTG$

TACTG$

ACTG$

G$

$GTCATGCAGGC

A MATCH IN MULTIPLE ALIGNMENT

GTCATGCAG –

GATGCAG –

GTCATGAG –

GTCATCAG

– –

T

– CT TG GA

INITIAL AUTOMATON AND SORTED AUTOMATON

# G G GA AC C CT

T

T $

# G G G

A

A

A

A

A

A

C

C C C

T

T T $

# GA GT

ACTA CTA

ACG CG

AT TGT

TA

AG

ACC

ACTG

CC CTG TG$ G$ $

GENERALIZED COMPRESSED SUFFIX ARRAY

$ ACC ACG ACTA ACTG AG AT CC CG CTA CTG G$ GA GT TA TG$ TGT #

BWT G T G G T T G A A A AC AT # CT CG C A $

Edges 1 1 1 1 1 1 1 1 1 1 1 1 100 1 100 1 1 1

Basic operations are about 2 times slower than in regular BWT-based indexes. For reasonable mutation

frequencies f , the expected size of the sorted automaton is n(1 + f )O(log n), where n is the length of the

reference sequence. For 1/f = Ω(log n), this becomes O(n). In our experiments, an index built for the

human reference genome and the genetic variation found in the Finnish population sample of the 1000

Genomes Project took approximately 2.8 gigabytes.

FUTURE DIRECTIONS

• With our current algorithm, the construction of

a genome-scale index requires 12 hours and

192 gigabytes of memory. We are currently in-

vestigating other algorithms, such as external

memory construction and distributed construc-

tion in the MapReduce framework [1].

• In principle, our index can be used in any algo-

rithm using a regular BWT-based index. What

can be done efficiently in practice?

• We are currently investigating several ways to

use the generalized index in read alignment.

Are there other applications, where our index

could be superior to the existing approaches?
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DISTRIBUTED STRING MINING ALGORITHM

FOR HIGH-THROUGHPUT SEQUENCING DATA Niko Välimäki

STRING MINING UNDER FREQUENCY CONSTRAINTS

• The goal is to extract emerging substrings that discriminate two

(or more) datasets.

T + = { I am positive,

I am also positive,

I am also positive}

T − = { I am negative,

I am also negative,

I am not negative}

• Substring I am is highly frequent but makes no difference.

• Substrings positive and negative clearly

differentiate T + from T −.

Method Time Space (in bits)

Fischer-Huen-Kramer’06 O(N) O(N log N)

Kügel-Ohlebusch’08 O(RN) O(maxi ‖Ti‖ · log N)

Fischer-Mäkinen-Välimäki’08 O(N log N) O(N log σ + R log N)

Dhaliwal-Puglisi-Turpin’12 O(N log2 N) O(N log σ + R log N)

• Existing methods are practical up to a few gigabytes of input.

• We introduce a distributed algorithm that requires less space

than KO’08 per node and has a competitive time complexity.

INPUT

• Sets T1, T2, . . . , TR

of total length

N = ∑ ‖Ti‖.

• fmin and fmax

• pmin and pmax

HUMAN GUT METAGENOMICS

# of datasets (R) 124 individuals

# of reads 2.8 billion

Read length (ℓ) 44–75 bases

Alphabet (σ) {A, C, G, T}

Total size (N) 0.4 terabases

client1 client2
· · · clientC

divide

CLIENT SIDE PROCESSING

1. Simulate a suffix tree traversal via suffix array & LCP array.

2. Compute frequencies and check against fmin and fmax.

Worst-case Expected

Time O
(

N
C ℓ log N

)

O
(

N
C log2 N

)

Space (in bits) O
(

N
C log σ

)

O
(

N
C log σ

)

In practice, about ten hours using fmin = 10, fmax = ∞, C = 274

and each client requiring ≈0.5 GB of main memory.

server1 server2 · · · serverS

SERVER SIDE PROCESSING

1. Merge the (sorted) input from clients on the fly.

2. Output substrings that obey the constraints pmin and pmax.

Worst-case Expected

Time O (Nℓ) O
(

N
S log N

)

Space (in bits) O(Cℓ log N) negligible

Transmission bit-load O
(

N
CS ℓ

)

O
(

N
CS log N

)

In practice, about ten hours using S = 4 servers for any pmin, pmax.

OUTPUT

• Substring P is said

to occur in Ti if P’s

frequency in Ti is

fmin ≤ fi ≤ fmax.

• Substring P is outputted,

if it occurs in at least

pmin and in at most

pmax sets.

concatenate

APPLICATIONS AND FEASIBILITY

• Sequence classifi-

cation, knowledge

discovery, compar-

ative metagenomics

• Collaboration with

Antti Honkela and

Samuel Kaski’s

group.
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Measure m(P)

m : 2Rd
! R

Convex hull

surface area

Radius of

enclosing sphere

Coreset Q
subset of P m(Q) ~ (1± ") m(P)

|Q| = f(")

independent of |P| !

!-kernel : very powerful coreset

Agarwal, Har-Peled, Varadarajan, "Approximating extent measures of points", J. ACM, 51(4), 2004

Approximates directional width

| widthv(Q) – widthv(P) |   # " • witdhv(P)

for many 

measures

Involved construction and proofs

widthv(P)

widthv(Q)

v

Our work: better !-kernels

Better approximation of directional width in 2D

| widthv(Q) – widthv(P) |   # " •  minv witdhv(P)
Simple construction and proofs



CCOOMMPPRREESSSSIIOONN--BBAASSEEDD  CCLLUUSSTTEERRIINNGG  OOFF  

CCHHRROOMMAAGGRRAAMM  DDAATTAA::  NNEEWW  MMEETTHHOODD  AANNDD  

RREEPPRREESSEENNTTAATTIIOONNSS

ABSTRACT

We approach the problem of clustering 

chromagram data by presenting two new 

single-dimensional representations and using 

a compression-based distance metric for the k-

medians clustering process. The method is 

evaluated using real-world audio cover 

version data.

EVALUATIONS

In order to validate the performance of our 

system, we constructed a dataset of 10 cover 

versions of 12 pieces of music, thus totaling 

120 pieces of music. We experimented with 

subsets of 30, 60, and 120 pieces, with k values 

of 3, 6, and 12, respectively.

The clustering performance was measured 

using cluster purity, and as the k-medians 

algorithm selects the initial cluster centroids 

randomly, the tests were run five times, and the 

averaged results are reported here.

REPRESENTATIONS

We apply OTI to produce a sequnce of 

characters from the chromagram data. For each 

chroma frame, we calculate the OTI value 

between the frame and the global chromagram 

of the piece, resulting to a sequence of values 

from 0 to 11. For the lack of a better term, we 

call this chroma contour. Formally, for a 

chromagram ga of length i and its global 

chroma profile Ga, the chroma contour 

sequence is

The representation has the advantage of being 

key-invariant. However, when comparing two 

pieces of music, it would seem fruitful to use 

their similarities already when processing the 

sequences. Here, we apply OTI to the 

chromagram of the target and the global 

chroma profile of the query. Again, for the lack 

of a better term, we call this cross-chroma 

contour. Formally, for a target chromagram ga 

of length i and a query global chroma profile 

Gb, the cross-chroma contour sequence is

The cross-chroma contour is not key invariant. 

In order to transpose two chroma sequences to 

the common key, we apply OTI to their global 

chromagrams and transpose the query 

according to the OTI value before producing 

the cross-chroma sequence.

As the sequences produced by the method 

seemed to oscillate rapidly between values, we 

experimented reducing the noise of the data by 

using median filtering. The filtering was 

applied to both chromagram data and the 

contour sequences. However, based on the 

evaluation results, it seems that the noisy 

sequences actually produce higher results, 

suggesting that the noise contains 

distinguishing information.

Teppo E. Ahonen

teahonen@cs.helsinki.fi
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METHODS SET30 SET60

CHROMA 
CONTOUR

SET120

CROSS-CHROMA 

CONTOUR

CLUSTERING

We cluster the chromagram data with a 

modified version of the well-known k-medians 

algorithm. The distances between the strings 

are calculated using normalized compression 

distance (NCD) [1]. In the clustering phase, the 

new cluster centroid median is selected 

according to length-increasing, lexicographical 

order of the strings.

For two strings x and y NCD is denoted

where C(x) is the length of the string x when 

compressed using compression algorithm C, 

and xy is the concatenation of x and y.

For compression, we use the bzip2 algorithm.

CONCLUSIONS

The proposed method has potential for 

chromagram clustering. Using cross-chroma 

contour provides slightly higher accuracy than 

chroma contour, and processing data too much 

causes over-simplification. The method seems 

robust, as increase in the data does not result 

in significantly worse results.

RANDOM 

BASELINE

CC + CHROMA 

FILTERING

CCC + CHROMA 

FILTERING

CC + SEQ. 

FILTERING

0.367

CCC + SEQ. 

FILTERING

CC + BOTH 

FILTERINGS

CCC + BOTH 

FILTERINGS

0.283 0.217

0.233 0.117 0.067

0.374 0.317 0.257

0.1320.1620.192

0.162

0.228

0.189

0.212

0.081

0.310

0.344

0.331

0.337

0.133

0.231

0.312

0.258

0.294

0.104

OPTIMAL 

TRANSPOSITION 

INDEX (OTI)

OTI [2] is the value of the most likely semitone 

transposition between two chromagrams. For 

two global chroma profiles (chromagrams 

summed over time and normalized) Ga and Gb, 

the OTI is denoted
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DISTINGUISHING BETWEEN MAJOR AND MINOR CHORDS
IN AUTOMATIC CHORD TRANSCRIPTION Antti Laaksonen

Automatic chord transcription is a problem of extracting the harmonic content from a music signal and representing it through chord symbols.

We focus on distinguishing between major and minor chords in automatic chord transcription. We are especially interested in the role of the

musical context in this process. We conduct an experiment where human listeners are asked to classify chords which a computer transcriber

has failed to recognize when evaluated using a collection of Beatles songs. Based on this experiment and our analysis, we conclude that the

musical context is often needed in distinguishing between major and minor chords. Furthermore, sometimes the quality of a chord cannot be

unambiguously determined even if the full musical context is available.

BACKGROUND

CURRENT SOLUTIONS

Automatic chord transcribers are usually combi-

nations of low-level signal processing methods

and high-level probabilistic models.

The most popular evaluation dataset for auto-

matic transcribers has been the Beatles dataset

[5] which offers hand-made reference chord an-

notations for a collection of Beatles songs.

The best automatic transcribes have achieved a

transcription rate of about 80% in MIREX chord

transcription task [4]. One of them is Mauch’s

MM1 [3] which is purely based on the audio data

without using the musical context.

We collected a set of 454 audio segments from

the Beatles material where the chord proposed

by MM1 differs from the ground truth.

• In 202 segments (45%), a major chord was

recognized as a minor chord or vice versa.

• In 93 segments (20%), there are problems

with chord alignment or tuning, or there

is no clear chord content.

• In 159 segments (35%), there is a mean-

ingful chord in the ground truth, but the

proposed chord is different in some other

way than in the first class.

MUSICAL CONTEXT

The melody, the chords and the key of a musical

piece are connected with each other. For exam-

ple, if the melody of a piece is known, there are

usually only a couple of typical chords to choose

from. These factors affecting the probabilities of

chords are called the musical context.

Important parts of the musical context are:

• Chord transitions: a G major chord is of-

ten followed by a C major chord. An E

major chord would be a big surprise.

• Key: Typical chords in C major key are C,

F, and G majors and D, E, and A minors.

• Structure: Especially in popular music,

there are repeating chord sequences.

• Melody: The melody significantly limits

the set of possible chord sequences.

While there are several ways to estimate chord

probabilities in a musical context [1, 2, 6], it is

not clear how important the probabilities are in

chord transcription. Professional human tran-

scribers also make guesses but they never pub-

lish transcriptions that do not sound good. The

reason for this is that a guess is always followed

by verification: if the guessed chord does not

sound good, it is simply rejected.

ALTERNATIVE TRANSCRIPTIONS

There are often several good chord transcriptions

for a musical piece. Consider the following two

transcriptions of the Beatles’ Yesterday.

