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Mission:
 Develop statistical data analysis methods, with focus on

- Unsupervised machine learning methods

- Neuroscience applications 
 Non-Gaussianity a central theoretical framework

Members:
 Aapo Hyvärinen, leader
 Patrik Hoyer, co-leader (until 8/2013, started own company)
 2-4 postdocs, 2-4 PhD students
 From 2012, partly in CoE of Inverse Problems Research

Neuroinformatics Team
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Passive observation vs. interventions
– Completely passively observed data (our LiNGAM from 2006)

– Experiment with (optimal?) interventions

(Hyttinen, Eberhardt, Hoyer, JMLR, 2012, 2013a)
Causality in fMRI, jointly with Stephen Smith

– Oxford Centre for Functional Imaging of the Human Brain

– Developer of simulated data for comparing algorithms
– Our tailor-made methods (JMLR, 2013b) 

• Have best performance on simulated data

• Are particularly simple variants of LiNGAM

Highlight 1: 
Causal analysis
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 In independent component analysis, testing almost inexistent
– Components could be local minima, or random effects

 We developed a method which uses a proper null hypothesis and 

the theory of classical hypothesis testing

–  Do ICA on multiple datasets (e.g. subjects), and see if you get the same 

component in more than one data set

– Applications in MEG 

(NeuroImage, 2011):

 Application on fMRI needed further theory (Frontiers in Human Neuroscience, 2013)

Highlight 2: 
Testing independent components
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 Decoding brain state from MEG (NeuroImage, 2013)
– Optimal combination of ICA with classification methods
– Must use nonlinear classification

 Two-person neuroscience: measuring interacting subjects
– Riitta Hari's ERC AdG for constructing a system of two 

MEG scanners with video connection
– Extremely challenging, still ongoing

 Analysing nonstationary dynamics
– Result of sabbatical at ATR, Japan, in 2013,

 a leading centre in brain imaging

Highlight 3: 
Practical brain imaging data analysis
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 Co-leader Patrik Hoyer left academia
– Group size reduced
– Causal analysis given less emphasis

 New planned project: Modelling spontaneous brain activity
– Very popular topic in brain imaging
– But: our approach is to model the computations 

happening in the brain 
• Theoretical neuroscience instead of brain imaging

Future
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Data mining: theory and applications

research activities

• foundations in pattern discovery
• statistical significance of patterns 

• sequence analysis
• episodes, segmentation, surprising events

• applications
• biology, paleontology, linguistics, ...



Data mining: theory and applications

selected publication venues
(2012-2014)

• TODS 2014
• 2 x DMKD 2014
• 3 x DMKD 2013
• 2 x ECML PKDD 2013
• ACM Transactions on  Applied Perception 2013
• Proceedings of the Royal Society B 2012
• International Journal of Data Mining and 

Bioinformatics 2012
• VLDB 2012



research highlights



Data mining: theory and applications

comparison and exploration of event 
sequences

• Jefrey Lijffijt, PhD dissertation, Dec 2013
• best doctoral dissertation in the Aalto school of 

Science in 2013

• data: event sequences
• DNA, texts, sensor readings

• problems: 
• are two data sets equivalent with respect to pattern X?
• are there parts of the data different from the whole?
• which set of granularities to use when looking for 

patterns?



Data mining: theory and applications
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are there parts of the data that are different?

‣ multiple
testing

• challenge: provide accurate correction without randomization/
simulation

• computational question: given a Bernoulli process that runs      
for n steps, what is the probability that in any subsequence of 
length m, there are k or more events?

• thesis introduces upper-bound that works well in practice



Data mining: theory and applications

finding informative window lengths

• [Lijffijt, Papapetrou, Puolamäki, PKDD 2012]

• many sequence algorithms use sliding windows 
• how to choose window lengths?
• treat as an optimization problem
• pick a set of window lengths that explains most of 

the variability in statistics over all possible window 
lengths



Data mining: theory and applications

fast sequence segmentation using     
log-linear models

• [Tatti, DMKD 2013]

2 Nikolaj Tatti

segmentation for sequences of non-trivial length. In this paper we introduce a
speedup to the dynamic program used for solving the exact solution. Our key
result, given in Theorem 1, states that when certain conditions are met, we
can discard the candidate for a segment border, thus speeding up the inner
loop of the dynamic program.

