
De novo sequencing and
gene regulatory motifs

Esko Ukkonen

I: De novo sequencing of Melitaea cinxia

CoE Algodan

Esko Ukkonen, Veli Mäkinen, Leena Salmela, Niko Välimäki

CoE on Metapopulation Research, UH

Ilkka Hanski, Rainer Lehtonen, Virpi Ahola, Pasi Rastas

 Institute of Biotechnology, UH

Petri Auvinen, Lars Paulin, Panu Somervuo

Liisa Holm, Patrik Koskinen

2

Genome assembly problem

3

Sequencing machine

Reads:

TAAATTGACCATAAAT

AACGGATCGGGACAC

ATCATAATCCAGCGAAC

ACTCTCTAAATTGACC

AATTGACCATAAATCATA

TCGGGACACAAATA

AGCGAACGGATCGG

 ACTCTCTAAATTGACCATAAATCATAATCCAGCGAACGGATCGGGACACAAATA

 ACTCTCTAAATTGACC
TAAATTGACCATAAAT

 AATTGACCATAAATCATA

 ATCATAATCCAGCGAAC
 AGCGAACGGATCGG

AACGGATCGGGACAC

TCGGGACACAAATA

Photo: Niclas Fritzén

Why to sequence this butterfly?

Model species in
metapopulation and
eco-evolutionary
research

Long line of research
on this butterfly by
the group of Prof.
Ilkka Hanski

4

Photo: Christian Fischer

Overview of the data

454 SOLiD Illumina PacBio

Reads 12 million 210 million 349 million 2.7 million

Read length 400-800 bp 50 bp 75-150 bp Avg 2700 bp

Max 23 kbp

Errors Indels Mismatches Mismatches Indels

Paired end - - 460 bp,710 bp -

Mate pairs 7 kbp, 17 kbp 2-5 kbp 1-3 kbp -

Other Mostly single end Color coded - High error rate

5

Mate pairs:

SOLiD color coding:

A C G T

A

C

G

T

A - G - C - C - A

Genomic sequence

Total size of data: 50 Gbp

Length of the genome: 350 Mbp

Genome assembly workflow

6

 Error correction*

 Contig assembly

 Scaffolding*

 Gap closing

 Validation*

 Superscaffolding*

 Annotation

Reads

* New method!

Mate pairs

Genetic

linkage map

Gene1

Gene2

Gene3

Contigs

Scaffolds

Annotated genome

New methods: correcting sequencing
errors

HybridSHREC

Build generalized suffix trie

of the reads

Detect and correct errors by

examining the structure of

the trie

CORAL

Build k-mer index of the

reads

Build multiple alignments of

reads sharing k-mers

7

A C G G A A - C C G

A C G G A A

C - G A A A C C

G G A A - C G

A A - C C G

New methods: MIP Scaffolder

 Goal: Use mate pairs to organize contigs into linear scaffolds

 Partition the problem into small subproblems of restricted size

 Solve each subproblem exactly with mixed integer programming

 Combine the solutions of the subproblems

8

New methods: superscaffolding

Genetic linkage map assigns some scaffolds to

chromosomes

We use the genetic linkage map and mate pairs to

further connect scaffolds into superscaffolds

Find paths of mate pair links between scaffolds in the

same chromosome

9

New methods: validation

Find local maximal approximate matches of transcripts

and scaffolds

For each transcript find maximal colinear chains of the

above matches

The more transcripts can be aligned, the more

complete the genome is.

10

scaffold

transcripts

Statistics of the draft genome

Number of

contigs/scaffolds

N50 Total length

Contigs 49,851 13,489 360,975,554

Scaffolds 8,262 119,328 389,896,394

Superscaffolds 1,453 330,752 282,503,348

Final 6,299 258,308 393,309,151

11

Photo: Gilles San Martin

N50:

The total length of contigs longer

than the N50 statistic is at least

half the length of the whole

contig collection.

II: Genome-scale prediction of gene
regulatory motifs

CoE Algodan

Esko Ukkonen, Jarkko Toivonen, Teemu Kivioja

CoE on Translational Genome-Scale Biology, UH

Jussi Taipale (Karolinska Institutet), Lauri Aaltonen, Arttu

Jolma, Kimmo Palin, ...

EU consortium SYSCOL

12

Gene regulatory modules (cis-
regulation)

 gene1 gene2 gene3 gene4
DNA

RNA

transcription

translation

Proteins

transcription factors

Cis regulatory

(enhancer) module

13

Regulatory module

14

Characterization of a regulatory
module?