First transcription: 

||| Dm| !� � � �� �F

|
Em

| !
A|� | || |

|
F/E

|||�� |||C|�B
�

|F|
Second transcription: 

||| Dm| !� � � �� �F

|
Gm

| !
A|� | || |

|
A

|||�� |||C|�Gm |F|
The first transcription is a rather accurate tran-

scription from the original studio album, while

the second transcription contains three different

chords. However, both the transcriptions sound

good and an average listener can hardly notice

any difference between them. It would be mis-

leading to state that the first transcription is ”cor-

rect” and the second one is ”incorrect”.

MAJOR AND MINOR CHORDS

EXPERIMENT

We conducted an experiment to study the ability

of human listeners to distinguish between major

and minor chords without the musical context.

A total of 81 people with a musical background

participated in our experiment.

The experiment consisted of 30 audio segments

randomly selected from our collection. At each

segment, the participants were asked to deter-

mine whether the chord is major or minor. The

following diagram shows the number of correct

answers. Surprisingly, there is only a slight im-

provement over a totally random choice.
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ERROR GROUPS

We found out that the segments we examined

can be divided into three groups:

• Easy chords which almost all participants

recognized correctly. An usual problem

on the signal processing level is that even

in a pure minor chord, the fifth harmonic

of the root note is a major third.

• Unclear chords which contain both ma-

jor and minor elements. One interpreta-

tion is that the third in the accompani-

ment determines the chord, but the prob-

lem is that the third in the melody is often

played more strongly.

• Erroneous chords where we disagree with

the ground truth. The reference chords

should not be used without caution. Of

course, the quality of a chord is often a

subjective decision.

The first two groups cover most of the segments

we examined. In the experiment, there were four

segments that fall in to the third group.

CONCLUSION

So far, automatic chord transcribers have been

evaluated using a ground truth with a single ref-

erence chord for each audio segment. However,

even in distinguishing between major and minor

chords, there are often valid arguments for both

interpretations. This suggests that the traditional

goal to maximize the number of chords match-

ing the ground truth only partially captures the

properties of a good chord transcription.
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Analysis of Etymological Data via MDL
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We develop MDL-based models for studying etymological data. The data consists of cognate sets: sets of genetically related words—words

deriving from a common (unobserved) ancestor in the proto-language—in different (observed) languages within a language family. One goal is

to find the best possible alignment of all the words in the data. The alignment must respect the Principle of Regular Sound Correspondence:

sound changes that occur as a given language evolves are not random, but apply deterministically throughout the language, typically conditioned

on the features and the context of the sound. Thus, a complementary goal is to discover the rules of sound change that best describe the data.

OUTLINE
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DATA

We have several databases of cognate sets from

different language families, including the Uralic

family. The databases may conflict with regard

to inclusion of specific words in a cognate set.

ID EST FIN KHN KOM MAN MAR MRD SAA UDM UGR

91 - - - ćepe̮ĺ ? - cǝwešte ? - - čepi̮ĺt ? csip ? 
92 - - - - - čeve ? - - - csëpp ? 
93 - - - t́ovt́a ? śüĺś ? - - - - - 
94 - - - śuź ? - - - cisku ? - sas ? 
95 - - - ǯoǯ - - - - ǯi̮ǯol - 
96 - - čăčǝ ćuž šošǝɣ šača šačo - - - 
97 ammak hama čăma - šomǝɣ - - - - - 
98 - - - - - - - cuoʒ'ʒå - - 
99 - - čuš - šuš - šašto - - - 
100 - - čoŋχ - šaŋk čaŋɣe čavo - - - 
101 - - - - - šapka ? - - - sápad ? 
102 hape ? hapan ? - - - šapǝ̑ čapamo ? - - savanyú 
103 - - čȧkǝn ǯagal šƿkǝt - - - ʒ́okal čäk 
104 händ häntä čĕṇč - ši̮s - - - - - 

THE OBJECTIVE

We begin with pairwise alignment—one language

pair at a time.

According to the Minimum Description Length

(MDL) principle, we can compress the data ef-

fectively if we can discover regularity in the data.

This regularity is the laws of sound change that

we seek.

Thus, the objective function that we optimize is

the MDL codelength; using Bayesian marginal

likelihood, or prequential coding:

L(D) = − ∑
e∈E

log Γ
(

c(e)+ α(e)
)

+ ∑
e∈E

log Γ
(

α(e)
)

+ log Γ
[

∑
e∈E

(

c(e) + α(e)
)

]

− log Γ
[

∑
e∈E

α(e)
]

Using Normalised Maximum Likelihood (NML)

gives somewhat better compression overall.

BASELINE (1-1) ALIGNMENT MODEL

For a given word-pair, many alignments are pos-

sible: Finnish and Hanty words meaning year:

v u o s i

| | | | |

a l . . .

v u o s i

| | | | |

. a . l .

etc...

(The symbol “.” indicates deletion or insertion.)

Search algorithm: begin with a random align-

ment, and iteratively realign one word pair at a

time via Dynamic Programming, using the cur-

rently best alignment of the remainder of the data.
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The algorithm converges to a (locally optimal)

alignment of the complete data. The area of the

circle is proportional to the probability mass of

each 1-1 symbol alignment.

CONTEXT MODELS

We code each sound σ as a vector of phonetic fea-

tures, and coding is conditioned on (features of)

sounds in the context of σ—the model can query

the history that has been coded so far.

COMPRESSION RATES

The test of the model “goodness” is compression

power: the cost of the complete (aligned) data:
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RULES AS DECISION TREES

The model learns one tree for coding each fea-

ture of a sound, minimizing the tree cost. Each

node queries the history to help prediction.

RECONSTRUCTING PHYLOGENIES

We obtain pairwise language distances in sev-

eral ways from the alignment models, and in-

duce trees using, e.g., UPGMA, NeighborJoin:

PHYLOGENETIC NETWORKS

NeighborNet (SplitsTree) helps identify the un-

certainty in the phylogenetic reconstructions:

Applying to other language families: Turkic
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Abstract 

 

o  Many medium to large text corpora have been compiled and annotated 

o  This enables the study of more diverse and detailed aspects of language 

o  E.g., differences between writing style of various age groups/gender/media 

o  New computational and statistical challenges arise 

 

 

Burstiness 

 

o  In linguistics it is often assumed that all words in a corpus are independent 

o  It has been argued that this is not problematic when there are many samples 

o  Figure 1 shows how false this statement is 

o  This effect is known as burstiness [2] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Inter-arrival times 

 

o  An inter-arrival time of a word is the number of words between two 

consecutive occurrences 

 
“ Finnair believes that it will be able to resume its scheduled service to and from New York on Monday, 

after two days of cancellations caused by hurricane Irene. All three airports serving New York City have 

been closed because of the hurricane and Finnair was forced to cancel flights on Saturday and Sunday. The 

airline is not certain when its scheduled service can be resumed, but the assumption is that Monday 

afternoon's flight from Helsinki will depart. Some Finnair passengers whose final destination is not New 

York have been rerouted and some have delayed travel plans. The company has also offered ticket holders a 

refund. YLE ” 

 

o  IATand = {29, 9, 39, 29} 

o  The distribution of inter-arrival times describes the burstiness of a word 

o  A summary is obtained by fitting a Weibull distribution [1] 
 

 

Comparison of word frequencies 

 

o  We can use statistical testing to find significant variations in writing styles 

o  I.e., between time periods, between people or between text types 

o  Tests commonly employed are based on the bag-of-words assumption (χ2-test) 

o  Burstiness leads to over-estimation of the significance [4] 

o  Improved tests based on inter-arrival times or bootstrapping are proposed [4] 
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Classification of text genres 

 

o  Models for genre classification are complex and difficult to interpret 

o  It appears the main genres (of British English) can be recognized using a 

simple model and easy to compute surface level features [3] 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Learning complex queries 

 

o  Linguists would often like to query a corpus for complex constructs 

o  For example, premodifying -ing participles [5] 

o  These are -ing participles that modify a noun, e.g., 'the barking dog' 

o  Straightforward queries have low recall because parsers and part-of-speech 

taggers are imperfect 

o  A query is essentially the same as a binary classifier 

o  We can learn complex queries just like training a classifier 
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Figure 1: Frequency histograms of the words I and for in the British National Corpus. The 

distributions predicted under the bag-of-words assumption are very poor. The pronoun I is much 

burstier than the grammatical word for ; the Weibull shape parameter β is 0.57 and 0.93, for I and 

for respectively, see the paragraph below. Adapted figure from [4]. 

Figure 4: Precision and recall for classifiers based on several sources of information, based on a 

sample of 2902 -ing words, of which 351 are premodifying -ing participles, from the British 

National Corpus. Figure taken from [5]. 

Figure 2: Comparison of p-values for the null hypothesis that the word is equally frequent in the 

two periods (1600-1639 and 1640-1681) of the Parsed Corpus of Early English Correspondence, 

for all words in the corpus. Both the bootstrap and inter-arrival time tests are often much more 

conservative than the log-likelihood ratio test. 
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Figure 3: Two models for classification of the main genres of British English. The model was 

trained using the C4.5 algorithm on the British National Corpus, using both the original features 

and their cross-terms. Figure taken from [3]. 
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ENSEMBLE  COMPUTATION  WITH  OR-  
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ARITHMETIC CIRCUITS

ENSEMBLE  COMPUTATION
An ensemble consists of a set of variables P  and a 

family Q  of subsets of P . For example:

P = {x1, x2, x3, x4, x5}

Q = {{x1, x2}, {x1, x2, x3}, {x1, x4},

{x1, x4, x5}, {x1, x2, x3, x4, x5}}

The task is to compute either OR or SUM of variables 

in each set in Q  using an arithmetic circuit.

∨x1

x2

x3

x4

x5

∨

∨

∨

∨

x1 ∨ x2

x1 ∨ x2 ∨ x3

x1 ∨ x4

x1 ∨ x4 ∨ x5

x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5

+

+

+

+

++

x1

x2

x3

x4

x5

x1 + x2

x1 + x2 + x3 + x4 + x5

x1 + x4 + x5

x1 + x4

x1 + x2 + x3

∨ x1 ∨ x2 ∨ x3

x1 ∨ x2

x2 ∨ x3

+ x1 + x2

x1

x2

x2 + x3

x1 + x2

x1 + 2x2 + x3+































x1 ∨ x2

x1 ∨ x2 ∨ x3

x1 ∨ x4

x1 ∨ x4 ∨ x5

x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5































x1 + x2

x1 + x2 + x3

x1 + x4

x1 + x4 + x5

x1 + x2 + x3 + x4 + x5

x1 x1

OR

SUM

x1x2x3 x4 x5

p
∧

i=1

(

Mi,i ∧

∧

j !=i

¬Mi,j

)

g
∧

i=p+1

i−2
∨

k=1

i−1
∨

ℓ=k+1

p
∧

j=1

(

(Mk,j ∨Mℓ,j) ↔ Mi,j

)

∧

A∈Q

g
∨

i=p+1

[(

∧

j∈A

Mi,j

)

∧

(

∧

j /∈A

¬Mi,j

)]

















1 0 0

0 1 0

0 0 1

0 1 1

1 1 0

1 1 1

















CIRCUITS  AND  EXPONENTIAL  ALGORITHMS SAT  ENCODING  AND  FINDING  CIRCUITS

transformation 
algorithm∨ +

O(g2−ε)
g gates

OR-circuit for (P,Q) AND-circuit for (P,Q)

O(g2−ε) gates

(Boolean variables)

(natural numbers)

ARITHMETIC GATES

INPUT GATES

OR

SUM

unbounded fan-out fan-in two

5 arithmetic gates vs. 6 arithmetic gates

SEPARATING  OR-  AND  SUM-ENSEMBLES

in
p

u
ts

o
u

tp
u

ts

x1

x2

x3

x4

x5

There are ensembles for which the optimal OR-circuit has less gates that the optimal SUM-circuit. Our construction 

gives ensembles for which the SUM-circuit requires almost twice as many arithmetic gates. Finding better upper 

and lower bounds for the separation is an open question.

Ensemble computation instances often arise in the context of exact exponential-time 

algorithms. In these cases, small OR-circuits are easy to find, but small SUM-circuits 

remain elusive.

