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Data Dimensionality
For a joint distribution P(A,B,C) and an evidence B=true, marginal inference calculation is:
P(A| B = true) Y P(A,B = true,C).
C

D ~ Denmark; E ~ Espoo; F ~ Tampere; To impute missing values, we draw samples under given evidence from consistent junction
G ~ Turku; H ~ Stockholm; I ~ Copenhagen; tree using BRMLToolbox. Comma in labels in X-axis separates dimensions of two datasets.
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The components of mixture model are Bayesian networks themselves. We use EM algorithm  The Y-axis shows the negative log likelihood, there-
in a 10-fold cross-validation setting to learn parameters of the mixture model. fore, the shorter the bar, better the result
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PREDICTING THE HARDNESS OF LEARNING BAYESIAN NETWORKS

Brandon Malone, Kustaa Kangas, Matti Jarvisalo, Mikko Koivisto, Petri Myllymaki

Motivation: There are various algorithms for finding a Bayesian network structure that is optimal with respect to a given scoring function. Due
to the chaotic nature of the running times of such algorithms, it is a priori not clear which algorithm will solve a given problem instance fastest.
Results: 1) We can train models that predict the running time of an algorithm on a given instance with reasonable accuracy based on features
of the instance. 2) Even very simple features admit an efficient hybrid algorithm, or portfolio, that runs the algorithm predicted to be fastest.

— INTRODUCTION

A Bayesian network is a graphical model
on random variables Xj, ..., X;.

The structure of a Bayesian network is a di-
rected acyclic graph (DAG) G.

A scoring function s measures how well G
fits observed data on the variables. Typical
scoring functions decompose into a sum
n
S(G) = ZS,’(GI') ;
i=1
where G; is the set of parents of X; in G.

Common s: penalized likelihood, minimum
description length, BDeu, etc.

Input: A set G; of candidate parent sets for
each variable X; and the local scores s;(G;)
forall G; € G;.

Task: Find a DAG G such that G; € G; and
the score s(G) is maximized. (NP-hard)

G 5:(Gy) G,  55(Gy) Gs  s55(Gy)
{Xz X3} 7 {Xu, X} 8 {Xi, X} 4
{Xz} 4 {X.} 3 {X.} 3
{Xs} 6 {X3} 2 {Xz} 3
(4] 3 (4] 1 (4] 2

s(G)=6+8+2=16

— MODEL TRAINING

1. Select a set of training instances.

2. Select a set of instance features.

3. Compute the features of each instance.
4

. Run all algorithms on all instances and
record their running times.

— PORTFOLIO

Given a new instance, a simple portfolio
runs the algorithm predicted to be fastest
by predictor A. Comparison to individual
algorithms and the Virtual Best Solver that
makes perfect predictions:
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— ALGORITHMS

Various exact algorithms are guaranteed to
find an optimal G while avoiding exhaus-
tive search in the space of all DAGs:

Dynamic programming over variable sub-
sets finds an optimal ordering of variables
that is compatible with an optimal DAG.

A* search formulates the DP approach as a
shortest-path problem, uses admissible best-
first heuristics to prune the search space.

Integer linear programming searches a con-
vex polytope where each vertex is a feasible
solution. Cutting planes are added during
search to enforce acyclicity.

Branch and bound searches a relaxed space
of cyclic graphs and breaks cycles by branch-
ing on arcs to remove in best-first order.

\. J

— PREDICTION )

Although the simple predictor A already
admits an efficient portfolio algorithm, pre-
dictor B makes more accurate predictions:
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IN EXTERNAL MEMORY
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For over three decades, the Lempel-Ziv factorization (or LZ77 parsing)
has been a fundamental tool for data compression (e.g. in 7-zip). More
recently it has become the basis for several compressed text indexes
which are particularly effective for massive, highly repetitive data sets.

Lempel-Ziv factorization LZ(T) of string T is a
greedy partition of T into longest previous factors
(LPFs). LPF at position i is the longest factor
Tl[i..i 4+ ¢) that also occurs at some position j < i.

Example:
ilo123456789
TII/ABABBABBAB

LPF[2] = AB ( = 0)
LPF[5] = ABBAB (j = 2)

LZ(T): [A[B[AB[B AB B A B]

Name 1/0 complexity Space
SAscan [4] O 5 (1 + A’;Ilﬁ,ggz)) 6.51
eSAIS[1] | O(}logu §) 28n
eSAISIcp [1] | O (g log 1y g) 541
n log2 4
LCPscan [3] | O (% (1 + o ) ) 16n
EM-LPF [5,2] | © (g log s %) 261
1
LZscan[5] | O (% e ) 1.5n
SE-KKP[5] | O(%) 21n

We implemented and compared all LZ factoriza-
tion algorithms depicted on the right. The al-
gorithms were executed on varying size prefixes
of two testfiles: a large data set containing En-
glish text (left) and a database of Wikipedia ar-
ticles containing many versions of the same arti-
cles (right). All algorithms were allowed to use

English text
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3.5GiB of internal memory. The results depend
on the amount of repetitions in the input text.
LZscan dominates all other algorithms for highly
repetitive input but performs poorly when the
data is less repetitive, such as the English test file.
The fastest algorithm for such data is determined
by the ratio of input size to available RAM.
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Below we present a detailed runtime breakdown
of LPF-eSAISlcp and LPF-SAscan executed on En-
glish text. The graphs reveal that most of the
time is spent during the computation of support-
ing data structures (SA and LCP). The LCP array
construction is significantly accelerated with the
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use of our new algorithm (LCPscan) which makes
SA construction the slowest phase of the factor-
ization. The main challenge in efficient and scal-
able LZ factorization is therefore developing new
methods for suffix sorting, possibly using paral-
lel or distributed computation.
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When computing the parsing for such large data sets, the space re-
quirements of algorithms can become a problem. We escape the lim-
itations of RAM by describing the first external memory LZ77 parsing
algorithms and present their experimental comparison.
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DISCOVERING SIGNIFICANT EPISODES
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SEQUENTIAL PATTERNS

What event sets occur close to each other?
Episodes:

= a set of events
= constraints on the order
(repsesented by DAG)

c
a d
; <: i >
= ¢ should occur first

s then band ¢, or cand b
= finally d

OCCURRENCE AND SUPPORT

When an episode appears in the sequence?

= all events should appear in the sequence
= DAG should be respected
= gaps are allowed

How often episode occur?

Input: Many (short) sequences

a e
m.a,c e b d
b,c. e

ma, b c. d e

Input: One long sequence

= sliding windows of fixed size
a, b . c . d e . a, c e b d,

I
= minimal windows
a,b,c,d e ,a ,c e b d,

Testing occurrence is NP-hard
..not sure how to map nodes to a sequence

am

a b a, c

QM
RSN

a,c,a. b

GU—‘—J

Not a problem in practice:

= episodes are small: do full enumeration
= polynomial delay
= use subclasses

= parallel / serial / strict

FREQUENT EPISODE MINING
Find all episodes that have high support.

Support is monotonic.
We can generate episodes efficiently by

= adding nodes
= adding edges
= stop if the episode is not frequent

Pattern explosion
High support:

= discovered patterns are trivial
Low support:

= too many patterns
= mostly redundant

PATTERN RANKING

= compute the support using some statisti-
cal model

= compare the observed support with the
expectation

= patterns with large devation are
interesting

INDEPENDENCE MODEL
What is the expected support w.r.t. the inde-
pendence model?

Construct a finite state machine from the
episode:

003 0 0

G appears in the sequence if and only if we
can reach Hg from H;

Compute the probabilities iteratively

P(H; | k)= > p(lab)p(H, | k—1)
Hj€par(H;)
+aqp(H; | k—1),
where

p(lab)

g=1- >

H, €par(H,)

Example:

p(He | k) =p(d)p(Hs | k —1)
+ (1 —p(d)p(He | k—1)

p(Hs | k) =p(b)p(Hy | k—1)
+ple)p(Hz | k—1)

+ (1 —=p(b) —plc))p(Hs | k—1).

