

Advances in Neuroinformatics

Aapo Hyvärinen

Neuroinformatics Team

Mission:

Develop statistical data analysis methods, with focus on

- Unsupervised machine learning methods
- Neuroscience applications
- Non-Gaussianity a central theoretical framework

Members:

- Aapo Hyvärinen, leader
- Patrik Hoyer, co-leader (until 8/2013, started own company)
- 2-4 postdocs, 2-4 PhD students
- From 2012, partly in CoE of Inverse Problems Research

Highlight 1: Causal analysis

Passive observation vs. interventions

- Completely passively observed data (our LiNGAM from 2006)
- Experiment with (optimal?) interventions (Hyttinen, Eberhardt, Hoyer, JMLR, 2012, 2013a)
- Causality in fMRI, jointly with Stephen Smith
 - Oxford Centre for Functional Imaging of the Human Brain
 - Developer of simulated data for comparing algorithms
 - Our tailor-made methods (*JMLR*, 2013b)
 - Have best performance on simulated data
 - Are particularly simple variants of LiNGAM

HREsid=0.5s ()

Highlight 2: Testing independent components

- In independent component analysis, testing almost inexistent
 - Components could be local minima, or random effects
- We developed a method which uses a proper null hypothesis and the theory of classical hypothesis testing
 - Do ICA on multiple datasets (e.g. subjects), and see if you get the same component in more than one data set

Application on fMRI needed further theory (*Frontiers in Human Neuroscience*, 2013)

Highlight 3: Practical brain imaging data analysis

Decoding brain state from MEG (*NeuroImage*, 2013)

- Optimal combination of ICA with classification methods
- Must use nonlinear classification
- Two-person neuroscience: measuring interacting subjects
 - Riitta Hari's ERC AdG for constructing a system of two MEG scanners with video connection
 - Extremely challenging, still ongoing
- Analysing nonstationary dynamics
 - Result of sabbatical at ATR, Japan, in 2013, a leading centre in brain imaging

Future

Co-leader Patrik Hoyer left academia

- Group size reduced
- Causal analysis given less emphasis

New planned project: <u>Modelling spontaneous brain activity</u>

- Very popular topic in brain imaging
- But: our approach is to model the computations happening in the brain
 - Theoretical neuroscience instead of brain imaging

Data mining : theory and applications

Aristides Gionis

18 March, 2014

research activities

- foundations in pattern discovery
 - statistical significance of patterns
- sequence analysis
 - episodes, segmentation, surprising events
- applications
 - biology, paleontology, linguistics, ...

selected publication venues (2012-2014)

- TODS 2014
- 2 x DMKD 2014
- 3 x DMKD 2013
- 2 x ECML PKDD 2013
- ACM Transactions on Applied Perception 2013
- Proceedings of the Royal Society B 2012
- International Journal of Data Mining and Bioinformatics 2012
- VLDB 2012

research highlights

comparison and exploration of event sequences

- Jefrey Lijffijt, PhD dissertation, Dec 2013
 - best doctoral dissertation in the Aalto school of Science in 2013
- data: event sequences
 - DNA, texts, sensor readings
- problems:
 - are two data sets equivalent with respect to pattern X?
 - are there parts of the data different from the whole?
 - which set of granularities to use when looking for patterns?

are there parts of the data that are different?

- challenge: provide accurate correction without randomization/ simulation
- computational question: given a Bernoulli process that runs for n steps, what is the probability that in any subsequence of length m, there are k or more events?
- thesis introduces upper-bound that works well in practice

finding informative window lengths

- [Lijffijt, Papapetrou, Puolamäki, PKDD 2012]
- many sequence algorithms use sliding windows
- how to choose window lengths?
- treat as an optimization problem
- pick a set of window lengths that explains most of the variability in statistics over all possible window lengths

fast sequence segmentation using log-linear models

• [Tatti, DMKD 2013]

A Algorithmic Date Analysis

Data mining: theory and applications

future directions

new research directions

- graph mining and social network analysis
- analysis of information networks
- analysis of evolving networks
- smart cities

recent paper

and semidefinite programming

• applications in finding events in cities

(a) 01.06.12 Primavera sound music festival

(b) 18.09.12 festival of the Poblenou neighborhood

(c) 31.10.12 Halloween

Data mining: theory and applications

Regression models for data streams with missing values

Indrė Žliobaitė Postdoctoral Researcher

Problem setting

Predictive modelling for streaming data
 data arrives and needs to be mined in real time
 real valued inputs, real valued target variable
 linear regression models

Examples of streaming data

Sensor data (monitoring)

Transactional data (events)

Web data (user generated content)

Problem setting

Predictive modelling for streaming data

- data arrives and needs to be mined in real time
- real valued inputs, real valued target variable
- Inear regression models
- During operation predictive models can be regularly updated with recent data
- Problem: massively missing input data, while predictions are needed continuously
- Our approach: make predictive models robust to missing data, use simple mean imputation

Possible solutions

Predictions by different linear models

What makes a predictive model robust to missing data?