An OR-circuit of size g exists for ensemble (P,Q) if and only if there is a |P |× g bina-

ry matrix M  that satisfies the formulas above. A similar encoding works for SUM-

circuits.

We have used this encoding along with state-of-the-art Boolean satisfiability solvers 

to find the optimal circuits for all small non-isomorphic ensembles. Processing 

1,434,897 ensembles took about 4 months of processor time. We did not find any 

larger separations between OR- and SUM-circuits than in the example above.

In particular, existence of a sub-quadratic algorithm that transforms a given OR-cir-

cuit into a SUM-circuit for the same ensemble would violate the Strong Exponential 

Time Hypothesis and give improved algorithms for many NP-hard problems such as 

CNF-SAT.

FOR  MORE  INFORMATION, see our paper: M. Järvisalo, P. Kaski, M. Koivisto, J. H. Korhonen. Finding Efficient Circuits for Ensemble Computation. SAT 2012

generalising the construction

SUM-gates require disjoint inputs



HELSINGIN YLIOPISTO
HELSINGFORS UNIVERSITET

UNIVERSITY OF HELSINKI
MATEMAATTIS-LUONNONTIETEELLINEN TIEDEKUNTA

MATEMATISK-NATURVETENSKAPLIGA FAKULTETEN
FACULTY OF SCIENCE

PARTIAL ORDER MCMC FOR STRUCTURE DISCOVERY IN
BAYESIAN NETWORKS Teppo Niinimäki, Pekka Parviainen, Mikko Koivisto

We present a new Markov chain Monte Carlo method for estimating posterior probabilities of structural features in Bayesian networks. The

method samples partial orders on the nodes; for each sample, the conditional probabilities of interest are computed exactly. Compared to

previous methods our algorithm obtains a significant reduction in the size of sample space with negligible increase in computation time.

PROBLEM AND MOTIVATION

Learning the structure A of a Bayesian net-

work from given data D is a problem that

arises from the need to understand the de-

pendencies or possible causality relations

between the variables corresponding to the

nodes of A.

variables

sample 1 2 3 4 5 6 7 8

1 2 1 0 1 2 2 2 1

2 2 0 2 2 0 2 2 0

3 2 0 1 1 1 1 1 0
...

...
...

...
...

...
...

...
...

5000 2 2 1 2 0 2 0 1

Av

7

6

1 4

2

5

v

8

3

Instead of finding the most probable net-

work structure (MAP) we want to compute

the posterior probability of each arc by av-

eraging over all structures.

NOTATION AND ASSUMPTIONS

The goal is to compute p( f |D), where f (A)

is a binary feature function of interest, for

example indicating whether a structure A

contains given arc or not.

Structure prior:

For computational efficiency we assume an

order-modular structure prior: The joint

prior probability p(A, L) of the structure A

and a linear order L on the nodes factor-

izes to a product of local prior probabilities

ρv(Lv)qv(Av) over the nodes.

Lv

7 6 1 2 4 5

v

8 3

order of nodes

Similarly, the feature f (A) is assumed to be

a product of local features fv(Av).

In addition we limit the sizes of parent

sets |Av| to be at most k.

Why sampling?

Known exact methods scale up to about 30

nodes. For larger instances sampling based

approximation is a natural choice.

METHOD

The state of the art methods are based on

sampling linear orders of nodes by MCMC

(Friedman and Koller, 2003). The result-

ing time requirement O(nk+1) per sample

is proportional to the number of possible

parent sets.

The general algorithm is as follows:

1. Sample orders L1, . . . , LT from p(L|D).

2. Estimate p( f |D) ≈ 1
T ∑

T
i=1 p( f |D, Li).

Instead of linear orders L we suggest sam-

pling partial orders P on nodes of which

sampling of linear orders is a special case.

This has two consequences:

• The sample space can become signifi-

cantly smaller as a single partial order

sample usually corresponds to multiple

linear orders samples. This can lead to

better mixing in MCMC.

• The time complexity per sample becomes

O(nk+1 + n2|I(P)|) where |I(P)| is the

number of ideals of P (Parviainen and Koi-

visto, 2010). For “thin” partial orders the

first term dominates and the increase of

the computational cost is negligible.

BUCKET ORDERS

As partial orders we use bucket orders.
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order of buckets

Sampling is based on Metropolis–Hastings

MCMC algorithm with swaps of nodes be-

tween buckets as transitions.
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CONVERGENCE

The convergence of log-probability for

MUSHROOM-dataset (8 independent runs):
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ACCURACY AND TIME CONSUMPTION

The worst-case accuracy of estimates (8 in-

dependent runs) and time consumption for

different bucket sizes:

0.001

0.01

0.1

1.0

la
rg

e
s
t 

a
b

s
o

lu
te

 e
rr

o
r

1 2 3 4 5 6 7 8 9 10 11
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

ti
m

e
 (

s
 /

 s
te

p
)

bucket size



HELSINGIN YLIOPISTO
HELSINGFORS UNIVERSITET

UNIVERSITY OF HELSINKI
MATEMAATTIS-LUONNONTIETEELLINEN TIEDEKUNTA

MATEMATISK-NATURVETENSKAPLIGA FAKULTETEN
FACULTY OF SCIENCE

ANCESTOR RELATIONS IN THE PRESENCE OF
UNOBSERVED VARIABLES Pekka Parviainen, Mikko Koivisto

We present an exact dynamic programming algorithm for computing posterior probabilities ancestor relations, that is, directed paths in Bayesian

networks. Our experimental results show that ancestor relations can be learned with good power even when a majority of involved variables are

unobserved.

BAYESIAN NETWORKS

A Bayesian networks consists of two parts:

• The structure is a directed acyclic graph

(DAG) that represents conditional inde-

pendencies between variables.

• The parameters specify local probability

distributions.

Compact, flexible and interpretable representa-

tions of a joint probability distribution.

Sometimes arcs are interpreted as cause-effect

pairs.

STRUCTURE DISCOVERY

Construct the DAG from observational data.

Challenges:

• The set of conditional independencies can

be represented by a number of different

DAGs (Markov equivalence class).

• There may be unobserved variables.

• Computational complexity.

ANCESTOR RELATIONS

There may be several almost equally good DAGs

(or Markov equivalence classes) and the optimal

DAG may be highly unlikely. Therefore, instead

of learning an optimal DAG, it may be useful re-

port probabilities of some structural features of in-

terest, e.g., arcs.

Node s is an ancestor of node t in a DAG if there

is a directed path from s to t in the DAG in ques-

tion.

Ancestor relations are interpreted as (direct or

indirect) causal relations.

RESEARCH QUESTIONS

Can ancestor relations be learned reliably if there

are some unobserved variables at work?

Does learning ancestor relations yield more in-

formation than learning arcs?

Can ancestor relations be learned significantly

faster than by a brute force algorithm?

ALGORITHM

Compute the posterior probability of s being an

ancestor of t given the data on a node set N.

A (full) Bayesian averaging approach, based on

dynamic programming.

Assumptions: a modular likelihood score, an

order-modular structural prior.

Idea: for every node set X ⊆ N and Y ⊆ X com-

pute gs(X, Y), the contribution of the DAGs on

X that have a directed path from s to all u ∈ Y

and to no other node.

Time requirement: O(3nn2) for all possible pairs

s and t.

Space requirement: O(3n).

EMPIRICAL RESULTS

Simulation procedure:

• Generate data from a ground truth.

• Hide the data on some (unobserved)

nodes, form a shrunken ground truth.

• Learn ancestor relations from the data on

observed nodes.

• Compare the learned ancestor relations to

the shrunken ground truth.

Full Bayesian averaging seems to be more pow-

erful than the deducing of ancestor relations from

a single MAP DAG or the constraint-based FCI

algorithm.

Results with real-life data are in agreement with

the simulations.
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8/14 obs.

6/14 obs.

4/14 obs.

CONCLUSIONS

Bayesian learning of ancestor relations is compu-

tationally feasible (when the number of nodes is

moderate).

Ancestor relations can be discovered with rea-

sonable power even in the presence of unob-

served variables.

Partial Bayesian averaging, that is, deducing an-

cestor relations from the arc probabilities seems

to work almost as well as full Bayesian averag-

ing.
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FINITE MIXTURE MODELS
Finite mixture model (FMM) of multivariate Bernoulli distributions are defined as:

p(x|Θ) =
J

∑
j=1

πj

d

∏
i=1

θ
xi
ji (1 − θji)

1−xi , (1)

The likelihood function with the model parameters {J, π, Θ} is

L(Θ) =
N

∑
n=1

log

[

J

∑
j=1

πj

d

∏
i=1

θ
xni
ji (1 − θji)

1−xni

]

. (2)

MODEL SELECTION
� If number of components, J, is known a priori EM algorithm can be used to

maximize the log-likelihood

� Model selection aims at selecting an appropriate J as it is unknown

� Trade-off between complex models (large J often a reason for Overfitting)

and simple models (small J, often a reason for Underfitting)

� Cross-validated likelihood can be used as a model selection criterion

� We choose 10-fold cross validation

� Other criterion such as Penalized likelihood, AIC, BIC, MDL could be used

� Aim is to achieve maximally simple, and compact parsimonious models.

MERGING MIXTURE COMPONENTS

Progressively merge mixture components having minimum

KL divergence using Equation 3 and their parameters us-

ing Equation 4

πmerged = πklmin,1 + πklmin,2 (3)

Here πmerged is the merged component and πklmin,1 and

πklmin,2 are the two candidate components with minimum

KL divergence selected to merge.

Θmerged =
πklmin,1 × Θklmin,1 + πklmin,2 × Θklmin,2

πklmin,1 + πklmin,2
(4)

In Equation 4, Θmerged are the parameter vectors of the

component πmerged obtained by merging two components

in Equation 3. Similarly, Θklmin,1 and Θklmin,2 are the pa-

rameter vectors of the two components having minimum

KL divergence selected for merging.

PROPOSED ALGORITHM NUMBER OF COMPONENTS(J)

We use 10-fold cross validation over different components

�����

������	

IMPORTANCE OF RETRAINING

DATASETS

Two chromosomal aberration data
were used in the experiments. The
data describes the DNA copy num-
ber amplification pattern of 4590
cancer patients and are same as
in [3,6]

KULLBACK LEIBLER DIVERGENCE BETWEEN MIXTURE COMPONENTS

In a mixture model, the KL divergence between two mixture components can be derived to

KLθβ =
2d

∑
i=1

[{

d

∏
k=1

(

θ
Xik
k (1 − θk)

(1−Xik )
)

−
d

∏
k=1

(

β
Xik
k (1 − βk)

(1−Xik )
)

}

· log
d

∏
k=1

θ
Xik
k (1 − θk)

(1−Xik )

β
Xik
k (1 − βk)

(1−Xik )

]

We derive data driven approximation of KL divergence as

KLθβ = ∑
X∗⊂X

{

d

∏
k=1

(

θ
Xik
k (1 − θk)

(1−Xik )
)

−
d

∏
k=1

(

β
Xik
k (1 − βk)

(1−Xik )
)

}

APPROXIMATIONS USED

� Dropping the log-term : log 0
0 ≈ 0

� Using only unique samples in the data instead

of full state-space

� Approximating state-space by unique samples

X∗ ⊂ X provides data driven approach of ap-

proximation of KL divergence
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Introduction
Direct temperature measurements are only available from 

the past few hundred years. Therefore, proxy measure-

ments must be used. We study the use of different envi-

ronmental proxy variables for temperature reconstruction. 

Differences in both the time coverage of the proxies (Fig. 1) 

and the temperature signal pre-

sent in them pose a challenge 

to the recovery of reliable tem-

perature records (Fig. 2).

Environmental Proxy Selection Problem

• Identify the most informative proxy variables for recon-

struction of temperature in Finland (Fig. 3)

• Different time of year or different geographic location

⇒ alternative set of good proxies

• Search based solutions, e.g. working on an R version of 

the backward selection type algorithm SISAL [2].

• Extend [2] by exploring more states by branching

• Issues to solve: ill-conditioned problem when number 

of variables is small compared to number of samples 

(Fig. 4, Fig. 5), ...

The dplR package for R
The dendrochronology program library in R (dplR) [1] is 

an add-on package for the R Project for Statistical Comput-

ing. These are open source software.