A regulatory module (cis-regulatory module) is a
collection of TF binding sites on DNA; no precise
definition available

properties of a module:
consists of several good binding sites of TFs

the sites are spatially clustered together

the pattern of sites is conserved

15

 Module structure

F1

F2

F3 F4

i1

i2

i3 i4

16

DNA

1 1 2 2 3 3 4 4 1
(, , N o r), (, , R ev), (, , N o r), (, , N o r) i F i F i F i F F

High-scoring modules

Find the highest scoring module of s
Highest scoring subsequence -> Smith-Waterman style

dynamic programming (Karlin-Altschul conditions)

' , ', ´

(, ,)

(', ', ') T F D N A (, ,) T F T F (, , ', ', - ')
m a x

T F D N A (, ,)
i i F o

W i F o

W i F o i F o F o F o i i

i F o




 



17

+ TF•TF(F,F’)

+ TF•DNA(F’) F
F’

’Big’ Data from SELEX protocol

Random DNA (20..40 bp), first cycle

Select binding sequences

PCR amplification

HT-SEQUENCING

DNA

binding

protein

cycle 2, 3, ...

A. Jolma, T. Kivioja et al.: Multiplexed massively parallel

SELEX …, Genome Res. 2010

SELEX = Systematic

Evolution of Ligands by

EXponential enrichment

(Turk & Gold 1990)

18

Find distribution of TF sites and their
distances

20 or 30 or 40

104 -

TF-DNA interactions

(classic) Position Weight Matrix (PWM):
Position-specific multinomial distribution of k-mers

k-mer positions independent of each other

alignment-based construction

New multi-PWM models

20

 A Jolma, J. Yan, Th. Whithington, J. Toivonen et al: DNA-Binding Specificities of Human

Transcription Factors. Cell (2013)

 C Pizzi, P Rastas & E Ukkonen: Finding Significant Matches of Position Weight Matrices in

Linear Time. IEEE/ACM Trans. Comput. Biology Bioinform (2011)

 J Korhonen et al: MOODS: … , Bioinformatics (2010)

TF-TF interactions: Example dimer
FLI/ERG1 - FLI/ERG1

Type I

Type II

Type III

21

New co-operative binding model & motif
scanner

22

COB

PWM
(EWS/FLI)

-> New motif ’scanner’: PWM-models + co-operative binding

models for pairs of TFs + nucleosome binding model

Scalable Indexing of Highly Repetitive Data

Travis Gagie, Juha Kärkkäinen, Dominik Kempa

Simon J. Puglisi

Given a collection of strings T[1,n], build a data structure on T so
that later, given some pattern P[1,m], we can quickly fnd all the
occurrences of P in T.

We would also like:
The index to be small ~ the size of T when it is compressed
To be able to fnd approximate matches of P (up to k errors)

Indexed Pattern Matching

• Genomic Collections: 100's or 1000's of genomes of
individuals of the same species

• Multi-author Collections: Wikipedia archives; Source code
repositories

• Web crawls: copied/quoted/reused text and images;
boilerplate

• Archives: Backup facilities; Personal online storage (like Google
Drive)

Indexing Highly Repetitive Data

There are many indexes for approximate pattern matching in
regular collections, but they don't scale well to massive, highly
repetitive collections

*suffx tree, suffx array, FM-index, inverted fle.

Indexing Highly Repetitive Data

Find a way to scale current indexes to highly repetitive
collections that is independent of the index itself.

Choose an index (your favorite index); we provide an
algorithmic tool to make it work for repetitive collections.

Aim (of this work)

We will cap – at index construction time –
– Maximum pattern length m, and
– Maximum number of errors, k

For many applications patterns are “small”: 10s to 100s of
characters

One restriction...

Our index is based on two main algorithmic tools...
– LZ77 parsing (or factorization)

• Widely used in data compression (gzip and 7zip)
• We use it for compression AND pattern matching

– 2-dimensional, 2-sided range reporting
• A notion from computational geometry

Two Algorithmic Tools

Lempel-Ziv Parsing

The Lempel-Ziv parsing greedily breaks a string X of n symbols into
z phrases.

Each phrase occurs somewhere prior in the string.

Store two integers for each phrase, indicating position & length of
prior occurrence (called the source).

Source = (28,9)

abaabcabad.....abaabcabax....