Aalto University

PARTITION MODEL

If b occurs often aftern a, then both

c
a -<: d a

G b > and G e b

are significant.

How to report only GG; and downrank G?

Reduce redundancy using a partition model.

= divide episode into two subepisodes

= model how soon we can discover each
subepisode and assume independence
between them

= use the new model to compute more ac-
curate expected support

(&
a ™~y
Gy \b Go

Model how soon b occurs after a and how

soon d occurs after c.
@~
" -0
A d
Use the new model to compute the expected

b
support:

= b appears soon after a

= transition probabilities from H, to Hs and
from H, to Hy are large

= expected support is increased

= observed support is closer to the expected
support

= (4 is not highly ranked anymore

EXAMPLES FROM TEXT DATA

Inaugural addresses by preserv
the Presidents of v

The United States protect
\
defend
four v
l constitut
year )
vice — presid l unit
chief — justice ago state

Abstracts from Journal of Machine Learning
(JMLR)

reproduce — kernel —- hilbert — space
support — vector — machin — svm

real — world — data — set



> Size matters <

Jefrey Lijffijt ', Panagiotis Papapetrou 2 and Kai Puolamaki 3
1 Aalto University, 2 Stockholm University, and 3 Finnish Institute for Occupational Health

> Problem setting > Detailed solution
When looking for in , it is If the cost function is the squared error: C(x,y) = lx-yl?,
often difficult to choose the right (window the optimization problem is an instance of the

length) for analysis.

> Solution The optimization 'problem‘is NP-hard, bpt can be
approximated efficiently using the Clustering LARge

Select the window length by mapping S .
Applications (Clara) algorithm [1].

the problem to a regression problem.
We modify the algorithm by using the

Even better, select a ) o
from the k-means++ algorithm [2], providing an

> Problem statement approximation guarantee. We call this algorithm
Let § = <s,,..., 5,> denote an event sequence and S;,, = . .
<Se.w S;ym. > @ subsequence of length m. > Publication
) ) ) A preliminary version has appeared as Lijffijt,
Given an algorithm that takes as input a subsequence of Papapetrou & Puolamiki. Size matters: Finding the most
any length m and as output gives a real number f(S; ), informative set of window lengths. In Proc. of ECML-
a set of possibly interesting window lengths W, the PKDD, 2012.
W* is given by
» The full paper is currently under review.
argmin min C(f(S;,), f(S;,.))¢-
argr W{EEW min C(£(S,,).£(S, ))}

> Sensor measurements

We applied our method to data from a strain sensor on
> pp
Exam ple , a bridge in the Netherlands.

0.2
— Window length: 6250

Window length: 1562 35+
& - 30— window lonci: 1570
g’_ “fﬁmwwp/ww’\‘\“w 254 —— Window Iength;57926
£ VN ad E]
2 fMA’“ g 15+
10+
5
0 T T T T 1
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Starting position in X x10° 00:00 04:00 08:00 12:00 16:00 20:00 24:0C
Figure 1: Generative processes may have multiple components. 22: — Window lengih: 453
Such structure can only be uncovered by studying multiple window ws o g A2056
lengths concurrently. % 0
§ 15 Mﬂ
=
([ I — N—
5
> Burstiness of words
We computed optimal sets of window lengths for
several bursty and non-bursty words in Jane Austen’s Figure 3: By using multiple window lengths, we can see different

patterns in the data. The three lines show trends of the amount of
traffic on the bridge at different time scales. The blue and green
L \. \.\.\F\ \‘ \. \. \.\.\F\ | \. \. \.\.\bw | \. \. \.\.\.\ L1 lines are falrly Simﬂar, Suggesting that two window lengths suffice.
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g - it Tl ST T TO - 00T - to Cluster Analysis. John Wiley & Sons, 1990.
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Figure 2: Bursty words give longer window lengths, because the
scale structure is less gradual then for uniformly distributed words.



REGRESSION MODELS FOR DATA STREAMS WITH MISSING VALUES
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PROBLEM SETTING AND ASSUMPTIONS

POSSIBLE SOLUTIONS

e Predictive modeling for streaming data Case _____ J @No predictions
. . . deletion
— data arrives and needs to be analyzed in real time
— data distribution may change over time
— predictive model adapts during operation
P . L P . 90p What Models ®Computationally
e Problem: massively missing input data (~50% of records), to do? on subspaces | infeasible

while predictions are needed non-stop
Our approach: make predictive models robust to missing data

Single

- ©Biased estimates

e Focus: linear regression models Impute imputation
. . . missing
e Benefits: very fast imputation, values " Model based ___ | ®Computationally
computationally light and online updatable models imputation infeasible
EXPECTED PREDICTION ERROR EXAMPLE

The expected error of a linear prediction model with mean imputation is

E[MSE,] = (1—p)E[MSEg] +p — p(1—p)p" (Z—1)B,

p - probability of a missing value in an observation vector, § - regression coefficients,

X. - covariance matrix of the input data, MSE - the error when no data is missing.
Assumption: variables are missing independently with the uniform prior probability.

Deterioration index: D = g’ (X — I)B.

Implications

e If X =1I (independence), then D = 0 and MSE increases linearly in p.

e If X £ Iand D < 0 (overfitting) then MSE increases quadratically.
e IfX # Iand D > 0then MSE increases only sub-linearly.

Data: x; = xp = x3 = x4 =y, x1 ~ N(0,1).

oy 2 | = Qverfitted

w

pS = |ndependent

3 1L | == PCA

@ ROB (our model)
§ --- naive

E 0! ]

|
0.5
probability of missing (p)
Four regression models (for all MSEq = 0):

0 1

e Independent: § = xq;
PCA: j = 0.25x1 + 0.25x2 + 0.25x3 + 0.25x4;
Overfitted: § = 2x; — 1.5x2 + x3 — 0.5x4;

ROB regression: different model for each value of p.

HOw TO BUILD ROBUST REGRESSION MODELS?
Minimize E[MSE,]. Theoretically optimal solution is

R 1
Broe = <(1 - p)X'X + P”I) X"y,

p - probability of a missing value in an observation vector, X - training data inputs,
y - training targets, n - training set size, I - identity matrix.

ROB is similar to the Ridge regression frg = (XTX + A1)~ 1XTy.

ONLINE UPDATES WITH STREAMING DATA
For each new observation x, predict = x.

When the true target y arrives, update the model:
e S+ S+xxI —p(xxT —1)

o B Pp+SIx(y—xTB) =S Ip(xx” —T)B

S is the covariance estimate, offline for centered data S = XTX /1.

PERFORMANCE
Chemi Catalyst Wine
Compared models: and ‘ ‘ ‘
— 1.2 [ T
Inputs Optimization w /
9p) e
OLS  RR < 1 091 .
all r ALL rALL o 0.8
selected k | SEL  rSEL = 081 &
PCAk | PCA ke 061,
PLS k 0.4 i 4 07
OLS - Ordinary least squares ! ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
' 0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1

RR - Rid i
e regression probability of missing (p)

probability of missing (p) probability of missing (p)

The proposed ROB regression consistently achieves the best performance.

References: Zliobaité, I., Hollmén, J. (2013). Fault tolerant regression for sensor data. Proc. of the European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in Databases (ECMLPKDD’13), Springer LNAI 8188, p. 449-464.
Zliobaité, 1., Hollmén, J. Optimizing regression models for data streams with missing values. Journal paper under review (MLJ).
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/Major part of star formation, be it low- or high-mass stars,
takes place in clusters. The clusters are not bound and will
eventually disrupt e.g. because of the Galactic differential
rotation. The stellar clusters trace therefore the recent
Galactic star formation. The younger the clusters are the
more compact they are and the more closely they are
associated with the interstellar gas and dust clouds they
formed in. Detailed study of young clusters still associated
with their parent cloud will provide information on the star
formation process and the stellar initial mass function.