We use the package for preprocessing of tree ring meas-

urements and do active development to make it better suit 

our needs. Some of our contributions include:

• Improved performance

• Bug fixes, especially corner cases

• Support for additional data formats (e.g. TRiDaS)

• Other new functionality (example below)

Name Tree Core
P0101A 101 1

P0101B 101 2

P0102A 102 1

...

536011 1 1

536012 1 2

536021 2 1

536022 2 2

Environmental Proxy Selection Problems

in Temperature Reconstruction
Mikko Korpela1,2,3 and Jaakko Hollmén1,3

{mikko.korpela, jaakko.hollmen}@aalto.fi
1Aalto University School of Science, Department of Information and Computer Science

2University of Helsinki, Department of Computer Science
3Helsinki Institute for Information Technology HIIT

Year

−8000 −6000 −4000 −2000 0 2000

Tree ring width

Carbon isotopes in trees

River ice (breaking up of)

Baltic sea ice cover area

Measured temperatures

Lake ice (dates of first and last ice)

Flowering / bud burst

Length of open water season in lakes

Temperature from diatom algae in lake sediments

Fig. 1: Rough availability of different proxy measurements

Fig. 2: Different tem-

perature reconstruc-

tions.

Image created by

Robert A. Rohde / 

Global Warming Art.
http://www.globalwarming

art.com/wiki/File:1000_Ye

ar_Temperature_Compari

son.png
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Aggregate temperaturesMonthly temperatures
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... ...

Fig. 3a: Full model (no variable selection)

X1 X2 X3 X4 X5 X6 X7 X8 X9 Xd−1 Xd

Jan Feb Nov Dec "Spring" "Summer"

Aggregate temperaturesMonthly temperatures

Proxies (ice, flowers, trees, ...)

...

... ...

Fig. 3b: Most informative proxies found (variable selection performed)

30 20 10 0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

Number of inputs

M
S

E

!

!

!

!
!!!

!!!!!!!!!!!!
!

!
!

!
!

!
!

!
!

!

!

!
!

!

!

!

!

!

!

Too few samples relative 

to number of unknowns

10 variables selected: tree-ring widths (2) and den-
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Fig. 4: Progress of backward selection type algorithm (SISAL with branching). 
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Fig. 5: Temperature reconstruction (mean of April and May temperatures in 

Jyväskylä) with the model of Fig. 4. Adjusted R2 = 0.74.

Problem
In tree ring databases, metadata is 

scarce. Need to identify which 

measurements are from the same 

tree. Manual labeling is cumber-

some.

Solution
Derive tree and measurement 

(=core) IDs from record names (in 

very uncertain cases, use correla-

tions, too). Function ‘autoread.ids’ 

does this automatically. Intelligent 

discovery of naming schemes, 

fixes small typos.



Damage detection methods for 
Structural Health Monitoring with 

Wireless Sensor Networks
Janne Toivola
janne.toivola@aalto.fi

Department of Information and Computer Science, Aalto University, Finland

Vibration-based SHM
•Structural Health Monitoring: 
assessing the condition of 
physical structures

•Damages are assumed to 
change the structure as a 
medium for vibrations caused 
by the environment.

•Wired sensors: expensive to 
maintain for large structures

•Wireless sensors: limited 
energy and bandwidth

Wooden model bridge
•Controlled test
environment

•Input: 
electronic 
shaker

•Output: time series data from 
wireless and wired 
accelerometers

•Hardware and software 
developed in the 
multidisciplinary ISMO project

Damage detection based on 
machine learning methods
•Models based on acquired 
data: avoid complex physics-
based models, geometry etc.

•Parsimonius detection 
algorithms required for online 
computation

•Dependencies between data 
from separate sensors are
important for detecting 
damages in a structure

Feature extraction
•Online frequency 
domain features with 
the Goertzel algorithm

‣Running on a WSN 
node: [Bocca: ICCPS 2011]

•Transmissibility: 
propagation of 
vibrations between 
two sensors

‣Large, but redundant 
feature space: 

[Toivola: IDA 2009]
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Dimensionality 
reduction
•Combinations of 
projection and novelty 
detection methods 
assessed for accuracy:

[Toivola: IDA 2010]

•Three-way analysis 
over time, sensor 
pairs, and vibration 
frequency:
[Prada: IEEE MLSP 2010]
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•Collaborative filtering 
method for using 
SHM-specific locally 
computed ratings for 
selecting a global set 
of sparse features:pa
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Distributed sensor nodes

Acceleration

DFT: Goertzel

time series
1 S

Centralized user

N samples/sensor

Transmissibility

F features

D features/sensor

Single decision

Novelty detector

Dimensionality
reduction

Novelty detection 
methods
•Nearest neighbor vs 
Parzen, Gaussian, and 
Mixture of Gaussians 
density models

•Static: independent 
detections across time

Performance
•Accuracy assessed in 
terms of ROC AUC, 
energy in terms of 
feature vector length

•Alternative: change
detection framework

‣Better criteria for 
accuracy and energy 
efficiency..?
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Panu Luosto, Ciprian Doru Giurcăneanu and Petri Kontkanen

Density and Entropy Estimation

with NML Histograms

We compare empirically four histogram meth-
ods for density and entropy estimation. They
include the normalized maximum likelihood
(NML) histogram by Kontkanen and Mylly-
mäki, and its novel variant that is based on
NML as well. As an extension to irregular
histograms, we also test the new MDL based
clustgram.

Basic vocabulary

• Irregular histogram. A histogram in
which the widths of the bins are not neces-
sarily equal.

 0
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 0.3

 0  0.2  0.4  0.6  0.8  1

• How many bins? The model class selec-
tion problem is here to choose the most
appropriate number of bins.

• Risk minimization. A statistical approach,
in which the goal is to minimize e.g. the
KL or squared Hellinger distance from an
assumed unknown true distribution to the
estimated distribution.

• Minimum description length (MDL)
principle. An information-theoretic cri-
terion that does not require that a true
distribution should exist. The best model
class is the one that allows the most effec-
tive encoding of the data.

• Normalized maximum likelihood
(NML). Maximum likelihoods turned into
a distribution through normalization:

p
NML

(x) =
p(x; θ̂(x))

∑
y∈Xn p(y; θ̂(y))

,

where θ̂(xn) refers to the maximum like-
lihood parameters of x ∈ Xn. If a NML
distribution exists, it minimizes the worst-
case excess code length compared to the
optimal code length in hindsight (only an
oracle can guess the ML parameters before
seeing the data).

Methods

Methods that choose the bin borders from a
regular grid:

• NML-1: the histogram of Kontkanen and
Myllymäki (2007), optimizing the choice of
k bins.

• NML-2: a new version of the former, opti-
mizing the choice of k non-empty bins. We
also optimized the choice of the grid.

Methods that choose the bin borders from the
set of data points:

• RMG: a method of Rozenholc, Milden-
berger and Gather (2010). Based on Mas-
sart’s results about risk bounds (2007) and
on empirical considerations.

• MRT: a method of Menez, Rendas and
Thierry (2008). The penalty is BIC plus a
combinatorial term.

• Clustgram: an MDL-based extension to
irregular histograms by Luosto and Kont-
kanen (2011) with many types of bins: uni-
form, normal, half-normal, exponential
and Laplace.

Example 1
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Mixture with 6 normal components.
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Example 2
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Conclusions

The performance of NML-1 was in terms
of the squared Hellinger distance similar to
RMG, which has been specially designed
to minimize the statistical risk. The novel
NML-2 seemed to work especially well with
ragged multimodal distributions.
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Metabolite identification and molecular fingerprint prediction

via machine learning
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ABSTRACT
Identification of metabolites from tandem mass

spectrometry measurements is a prerequisite

step for metabolic modeling and network anal-

ysis. Currently this task requires matching

of measured mass spectra against annotated

databases of reference spectra, and extensive

manual work. We propose a machine learn-

ing framework, which identifies the metabolite

structures based on the mass spectral signals.

Our approach is twofold (see Fig 1). First,

(1) we decompose the problem into binary sub-

problems each predicting an individual struc-

tural property of the unknown structure. Then,

(2) the complete structure is inferred from the

predicted fingerprints by searching candidate

molecules from databases matching these fin-

gerprints. The method’s performance is shown

with experiments using several real-life mass

spectral datasets.

Figure 1: Metabolite identification scheme. Instead of di-

rectly predicting the molecule from measured spectrum (struc-

tured prediction), we opt to predict an intermediate target of a

fingerprint vector, which is subsequently used to pinpoint the

molecule from a molecular database.

FINGERPRINTS
We predict as intermediate targets molecular finger-

prints, which are binary descriptors of a molecule. We

use 528 structural fingerprints, e.g. “does the molecule

contain an amino-group”, “does the molecule contain a

double bond”, etc.

(1) SVM & KERNELS
Let an input mass spectrum χ = {x1, . . . , xk} ∈ X
be a collection of k peaks xi ∈ R

2. A peak tuple

x = (mass, int)T represents the mass-to-charge ratio

and the intensity of measured peak.

We use SVM to predict m binary fingeprints (yi)
m
i=1 =

y as independent classification tasks fi : X → {0, 1}.

In SVM a kernel function K : X × X → R de-

fines a feature mapping φ(χ) such that K(χ, χ′) =

〈φ(χ), φ(χ′)〉.

We experiment with a simple discrete kernel and also

with a high resolution continuous probability product

kernel. First, we represent spectra χ and χ′ with prob-

abilistic models p and p′, respectively. Then, we define

the kernel similarity of spectra χ and χ′ as similarity

between the corresponding distributions p and p′ as

K(χ, χ′) ≡ K(p, p′) =
∫

R2
p(x)p′(x)dx

A natural probabilistic distribution over the set of peaks

is a gaussian model p(x) = 1
k ∑

k
i=1 pi(x), where each

peak contributes density according to a gaussian pi ∼
N (xi , Σ) centered at the peak (mass, int) (see Fig 3).

We use three classes of mass spectral features, and

their combinations:

• peaks {xi}

• neutral losses {(prec−massi , inti)
T} measure

the mass distance from the precursor peak

• peak differences {xi − xj : ∀i < j} measure

the mass distance between any two peaks

(2) DATABASE FILTERING
The SVM learns a mapping from the spectral fea-

tures to individual structural characteristics y of the

measured molecule. We employ the fingerprints as

filters on molecular repositories, such as PubChem,

which contain millions of molecules. The candidate

molecules are suggested according to the Poisson-

Binomial probability of the fingerprint prediction, given

the crossvalidation accuracies p = (pi)
m
i=1

p(ŷ|p, y) =
m

∏
i=1

p
1−|ŷi−yi |
i (1 − pi)

|ŷi−yi |.

EXPERIMENTS
We conducted experiments on predicting 528 finger-

prints of three mass spectral datasets, containing 514,

403 and 293 molecule-spectrum pairs, respectively.

We trained an SVM using the probability product kernel

for each fingerprint individually using 5-fold crossvali-

dation. The average fingeprint prediction accuracies for

the three datasets were 91.1%, 91.1% and 99.5% with

baselines of 87.3%, 78.7% and 88.3%, respectively.

Figure 4 indicates the individual fingerprint prediction

accuracies using the two kernels on a high resolution

mass spectral dataset. Figure 5 indicates the ROC

curves indicating the proportions of data achieving cer-

tain identification ranks.

Figure 2: MS/MS spectrum of Tryptophan (mass 204.23).

Each peak represents the mass of a fragment of Tryptophan.

The red peak indicates the non-fragmented mother ion.

Figure 3: The 2D gaussian mixture density of mass spectrum

of Fig 2.
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Figure 4: Prediction accuracies of individual fingerprints using

two different kernels.
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Figure 5: The rank of the correct metabolite in our prediction.

The colors indicate three different datasets, while the linetype

indicates querying from either PubChem database (largest

repository of molecules) or from KEGG (a small database of

metabolites).
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ABSTRACT
We propose the first efficient path-based graph

kernel for classification of reaction graphs. The

path kernel utilizes efficient compressed path in-

dex data structure. In our experiments we out-

perform state-of-the-art graph kernels in predic-

tion of the EC code of organic reactions.