1
2

1000

…...
1000

genomes

M : upper bound on read length; e.g. M = 100
K : maximum # of alignment errors; e.g. K = 3

1 2 3 …... 1000

1 2 3 …... 1000

1 2 3 …... 1000

1. Concatenate genomes into one long string

2. Compute LZ77 parsing

3. Patches of length M+K around each LZ77 phrase

Input

Indexing

5. Phrase source boundaries in a 2D
2-sided range reporting data structure4. Build a regular index on this fltered input

Space: O(zlog(n/z))
– z is the size of the compressed text
– (modest increase over the compressed size)

Pattern Matching: O(mlogm + rloglogn)
– Time to fnd all r occurrences of a pattern of length m

Random Access: O(m + logn)
– Time to extract a m symbols from the compressed

collection

(To appear at LATIN 2014, next week)

Asymptotics

Index Size vs. Collection Size (Yeast Genomes)

Query times

“We have seen many papers in which the index simply is, without
discussion of how it was created. But for a indexing scheme to be
useful it must be possible for the index to be constructed in a
reasonable amount of time.”†

We have also fgured out how to do LZ parsing in a scalable way.
– To appear at DCC 2014, next week. (Also see Poster Session).

– 100 human genomes ~ 24 hours (on one machine)

†Zobel, Moffat, Ramamohanarao, SIGMOD Record, 1996.

Index Construction

Future directions

How effciently can we estimate compressibility?
– To decide quickly decide when this approach is best

Parallel and distributed indexing algorithms

Combinatorial properties of LZ parsing
– Relationship to grammar and BWT-based compression

Tuning the index for specifc applications:
– Genomes: collaboration with Illumina Inc., UK
– Web: relative LZ parsing, VLDB 2012

Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

Bidirectional Burrows-Wheeler Transform

Veli Mäkinen

Helsinki Institute for Information Technology HIIT,
Department of Computer Science, University of Helsinki, Finland

Based on an article by
Djamal Belazzougui, Fabio Cunial, Juha Kärkkäinen, and Veli Mäkinen at

Proc. European Symposium on Algorithms (ESA 2013).

1 / 16

Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

MOTIVATION

Suffix tree [Wei73,. . .] for text of length n from alphabet of size σ:
I O(n log n) bits
I Myriads of sequence analysis problems in O(n) time

Compressed suffix tree [Sad07,. . .]:
I O(n logσ) bits

I Myriads of sequence analysis problems in O(n logε n) time

Compressed representations for BWT [GV00,FM00,Sad00,. . .]
I Kernel of compressed suffix trees

I A few sequence analysis problems in O(n logσ) time

Succinct space and linear time for myriads of problems?

2 / 16

Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

MOTIVATION

Suffix tree [Wei73,. . .] for text of length n from alphabet of size σ:
I O(n log n) bits
I Myriads of sequence analysis problems in O(n) time

Compressed suffix tree [Sad07,. . .]:
I O(n logσ) bits

I Myriads of sequence analysis problems in O(n logε n) time

Compressed representations for BWT [GV00,FM00,Sad00,. . .]
I Kernel of compressed suffix trees

I A few sequence analysis problems in O(n logσ) time

Succinct space and linear time for myriads of problems?

2 / 16

Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

MOTIVATION

Suffix tree [Wei73,. . .] for text of length n from alphabet of size σ:
I O(n log n) bits
I Myriads of sequence analysis problems in O(n) time

Compressed suffix tree [Sad07,. . .]:
I O(n logσ) bits

I Myriads of sequence analysis problems in O(n logε n) time

Compressed representations for BWT [GV00,FM00,Sad00,. . .]
I Kernel of compressed suffix trees

I A few sequence analysis problems in O(n logσ) time

Succinct space and linear time for myriads of problems?

2 / 16

Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

MOTIVATION

Suffix tree [Wei73,. . .] for text of length n from alphabet of size σ:
I O(n log n) bits
I Myriads of sequence analysis problems in O(n) time

Compressed suffix tree [Sad07,. . .]:
I O(n logσ) bits

I Myriads of sequence analysis problems in O(n logε n) time

Compressed representations for BWT [GV00,FM00,Sad00,. . .]
I Kernel of compressed suffix trees

I A few sequence analysis problems in O(n logσ) time

Succinct space and linear time for myriads of problems?

2 / 16

Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

OUR RESULTS AT A GLANCE

Compressed representations for bidirectional BWT:
I O(n logσ) bits
I Many sequence analysis problems in O(n logσ) time
I Indexing solutions for a set of sequences:

I Assume indexes are already built
I Pair-wise analyses in O(n) time

I Main insights:
I Conceptual: Visiting suffix tree nodes through suffix link tree→No need for

LCP array
I Conceptual: Synchronized traversal of two suffix link trees→ Indexing

solutions for all-against-all analyses
I Technical: Avoiding LessThan query on wavelet trees→ Constant time

bidirectional backward step

Theoretical / practical replacement of compressed suffix trees?