We consider segmentation using the log-likelihood of a log-linear model
to score the goodness of individual segments. Many standard distributions
can be described as log-linear models, including Bernoulli, Gamma, Poisson,
and Gaussian distributions. Moreover, when using a Gaussian distribution,
optimizing the log-likelihood is equal to the minimizing the L

2

error (see Ex-
ample 1).

The conditions given in Theorem 1 are hard to verify, however, we demon-
strate that this can be done with relative ease for one-dimensional models. The
key idea is as follows: Consider segmenting the sequence given in Figure 1(a)
into 2 segments using the L

2

error. Assume a segmentation [1, 100], [101, 200].
Figure 1(b) tells us that this segmentation is not optimal. In fact, the optimal
segmentation with 2 segments for this data is [1, 70], [71, 200].
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(b) Cost of segmentation

Fig. 1 Toy sequence and the L2 cost of a segmentation [1, k � 1], [k, 200] as a function of
k. In this paper we propose a necessary condition for a segmentation to be optimal. This
condition allows us to prune suboptimal segmentations, such as [1, 100], [101, 200]

Sequence values around 101 have a particular characteristic which we can
exploit to speedup the optimization. In order to demonstrate this, let us define

X =
� 1

101� j

100X

i=j

D
i

| 1  j  100
 

and

Y =
� 1

j � 100

jX

i=101

D
i

| 101  j  200
 
,

that is, X contains the averages from the right side of the first segment and Y
contains the averages from the left side of the second segment. Let us define
r
1

= minX, r
2

= maxX, l
1

= minY , l
2

= maxY . We see that r
1

⇡ �1,
r
2

⇡ 1.8, l
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⇡ �1.8, and l
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⇡ 1. That is, the intervals [r
1

, r
2

] and [l
1

, l
2

]
intersect. We will show in such case that not only we can safely ignore the
segmentation [1, 100], [101, 200] but we also will show that even if we augment
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6 Experiments

In this section we empirically evaluate our approach on synthetic and real-
world datasets.2

Synthetic data Our main contribution to the paper is the speedup of the dy-
namic program for finding the optimal segmentation when using one-dimensional
log-linear models. We measure the e�ciency by the total number of compar-
isons needed in Line 8 of Algorithm 1. We define a performance ratio by
normalizing this number by the number of comparisons that we would have
made if we would not use any pruning. This ensures that the ratio is between
0 and 1, smaller values indicating faster performance. Note that if we do not
use any pruning, the total number of comparisons is O(K|D|2).

We begin by generating sequences of random samples drawn from the Gaus-
sian distribution with 0 mean and 1 variance. We generated 11 sequences of
lengths 2k for k = 10, . . . , 20 and computed the performance ratio of our seg-
mentation using 4 segments of Gaussian distributions (as given in Example 1).
From results given in Figure 4(a) we see that we obtain speedups of 1 order
of magnitude for the smallest data, up to 3 orders of magnitude for longer
data: the ratio for the largest sequence is 0.0007. Note that the ratios become
smaller as the sequence becomes larger. The reason is that when considering
longer segments, it becomes more likely that we can delete candidates, making
the algorithm relatively faster. The absolute computation time grows with the
length of a sequence, 11ms, 1.3s, and 20 minutes for sequences of length 210,
215, and 220, respectively.
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(b) speedup vs. # of segments

Fig. 4 Performance ratio, total number of score comparisons (see Algorithm 1, Line 8),
normalized between 0 and 1, as a function of sequence length 4(a), using 4 segments, and
as a function of number of segments 4(b). Smaller values are better

Our second experiment is to study the performance ratio as a function
of segments. We sampled 3 sequences from a Gaussian distribution, with 0
mean and 1 variance, of sizes 214, 215, 216. For each sequence we computed
segmentations up to 50 segments. From the results given in Figure 4(b) we

2 The implementation of the algorithm is given at http://adrem.ua.ac.be/segmentation



future directions



Data mining: theory and applications

new research directions

• graph mining and social network analysis

• analysis of information networks

• analysis of evolving networks

• smart cities



Data mining: theory and applications

recent paper

• given a graph with weights on the nodes, find 
dense and heavy subgraph

• solutions using submodular function maximization 
and semidefinite programming

• applications in finding events in cities

(a) Barcelona: 11.09.12
National Day of Catalonia

(b) Minneapolis: 4.07.12
Independence Day

(c) Washington, DC:
27.05.13 Memorial Day

(d) Los Angeles: 31.05.10
Memorial Day

(e) New York: 6.09.10
Labor Day

Figure 4: Public holiday city-events discovered using the SDP algorithm.