KERNELS
We consider labeled undirected graphs G = (V, E, L),

where a labeling function L applies to both nodes v ∈

V and edges (v, u) ∈ E. A walk w is a sequence of

adjacent vertices, possibly infinite. A path p is a finite

walk with no repeats. A graph kernel K : G ×G → R is

a positive semi-definite similarity function over pairs of

graphs, which implicitly defines some feature mapping

φ(G) such, that K(G, G′) = 〈φ(G), φ(G′)〉. Sequence

based graph kernels are

Kwalks(G, G′) = ∑
w∈W

λ|w|φ(G)w · φ(G′)w

Kpaths(G, G′) = ∑
p∈P

λ|p|φ(G)p · φ(G′)p

Ksp(G, G′) = ∑
p∈SP

λ|p|φ(G)p · φ(G′)p,

where length decay λ < 1, φ(G)w is count of walk w in

G and W , P and SP are the universes of walks, paths

and shortest paths.

COMPUTING KERNELS VIA

COMPRESSED PATH INDEX

1. Enumeration of paths. We traverse the graphs

using depth-first search and enumerate all

paths up to length k.

2. Path index construction. We store the set of

paths as a path-sorted XBWT.

3. Computing path frequencies.

4. Computing the kernel. The kernel matrix K is

computed as a dot product between path fre-

quency vectors φ(G) and φ(G′).
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Slast Sα Sπ

1 0 A empty

2 0 B A

3 0 B A

4 1 C A

5 1 B BA

6 0 b BA

7 1 c BA

8 1 c BBA

9 1 b BCA

10 1 B CA

(c)

Figure 1: (a) Example graph. (b) Paths originating from node

A. (c) An XBWT representation of the tree in (b). The rows are

lexicographically sorted.
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Figure 2: Reaction R00986 Chorismate

pyruvate-lyase with EC code 4.1.3.27. The reac-

tion and its atom correspondences highlighted with color (top).

The reaction graph produced by taking the union of edges

from both sides (bottom).

EXPERIMENTS
We evaluate the performance of the various graph ker-

nels on a task, where the EC number of a reaction is

predicted. The EC number is a hierarchical code defin-

ing the semantic function of the enzymatic reaction.

Our dataset is 17430 reactions from KEGG database,

with graphs G1, . . . , G17430 . The EC hierarchy of each

reaction is encoded as 270 binary targets variables

Y1, . . . , Y270. Our classification task is to predict the

three level EC code as a binary multiclassification prob-

lem. A result was deemed correct if the correct root-to-

leaf branch is predicted.

We ran the experiments with MMCRF hierarchical mul-

tilabel classification algorithm. All kernels use λ = 0.90

and are quadratic kernels as they acchieved consis-

tently best results. A five-fold cross-validation proce-

dure was used.

We experimented with upper bounds of 15 and 50 on

the path lengths. We also experimented with core paths,

paths that go through modified edges only. These paths

are likely to contain most relevant information regarding

the reaction. Finally, we experimented with indicator

features, where all features are binary irrespective of

the path frequencies.

RESULTS

Figure 3: EC hierarchy consists of 6 main classes, 63 second

level and 201 third level categories, a total of 270.

# of reaction graphs 17,430

# of trees 746,438

# of tree nodes 279 mil.

# of tree leaves 91 mil.

max. tree depth 50

Index construction time 1.1 hours

Index construction space 4.4 GB

Final index size 1.1 GB

# of unique paths 21 mil.

Index frequency computation 176 s

Kernel computation (path length 50) 12 min

MMCRF run (average, 5-fold cv) 10 hours

Table 1: Characteristics of the test data and performance re-

sults.

Kernel k Tr. error (%) Ts. error (%)

Walk 15 52.9 61.1

RGK inf 27.8 35.0

Shortest paths 21.5 36.4

Core paths 50 14.9 28.9

Core paths, ind 50 14.5 27.8

All paths 50 19.6 34.2

All paths, ind 50 9.1 25.6

Core paths 15 15.0 28.3

Core paths, ind 15 14.7 27.3

All paths 15 20.0 33.7

All paths, ind 15 9.2 24.3

Table 2: Prediction of full EC class. Core path kernel only

includes paths with “+1” or “-1” edges, while indicator kernels

contain only binary values.
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Figure 4: Prediction errors for the six main EC classes.
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INTRODUCTION
• protein interactions: important for system-level

understanding of biological processes

• BIOLEDGE project: BIO knowLEDGe Extrac-

tor and Modeler for Protein Production, focus on

secretion proteins

• target species: Saccharomyces cerevisiae,

Pichia pastoris, Trichoderma reesei

RESEARCH GOALS

• in silico prediction of protein interactions based

on sequence features

• investigation of biological network reconstruction

tools

SEQUENCE FEATURES
Figure 1: Feature coverage for secretion proteins in

Saccharomyces cerevisiae with reliable interactions.

- Sparse, High-Dimensional, Few Instances -

ID NAME #

1 BLAST SCORE 113.798

2 PROTEIN CLUSTERS 559

3 GTG 108.810

4 PFAM 860

5 PANTHER 898

6 SUPER FAMILY 431

7 GENE 3D 360

8 PROSITE PROFILE 243

9 SMART 231

10 PROSITE PATTERN 299

11 PIR FAM 74

12 TIGRFAM 119

13 FINGERPRINT 62

14 PRODOM 20

15 HAMAP 6

226.770

FEATURE SELECTION
Feature selection has to be performed because mod-

eling with the full fused feature set gives classification

accuracies close to random.

ID NAME ACCURACY # FS TOP 1000

1 BLAST SCORE 71.3(±3.9) 28.3(±20.1)

2 PROTEIN CLUSTERS 71.6(±2.5) 3.7(±1.9)

3 GTG 74.1(±4.3) 901.9(±39.1)

4 PFAM 75.7(±5.2) 10.4(±4.7)

5 PANTHER 74.3(±3.7) 7.0(±3.6)

6 SUPER FAMILY 73.7(±5.4) 9.6(±3.2)

7 GENE 3D 73.6(±4.3) 20.1(±7.5)

8 PROSITE PROFILE 68.6(±2.9) 5.6(±3.7)

9 SMART 70.4(±3.3) 6.1(±4.1)

10 PROSITE PATTERN 71.8(±4.3) 4.1(±2.0)

11 PIR FAM 66.9(±0.5) 0.5(±0.8)

12 TIGRFAM 68.5(±1.5) 0.6(±0.7)

13 FINGERPRINT 66.8(±0.4) 1.9(±1.8)

14 PRODOM 66.7(±0.0) 0.0(±0)

15 HAMAP 66.7(±0.0) 0.0(±0)

Classification accuracy when the individual feature sets

are used for modeling and number of variables included

in the top 1000 by feature selection (# FS TOP 1000)

when modeling over the fused feature set.
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PROTEIN-PROTEIN-INTERACTION (PPI) PREDICTION
Given a set of proteins V = (v1, ..., vn),

a set of feature vectors Φ(v1), ..., Φ(vn) ∈ ℜp,

a set of known interactions S = ((e1, y1), ..., (em, ym))

as pairs of vertices: ei ∈ V × V with yi = [1;−1].

INFERENCE WITH LOCAL MODELS
1. choose a seed vertex vseed ∈ V

2. create local training set

3. feature selection with Mutual Information measure

over all feature-label pairs

4. train SVM on the local training set

5. predict label of any vertex that has no label

6. repeat step 1.-6. for each vertex vseed ∈ V

7. combine the predicted edges

LABELS: PROTEIN INTERACTIONS IN STRING
STRING is a data base of known and predicted pro-

tein interactions (string-db.org). Links are given

as probability scores [0, .., 1000] for genetic neighbor-

hood, fusion, co-occurrence, co-expression, experi-

ments, databases, text mining as well as a combined

score (cs).

Figure 2: Number of reliable interactions (cs>500) for

secretion proteins in Saccharomyces cerevisiae.

Figure 3: PPI network of secretory pathway proteins in

Saccharomyces cerevisiae (by M. Oja@VTT).

CLASSIFICATION EXPERIMENT
SVM with RBF kernel (LibSVM package v.3.12)

TRAINING/EVALUATION DATASET
(with known ground truth)

Npos examples: reliable interactions cs > [500, .., 900]

Nneg examples: random selection of probably non in-

teracting proteins, Nneg = 2Npos

CROSS VALIDATION
10 folds of train 80%/ test 20%

(I) for model selection (σ, C, feature selection)

(I I) for model evaluation

RESULTS
+ inference with local models gives accurate results

when trained on reliable interactions

- choice of seed vertices is limited to proteins with

enough known interactions

CS ACCURACY # FS

> 500 80.3(±6.2) 29.300(±5.900)
> 600 82.0(±5.9) 6.300(±10.700)
> 700 84.5(±6.0) 4.000(±3.000)
> 800 85.2(±4.9) 5.000(±10.000)
> 900 88.5(±3.8) 1.400(±1.000)

CONCLUSIONS AND FUTURE WORK
• local modeling has no good scalability, training

a model for each seed is cumbersome

• instead: inference on global models

• visualize interactions predicted on hold out

dataset with Cytoscape and evaluate their bi-

ological relevance

• improve feature selection

• more experiments i.e. different STRING scores
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ABSTRACT
We present an ensemble of multi-task classifiers

for multilabel classification. As the base classi-

fiers of ensemble, we use Maximum Margin Con-

ditional Random Field (MMCRF) Model. Source

diversity of base classifiers arises from the dif-

ferent random output structures, a different ap-

proach from boosting or bagging. Experimental

result shows that ensembles of random networks

outperforms other approaches.

RANDOM GRAPH ENSEMBLE
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prediction
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Input: Training sample S = {(xi , yi)}
m
i=1, ensemble

size T, n the number of nodes in the output graph,

Output: Multi-task learner ensemble
(

f (1), . . . , f (T)
)

1: t = 0

2: while t < T do

3: t = t + 1

4: Gt = randomGraph(n)

5: ft = learnBaseClassi f ier({xi}
m
i=1, (yi)

m
i=1 , Gt)

6: end while

7: F = ( f1, . . . , fT)

DATASETS
Table 1: Multilabel datasets from biological and text

classification fields used in our empirical studies. Statis-

tics include multilabel density (D), label balance (B) and

label correlation (Co).

DATASET INSTANCES LABELS D B CO

GENEBASE 662 27 1.25 0.05 0.07

CANCER 4547 60 11.05 0.18 0.73

FINGERPRINT 490 286 49.1 0.17 0.08

ENRON-F 1694 53 3.42 0.06 0.03

SLASHDOT-F 3749 22 1.18 0.05 0.03

LLOG-F 1460 75 1.37 0.02 0.02

WIPO 1710 188 4 0.02 0.01

REUTERS 7500 34 1.48 0.04 0.05

BIBTEX 2515 159 2.43 0.02 0.02

BOOKMARKS 2000 208 2.06 0.01 0.02

CONCLUSION
We have studied the potential of structured output learn-

ing on random graphs as the basis of constructing ac-

curate multilabel classification models. Our investiga-

tions indicate that models thus created have favorable

predictive performance on a heterogeneous collection

of multilabel datasets. The results of this paper indicate

that structured output prediction methods can be suc-

cessfully applied to problems where no a priori known

output structure exists.
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MAX-MARGIN CONDITIONAL RANDOM FIELD (MMCRF)
We consider data from a domain X ×Y , where X is a

set of objects and Y = Y1 × · · · × Yk is a Cartesian

product over the set Yj ∈ {+1,−1}. A training data

set is given as {(xi , yi)}
n
i=1 ⊂ X × Y . A pair (xi , y)

where xi is a training object and y is an arbitrary multi-

label is called a pseudo-example.

JOINT FEATURE MAP
The MMCRF takes a joint feature map

φ(x, y) = (φe(x, y))e∈E = ϕ(x)⊗ ψ(y),

where ⊗ is the tensor product over input feature map

ϕ(x) and output feature map ψ(y).

MODEL FAMILY
As model family, we use exponential family

p(y|x) =
1

Z(xi , w) ∏
e∈E

exp(wTφe(x, ye))

defined on edges e ∈ E of a Markov network G.