3 / 16

Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

OUR RESULTS AT A GLANCE

Compressed representations for bidirectional BWT:
I O(n logσ) bits
I Many sequence analysis problems in O(n logσ) time
I Indexing solutions for a set of sequences:

I Assume indexes are already built
I Pair-wise analyses in O(n) time

I Main insights:
I Conceptual: Visiting suffix tree nodes through suffix link tree→No need for

LCP array
I Conceptual: Synchronized traversal of two suffix link trees→ Indexing

solutions for all-against-all analyses
I Technical: Avoiding LessThan query on wavelet trees→ Constant time

bidirectional backward step

Theoretical / practical replacement of compressed suffix trees?

3 / 16

Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

OUR RESULTS AT A GLANCE

Compressed representations for bidirectional BWT:
I O(n logσ) bits
I Many sequence analysis problems in O(n logσ) time
I Indexing solutions for a set of sequences:

I Assume indexes are already built
I Pair-wise analyses in O(n) time

I Main insights:
I Conceptual: Visiting suffix tree nodes through suffix link tree→No need for

LCP array
I Conceptual: Synchronized traversal of two suffix link trees→ Indexing

solutions for all-against-all analyses
I Technical: Avoiding LessThan query on wavelet trees→ Constant time

bidirectional backward step

Theoretical / practical replacement of compressed suffix trees?

3 / 16

Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

OUR RESULTS IN DETAIL

Representation 1 2 3
Implementation 1a 1b 2a [CPM 2010] 2b 3

Space (bits) n logσ+ n logσ+ 2n logσ+ 2n logσ+ O(n logσ)
+n + o(n) +o(n logσ) +o(n) +o(n logσ)

isLeftMaximal O(logσ) O(1) O(logσ) O(1) O(1)
isRightMaximal O(1) O(1) O(logσ) O(1) O(1)
enumerateLeft O(logσ) O(1) O(logσ) O(1) O(1)
enumerateRight O(logσ) O(1) O(1)
extendLeft O(logσ) O(σ) O(logσ) O(σ) O(1)
extendRight O(logσ) O(σ) O(1)

Applications MUM, SUS, MR, LB, MUM, SUS, MEM, SR, BBB
QP, IPS, IPK NSR, MAW, IPS, IPK

SUS: shortest unique substrings; MR: maximal repeats; LB: longest border; QP: quasiperiod; IPS: inner product of
substrings; IPK: inner product of k-mers; (N)SR: (near) supermaximal repeats; MAW: minimal absent words; BBB:

bidirectional b&b (supported also by Implementation 2a).

4 / 16

Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

RELATED WORK

I Bidirectional BWT [Lametal09,SOG10]:
I Bidirectional backward step in O(σ) time [Lametal09] and in O(logσ) time

[SOG10].
I We now improve this to O(1) time (on ranges corresponding to suffix tree

nodes).

I Avoiding LCP array construction to solve maximal repeats [BBO12]:
I Visiting suffix tree nodes in level-wise order.
I Analysis uses Weiner links.
I We improve the space and time and show how to solve many related

problems.
I Our technique extends to synhronized search and enables indexing for

all-against-all problems.

I Alphabet-independent backward search [BN11,BN13]:
I We extend the technique for bidirectional backward search.

5 / 16

Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

RELATED WORK

I Bidirectional BWT [Lametal09,SOG10]:
I Bidirectional backward step in O(σ) time [Lametal09] and in O(logσ) time

[SOG10].
I We now improve this to O(1) time (on ranges corresponding to suffix tree

nodes).

I Avoiding LCP array construction to solve maximal repeats [BBO12]:
I Visiting suffix tree nodes in level-wise order.
I Analysis uses Weiner links.
I We improve the space and time and show how to solve many related

problems.
I Our technique extends to synhronized search and enables indexing for

all-against-all problems.

I Alphabet-independent backward search [BN11,BN13]:
I We extend the technique for bidirectional backward search.

5 / 16

Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

RELATED WORK

I Bidirectional BWT [Lametal09,SOG10]:
I Bidirectional backward step in O(σ) time [Lametal09] and in O(logσ) time

[SOG10].
I We now improve this to O(1) time (on ranges corresponding to suffix tree

nodes).