At the moment some 2000 Galactic stellar clusters are
known. This is only a small fraction of the estimated total
population of which a major part is obscured by interstellar
dust to us and can not be observed in optical wavelengths.
However, the extinction decreases at longer wavelengths
and in the K-band (2.2 microns in the near infrared) the
extinction is only 11 percent of that in the optical V-band
(0.55 microns).

The aim of this research is to develop methods to locate
previously unknown stellar clusters from two near infrared
surveys: the UKIDSS Galactic Plane Survey (GPS; Lucas et
al. 2008) mapping the northern plane of the Milky Way,
and the VISTA variables in the Via Lactea (VVV; Minniti et
al. 2010) survey mapping the Galactic bulge and the
southern disk. These new surveys don't cover the whole sky
but they are many times deeper than their predecessor, the
Two-Micron All-Sky Survey (2MASS; Skrutskie et al. 2006)
\Sovering the whole Milky Way.

/

otto.solin@helsinki.fi

"\ The search method takes pre-filtered catalogue data, divided into overlapping bins, and

performs a maximum likelihood fitting of a mixture of a Gaussian density and a uniform
background. On each bin the fitting is done using the standard Expectation Maximization
(EM) algorithm. The real clusters and locations of star formation are selected by visually
inspecting the images of the cluster candidate areas suggested by the automated search of
the catalogue data. In addition to the UKIDSS and VVV catalogues, stars brighter than 10™
in K from the 2MASS survey are used, because the brighter stars saturate in UKIDSS and
VVV, and moreover tend to produce false positives around them.

Scrutiny of the data base and the survey images reveals that the survey pipeline source
detection algorithm tends to classify most of the objects within regions of variable surface
brightness as non-stellar (parameter mergedClass=+1), whereas objects with intensity
profiles similar to the cameras point spread function are classified as star-like
(mergedClass=-1). Clustering non-stellar sources directs the search to stellar clusters either
embedded in or near molecular/dust clouds. Besides stellar clusters, the search targets also
the locations of non-clustered star formation and single embedded stars with associated
nebulosities. The surface brightness, either due to outflow activity or reflection, will
produce "cluster" detections.

For UKIDSS as expected most of the detected new clusters (137) and sites of star formation
(30) are tightly concentrated on the Galactic plane. Relatively few new clusters were
detected in the direction of the northern Galactic plane because this is in the direction of the
Galactic anticentre where the absolute number of clusters is much lower than that in the
inner galaxy. Likewise for VVV most candidates (88 clusters and 39 sites of star formation)
are in the Galactic plane outside the bulge area where the contamination from the field stars
is overwhelming and our method is not able to trap the clusters.

Most images of the new cluster candidate areas show clear signs of reflected light in
particular in in the K-band thus indicating embedded clusters or sites of star formation.

The next step in this research is to locate clusters using the measured colours of the stars.

New cluster candidate identified previously as an infrared point source

In the leftmost panel are the UKIDSS catalogue entries in the cluster area.

Besides an IRAS point an MSX source, an HII region and a submillimetre
source are detected in the direction of this candidate.

The red points are UKIDSS non-stellar sources brighter than 17™ in K,
black points other sources brighter than 17™ in K, yellow points sources
fainter than 17™ in K, and brown points sources listed in 2MASS but not in
UKIDSS GPS. The red confidence ellipse is the cluster area given by the
EM-algorithm. In the two middle panels are the K-band and JHK false
colour images of the cluster area. In the 2MASS image (the rightmost
panel) of the same area no cluster can be seen.

The number of indicators (IRAS, MSX, (sub)mm sources,masers, and HIlI
regions) seen in the direction of many candidates gives confidence the new
clusters or embedded star formation locations are real entities and not
produced by chance nor are due to catalogue artefacts. In general radio
surveys find circumstellar dust envelopes and disks, and cold cores of
molecular clouds. In areas where a radio telescope sees only a point source
or signs of e.g. an ultracompact HII region, the UKIDSS and VVV images
show structures of surface brightness and single stars thus verifying the
results of the millimetre/submillimetre radio surveys of suspected star
forming regions.

Specifically, many candidates are associated with infrared dark clouds.
This is not surprising as these clouds are assumed to be the forming sites
of massive clusters.

Zone of avoidance galaxies (ZOAGs) have been identified in the direction
of four of the UKIDSS cluster candidates. So instead of being extragalactic
sources these are Galactic clusters. On the other hand the cluster search
using the VVV survey resulted in four new ZOAGs.

The results for both surveys have been published in the journal Astronomy
& Astrophysics (DOI:
10.1051/0004-6361/201118531 and 10.1051/0004-6361/201322890).
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Genome size: 350 Mbp

Melitaea cinxia
Photo: Niclas Fritzén

e Based on SHREC
by Schroder et al.

e Build a suffix trie
of the read set.

e Support for simul-
taneous correction
of color coded and
base coded reads

e Correct low weight
nodes in the trie
by comparing to
siblings

level=r

node with higfler weight \A/\T/m “Q"”w"g“

JAVAY
L

L. Salmela: Correction of sequencing errors in a mixed set of
reads. Bioinformatics 26:10(1284-1290), 2010. (Award for best
_paper submitted to HiTSeq 2010).

e Partitioning the problem into smaller
subproblems of restricted size
e Solving each subproblem as a mixed integer
program (MIP)
L. Salmela, V. Makinen, N. Valimaki, J. Ylinen, and E. Ukko-

nen: Fast scaffolding with small independent mixed integer
_programs. Bioinformatics 27:23(3259-3265), 2011.

e Break chimeric scaffolds (assignment to several
chromosomes)

e Find paths based on mate pair links between
scaffolds in the same chromosome

e Remove ambiguous connections (manually or
automatically)

Genetic map (Error corrected)

(Chromosome Mate pairs

assignment for P Y

some scaffolds)

\

Superscaffolding
Use mate pairs and

Validation
Genetic map, Map
ESTs to scaffolds,...

genetic map as a guide
to connect scaffolds in

the same chromosome.

454 SOLiD Ilumina PacBio
Reads 12 million 210 million 349 million 2.7 million
Read length ~ 400-800 bp 50 bp 75-150 bp Up to 23.5 kbp
Errors Indels Mismatches Mismatches Indels
Paired end - - 600 bp, 800 bp -
Mate pairs 7 kbp, 16 kbp ~ 2-5 kbp 1 kbp, 24 kbp -
Other Also single Color coding - High error rate

e

Total input data size: 50000 Mbp

Error Correction
Remove sequencing
errors by aligning the

reads with each other

|

Overlap Computation

Find suffix-prefix

overlaps between reads.

Represent the overlaps

in an overlap graph.

|

Contig Assembly
Report paths in the

overlap graph as contigs,

ie. contiguous sequences.

!

Scaffolding
Mate pairs give links
between contigs.
Remove minimum
number of mate pairs
so that the remaining

ones are consistent.

)

Gap Closing
Use paired end reads
to fill the gaps

between contigs.

/

—

Annotation

AN

7

o Build multiple
alignments of reads
that share k-mers

e Sequencing error
model can be spec-
ified by setting gap
penalty and mis-
match penalty for
multiple alignments

e Correct reads based
on these multiple
alignments

GTAA - GTTGAACCCTTA
AaflcTTGAACCCTTACC
GTTGAACCTTACCCGG
GAlcCCTTACCCGGTTCA

L. Salmela and J. Schréder: Correcting errors in short reads
by multiple alignments. Bioinformatics 27(11):1455-1461, 2011.
k(Also in HiTSeq 2011).