MAX MARGIN LEARNING
Margin-based learning takes the form

w = argmin
w

(

1

2
||w||2 + C

n

∑
i=1

ξi

)

s.t. wT∆φ(xi , y) ≥ ℓ∆(yi , y)− ξi , ∀i, y,

where ∆φ(xi , y) = φ(xi , yi)− φ(xi , y), and ℓ∆(yi , y)

encodes the loss of the pseudo-example, as shown in

left part of Figure 1.

●

● φ(xi , yi )

φ(xi , y′ )

φ(xi , y′′ )

φ(xi , y′′′ )

ξi

ℓ′
∆

ℓ′′
∆

ℓ′′′
∆

∆φ′∆φ′′′

∆φ′′

Figure 1: Maximum margin optimization.

Intuitively, it maximizes the margins between the real

example and the pseudo-examples. The margins are

scaled according to loss function ℓ∆(yi , y).

MAKING PREDICTIONS
Once we get the edge-labeling specific feature weight

w, we can make prediction by maximizing the scoring

function

ŷ(x) = argmax
y∈Y

wTφ(x, y).

EXPERIMENTAL RESULTS
Table 2: Multilabel loss (top) and Hamming loss (bot-

tom) with standard deviation of the different classifica-

tion methods.

DATASET
MULTILABEL LOSS

ENSEMBLE SINGLE SVM MLKNN

GENEBASE 1.8 ± 1 1.8 ± 1 2.1 ± 1.1 8.6 ± 2.1

CANCER 61.5 ± 2 64.5 ± 1.2 66.1 ± 1.5 55.9 ± 1.6

FINGERPRINT 95.7 ± 1.8 95.9 ± 1.6 96.7 ± 0.9 100 ± 0

ENRON-F 86 ± 0.8 86.2 ± 0.9 87.2 ± 1.3 90.1 ± 1.4

SLASHDOT-F 75.8 ± 1.8 76.6 ± 1.4 72.9 ± 1.8 78.1 ± 1.1

LLOG-F 78.7 ± 1.3 78.8 ± 1.4 79.7 ± 1.2 81.5 ± 1.5

WIPO 72 ± 2.4 72.2 ± 2.4 74.4 ± 1.8 80.3 ± 2.7

REUTERS 31.8 ± 0.7 32.1 ± 0.8 32 ± 1.2 35.1 ± 3.2

BIBTEX 85.6 ± 2 86.2 ± 2.2 84.6 ± 1.3 86 ± 1.2

BOOKMARKS 83.2 ± 2 83.3 ± 1.7 84 ± 2.3 84.7 ± 2.3

average 67.2 ± 1.6 67.8 ± 1.5 68 ± 1.4 70 ± 1.7

DATASET
HAMMING LOSS

ENSEMBLE SINGLE SVM MLKNN

GENEBASE 0.1 ± 0 0.1 ± 0 0.1 ± 0.1 0.4 ± 0.1

CANCER 13.6 ± 0.4 13.8 ± 0.3 13.8 ± 0.5 15.7 ± 0.3

FINGERPRINT 10.2 ± 0.7 10.2 ± 0.6 10.2 ± 0.3 11 ± 0.7

ENRON-F 4.8 ± 0.1 4.9 ± 0.1 4.6 ± 0.1 4.9 ± 0.1

SLASHDOT-F 6.5 ± 0.2 6.7 ± 0.2 4.4 ± 0.1 4.7 ± 0

LLOG-F 1.9 ± 0.1 1.9 ± 0.1 1.6 ± 0 1.6 ± 0

WIPO 0.9 ± 0 0.9 ± 0 0.9 ± 0 1 ± 0

REUTERS 1.8 ± 0 1.8 ± 0 1.8 ± 0 2.2 ± 0

BIBTEX 1.6 ± 0.1 1.6 ± 0.1 1.3 ± 0 1.3 ± 0

BOOKMARKS 1.2 ± 0 1.2 ± 0.1 0.9 ± 0 0.9 ± 0

average 4.28 ± 0.2 4.3 ± 0.2 4 ± 0.1 4.4 ± 0.1

Table 3: F1 score (top) and balanced accuracy (bot-

tom) with standard deviation of the different classifica-

tion methods.

DATASET
F1

ENSEMBLE SINGLE SVM MLKNN

GENEBASE 99.2 ± 0.3 99.2 ± 0.3 98.9 ± 0.6 95.1 ± 1.7

CANCER 59.7 ± 2.2 59.4 ± 1.9 54.8 ± 2.8 41 ± 3.2

FINGERPRINT 67.9 ± 2.1 67.7 ± 1.9 66.5 ± 1 63 ± 2.2

ENRON-F 57.8 ± 1.5 57.1 ± 1.1 56.5 ± 1.8 54.3 ± 1.5

SLASHDOT-F 44.4 ± 1 43.3 ± 0.9 40.9 ± 2 32.5 ± 0.8

LLOG-F 31.5 ± 1.4 31 ± 1.5 30.5 ± 1.2 25.8 ± 1.9

WIPO 77.5 ± 1.2 77.5 ± 1.2 77 ± 0.8 71.3 ± 1.5

REUTERS 76.8 ± 0.7 76.7 ± 0.8 76.8 ± 0.5 69.8 ± 1.7

BIBTEX 35.7 ± 2.1 35.4 ± 1.9 38.5 ± 1.1 31.5 ± 1.5

BOOKMARKS 19.8 ± 2.1 19.2 ± 1.9 19.2 ± 2.3 16.6 ± 2.1

average 57 ± 1.5 56.7 ± 1.4 56 ± 1.4 50.1 ± 1.8

DATASET
BALANCED ACCURACY

ENSEMBLE SINGLE SVM MLKNN

GENEBASE 99.5 ± 0.3 99.5 ± 0.3 99 ± 0.6 96 ± 0.9

CANCER 74.1 ± 1.6 74 ± 1.5 70 ± 1.6 63.1 ± 1.5

FINGERPRINT 79 ± 1.2 78.9 ± 1.1 77.6 ± 0.7 75.4 ± 1.2

ENRON-F 74.7 ± 1 74.2 ± 0.7 72.7 ± 1 71.9 ± 1.2

SLASHDOT-F 72.4 ± 0.8 71.9 ± 0.7 64 ± 0.8 60.3 ± 0.4

LLOG-F 61.9 ± 0.7 61.8 ± 0.7 59.5 ± 0.4 57.7 ± 0.7

WIPO 84.5 ± 0.8 84.4 ± 0.8 83.9 ± 0.5 79.4 ± 1.1

REUTERS 84.2 ± 0.5 84.2 ± 0.6 84.2 ± 0.6 78.7 ± 1.8

BIBTEX 63.9 ± 0.5 63.8 ± 0.4 63 ± 0.4 59.8 ± 0.5

BOOKMARKS 57.4 ± 0.9 57.2 ± 0.8 55.5 ± 0.7 54.6 ± 0.6

average 75.2 ± 0.8 75 ± 0.7 72.9 ± 0.7 69.7 ± 1

Figure 2: Winning model with respect to Hamming loss as the function of label balance and label correlation.

Color scheme: red-ensemble MMCRF, orange-single MMCRF, green-ML-kNN, blue-SVM, gray-default classifier.
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Introduction

We hypothesized that spectrospatial information present
in MEG is useful in separating different stimulus categories
from each other. To this aim, we designed four classifiers
and evaluated their performance in a four-category
decoding task.

Experiment and preprocessing

Figure 1. Stimulus sequence (12-min) [1]. The used categories were: 1. auditory, 2. visual, 3. tactile, 4. rest. 
White spaces denote rest blocks. Two sessions were recorded (training set and test set).

visual auditory

qNine healthy adults exposed to 6-33-s blocks of auditory,
visual and tactile stimuli that were interspersed with rest
blocks (see Figure 1) [1]
qTwo 12-min sessions recorded: session 1 for the classifier
training and session 2 for the performance evaluation

qSparse multinomial logistic regression was used to
perform classification of N spectral epochs
qFour classifies (C1-C4) built based on varying degree of
spectral information:
ØC0 did not use spectral information at all (features were
the total energies of the ICs)
ØC1 used unspecific spectral information (features were
the standard deviations of the spectra of the ICs)
ØC2 used category-wise spectrospatial information by
treating each spectrospatial epoch as a matrix (C x N) [3]
ØC3 used spectrospatial information by estimating
frequency coefficients for each IC with principal
component analysis (PCA) prior to classification

We use MEG-based decoding approach to investigate the
organization of neural activity in the brain during natural
hearing, vision, touch and rest. Unlike fMRI, MEG offers a
possibility to investigate spectral signatures of neural
activation relevant in information encoding.

Conlusions

qShort-time Fourier transform (STFT) applied to 2-sec MEG
traces followed by independent component analysis [2]
qC = 64 independent components (ICs) estimated
qFrequency range from 5 to 30 Hz
Classifiers

qOur results indicate that spectral information is useful 
in decoding stimulated sensory modalities from MEG data
qEspecially, relatively fine-grained spectrospatial
information (utilized by our models C2 and C3) is useful
qdecoding based on unspecified spectral information 
(C1) did not result in results better than the baseline 
classifier not utilizing spectral information (C0)

References
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Component Analysis', Human Brain Mapping, in press, published online 13 
Sep 2011. 
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49, no. 1, pp. 257-271.
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qThe (min/mean/max) classification accuracies of the 9 
subjects for our models were:
ØC0: 0.24/0.40/0.63 (no spectral information)
ØC1: 0.25/0.43/0.68 (unspecific spectral information)
ØC2: 0.31/0.50/0.70 (category-wise spectral information)
ØC3: 0.35/0.51/0.64 (IC-wise spectral information)
qthe mean accuracies were clearly above the chance level 
(0.25) for each classifier
qThe classification rates of C2 and C3 were significantly 
higher than those from the baseline C0 (matched pair t-
test; p < 0.01, uncorrected)
qC0 > C1 not significant



Validation on artificial data 
 

• Artificial data are generated by two generative models. 

• Preprocessing is to multiply a whitening matrix    .  

• Absolute values      are approximated as                . 

Dependency of adjacent basis vectors  

 

 

 

 

 

 

 

 

 

 

 
 

Co-linearity of adjacent basis vectors 

 

 

 

 

 

 

 

 

 

 

 
 

Complex cell outputs 
 

• The outputs of complex cells are computed as  

  

 

 
 

•For preprocessing,  we remove the DC components and 

normalize the variances to one. 

Learning Topographic Representations for Linearly Correlated Components 
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Introduction 
 

 

 

 

 
 

• ICA is a statistical model to estimate independent non-Gaussian 

components. 

• In ICA, the order of  the sources cannot be estimated. 
 

Relaxation of the assumption 

 

 

 

 

 

 

• In topographic ICA (TICA) proposed by Hyvärinen et al [1], 

the assumption in ICA was slightly relaxed, and the order can be 

estimated. 

• We proposed a new model for topographic representations. 

•Adjacent components in source signals are linearly correlated. 

 
 
 

•Distant components are as independent as possible.  
 

Practical situation and motivation 

 

 

 

 

 

 
•In practice, the outputs of two co-linear Gabor functions for 

natural image input can be linearly correlated. 

• Topographic representations allow us to visualize the 

interrelation between components.  

• Topography of natural stimuli may be related to cortical 

representations. 

Dep y o dja

Co-linearity of adjacent basis vectors

generative model  

: t-th observation 

Matrix: 

Comparison of objective functions  

Formulation of a combinatorial optimization problem 

•A function            has a remarkable property: summation of 

functions of only two variables. 

• The main problem can be divided into sub-problems. 

• Dynamic programming (DP) would be an efficient method to 

solve the combinatorial optimization problem. 

Algorithm inspired by dynamic programming 
 

1. First, we fix            and           . For                      , a 

function                         is defined as 

  

 

 
  

      
Candidate functions for optimal values are also defined as  

 

 
 

2. For          , the optimal      and      can be obtained as  

 

 
 

3. From                to          ,  the optimal      and       can be 

found as 

Random init. 

without DP 

Random init. 

with DP 

True init. 

without DP 

Covariance matrix 

Sample 
Estimated cov. 

without DP 

Estimated cov. 

with DP 
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Flow of optimization 
 

1. Estimation of      by the conjugate gradient method. 

2. Optimization of order and signs. 

3. Re-estimation of       by using optimized              as the 

initial input to the conjugate gradient method. 
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generative model  

Natural images 

Noise inputs 

The outputs of complex cells are computed as 

Experiments on real data 

Natural image patches 
• Data: 16  16 natural image patches.  