(a) 01.06.12 Primavera
sound music festival

(b) 18.09.12 festival of the
Poblenou neighborhood (c) 31.10.12 Halloween

Figure 5: Top-3 diverse events discovered from Barcelona bicing data using the SDP algorithm.
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— a Matlab software package for semidefinite
programming, version 1.3. Optimization methods and
software, 11(1-4), 1999.

[31] C. Tsourakakis, F. Bonchi, A. Gionis, F. Gullo, and
M. Tsiarli. Denser than the densest subgraph:
extracting optimal quasi-cliques with quality
guarantees. KDD, 2013.

[32] M. Walther and M. Kaisser. Geo-spatial event
detection in the twitter stream. ECIR, 2013.

[33] K. Watanabe, M. Ochi, M. Okabe, and R. Onai.
Jasmine: a real-time local-event detection system
based on geolocation information propagated to
microblogs. CIKM, 2011.



Regression models for data streams 
with missing values
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Postdoctoral Researcher



Predictive modelling for streaming data
data arrives and needs to be mined in real time
real valued inputs, real valued target variable
linear regression models

Problem setting



 Examples of streaming data

Sensor data (monitoring) Web data (user 
generated content)

Transactional data
(events)



Predictive modelling for streaming data
data arrives and needs to be mined in real time
real valued inputs, real valued target variable
linear regression models

During operation predictive models can be regularly 
updated with recent data 

Problem: massively missing input data, while 
predictions are needed continuously

Our approach: make predictive models robust to 
missing data, use simple mean imputation

Problem setting



Possible solutions

Case deletion :( No predictions

Models on 
subspaces

:( Computationally 
infeasible, 2r models

Imputing missing 
values

Single 
imputation

Model based
imputation

:( Biased estimates

:( Computationally 
infeasible

For making 
predictions



Predictions by different linear 
models

What makes 
a predictive model 
robust to missing data?



Analysis of the expected error

Expected MSE of a linear model  
p – prior probability of missing, ϐ – regression coefficients,

C – covariance matrix of inputs, I – identity matrix

 If D = 0 inputs are treated as independent
We can make use of dependency in inputs to ensure 

sub-linear MSE growth

MSE grows linearly 
with number of missing inputs

Quadratically Deterioration 
Index D 



Illustrative example

Data: x1 = x2 = x3 = x4 = y ~ N(0,1)



Theoretically optimal model

is similar to regularized regression

prior probability 
of missing values

minimizes MSE given 
prior probability of missing values



Illustrative example





Addressing data stream challenges

Data evolves over time
not only data distribution
but also how data is missing



Online adaptive ROB algorithm

If no 
missing 
values



Summary

We developed 
an optimization criteria (MSE) for regression being robust 

to massively missing data 
a corresponding regression model
an algorithm for online operation on streaming data 

(recursive updates)



HELSINGIN YLIOPISTO
HELSINGFORS UNIVERSITET
UNIVERSITY OF HELSINKI

Modeling inter-linguistic
relationships
and language evolution

Roman Yangarber
Algodan
March 2014

University of Helsinki, Finland



Uralic Language Family

Fin-Ugr

Ob’

Volga

Baltic

Hungarian

Hanty

Mansi

Finnish

Komi

Udmurt

Estonian

Saami
Mari

Mordva

Perm’

Uralic

Samoyed

. . .



Uralic Language Family
Uralic tree   



Data sources

Data is arranged in Cognate Sets: set of genetically-related
words, from different languages in the language family

→ ... Raw data sample
→ ... Aligned data sample



Central Principle

Regularity of sound change:
Sound change is conditioned only on its phonetic environment,
not on any other factor.
Sound change is deterministically conditioned

NB: different from, e.g., biological sequence alignment,
where mutations are sporadic.