’

e Supports mis-
matches and indels
in the overlaps

e Easy to parallelize

e Scales up to mil-
lions of reads
e Based on Burrows-
Wheeler transform,
backward backtrack-
ing (Lam et al.
2008) and suffix fil-
ters (Karkkdinen et
al. 2008)
N. Vélimaki, S. Ladra, and V. Makinen: Approximate all-pairs

suffix/prefix overlaps. Information & Computation 213:49-58,
k2012 (CPM 2010 Special Issue).

’

o Align ESTs against scaffolds:

— Find local maximal approximate matches
(swift by Rasmussen et al. 2006)

\ von i
\ AW ~ i : Y no
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“ o
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— Produce maximal colinear chains of the
above matches (Abouelhoda 2007)

e Compute the coverage of ESTs

V. Mékinen, L. Salmela, and J. Ylinen: Normalized N50 as-
sembly metric using gap-restricted co-linear chaining. BMC

kBioinformatics 13:255, 2012.
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PREDICTING QUANTITATIVE BINDING

INTERACTIONS BETWEEN DRUG
COMPOUNDS AND PROTEIN KINASES

Anna Cichonska, Jing Tang, Tero Aittokallio, Juho Rousu
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Protein kinases constitute key regulators of cancer survival pathways. Effective inhibitors of these proteins
are being designed. However, determining interactions between drug compounds and their molecular targets
experimentally is time consuming and expensive. Various computational methods have been developed to facilitate
this process. Among them, similarity-based machine learning methods are considered as state-of-the-art
approaches. The assumption is that similar compounds are likely to interact with similar targets. Similarities
between drugs are typically being computed based on their chemical structures and similarities between targets
are being obtained by amino acid sequence alignments. In many applications, it is important to focus on predicting
quantitative binding affinities rather than binary values since molecular interactions are not simple on-off
relationships.

RESULTS: determining the best features for drugs and targets, Davis et al. data

AIMS . » o _ . - Davis et al. data were used in order to test the predictive performance of the Kronecker
1) To establish an approach for predicting missing drug-target interaction affinities RLS algorithm on the quantitative data set and choose the best features for drugs
in Metz et al. data set. and targets that will be used in the Metz et al. missing data imputation.
2) To determine the most meaningful metric for evaluating quantitative drug-kinase 4] v e Koo RS o0 6w
interaction predictions. ° H
o8-
DATA SETS o

Two data sets from the large-scale studies of selectivity profiles for kinase inhibitors were
used. Inhibition constants, K;, were measured in the Metz et al. (2011) survey, while
dissociation constants, K, were used in the Davis et al. (2011) analysis. Both
measurements reflect how tightly a compound binds to a target: a low value indicates
an interaction. The overlap between the two studies comprises 24 compounds x 155

targets. Metz et al. data are very sparse — 47% of possible drug-target interaction affinities . e e —————— O T TS
are missing (Fig. 1-3). Porcaniage ofmissiog deta Random

D-K-2D T-K-SW
D-K-3D T-K-SW
D-K-2D T-UniProt-SW.
D-PubChem-2D T-K-SW.

n —— FIG. 4: F1 score, results of LO'O—_CV. Different FIG. 5: F1 score, comparison of the
e ST i WUV o percentages of the data were artificially removed results of LOO-CV, LTO-CV and LDO-
FIG. 2: Histogram Lro;n t:"f observe(tihKD madt.rlxt: The more missing CV. Predicting targets for a new drug
showing the number ata, the worse the prediction. (LDO) is the hardest experimental
9funmgasured n To0Cv setting in comparison to LOO
interactions per drug 20% missing data RanK and LTO.
in Metz et al. data. CBdist F1 RAE |CB F1 RAE| &
D-K-2D T-K-SW 0.61 0.41 1.99 3 2 1 6
D-K-3D T-K-SW 071 o020 363|s5 6 6|17 TABLE 1: LOO-CV, ranking the values
D-K-2D T-UniProt-SW 0s8 o044 2021 1 2|4 of each evaluation metric. The best
D-PubChem-2D T-K-SW 061 033 332 |3 4 5|12 features are considered as the ones
D-PubChem-2D T-UniProt-SW| 059 034 322 |2 3 3|8 having the lowest sum of ranks X. Using
D-K-2D T-K-GTG 070 031 330 |4 5 4|13 ranking approach is more robust than
Random 101 002 1374)6 7 7|20 relying on a single metric (aim #2).

RESULTS: imputing missing D-T interactions in Metz et al. data

FIG. 1: Heat map representing Metz FIG. 3: Heat map representing Davis et al. data.

et al. data. White points indicate The threshold for an interaction was set separately
missing K; values. for each drug: 50 x min(Kp).
METHODS ! Known values

Kronecker RLS — machine learning algorithm based on regularized least squares
regression with Kronecker kernels (Tapio Pahikkala, Antti Airola). The method uses
a product of drug ®, and target ®; kernels. Matrices are combined into
a larger kernel that directly relates D-T pairs:

K((dj’tj)’(dk’tl)) = ¢D(dj’dk)¢T(tj’tl) =9pdr

100
" Leave OneOut

o
" Leave Target Out

o
Leave Drug Out

DRUGS (D) TARGETS (T) Tivaers
0 n « Normalized Smith-Waterman
Tanimoto kernel based on the size score (SW) FIG. 6: Metz et al. data, imputation settings. LDO — more than 70% of the interactions affinities
ol - o e
Features g{rﬁﬁ;?:: 2D/3D substructures GTG (Global Trace Graph) missing for a drug, LTO — more than 70% of the #ata n?ls-smg fora .target. )
features — conserved amino acids FIG. 7: Metz et al. data, heat map representing original and imputed K; values, aim #1

(Kronecker RLS, the best features were used: D-K-2D, T-UniProt-SW).
Kernel similarity matrix D-K/T-K: given molecules VS given molecules

Features D-PubChem: T-UniProt:
representation | given D vs 4 000 D (PubChem) given T vs ~20 000 T (UniProt) (AU ehE
S->8sT S->8sT + Effective in silico drug-target interactions prediction methods are needed to support

experimental analysis.
« Kronecker RLS algorithm allowed us to impute the missing data present in the Metz
Drug-kinase interaction prediction evaluation metrics etal. study.
« Relative Absolute Error (RAE); el Applying log;o transformation on the drug-target affinity values (K;, Ky) works well
the lower RAE, the better the prediction. f(v")-{z' T (o because of the data scaling.
' - original interaction value + Defining similarities between targets based on extended targets’ profiles (7-UniProt-
5 - predicted interaction value SW) and using them as features helped to achieve the best prediction performance.

& - threshold for an interaction

Read-outs l0g4o(K;) or logo(Kp)

RAE-—— L3 b=
#imputed values & (y)

» F1 Score — harmonic mean of Sensitivity and Positive Predictive
Values; the higher F1 score, the better the prediction.

. X X _ = « Future directions: applying other machine learning algorithms e.g. Kernel-Mappin:
+ City Block (CB) distance from the point [0,1] on the Sensitivity vs 1-Specificity plot; Recommender system; utilizging 3D structural informagtiongfor targets.g g
the lower the distance, the better the prediction.
FIMM - Institute for Molecular Medicine Finland .