• Preprocessing: the removal of DC components and whitening. 

The dimension is reduced to 160. 

Estimated basis vectors 

Connection to previous work
 

• Differences to TICA are:  

    1. Adjacent components have linear correlation. 

    2. Phases of basis vectors are non-random. 

    3. Stronger co-linearity. 
 

• For complex cells outputs, the results of previous work lacked 

topographic representations [2,3], while our model could 

estimate them reflecting the properties of natural images. 

Conclusion 
 

• We proposed a new statistical model to estimate topographic 

representations. In the model, adjacent components are linearly 

correlated, while distant components are as statistically 

independent as possible. 

• To avoid local maxima in the likelihood, we proposed a new 

optimization method inspired by DP. 

• The application to real data showed the emergence of new 

topographic representations. 
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= *
convolution 

• Constraint: 

•                  is insensitive to the change of the order and 

signs. 

•                  shows the maximum value in the correct 

order and signs. 
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Model and its estimation 
 

 

 

 
The key properties of this generative model are: 

•It generates super-Gaussian (sparse) components     [1]. 

•It generates correlated sparse components     when the 

components in     are independent but the adjacent components 

in     are linearly correlated.  
 

Probability Density Function 

 

 

 
Likelihood for the estimation of the  model 
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1. Motivation

Problem: Identify causal effects from non-experimental data

Challenge: Avoid inconsistent estimators due to confounding

Solution: ‘Adjust for’ a suitable set Z of observed variables,

if such a set exists:

1. Underlying causal structure known:

There exist graphical criteria and efficient algorithms to search

for a suitable set Z (Pearl, 2009).

2. Underlying causal structure not known:

◮ Possible Solution 1 - Learn complete structure (and use 1.)
• In the Gaussian case only possible up to equivalence (Spirtes et al.,

2000; Pearl, 2009)

• In the linear non-Gaussian case possible if no latent variables (LiNGAM,

Shimizu et al., 2006). If there are latent variables, only up to equivalence,

computationally challenging (lvLiNGAM, Hoyer et al., 2008)

◮ Possible Solution 2 - Restrict to certain effects only

How to search for a suitable set Z? → Subject of this poster
(for linear models)

2. Basic Idea

Unknown generating structure:

�
�

�
�

�
��

�
�

�
�

���������	

�	
 Z

���
������

�	
� Z

Example in epidemiology:

x = risk factor

y = health indicator

W = set of general health conditions

GOAL: Obtain a consis-

tent estimator of α, the

causal effect of x on y ,

where x is the second

last and y the last vari-

able in the causal order.

IDEA: Search for a so

called ‘admissible’ set

Z ⊆ W ‘blocking’ all

information flow from x

to y other than the direct

one. ‘Adjust for’ this set

to obtain a consistent

estimator of α.

3. Background (Graphical Criterion, Admissible Set)

Back-door Criterion (Pearl, 2009)

A set Z fulfills the back-door criterion w.r.t. the ordered pair (x , y) if

◮Z does not contain any descendants of x

◮Z blocks (d-separates) every path between x and y that contains

an arrow into x (“x ←”)

A set Z fulfilling the back-door criterion is called admissible.

If Z is admissible then the causal effect α of x on y can be

consistently estimated by adjusting for Z in the regression:

y = α̂x +
∑

z∈Z

czz + ry

4. Model

Assumptions:

◮ acyclic structure (unknown)

◮ linear relationships

◮ non-Gaussian, independent

error terms e (unobserved)

◮ a set of unobserved variables

U
◮ a set of observed variables

W ∪ {x , y}
◮ known partial causal order

W ; x ; y

Unknown equations:

(for generating structure in Box 2)

u1 = eu1

u2 = eu2

w1 = βu1 + γu2 + ew1

w2 = ew2

x = ζu1 + ηw2 + ex

y = αx + κu2 + νw2 + ey

Observed variables:

. w1,w2, x and y

5. Simple Example

Generating model . Z = ∅ . Z = {w}
w , x , y observed . x = rx . x = bw + rx

u1, u2 latent . y = α̂x + ry . y = α̂x + cw + ry

�

� �
�

��

. α̂ inconsistent

. Z not admissible

. rx /⊥⊥ ry

. α̂ consistent

. Z admissible

. rx ⊥⊥ ry

�

� �
�

�

�

� �� ��

�
. α̂ consistent

. Z admissible

. rx ⊥⊥ ry

. α̂ inconsistent

. Z not admissible

. rx /⊥⊥ ry

6. Statistical Test for Consistency

Given a set Z, estimate the two regressions using OLS

x =
∑

z∈Z

bzz + rx

y = α̂x +
∑

z∈Z

czz + ry

If rx is Gaussian→ terminate without conclusion

If rx ⊥⊥ ry : α̂ is inferred to be a consistent estimator of α
If rx /⊥⊥ ry : α̂ is inferred to be an inconsistent estimator of α

Non-Gaussianity required since cov(rx, ry) = 0, thus for Gaus-

sian variables the residuals are always independent

7. Heuristics to Search for Z

◮ Brute force - go through all possible sets Z

◮ Forward selection - starting from the empty set, expand the

“best” set from the previous round with the one variable

which makes rx and ry most independent

◮ Backward elimination - starting from the full set, leave out

the one variable of the “best” set from the previous round

which makes rx and ry most independent

Main references

P.O. Hoyer, S. Shimizu, A.J. Kerminen, and M. Palviainen (2008). Estimation of causal effects using

linear non-gaussian causal models with hidden variables. IJAR 49: 362-378.
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for causal discovery. JMLR 7: 2003-2030.
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Noisy-OR Models with Latent Confounding
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Summary

We examine the identifiability of causal models with latent

confounding, given a set of experiments in which subsets

of the observed variables are subject to interventions.

In general identifiability is impossible on the basis of ex-

periments where only few variables are subject to inter-

vention per experiment, which is often the case.

Identifiability is possible for a class of causal models

whose conditional probability distributions are restricted

to a ‘noisy-OR’ parameterization.

Identifiability is preserved under an extension of the

noisy-OR CPD that allows for negative influences.

Several learning algorithms are introduced and tested for

accuracy, scalability and robustness.

1. On the Identifiability of Causal Models with Latent Confounding

Passive observational data or experiments intervening on

only a few variables at a time are generally insufficient to

identify the parameters and the structure of a causal

model with latent confounding.

For example, the two graphs on the left imply the exact

same independences in single intervention experiments

and when passively observed.

Furthermore, there exist parameterizations for the two

graphs that produce the exact same distributions in those

situations as well.

Thus, the presence of the red direct link cannot be deter-

mined unless both X1 and X2 are subject to an interven-

tion in the same experiment.

2. Noisy-OR Model with Latent Confounding

Structural Equation Model

X1 := E1

X2 := (B12 ∧ X1) ∨ E2

X3 := (B13 ∧ X1) ∨ (B23 ∧ X2) ∨ E3

Binary random variables X1, X2 and X3 are observed.

Links B12, B23 and B13 and disturbances E1, E2 and E3

are all unobserved binary random variables, introducing

noise to the simple OR expressions.

Conditional Probability Distributions Links are inde-

pendently distributed with model parameters b12 =
P(B12 = 1), b13 and b23.

P(X1 = 0|E1) = (1 − E1)

P(X2 = 0|E2,X1) = (1 − E2)(1 − b12)
X1

P(X3 = 0|E3,X1,X2) = (1 − E3)(1 − b13)
X1(1 − b23)

X2

Latent Confounding Latent confounding is represented

by an arbitrary distribution P(E3
1) (total of 23 parameters).

Any latent confounding (restricted by the noisy-OR CPD)

can be presented through E1, E2 and E3.

Joint Distribution

P(X 3
1 ) =

∑

E3
1

P(X1|E1)P(X2|X1,E2)P(X3|X1,X2,E3)P(E3
1)

Data Generation Draw a sample of disturbances E3
1 from

P(E3
1), links B12,B13,B23 from their independent distribu-

tions, and determine X1,X2 and X3 from the SEM equa-

tions.

Context Specific Independence Property Noisy-OR

CPDs have the following property.

(X1 ⊥⊥ E2 || X1) ⇒ (X1 ⊥⊥ E2 | X2 = 0 || X1)

If parents X1 and E2 of variable X2 are independent

in some context (here when intervening on X1), then

additionally conditioning on their common child X2 = 0

does not destroy this independence. This is evident

from the SEM equations, if X2 = 0, then E2 = 0 and

(B12 ∧ X1) = 0, thus the value of E2 does not provide

any additional information about the value of X1.

3. Identifiability

The parameters of any three variable model can be iden-

tified from single intervention experiments and passive

observational data.

Step 1 Find a causal order from the ancestral relation-

ships directly observed in the experiments and rename

variables such that the causal order is X1,X2,X3.

Step 2 Estimate link probability b12 by Cheng’s causal

power formula, using the intervention on X1 to make E2

independent of X1.

b12 =
P(X2 = 1||X1 = 1) −

X2 = 1 caused by

its other causes︷ ︸︸ ︷
P(X2 = 1||X1 = 0)

1 − P(X2 = 1||X1 = 0)︸ ︷︷ ︸
renormalization

Similarly, estimate b23 by intervening on X2.

b23 =
P(X3 = 1||X2 = 1) − P(X3 = 1||X2 = 0)

1 − P(X3 = 1||X2 = 0)

Step 3 Estimate the link probability b13 by additionally
conditioning on X2 = 0 s.t. the blue indirect path is inter-
cepted.

b13 =
P(X3 = 1|X2 = 0||X1 = 1) − P(X3 = 1|X2 = 0||X1 = 0)

1 − P(X3 = 1|X2 = 0||X1 = 0)

The context specific independence property guarantees

that the red path remains intercepted.

Step 4 Estimate the noise distribution from the passive

observational data by solving a matrix equation:

P(X 3
1 |E

3
1)︷ ︸︸ ︷



. . . ... ... ...

· · · (1 − b12) 0 0

· · · 0 (1 − b13)(1 − b23) 0

· · · b12 b13 + b23 − b13b23 1




P(E3
1)︷ ︸︸ ︷



...

P(E3
1 = 101)

P(E3
1 = 110)

P(E3
1 = 111)


 =

P(X 3
1 )︷ ︸︸ ︷



...

P(X 3
1 = 101)

P(X 3
1 = 110)

P(X 3
1 = 111)




The matrix on the left is lower triangular with a nonzero

diagonal, and thus invertible.

All parameters of a noisy-OR model with latent con-

founding are identified from the combination of a pas-

sive observational data set and a set of experiments

where for each ordered variable pair (Xi,Xj) there

is an experiment where Xi is randomized and Xj is

observed. This condition is often also necessary.

4. Learning Algorithms

Efficient Conditioning Conditioning reduces the effec-

tive sample size for estimating the link probabilities. How-

ever, if it happens in step 2 (above) that b12 = 0 or

b23 = 0, then the blue path does not exist and condition-

ing on X2 is unnecessary when estimating b13. The cor-

rect conditioning sets for each link can always be deter-

mined based on links already estimated. In addition, the

experimental data can also be taken into account when

estimating P(E3
1).

EM-algorithm For up to eight variables, the model can

also be learned using a version of the EM-algorithm.

5. Extension to Negative Influences

In noisy-OR models, the parents X1 and X2 being ON has

a positive effect on their child X3 being ON. However, the

noisy-OR parameterization can be extended to also allow

for negative influences:

X3 := E3 ∨ (B13 ∧ X̃1) ∨ (B23 ∧ X̃2),

where for positive/generative causes X̃i = Xi and for

negative causes X̃i = ¬Xi. Now X1 = 0 can cause

X3 = 1. The context specific independence property and

the identifiability of the model are preserved.

6. Simulations

Accuracy of Links
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Scalability Structural errors when using the EC-

algorithm on models with different sizes. Some statisti-

cally insignificant links are deleted.