I Avoiding LCP array construction to solve maximal repeats [BBO12]:
I Visiting suffix tree nodes in level-wise order.
I Analysis uses Weiner links.
I We improve the space and time and show how to solve many related

problems.
I Our technique extends to synhronized search and enables indexing for

all-against-all problems.

I Alphabet-independent backward search [BN11,BN13]:
I We extend the technique for bidirectional backward search.

5 / 16

Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

BIDIRECTIONAL BWT

x #
y $yabx#
y abx#
x aby$yabx#
a bx#
a by$yabx#
b x#
xaby$yabx#
b y$yabx#
$ yabx#

T=xaby$yabx

sorted suffixes of
T# and Tr#

character preceding each suffix

Tr=xbay$ybax

x #
y $ybax#
b ax#
b ay$ybax#
y bax#
x bay$ybax#
a x#
xbay$ybax#
a y$ybax#
$ ybax#

#<$<a<b<x<y

6 / 16

Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

BIDIRECTIONAL BWT

x #
y $yabx#
y abx#
x aby$yabx#
a bx#
a by$yabx#
b x#
xaby$yabx#
b y$yabx#
$ yabx#

T=xaby$yabx Tr=xbay$ybax

x #
y $ybax#
b ax#
b ay$ybax#
y bax#
x bay$ybax#
a x#
xbay$ybax#
a y$ybax#
$ ybax#

[i,j] [i’,j’]

L L’

I i′ = i = C[a]

I j′ = j = C[a + 1] = C[b]− 1
I Li...j = yx

I L′i′...j′ = bb

7 / 16

Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

BIDIRECTIONAL BWT

x #
y $yabx#
y abx#
x aby$yabx#
a bx#
a by$yabx#
b x#
xaby$yabx#
b y$yabx#
$ yabx#

T=xaby$yabx Tr=xbay$ybax

x #
y $ybax#
b ax#
b ay$ybax#
y bax#
x bay$ybax#
a x#
xbay$ybax#
a y$ybax#
$ ybax#

I i′ = i + LessThany(Li...j)

I j′ = i + LessThany+1(Li...j)− 1
I i = C[y] + ranky(L1...i−1) + 1
I j = C[y] + ranky(L1...j)

8 / 16

Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

MAXIMAL UNIQUE MATCHES (MUMS)

THEOREM

Substring w is a maximal unique match (MUM) between s ∈ Σ∗ and t ∈ Σ∗ iff its
only occurrences are s[i, i + |w| − 1] and t[j, j + |w| − 1] and extending w left or
right looses one of the occurrences. We can discover all the τ maximal unique
matches between s and t in O((|s|+ |t|) log |Σ|) time and
O((|s|+ |t|) log |Σ|+ τ log(|s|+ |t|)) bits of space.

I For example, on s = xaby and t = yabx mums are x,y,ab.

9 / 16

Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

ALGORITHM

Algorithm mums(M,bidirectionalBWTindex, i, j, i′, j′, I)
(1) left = rank0(I, j)− rank0(I, i− 1);
(2) right = rank1(I, j)− rank1(I, i− 1);
(3) if (left == 0 or right == 0)
(4) return ;
(5) if (!bidirectionalBWTindex.rightMaximal(i′, j′))
(6) return ;
(7) if (bidirectionalBWTindex.leftMaximal(i, j) and left == 1 and right == 1)
(8) M is a MUM;
(9) for each c ∈ bidirectionalBWTindex.EnumerateLeft(i, j) do
(10) (ii, jj, ii′, jj′)← bidirectionalBWTindex.extendLeft(c, i, j, i′, j′);
(11) mums(cM,bidirectionalBWTindex, ii, jj, ii′, jj′, I);
. . .
bidirectionalBWTindex, I← constructIndex(s$t);
mums("",0, |s|+ |t|, 0, |s|+ |t|, I);

10 / 16

Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

ALGORITHM

Algorithm mums(M,bidirectionalBWTindex, i, j, i′, j′, I)
(1) left = rank0(I, j)− rank0(I, i− 1);
(2) right = rank1(I, j)− rank1(I, i− 1);
(3) if (left == 0 or right == 0)
(4) return ;
(5) if (!bidirectionalBWTindex.rightMaximal(i′, j′))
(6) return ;
(7) if (bidirectionalBWTindex.leftMaximal(i, j) and left == 1 and right == 1)
(8) M is a MUM;
(9) Recursion with each possible cM. . .