P.0. Box 20, FI-00014 University of Helsinki, Finland A EMBL
Biomedicum Helsinki 2U, Tukholmankatu 8, 00290 Helsinki, Finland
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e Protein-protein interactions (PPI): important for
system-level understanding of biological processes

e BIOLEDGE project: BIO knowLEDGe Extrac-
tor and Modeler for Protein Production, focus on
secretion proteins

e target species: Saccharomyces cerevisiae,
Pichia pastoris, Trichoderma reesei

e (I) investigate the descriptive power of different
features extracted from the protein sequences
and genes

e (Il) test 3 methods for graph inference: classi-
fication based on local modeling, classification
based on global modeling, unsupervised graph
inference based on expression data

o (lll) overlay resulting networks

Secretion Model by Feizi, Nielson et al. Genome-scale
modeling of Protein Secretory Machinery in Yeast, PLOS
(2013)

e Network of the components of the yeast (S. cere-
visiae) secretory pathway

e 161 Proteins
e 50363 variables

e represents an undirected graph
Figure 1: Number of variables per data source and their
coverage.

xprossiotacalizaion blast FPrintScan GoneaD  GTG  PantrerPatemScan Plam

KEGG Pathway

e Genome scale metabolic network in S. cerevisiae
from KEGG

e 1335 Proteins
e 200317 variables

PIR ProfloScarroteincl Smart suportamily

e represents a directed graph
Figure 2: Number of variables per data source and their
coverage.

PIR

- Sparse, High-Dimensional, Few Instances -

Jana Kludas, Fitsum Tamene, Juho Rousu

HELSINKI

INFORMATION
TECHNOLOGY

Given a set of proteins V = (vy, ..., v)

a set of feature vectors ®(vy),..., ®(v,) € Ry,
a set of known interactions S = ((e1,y1), -

as pairs of vertices: e;

. (em/ ym))
eV x Vwithy; = [1;,-1].

1. choose a seed vertex vg,pg € V

2. create local training

set

3. feature selection based on confidence of feature-

label pairs

4. train SVM on the local training set

5. predict label of any vertex that has no label
6. repeat step 1.-6. for each vertex vy, € V
7. combine the predicted edges

1. define representati
pairs of proteins

on of the protein’s attributes for

2. binary classification problem over pairs of vertices

* Kernels: direct Sum, direct Product, tensor product
pairwise kernel, maximum tensor product pairwise ker-
nel (MaxK), metric learning pairwise kernel (MLPK)
(both methods from Vert J.P: Reconstruction of Bio-
logical Networks by Supervised Machine Learning Ap-
proaches. Wiley, pp. 163-188 (2010))

* based on estimating the inverse covariance matrix of
microarray data ie. yeast2 dataset

* methods: partial correlations (qp-graph de la Fuente
et al: Discovery of meaningful associations in genomic
data using partial correlation coefficients. Bioinformat-
ics Vol. 20 no. 18 (2004)), context likelihood of relat-
edness (CLR) algorithm (Faith et al. Large-Scale Map-
ping and Validation of Escherichia coli Transcriptional
Regulation from a Compendium of Expression Profiles,
PLOS, 2007)

Figure 3: Local modeling of Secretion data
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Figure 4: Global
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modeling of Secretion data
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Figure 5: Local modeling of KEGG pathway data
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Figure 6: Global modeling of KEGG pathway data

expression
—+— localization
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best glnébalnfhodgl best unsupervised

Secretion Model

linear SVM AUC = 0.784

MaxK AUC = 0.812 | CLR AUC = 0.638

KEGG pathway

FS, linear SVM AUC = 0.685

MLPK AUC = 0.654 | QP-15 AUC = 0.649

Figure 7: Secreti

on data

Figure 8: KEGG pathway data

best overlay: \ CombSum

INSTITUTE FOR

Secretion Model | AUC = 0.843

KEGG pathway | AUC = 0.703

e integration of multiple data
sources and overlaying of
different result networks in-
creases the prediction ac-

curacy

Drawbacks of current approaches:

e local modeling does not scale well - running

time linear in n

umber of proteins

e global modeling has large memory require-

ments - quadratic in number of proteins
The work was financially supported by the BIOLEDGE project (FP7-KBBE-289126), Academy of Finland grant 118653 (ALGODAN), and in part by the IST Programme of

the European Community under the PASCAL2 Network of Excellence, ICT-2007-216886.

e sequence features like Blast and GTG are more
informative than genomic features such as ex-
pression data for biological network prediction

e undirected graphs are easier to predict than di-
rected ones

BIOLEDGE
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1 Introduction

Metabolite identification from tandem mass spectrometric measure-
ments (MS/MS or MS?) is a major problem encountered in several
real-life applications. This task has been approached independently
through machine learning [1] and fragmentation tree method [2].
Here we present work that combines the two research veins through
Multiple Kernel Learning (MKL) as shown in Figure 1.
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Multiple Kernel Learning based
Molecular Fingerprint Prediction
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Figure 1: The machine learning framework for metabolite identification.

2 Kernels

Probability product kernel (PPK) The probability product ker-
nel [3] approach models the spectrum x = (x1,...,x,) as a mixture
Px= %Zzzlpxk of Gaussians p,, with mean at the observed mass and
intensity values (u,(;) and standard deviations o, and o, are esti-
mated from the training data, same for all spectra. The probability
product kernel between two spectra is then given by Kppx(x,x') =
76 L S P 0D, (1,0 pdl.

Fragmentation tree kernels Define a fragmentation tree as 7' =
{V,E} with node set V, edge set E, root R and pseudo-edge (root to
non-root node) set as &. (v,V), i(e,E), and «(¢,&) are the intensities
of nodes, terminal nodes of edges and terminal nodes of the pseudo-
edges, respectively. N(e,E) denotes the count of edge e in E. Given
a mass spectrum x, T'(x) = {V(x),E(x),&(x)} denotes the most likely
fragmentation tree for that spectrum.

Linear kernels are computed over the features in Table 1:

Table 1: Features defined on fragmentation tree.

Features | LB | LC | LI |RLB | RLI | NB | NI
Definition | 1icepy | N(e, E(x) | e, E(x)) | Licescon | Ue,6@) | Lyevy | v, V(x)

Kernels count the substructures of fragmentation trees can be
computed efficiently by dynamic programming. They include count-
ing common path (CPC), path of length 2 (CP2), path with nodes
intensities (CPI) and subtree (CSC).

3 Multiple kernel learning

Multiple kernel learning seeks a linear, convex or even non-linear

combination of the kernels. A set of kernels Ky ={K;|i =1,...,n},

K; e R™*™ is defined above and Ky(i,i) = y;y! is the target kernel.

UNIMKL: As a baseline MKL approach, the uniform combination of
kernels (UNIMKL) is used: Kynmxk(x,x') = % T Ki(x,x").

ALIGN: This method [4] uses the centered kernel-target alignment
score to weight the base kernels by

(K;,Ky)p

M= Vi=1...n
IKIFIKylr

where K is the kernel after centering operation.

ALIGNF: This approach [4] seeks a convex combination of the ker-
nels to maximize the alignment score.

QCMKL: This method [5] extends the kernel space by taking el-
ementwise product of the kernels and searches the best convex
combination via semidefinite programming (Lanckriet, 2004).

£,-MKL: ¢,-norm MKL [6] regularizes the kernel weights by gen-
eral £,-norms.

4 Results and discussion

Five fold cross validation was performed on a data set with 998
compounds. The Table 2 shows the NB kernel achieves the best
performance among all the individual kernels. The ¢5-MKL is two
percent better than uniform combination and 4 percent better than
the NB kernel in accuracy. The weights (Figure 2, left) learned by
these MKL algorithms do not agree in general but consistent in some
cases. The improvement in fingerprint prediction can be transferred
to metabolite identification directly (Figure 2, right).

Table 2: Cross validation performance for each kernel and the MKL algorithms.

|LB LC LI RLB RLI NB NI CPC CP2 CPI CSC PPK
78.8 784 77.0 80.9 76.8 81.2 79.8 79.4 780 721 732 75.6
50.8 47.1 46.3 55.3 44.5 57.6 54.1 50.0 49.6 25.7 20.6 3L7
|UNI|ALIGN ALIGNF | QCMKL|¢;MKL £;MKL ¢,MKL ¢;MKL

Acc
F1

Acc 832 834 838 | 843 | 845 852 851 850
F1|59.5| 60.6 635 | 630 | 641 67.9 681 681
998 compounds in Metlin
o :
o [ W
ALIGNF || §°

T
, o ¢ 2 2 % T Q 12 5 10 2 50 10
¢ A %

Rank (log scale)

Figure 2: Weights for kernels (left) and metabolite identification result (right).
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The basic question is why gene expression dif-
fers between cells of single organism even though
the cells contain the same DNA.