Analysis of the expected error

Expected MSE of a linear model

- p prior probability of missing, 6 regression coefficients,
- C covariance matrix of inputs, I identity matrix

$$E[MSE_p^{\star}] = (1-p)E[MSE_0] + p - p(1-p)\beta^T (\mathbf{C} - \mathbf{I})\beta$$

MSE grows linearlyQuadraticallyDeteriorationwith number of missing inputsIndex D

If D = 0 inputs are treated as independent
 We can make use of dependency in inputs to ensure sub-linear MSE growth

Illustrative example

Data: $x1 = x2 = x3 = x4 = y \sim N(0,1)$

Theoretically optimal model

$$\hat{\beta}_{ROB} = \left((1 - p) \mathbf{X}^T \mathbf{X} + pn \mathbf{I} \right)^{-1} \mathbf{X}^T \mathbf{y}$$

$$\hat{\beta}_{ROB} = \left((1 - p) \mathbf{X}^T \mathbf{X} + pn \mathbf{I} \right)^{-1} \mathbf{X}^T \mathbf{y}$$

$$\hat{\beta}_{ROB} = \left((1 - p) \mathbf{X}^T \mathbf{X} + pn \mathbf{I} \right)^{-1} \mathbf{X}^T \mathbf{y}$$

$$\hat{\beta}_{ROB} = \left((1 - p) \mathbf{X}^T \mathbf{X} + pn \mathbf{I} \right)^{-1} \mathbf{X}^T \mathbf{y}$$

$$\hat{\beta}_{ROB} = \left((1 - p) \mathbf{X}^T \mathbf{X} + pn \mathbf{I} \right)^{-1} \mathbf{X}^T \mathbf{y}$$

$$\hat{\beta}_{ROB} = \left((1 - p) \mathbf{X}^T \mathbf{X} + pn \mathbf{I} \right)^{-1} \mathbf{X}^T \mathbf{y}$$

$$\hat{\beta}_{ROB} = \left((1 - p) \mathbf{X}^T \mathbf{X} + pn \mathbf{I} \right)^{-1} \mathbf{X}^T \mathbf{y}$$

$$\hat{\beta}_{ROB} = \left((1 - p) \mathbf{X}^T \mathbf{X} + pn \mathbf{I} \right)^{-1} \mathbf{X}^T \mathbf{y}$$

$$\hat{\beta}_{ROB} = \left((1 - p) \mathbf{X}^T \mathbf{X} + pn \mathbf{I} \right)^{-1} \mathbf{X}^T \mathbf{y}$$

$$\hat{\beta}_{ROB} = \left((1 - p) \mathbf{X}^T \mathbf{X} + pn \mathbf{I} \right)^{-1} \mathbf{X}^T \mathbf{y}$$

$$\hat{\beta}_{ROB} = \left((1 - p) \mathbf{X}^T \mathbf{X} + pn \mathbf{I} \right)^{-1} \mathbf{X}^T \mathbf{y}$$

$$\hat{\beta}_{ROB} = \left((1 - p) \mathbf{X}^T \mathbf{X} + pn \mathbf{I} \right)^{-1} \mathbf{X}^T \mathbf{y}$$

$$\hat{\beta}_{ROB} = \left((1 - p) \mathbf{X}^T \mathbf{X} + pn \mathbf{I} \right)^{-1} \mathbf{X}^T \mathbf{y}$$

$$\hat{\beta}_{ROB} = \left((1 - p) \mathbf{X}^T \mathbf{X} + pn \mathbf{I} \right)^{-1} \mathbf{X}^T \mathbf{y}$$

$$\hat{\beta}_{ROB} = \left((1 - p) \mathbf{X}^T \mathbf{X} + pn \mathbf{I} \right)^{-1} \mathbf{X}^T \mathbf{y}$$