Example sound change: German vs.
Germanic

Germanic t English German
two zwei
ten zehn
to zu
tell zähle-n
tooth Zahn
tear Zähre
tow ziehe-n
tail Zagel
heart Herz
...
tip Zipf-el
tide Zeit
timber Zimmer
...

stone Stein
star Stern
...

dead tot
door Tür
do tu-n
under unter
...



Example sound change: German vs.
Germanic

There are “exceptions” to rules
“regular” exceptions?
rare/occasional exceptions?

→ probabilistic modeling
→ MDL

code most of the data with rules, then code the
exceptions.



Principal Tasks

Long-term goal: Determine the origin of everything

Find cognate sets (from raw language data)
difficult to model semantics...

Find sound-by-sound alignment of all related words
Find rules of sound correspondence

Reconstruct philogenetic trees
Reconstruct proto-forms→ at root and internal nodes of the
philogeny

Model borrowing across languages / families
Model timing→ anchor data on absolute time scale



Components

  

DataModel

RulesAlignment

Pairwise
distances

Philogenetic
trees &

networks

Imputation

1-1

Context-based

n-n

Normalized 
edit distance

UPGMA       NeighborJoin
 
CompLearn  NeighborNet

   Tree 
distance

Projection + 
pop-genetics
model

Gold-standard
philogenetic

tree(s)
Normalized 
compression 
distance

N-D



Problem formulation

Dual problem:
A find the globally best alignment for the complete data, and
B find the rules of correspondence

Chicken and egg...

Approach in tandem



Models

Baseline: Initial simplifications
Pairwise alignment: only two languages at a time,
“source:target”
→ N-dimensional alignment, N > 2 languages
1-1 alignment: one source symbol may correspond
to only one target symbol—or to empty symbol ε (marked “.”)
→ Align n-n symbols (2x2)
Ignore context
→ Model how the Context conditions the changes
Symbols/sounds are treated as ATOMS
→ Symbols/sounds analyzed as vectors of distinctive
features



Problem formulation

Alignment→ ... Complete data
Rules→ in baseline model: simply the counts of events

How do we know which rules are better?

(recall, in baseline: rules are 1x1 alingments)



Rules: high entropy



Rules: low entropy
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2x2: Aligning Multiple Symbols

Extend the baseline model to a 2x2 model: correspondences of
up to two symbols on both sides
The set of admissible kinds of events becomes:

K =

{
(# : #) (σ : .)
(. : τ) (σ : τ)

}



2x2: Aligning Multiple Symbols

Extend the baseline model to a 2x2 model: correspondences of
up to two symbols on both sides
The set of admissible kinds of events becomes:

K =

 (# : #) (σ : .) (σσ′ : .)
(. : τ) (σ : τ) (σσ′ : τ)
(. : ττ ′) (σ : ττ ′) (σσ′ : ττ ′)





3-D Model

Align more than two languages: e.g., Finnish : Estonian : Mordva

y . h d e k s ä n
| | | | | | | | |
ü . h . e k s a .
| | | | | | | | |
v e χ . . k s a .

Model each 3D event as three pairwise events
Some examples are incomplete – missing data in one language:

h a a m u
| | | | |
− − − − −
| | | | |
č . a m a



3-D Model
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Building decision trees

  

Context model

   j       a      l       k       a

j       a      l       g

[  ζ    χ   φ   ψ ][ α   β   γ   δ ]

[  ξ    π   μ   ω ]



Performance: Compression rates
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Language Distance

Sanity check: Use alignment to measure inter-language
distances

Cost for different language pairs C(a,b) are not comparable
Normalised Compression Distance (Cilibrasi&Vitanyi, 2005)

δ(a,b) =
C(a,b)−min(C(a,a),C(b,b))

max(C(a,a),C(b,b))

Align all languages in StarLing pairwise, e.g., using two-part 1x1
model
→ ...



NCD

fin khn kom man mar mrd saa udm ugr
est .372 .702 .704 .716 .703 .665 .588 .733 .778
fin .731 .695 .754 .695 .635 .589 .699 .777
khn .672 .633 .701 .718 .668 .712 .761
kom .675 .656 .678 .700 .417 .704
man .676 .718 .779 .688 .752
mar .648 .671 .674 .738
mrd .646 .709 .722
saa .686 .760
udm .759
ugr

Table: Pairwise normalised compression distances for Finno-Ugric
sub-family of Uralic, StarLing data.



NED with Neighbor Joining