What affects the gene expression of a cell?

e Environmental condition
o Cell type

o The stage of development of an organism

What mechanism regulates the expression of genes?

o A promoter is an area in DNA close to the
beginning of a gene. Transcription of a
gene starts here.

e Certain proteins, called transcription fac-
tors (TF), can regulate the transcription of
the gene by binding to its promoter area.

Coding

Strand .
3
5

Template

Gene Strand

Binding sites of transcription factors

e In order to understand how the regula-
tory system works, it is important to be
able to describe and predict the binding
sites of transcription factors in the genome

A model that describes the binding sites
where the TF prefers to bind is called mo-
tif, which can be represented, for exam-
ple, by

— A consensus sequence of a TF is the
DNA sequence with the highest bind-
ing affinity to the TF

- Regular expression (like ACG[GC]TT)

— Position Weight Matrix (PWM) and
its sequence logo, shown on left

The SELEX procedure (Systematic evolution of lig-
ands by exponential enrichment) is a high-throughput
in vitro method for selecting DNA sequences ac-
cording to the binding affinity of the TF to the
sequence.

From this dataset we can learn a motif model for
the transcription factor in question.

Why use SELEX?

o Lots of TF bound sequences are produced
which enable high precision motifs

o Fast and relatively inexpensive

Using the SELEX data

e The SELEX procedure results in a set of
fixed length sequences that were bound
by the transcription factor

Sequences are fed to a motif finding pro-
gram which produces an alignment of the
binding sites

An example of counts from the aligment
of the SELEX experiment with the ERG
transcription factor

1 2 3 4 5 6 7 8 9
A 164 22 23 0 0 164 164 98 6
C 10 164 164 0 0 1 1 9 42
G 37 23 0 164 164 0 1 164 21
T 31 3 0 0 1 1 40 2 164

o These counts are then normalized column-
wise, resulting in a multinomial distribu-
tion in each of the columns. This matrix
can be visualised as a sequence logo.

An example of a PWM logo for the CEBPB factor:

CEBPB
2.0

TT C QA T
O-O%N m’%'_:{_%/:‘w mco:
5 3

bits
-

o

Distances between closely bound transcription
factors and their relative orientation can affect
the strength of co-operative binding (COB) of two
TFs. The case Head-to-tail (HT) orientation and
distance —2 is illustrated below for factor CEBPB

Visualisation of COB model:

CEBPB
Hos
000000/ 00|00|00 o0 Moz 0| 01{01 01 0201 oo/ 2[02/02]0o o1 02|03 01|01 oo oofao oo oot [ 1
02

9|00|0000|00| 0000|0800/ 00|00/ 01{00|01 01|01/ 0102|0201 02{ 02 |02 01|01 racl00|oofao oghH

-02
-04

Los

00|00{ 00| 00| 00| 00| 00|01{02|00[00[00[02 0202 [00|02|01 01 01 0201 01|01 [0 01 g0 |00 ogTT

9-8-7-6-5-4-3-2-10 1 23 456 7 8 9 10111213 14 15 16 17 18 19 20

The value of co-operative binding in each cell is
computed using the count observed in the SE-
LEX data and the expected count in similar but
random background of the case corresponding
to the cell:

o observed count
62 expected count

We have created a model for predicting putative
regulatory clusters called scanner. The model com-
prises of the following parts:

o PWMs describing the binding sites of tran-
scription factors

o COBmodels describing the interaction be-
tween transcription factor pairs

e A dinucleotide model that describes the
affinity of a nucleosome to DNA

— Nucleosomes pack DNA and ther-
fore affect the availability of the un-
derlying DNA for TF binding

The clusters are found using dynamic program-
ming that searches chains of TF binding sites

o The validity of the model can be tested
with in vivo data, like ChIP-seq

e For n TFs we need n PWM and n? COB
models

Even though understanding of the regulatory sys-
tem is important in itself, still the main objective
is cancer research.

e Oncogenes promote cell growth and re-
production

e Tumor suppressor genes inhibit cell divi-
sion and survival

e Mutations in the DNA can affect the ex-
pression of these genes. This can result in
unrestricted growth, i.e. cancer

o The scanner can be used to predict the ef-
fect the mutations have on expression

[1] A.]Jolma, T. Kivioja, J. Toivonen, et al. Mul-
tiplexed massively parallel SELEX for char-
acterization of human transcription factor
binding specificities. Genome Res., 20(6):861-

873, Jun 2010.

[2] A.]Jolma, ]. Yan, T. Whitington, J. Toivonen,
et al. DNA-binding specificities of human
transcription factors. Cell, 152(1-2):327-339,

2013.

This is joint work with Arttu Jolma, Teemu Kiv-
ioja, Pasi Rastas, Mikko Sillanpad, Jussi Taipale
and Esko Ukkonen.
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ﬁzoi shape reconstruction tool robust to outliers: k-order a-shape = k-hull + a-shape g

Application 1: Local magnitude scale for Application 2: Patterns in (unplanned)
seismic activity in Fennoscandia muovm Oq _._m_m.s_n —u:_u_.o transport
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We present new methods for multilabel clas-
sification, relying on ensemble learning on a The ensemble prediction for each target is obtained by

collection of random output graphs imposed Can be seen to decompose into a set of "potential func-  averaging the max-marginals of the base models and

on the multilabel and a kernel-based struc- tlons"‘P ( )= (we (%, 4e)) e p ) i choosing the maximizing microlabel for the node:

tured output learner as the base classifier. Di-
versity of base classifiers arises from the dif-
ferent random output structures, a different
approach from boosting or bagging. In our ex-
periments, the random graph ensembles are
very competitive and robust, ranking first or (), 4y w0 (x4l (2, — 1), D (x,—— )} FAYM(3) = (p].AMM(x))
second on most of the datasets. Prediction is by ¥(x) = argmaxycy T, e (, ye)-

T
MMM (x) = argmax P (
] ujeyj ‘ ;1 ]u

and the predicted multilabel is composed from the pre-
dicted microlabels

jev’

In MVE, the ensemble prediction or each microlabel is Generate the union graph of the trees underlying

We study the theoretical property of MAM ensem- ) )
the most frequently appearing prediction among the base  the base models, with average edge labeling scores

ble by analyzing reconstruction error of compatibil- © . ) . :
ity score. Compatibility score for a fixed pair (x,y) classifiers 7] ZteT(e) Yeu(x) (normalized by how many times an
is MVE 1 L edge appears)
F"E(x) = argmax, cy, | 7 ) 1{}?.“)
_ _ i=1 Y ()
)= Z%(X,)’g) = Z le(X,yj)- ®
ecE jev where F(*)(x) = (F" (x))%_, is the predicted multilabel

Denote the ¢* (x, y) optimal compatibility score. Re- in £'th base classifier.

construction error is given by the squared distance:
% 2
M2, y) = (¥ (x,y) — 9" (x,y))
1 *
Af(xy) = 7 & (¥ (oy) =90 (xy)
t

14

2

THEOREM The reconstruction error of compat-
ibility score distribution given by MAM ensemble
AR, (x,y) is guaranteed to be no greater than the
average reconstruction error given by individual base Qur goal is to infer for each microlabel u of each node j its

Inference on the union graph:

learners AR (x,y). In addition, the gap can be esti- max-marginal, that is, the maximum score of a multilabel F""(x) = argmax ) Z wéf (x,ye)

mated as that is consistent with y; = u;, u; € {+,—} YEV  eeUE; T t=

AR(x,y) — AR (x,y) = vart(z ¥i(x,y5)) > 0. Pi(x,u;) =  max Zl/]e X, Ve)- Interpretation: ensemble prediction is the multilabel max-
jev {yej=u} % imizing the average score over the base models.