$$\hat{\beta}_{ROB} = \left((1 - p) \mathbf{X}^T \mathbf{y} \right)^{-1} \mathbf{X}^T \mathbf{y}$$

$$\hat{\beta}_{ROB} = \left((1 - p) \mathbf{X}^T \mathbf{y} \right)^{-1} \mathbf{X}^T \mathbf{y}$$

$$\hat{\beta}_{ROB} = \left((1 - p) \mathbf{X}^T \mathbf{y} \right)^{-1} \mathbf{x}^T \mathbf{y}$$

$$\hat{\beta}_{ROB} = \left((1 - p) \mathbf{x} \right)^{-1} \mathbf{x}^T \mathbf{y}$$

$$\hat{\beta}_{ROB} = \left((1 - p) \mathbf{x} \right)^{-1} \mathbf{x}^T \mathbf{y}$$

$$\hat{\beta}_{ROB} = \left((1 - p) \mathbf{x} \right)^{-1} \mathbf{x}^T \mathbf{y}$$

$$\hat{\beta}_{ROB} = \left((1 - p) \mathbf{x} \right)^{-1} \mathbf{x}^T \mathbf{y}$$

$$\hat{\beta}_{ROB} = \left((1 - p) \mathbf{x} \right)^{-1} \mathbf{x}^T \mathbf{y}$$

$$\hat{\beta}_{ROB} = \left((1 - p) \mathbf{x} \right)^{-1} \mathbf{x}^T \mathbf{y}$$

$$\hat{\beta}_{ROB} = \left((1 - p) \mathbf{x} \right)^{-1} \mathbf{x}^T \mathbf{y}$$

$$\hat{\beta}_{ROB} = \left((1 - p) \mathbf{x} \right)^{-1} \mathbf{x}^T \mathbf{y}$$

$$\hat{\beta}_{ROB} = \left((1 - p) \mathbf{x} \right)^{-1} \mathbf{x}^T \mathbf{y}$$

$$\hat{\beta}_{ROB} = \left((1 - p) \mathbf{x} \right)^{-1} \mathbf{x}^T \mathbf{y}$$

$$\hat{\beta}_{ROB} = \left((1 - p) \mathbf{x} \right)^{-1} \mathbf{x}^T \mathbf{y}$$

$$\hat{\beta}_{ROB} = \left((1 - p) \mathbf{x} \right)^{-1} \mathbf{x}$$

$$\hat{\beta}_{RR} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$$

is similar to regularized regression

Illustrative example

Independent: $y = x_1$ PCA: $y = 0.25x_1 + 0.25x_2 + 0.25x_3 + 0.25x_4$ Overfitted: $y = 2x_1 - 1.5x_2 + x_3 - 0.5x_4$ ROB regression: different model for each value of p

Addressing data stream challenges

- Data evolves over time
 - not only data distribution
 - but also how data is missing

Online adaptive ROB algorithm

new observation **x** arrives, predict $\hat{y} = \mathbf{x}\beta$

true target value y arrives

update missing value estimate $p \leftarrow \gamma \frac{m}{r} + (1-\gamma)p$

lf no missing values update covariance estimate and model $\mathbf{S}_{t} = \mathbf{S}_{t-1} + \mathbf{x}\mathbf{x}^{T} - p(\mathbf{x}\mathbf{x}^{T} - \mathbf{I})$ $\beta_{t} = \beta_{t-1} + \mathbf{S}_{t}^{-1}\mathbf{x}(y - \mathbf{x}^{T}\beta_{t-1}) - \mathbf{S}_{t}^{-1}p(\mathbf{x}\mathbf{x}^{T} - \mathbf{I})\beta_{t-1}$

Summary

We developed

- an optimization criteria (MSE) for regression being robust to massively missing data
- a corresponding regression model
- an algorithm for online operation on streaming data (recursive updates)

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Modeling inter-linguistic relationships and language evolution

Roman Yangarber Algodan March 2014

University of Helsinki, Finland

Data is arranged in *Cognate Sets*: set of genetically-related words, from different languages in the language family

- \rightarrow ... Raw data sample
- $\rightarrow \dots$ Aligned data sample

Regularity of sound change:

- Sound change is conditioned only on its phonetic environment, not on any other factor.
- Sound change is *deterministically* conditioned
- NB: different from, e.g., biological sequence alignment, where mutations are sporadic.