1234567890
xaby$yabx

0987654321
[a]

SA 10 5 7 2 8 3 9 1 4 6
I 1 0 1 0 1 0 1 0 0 1
SA’ 10 5 8 3 7 2 9 1 4 6

[a]

11 / 16

Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

ALGORITHM

Algorithm mums(M,bidirectionalBWTindex, i, j, i′, j′, I)
(1) left = rank0(I, j)− rank0(I, i− 1);
(2) right = rank1(I, j)− rank1(I, i− 1);
(3) if (left == 0 or right == 0)
(4) return ;
(5) if (!bidirectionalBWTindex.rightMaximal(i′, j′))
(6) return ;
(7) if (bidirectionalBWTindex.leftMaximal(i, j) and left == 1 and right == 1)
(8) M is a MUM;
(9) Recursion with each possible cM. . .

1234567890
xaby$yabx

0987654321
[b]

SA 10 5 7 2 8 3 9 1 4 6
I 1 0 1 0 1 0 1 0 0 1
SA’ 10 5 8 3 7 2 9 1 4 6

[b]

12 / 16

Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

ALGORITHM

Algorithm mums(M,bidirectionalBWTindex, i, j, i′, j′, I)
(1) left = rank0(I, j)− rank0(I, i− 1);
(2) right = rank1(I, j)− rank1(I, i− 1);
(3) if (left == 0 or right == 0)
(4) return ;
(5) if (!bidirectionalBWTindex.rightMaximal(i′, j′))
(6) return ;
(7) if (bidirectionalBWTindex.leftMaximal(i, j) and left == 1 and right == 1)
(8) M is a MUM;
(9) Recursion with each possible cM. . .

1234567890
xaby$yabx

0987654321
[ab]

SA 10 5 7 2 8 3 9 1 4 6
I 1 0 1 0 1 0 1 0 0 1
SA’ 10 5 8 3 7 2 9 1 4 6

[ba]

13 / 16

Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

ANALYSIS

I Number of recursion steps can be bounded by the amount of explicit
and implicit Weiner links in suffix tree, which is linear.

I Claimed space bound follows, except for the use of stack:
I Must use explicit stack, and push the largest interval first; this guarantees

O(log n) depth.

I Bitvector I can be dropped using synchronized bidirectional search on
two indexes built on s and t separately.

I See the paper for more involved applications.

14 / 16

Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

ANALYSIS

I Number of recursion steps can be bounded by the amount of explicit
and implicit Weiner links in suffix tree, which is linear.

I Claimed space bound follows, except for the use of stack:
I Must use explicit stack, and push the largest interval first; this guarantees

O(log n) depth.

I Bitvector I can be dropped using synchronized bidirectional search on
two indexes built on s and t separately.

I See the paper for more involved applications.

14 / 16

Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

BIDIRECTIONAL STEP IN O(1)?

I Bidirectional step requires to count how many symbols smaller than a
given symbol there are in a given BWT range (LessThan query).

I This can be supported by wavelet tree in O(logσ) time.

I We show that LessThan query cannot be supported faster than
O(logσ/ log log n) unless using superlinear space.

I However, our algorithms need LessThan query only on ranges
corresponding to suffix tree nodes.

I It turns out that O(1) time is possible in this restricted setting.

15 / 16

Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

BIDIRECTIONAL STEP IN O(1)?

I Bidirectional step requires to count how many symbols smaller than a
given symbol there are in a given BWT range (LessThan query).

I This can be supported by wavelet tree in O(logσ) time.

I We show that LessThan query cannot be supported faster than
O(logσ/ log log n) unless using superlinear space.

I However, our algorithms need LessThan query only on ranges
corresponding to suffix tree nodes.

I It turns out that O(1) time is possible in this restricted setting.

15 / 16

Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

EPILOG

I Construction of bidirectional BWT index and compressed suffix tree is
now possible in randomized O(n) time in succinct space.

I Djamal Belazzougui. Linear time construction of compressed text indexes in
compact space. Accepted to STOC 2014.

I Hence, ESA 2013 + STOC 2014 papers yield randomized O(n) solutions
to myriads of sequence analysis problems using asymptotically optimal
space.

16 / 16

Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

EPILOG

I Construction of bidirectional BWT index and compressed suffix tree is
now possible in randomized O(n) time in succinct space.

I Djamal Belazzougui. Linear time construction of compressed text indexes in
compact space. Accepted to STOC 2014.

I Hence, ESA 2013 + STOC 2014 papers yield randomized O(n) solutions
to myriads of sequence analysis problems using asymptotically optimal
space.

16 / 16