The variance can be further expanded as

Var(Y" ¥i(x,y;)) = Y Var(¥;(x,y;))

jev jev Figure 1: Ensemble learning curve (microlabel accuracy) plotted as the size of ensemble. Average performance of
N—— base learner with random tree as output graph structure is denoted as horizontal dash line.
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The theoretical analysis of the MAM ensemble high-

lights the covariance of the compatibility scores be- ~ 1able 1: Prediction performance by microlabel accuracy.  Table 2: Prediction performance by multilabel accuracy.

tween the inputs and microlabels learned by the MICROLABEL ACCURACY MULTILABEL ACCURACY
b Iearners as the uantit ex Iainin the ad DATASET SVM BAGGING  ADABOOST MTL MMCRF MAM DATASET SvM BAGGING ADABOOST MTL MMCRF MAM
ase - CING s - i : -
aq y .p 9 EMOTIONS| 77.3+1.9 74.1+18| 76.8%1.6 | 79.8%1.8| 79.2+£09] 80.5+14|[ EMOTIONS 21.2%3.4 20.9+2.6] 23.8+2.3 | 25.5%3.9 26.5+3.1| 304*4.2
vantage of the ensemble prediction over the base YEAST 80.0:0.6] 78.4+0.7] 74.840.3 | 793209 79.7+0.3| 79.9504|[ YEAST 14051.8| 13.1%1.2] 7.5+13 | 11.3%2.§ 13.8+15] 14.0+0.6
SCENE 90.2+0.3| 87.8+0.8] 84.3+0.4 | 884=0.6| 83.4+0.2] 83.0£0.2[ SCENE 52.8+1.0| 465+25| 34.7+18 | 448+3.0 12.6+0.7] 54+05

leamers: Qur results indicate that structured O.Ut- ENRON | 93.600.2 93.7%0.1] 862402 | 935401 949+0.1| 950%02|| ENRON | 04401 | 0.1%02 | 0.040.0 | 04%03| 117412 121410
put prediction methods can be successfully applied CAL500 | 863403] 86.0%02] 749404 | 862402 863+0.2| 863403|| CAL500 | 0.0200| 0.0£00 | 0.040.0 | 0.0£0.0]| 0.0£0.0 | 0.0£0.0

to problems where no prior known output structure | 89.7002| 850407 841405 | 827403 895103 | 895:08| FP 10£10 | 00400 | 0.050.0 | 0.050.0| 04£09 | 0405
! - S NCI60 847107 795408 793410 | 840411 854509 857407|| NCI60 | 43.1413| 211413 25406 | 47.0014| 36.940.8] 40041
exists, and thus widen the applicability of the struc- MEDICAL | 97.4%0.1] 97.4%0.1] 91.4%0.3 | 97.4%0.] 97.9401| 97.9+0.1|[ MEDICAL | 8.2%23 | 8.2%16 | 5.1+1.0 | 82%1.2| 359%2.1| 369+46

CIRCLE10 | 94.8+0.9 92.940.9 98.0+0.4 93.7+1.4 96.7+0.7| 97.5+0.3 CIRCLE10 | 69.1+4.0] 64.8+3.2| 86.0+2.0 66.8+3.4 75.2+5.6| 82.3+2.2
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tured output prediction.
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Programme of the European Community under the PASCAL2 Network of Excellence, ICT-2007-216886. This work only reflects the authors’ views.
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A HEURISTIC FOR COUNTING AND SAMPLING SUBSETS

Teppo Niinimdki, Mikko Koivisto

Consider a collection of weighted subsets of a ground set N. We present a tree-based greedy heuristic, Treedy, that for a given query subset
Q of N and a tolerance d approximates the weighted sum over all subsets of Q within relative error d. It also enables approximate sampling of
subset of Q proportionally to the weights within total variation distance d. Experimental results show that approximations yield dramatic savings
in running time compared to exact computation, and that Treedy typically outperforms a previously proposed sorting-based heuristic.

— INTRODUCTION

Input: A downward closed collection C of
subsets of a ground set N. Weights w(S) >
0for S € C and w(S) = 0 otherwise.

Query: Query set Q C N. Tolerance d > 0.

Counting problem:
Approximate
W(Q) =},
SCQ
within relative error d.

w(S)

Sampling problem:

Draw a random subset S C Q from a dis-
tribution within total variation distance d
from Pr(S) = w(S)/W(Q).

\.

Order-MCMC [1] is a method for learning
the structure of a Bayesian network. It

e samples node orderings v1v; - - - v, from
the posterior distribution

Pr(vivy - vy) = ﬁWi({vl,...,vi,l})
i=1

where W;(Q) = Ygco w;i(S) is a sum
over possible parent sets of v;

= n subset counting queries

e optionally samples DAGs from orderings

= n subset sampling queries

— ALGORITHMS

“Collector algorithm” approach: Visit the
subsets of Q that are in C (called relevant
sets) and add up their weights until the sum
is guaranteed to be within tolerance d.

ALGORITHM:

A baseline method that visits all relevant
sets. Computes the sum exactly.

ALGORITHM:

An idealized method that visits the mini-
mum number of heaviest relevant sets to
reach tolerance d. (Simulated in the experi-
ments.)

ALGORITHM:

An improved version of the heuristic of
Friedman and Koller for order-MCMC [1].

Preprocessing: Sorts the sets in C by
weight starting from the heaviest set.

Per query: Traverses the sorted C until
the weight of the remaining sets is small
enough compared to accumulated weight.

\.

ALGORITHM:

A novel heuristic based on tree traversal.

Preprocessing: Builds a “greedy tree” with
the sets in C as nodes. Computes weight
potentials ¢ and aggregate potentials 1.

Per query: Traverses the tree greedily w.r.t.
1. Ignores irrelevant branches. Stops once
the weight of remaining branches is small
enough compared to accumulated weight.

Sampling within total variation distance d
to the exact distribution is possible by first
visiting relevant sets up to tolerance d and
then drawing samples from visited sets.

J

— EXPERIMENTS

We measured the time (s) per subset count-
ing query as a function of approximation
tolerance d. Parameter k € {4,5} was used
to restrict the size of the subsets in C.

Runtimes for different types of artificial
weight functions (n = 60, k = 5):

flat steep mixture shuffled
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4
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Runtime of order-MCMC for data from
ALARM-network (n = 37, k = 5):
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Runtime of order-MCMC for datasets from
the UCI repository (n € [34,61], k € {4,5}):
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[1] N.Friedman and D. Koller. Being Bayesian about network structure: A Bayesian approach to structure discovery in Bayesian networks.

Machine Learning, 50:95-125, 2003.
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Introduction

Direct temperature measurements are only available from
the past few hundred years. Therefore, proxy measure-
ments must be used. We study the use of different envi-
ronmental proxy variables for temperature reconstruction.
Differences in both the time coverage of the proxies (Fig. 1)
and the temperature signal pre-
sent in them pose a challenge
to the recovery of reliable tem-
perature records (Fig. 2).
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Lake ice (dates of first and last ice) []
Measured temperatures I:

Baltic sea ice cover area [_]

River ice (breaking up of) |:

Carbon isotopes in trees [

Tree ring width |
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[ Length of open water season in lakes ]
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Fig. 1: Rough availability of different proxy measurements
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Environmental Proxy Selection Problem

« Identify the most informative proxy variables for recon-
struction of temperature in Finland (Fig. 3)

Fig. 3: Correlation of various temperature and proxy variables

- Different time of year or different geographic location
= alternative set of good proxies

« With respect to finding solutions to input selection prob-
lems, we are working on an R version of the backward se-
lection type algorithm SISAL [4].