Example sound change: German vs. Germanic

Germanic t	English	German	stone	Stein
	two	zwei	star	Stern
	ten	zehn		
	to	zu		
	tell	zähle-n		
	tooth	Zahn		
	tear	Zähre		
	tow	ziehe-n		
	tail	Zagel		
	heart	Herz		
			dead	tot
	tip	Zipf-el	door	Tür
	tide	Zeit	do	tu-n
	timber	Zimmer	under	unter

There are "exceptions" to rules

"regular" exceptions?

rare/occasional exceptions?

- \rightarrow probabilistic modeling
 - $\rightarrow \text{MDL}$

code most of the data with rules, then code the exceptions.

Long-term goal: Determine the origin of everything

- Find cognate sets (from raw language data)
 - difficult to model semantics...
- Find sound-by-sound alignment of all related words
- Find rules of sound correspondence
- Reconstruct philogenetic trees
- Reconstruct proto-forms \rightarrow at root and internal nodes of the philogeny
- Model borrowing across languages / families
- \blacksquare Model timing \rightarrow anchor data on absolute time scale

Dual problem:

A find the globally best alignment for the complete data, and

B find the rules of correspondence

Chicken and egg...

Approach in tandem

Baseline: Initial simplifications

- Pairwise alignment: only two languages at a time, *"source:target*"
 → N-dimensional alignment, N > 2 languages
- *1-1* alignment: one source symbol may correspond to only one target symbol—or to empty symbol *ϵ* (marked ".")
 → Align n-n symbols (2x2)
- Ignore context
 - \rightarrow Model how the Context conditions the changes
- Symbols/sounds are treated as ATOMS

 \rightarrow Symbols/sounds analyzed as vectors of distinctive features

Alignment \rightarrow ... Complete data Rules \rightarrow in *baseline* model: simply the **counts** of events

How do we know which rules are better?

(recall, in baseline: rules are 1x1 alingments)

Extend the baseline model to a 2x2 model: correspondences of up to two symbols on both sides The set of admissible *kinds* of events becomes:

$$\mathcal{K} = \left\{ \begin{array}{cc} (\# : \#) & (\sigma : .) \\ (. : \tau) & (\sigma : \tau) \end{array} \right\}$$

Extend the baseline model to a 2x2 model: correspondences of up to two symbols on both sides The set of admissible *kinds* of events becomes:

$$K = \left\{ \begin{array}{ll} (\# : \#) & (\sigma : .) & (\sigma \sigma' : .) \\ (. : \tau) & (\sigma : \tau) & (\sigma \sigma' : \tau) \\ (. : \tau \tau') & (\sigma : \tau \tau') & (\sigma \sigma' : \tau \tau') \end{array} \right\}$$

Align more than two languages: e.g., Finnish : Estonian : Mordva

y		h	d	е	k	s	ä	п
ü		h		е	k	s	а	
V	е	χ			k	s	а	

Model each 3D event as **three** pairwise events Some examples are *incomplete* – missing data in one language:

h	а	а	т	и
—	_	_	—	_
č		а	т	а

Compressed size (bytes)

Sanity check: Use alignment to measure inter-language distances

- **Cost** for different language pairs $C(\mathbf{a}, \mathbf{b})$ are not comparable
- Normalised Compression Distance (Cilibrasi&Vitanyi, 2005)

$$\delta(\mathbf{a}, \mathbf{b}) = \frac{C(\mathbf{a}, \mathbf{b}) - \min(C(\mathbf{a}, \mathbf{a}), C(\mathbf{b}, \mathbf{b}))}{\max(C(\mathbf{a}, \mathbf{a}), C(\mathbf{b}, \mathbf{b}))}$$

Align all languages in StarLing *pairwise*, e.g., using two-part 1x1 model

 $\rightarrow \dots$

	fin	khn	kom	man	mar	mrd	saa	udm	ugr
est	.372	.702	.704	.716	.703	.665	.588	.733	.778
fin		.731	.695	.754	.695	.635	.589	.699	.777
khn			.672	.633	.701	.718	.668	.712	.761
kom				.675	.656	.678	.700	.417	.704
man					.676	.718	.779	.688	.752
mar						.648	.671	.674	.738
mrd							.646	.709	.722
saa								.686	.760
udm									.759
ugr									

Table: Pairwise normalised compression distances for Finno-Ugric sub-family of Uralic, StarLing data.