Robustness Models were learned from single interven-

tion and passive observational data, generated by a

‘noisy-interactive-OR’ model while the amount of latent

confounding and interaction of the parents was varied.

The shade of each square represents the average predic-

tive accuracy in double intervention experiments. Lighter

shades indicate better results. Standard Bayesian Net-

work without hidden variables (BN) predicts accurately

when there is little confounding, noisy-OR (EM) predicts

accurately when there is only little interaction.
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RELEVANT AND NON-REDUNDANT
OBJECT RETRIEVAL Laura Langohr and Hannu Toivonen

We address a setting of information
retrieval where the user specifies query
objects and the problem is to identify
other objects that are relevant with respect
to the query objects, but non-redundant
with respect to each other.
Consider, as example the graph on the
right, where nodes represent terms (objects),
edges relations between them, and weights
word co-occurrences within sentences.
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A user who wants to know how branch

and root are related might know some

relations. Other relations again might

be more interesting.

RELEVANCE AND NON-REDUNDANCY
RELEVANCE
The relevance of an object u ∈ V with respect to

a positive query object q ∈ V is defined as their

proximity:

relP(u, q) = s(u, q) = 1/d(u, q).

The relevance of object u with respect to a set

QP ⊂ V of query objects is defined as the inverse

of the p-norm with α≥1:

relP(u, QP) = ( ∑
q∈QP

d(u, q)α)−
1
α .
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IRRELEVANCE
The irrelevance (or negative relevance) of an

object u with respect to a negative query object

q̄ ∈ V is defined as their proximity:

relN(u, q̄) = s(u, q̄) = 1/d(u, q̄).

The irrelevance of object u with respect to a set

QN ⊂ V of negative query objects is defined as

the sum of similarities raised to the power of β>1:

relN(u, QN) = ∑
q̄∈QN

d(u, q̄)−β = ∑
q̄∈QN

s(u, q̄)β.
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NON-REDUNDANCY
Given a set R ⊂ V of (retrieved) objects, the

redundancy of R is defined by

red(R) = ∑
u,v∈R
u 6=v

d(u, v)−β = ∑
u,v∈R
u 6=v

s(u, v)β.

RELEVANCE AND NON-REDUNDANCY
We define the overall relevance and non-redun-

dancy of a set of objects R ⊆ V as

REL(R, QP, QN) = ∑
u∈R

relP(u, QP)− relN(u, QN)

− red(R).
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ALGORITHMS AND EXPERIMENTS
FINDING RELEVANT AND
NON-REDUNDANT OBJECTS

Greedy algorithm

1. Repeat until a sufficient number of

representatives has been retrieved:

1.1. Find the most relevant object r

w.r.t . QP and QN

1.2. Output r and add it to QN

1 111

2

1

2

1

2

1

2

3

Iterative algorithm

1. Get an initial solution R of k objects

(e.g. random)

2. Repeat while R changes:

2.1. Find the optimal swap of any object r

in R to any object not in R

2.2. If the swap improves the result,

implement it

EXPERIMENTS
Word relations and senses: The proximity is

measured by word co-occurence within sentences.

QP branch & root bank star .

1. tree reserve planet

2. indo river trek

3. mathematics gaza cluster

4. line credit sirius

5. equation international movie

Biomedical graph and probabilistic node proximities.
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Overall relevance (solid line)
and its factors (relevance,
dashed; irrelevance, short
dashed; non-redundancy,
dotted line).

Overall relevance of set Rk of
top k nodes obtained by both
algorithms and random ranking.
(The lines corresponding to the
algorithms are indistinguishable.)

CONCLUSION

• Both algorithms produce a good set

of objects, with high relevance and

low redundancy.

• The greedy algorithm seems to also

work well for any top k objects.

• The iterative algorithm could in our

experiments produce only marginally

better results than the greedy ranking.

• What application can you think of?





Ambiguous Lexical Resources 

For Computational Humor Generation 

Examples 

Punning Riddles 

How do you define a pig? 

It is a stout-bodied short-legged omnivorous policeman.  

In order to obtain this joke, the homonymic DEW 

“pig” was selected. The definition (in the form of an-

swer) is the gloss of the default meaning (i.e. first 

WordNet sense of the corresponding noun), in which 

the word “animal” was substituted by the first 

synonym (“policeman”) of the hidden meaning (i.e. 

third WordNet sense).  

The creation of a punning riddle starting from a 

“lexical core” is inspired to the JAPE system (Bin- 

sted and Ritchie, 1994), in which the joke is 

generally based on a couple of phonetically similar 

words. 

An analogue example is:  

Who is a working girl? 

A young streetwalker who is employed.  

Funny Acronyms 

CPU = Celibate Professing Untied (from “Central 

Processing Unit”) 

This type of acronym generation is modeled on the 

HAHAcronym system (Stock and Strapparava, 

2002). The acronym is generated through the 

replacement of each word in the original expansion 

(Central Processing Unit) according to phonetic 

similarity (“processing” vs. “professing”) and 

semantic opposition (“computer” vs. “religion”). 

The following “hand-made” example, instead, cannot 

be generated with the present resource because it 

involve a model of the ambiguity propagated at the 

phrase level:  

IBM = Interpreting Bible Machines 

(from the original International Business Machines)   

Variation of Familiar Expressions 

A chapel a day keeps the malefactor away. 

This example is based on the FEVER program 

(Valitutti, 2011). The pun is obtained through two 

word replace- ments in which both phonetic 

similarity and domain slanting (RELIGION) 

constraints were applied.  

Instead the following hand-made expression cannot 

be generated without a model describing the am- 

biguity at the sentence level: 

An onion a day keeps everyone away.  

Alessandro Valitutti 

University of Helsinki – Department of Computer Science and HIIT 

alessandro.valitutti@cs.helsinki.fi 

Double-Edged Words (DEW) 

A DEW can be characterized by the following 

attributes:  

1.  WORD is the lexical unit (e.g. a single word or a 

phrase). 

2.  AMBIGUITY is a list of two or more “meanings” 

associated to the WORD. 

3.  DEPTH expresses the different typicality of the 

two meanings. For example, a two fold ambiguity 

will be associated to a main meaning (called 

surface meaning, with depth 1) and a secondary 

meaning (called hidden meaning, with depth 2).  

4.  SLANT is a set of additional semantic labels 

associated to the hidden meaning, and 

characterizing it as potentially humorous. Slant 

labels can be used to emphasize the humorous 

role of hidden meaning. For example, slant labels 

can be selected in order to evoke ridiculous trait 

of people.  

Conclusion 

•  Exploration of the connection between 

computational humor and automatic discovery 

•  Distinction between heuristic creativity and 

narrative creativity 

•  Distinction between ambiguity and “slanting” 

•  Definition and collection of ambiguous lexical 

units – DEWN 

•  Integration of existing humor generators 

Humor and Lexical Ambiguity 

Double-Edged WordNet (DEWN) 

Items are defined according to three different 

possible types of lexical ambiguity: 

1.  Homonymy is defined as the relation between 

words that share the same spelling and 

pronunciation but have different meanings (e.g. 

tablet) 

2.  Homophony is defined here as the relation 

between words that are phonetically identical 

(complete homophones) or similar (partial 

homophones) but with different spelling (e.g. 

show/shop). 

3.  Idiomatic ambiguity is a specific type of 

ambiguity between literal and figurative 

language. Idioms are defined here as multiword 

expressions whose meaning cannot be inferred 

by the meaning of the component words. The 

idiomatic meaning of a word is the meaning 

associated to the idiom in which the word is 

included. (e.g. cat/rain) 

Homonymic DEWs 

•  Homonymy is defined as the relation between 

words that share the same spelling and 

pronunciation but have different meanings. 

•  In WordNet each word meaning is represented by 

a set of synonyms (synset) and associated to a 

specific ID in the database. Each word is 

associated to one of more senses (i.e. ranked 

synsets). 

•  Homonymic DEWs are words in WordNet with at 

least two senses. 

•  The sense number expresses the DEPTH 

attribute. A list of 24167 DEWs was extracted from 

WordNet 3.1.  

Homophonic DEWs 

•  Homophony is defined here as the relation 

between words that are phonetically identical 

(complete homophones) or similar (partial 

homophones) but with different spelling. 

•  The algorithm for the measure of the phonetic 

distance is a specific implementation of the 

Levenshtein distance. 

•  A measure of the above described phonetic 

distance was calculated for all pairs of words in 

WordNet, in order to collect sets of homophones. 

A number of 5400 total homophonic sets and 

23050 partial homophonic sets were filtered.  

Idiomatic DEWs 

•  Idiomatic ambiguity is a specific type of ambiguity 

between literal and figurative language. Idioms 

are defined here as multiword expressions whose 

meaning cannot be inferred by the meaning of the 

component words. The idiomatic meaning of a 

word is the meaning associated to the idiom in 

which the word is included. 

•  A manual annotation of WordNet was performed 

in order to identify lexical idioms (i.e. idioms con- 

sisting of a composed word). 

•  The collection includes 3541 WordNet synsets. 

•  For each idiomatically ambiguous word, the 

surface meaning (or literally meaning) was 

defined as its first sense in Word- Net, and the 

hidden (or idiomatic meaning) as the first sense in 

the idiom in which the word is included.  

Humor and Ambiguity 

inconsistency, ambiguity 

incongruity (perception) 

physiological arousal 

linguistic level 

cognitive level 

affective level 

Humor is a way to induce mirth, a specific emotion. In verbal humor, linguistic 

ambiguity can affect the cognitive state, through the violation of expectation. The 

corresponding state of can increase the level of emotional arousal and contribute 

to the humorous effect.  

Introduction 

•  This work is aimed to investigate to what extent it 

is possible to perform a feasible use of ambiguous 

lexicon in computational humor. 

•  The first core of a lexical database, characterized 

as an extension of WORDNET 3.1 (Fellbaum, 

1998), was developed in order to collect 

ambiguous terms in the English lexicon for be 

employed as resource for humor generation. 
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Abstract
We are interested in better understanding the evolution of metabolic

biodiversity in bacteria- Archaea and the Eubacteria. To investigate this

question, we introduce the use of weighted graphs to integrate large

amounts of genomic data. We propose three ways of measuring the

importance of enzymes, and apply the weighted graph compression

method to measure the correlation between two kingdoms.

Tree of life

Metabolism
Each species has a different metabolism. Given a large number of species,

how can we compare their metabolisms?

Weighted metabolic network
Goal: Integrate different species metabolisms into one

graph.

Solution:

Step 1: Represent the meta-metabolic network as a

graph with enzymes as nodes. Two enzymes are con-

nected with an edge if they catalyze reactions that share

metabolites.

5.3.1.9

3.1.3.11 2.7.1.11

Step 2: Assign weights to enzymes based on how fre-

quent they are in the species.

Genome N

Genome 2

Genome 1

Weighted metabolic network

eci(0.8)

ecj(0.5)

Enzymes with high weights are ubiquitous, and those

with low weights rarely occur.

Such a weighted graph summarizes the information in

the set of these instantiations of the meta-metabolic

network.

Three ways of weighting

- Taxonomy proportion =
no. of genomes that contain the enzyme

no. of genomes
.

- Protein similarity = average similarity of protein sequences of the enzyme.

- Average isoenzyme number = average number of isoenzymes.

taxonomy proportion protein similarity
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We found that the important enzymes, determined by their existence frequency, in Ar-

chaea are also important in Eubacteria. However, this importance is not presented by

neither sequence conservation nor average number of isoenzyme.

Correlation between two kingdoms
We apply the weighted graph compression method

to compress the metabolic network utilizing en-

zyme weights, and decompress the compressed

graphs to enable direct comparison between them.

Compression ratio

0.01 0.03 0.05 0.07 0.09

Distance 53.94 59.54 62.22 64.14 65.47

Mean distance between compressed graphs of Archaea

and Eubacteria at different compression ratios.

Results show: more compression actually gives

a smaller distance.

Future work
(1) Apply the graph compression

method to compare the importance

of pathways in the different king-

doms.

(2) Extract an approximate ances-

tor metabolism, which is a con-

nected subgraph with enzymes that

are common to both kingdoms.

(3) Use simulations to produce a

null-model for pathway evolution.