« Extend [4] by exploring more states by branching
- Software package is ready
+ Experiments still needed

The dpIR package for R

The dendrochronology program library in R (dpIR) [1] is
an add-on package for the R Project for Statistical Comput-
ing. These are open source software.

We use the package for preprocessing of tree ring meas-
urements and do active development to make it better suit
our and the users’ needs. Some of our contributions in-
clude:

« Improved performance

» Support for additional data formats (e.g. TRiDaS)

« Other new or borrowed functionality (Fig. 4, 5)
Contributing to dpIR can also open possibilities for re-

search collaboration [2]. period ()
10a (y

Inf 10 5 3.33 2.5 2
T T T T T

Cl99
Cl9s
Cloo

Fig. 4: Amplitude spectrum of x: sine

(period 10 years) + AR(1) noise (green
line). Percentiles from spectra of simu-
lated AR(1) models with AR parameter
fitted from x (other lines). Algorithm of
REDFIT [3] as implemented in dpIR [1].

0.0 0.1 0.2 0.3 0.4 0.5
Frequency (1/yr)

Blackman-Harris, Fixed

o Foure wanstorn

response. Left: As used in REDFIT [3]. Right: Fixed (FFT symmetric) win-
dows used in our implementation of the same algorithm, available in dplR [1].
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WE PROPOSE

an extandable
representation for
polyphonic music, and apply it for
measuring tonal similarity.

PROCESS FLOW

m_”_._DQ i i). Observe all values for the

NOMINAL AND ORDINAL FEATURES  INTERVAL AND RATIO FEATURES | feature

symbolic /

B B y ravitational pull
Extract each feature from each piece O_Mm_._”mq each ﬁmmﬁ:m % <m_:mma based / g i
and assign a character for each distinct | | on all encountered values and give a | . "
value encountered character for each cluster / B Ssion dharaaeiicy

@O@@ccoccccce® | @@@eooccoccoo@ e
vorow -

ii). Cluster values to at most
n clusters

iii). Assign each outlier to the

First, the data is processed into
tempo- and key-invariant form.

‘

Then, time-invariant high-level I }
features are extracted from the Setof midfes RESULTING CHARACTER MATRIX Concaterated tharacter rows
dataset, and the features are ((campostion 1, verson 1) E & b di d | . stecaaes.. )
clustered adaptively to obtain an ((composton 1, verson2) dy oy b dr gy dy 4 | —— D
alphabet for each feature. Finally, N N
the string for each piece of music ° °
is composed by concatenating the
instances of the clustered 5 o
(o) (o]

features. ° °

Eoin — QI
Measuring similarity between the (compositons, verson) —— D
string representations can be done N N
with any similarity metric. We ° -

EAFE e L GG N/ o i der oy o |_Hu

experimented  with
distance.

Hamming L "]
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TO EVALUATE

our approach, we performed a
retrieval experiment with a dataset
of classical variations. The dataset
consists of 17 sets of classical
themes and their variations, with a
total of 95 pieces of music.

PREC PREC@1

KYLINE 0.170 0.232
ISymsoLic 0.525 0.674
e 0.519 0.695
AL FEATURES | 0,449 0.611

The evaluation suggests that the
skyline features might not be
usable alone, but in conjunction
with  jSymbolic features they
provide slightly better results. Also,
the features that are not
dependent on key seem to contain
more distinguishing power.
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INTERACTIVE TOOL FOR POETRY et Compute S
Helsinki Institute of Information Technology
CO-CREATION AT SCHOOL
The goal of the “Poetry Engine”-project is to develop Equal Co-Creation
a software tool based on computational poetry to LD

help kids learn and practice creative language use.
Ideally the design should empower pupils from
different age groups to explore and compose poetic
language in an interactive setting with a
computational poetry engine. The tool is designed for
real educational contexts in the Finnish
comprehensive school. It is build on existing poetry
engines and developed with user centered design
methods.

Phase 1:_User Inspired Prototype Creation

Literature Study on the Design

User Inspied Prototype Crestion
o o of Educational Technology

National Education Policy ‘

toTeachers

[ oo cscommmnc |

Expert Walkthrough on Sketches

Phase 2: User Centered Prototype Testing

User Inspired Prototype Creation

Iterative Testing of Functional Prototype

| Pairs ot Smal Groups of Chidren Final Testing in a Classroom Setting

The design process uses user centered design
methods, which are an established set of techniques
for developing software to the needs and capabilities
of it's users as well as the special properties of the
context the software is used in. User centered
methodology has previously been successfully
applied in the development of serious applications
for computational creativitY by Richie et al. [1], who
buiI(tj a joke generating tool for children with special
needs.

The final design will be powered by existing
computational poetry engines developed by the
Discovery Research Group at the University of
Helsinki. These include the P.O.Eticus engines based
on two different approaches: Generating poetry from
a corpus of patterns via replacement [3] and with
constraints [2].

The corpus based approach already allows for the
user to define a topic for the poem. This topic is then
used for finding semantically related content in a
word association network. The syntax and the
morphology of the poem are fetched from another
corpus. The selection of the corpora offers some
further possibility for user involvement in the initial
stages of poetry creation.

The constraint based approach is based on the
corpus approach and has two components, the
specifier and the explorer. The specifier determines
the syntactical and aesthetical rules of poem creation
and the explorer composes poems according to these
rules. The specifier component can take input from
the user, or use other inspirational material for
automatizing the input generation for the explorer.

To achieve optimal levels of user and machine co-
creation, we will possibly need to develop fast ways
of producing poetic fragments instead of full poems.

The first phase of the project revealed that teachers
recognized poetry as way to promote creative and
free expression in their pupils. The role of the teacher
was also found to be important as a mediator in the
use of any educational software. Teachers also think
that the role of technology is to modernize and
diversify learning, and to motivate and aid pupils.
The need for quality material, especially for learning
to write is evident.

The skills and interests of pupils wary a lot between
individuals and age groups. Especially younger
children have problems with basic tasks, such as
saving their work, logging in into the software, and
using the English language. Some may also struggle
with basic reading and writing tasks in their native
language. Some children may have difficulty in
concentrating, or working in a group.

Hardware and software vary even within one class,
but computers are mainly connected to the internet
and online software is in frequent use. Computers
are usually used alone or in pairs.

Important usability factors relate to offering simple
writing mechanisms, enough support, using
children’s own vocabulary, and in overall building a
clear and responsive interface. A visually pleasant
feel was also promoted by the teachers.

Back End Front End
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The system is developed as a web service to easily
deliver it to multiple platforms without the need of
installation. The back end uses the Python based
Django framework with a database and the front GUI
is developed with HTMLS5. Additionally the back end
offers a python API for connecting poetry engines.

Notably there are at least two contributing creators
in the system: the engine and the user. The API must
therefore allow for communicating information
between the two creators with respectively low
latency. Additionally, the poetry engines may form a
hierarchy, and communicate with the user through a
higher level engine that orchestrates their activity. In
an ideal situation the users and the engine would act
as equal partners creating one poem. However asthe
user is more directly asking for the engine’s help, the
co-operation between them is more like a
commission, or even editorial in nature.
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The current prototype has a simple interface
resembling fridge magnets: Words can be re-ordered
by dragging and dropping, and new words can be
added by clicking. Additionally, a few simple controls
can be used to communicate with the engine asking
for more material. Other controls include for
example the possibility of exporting the poem
outside the framework.

The next step is to evaluate the design with actual
users in different settings. The user evaluations offer
also a possibility to look at the collaboration between
the children and the poetry engine in more detail.
Later on the system offers possibilities of expanding
it's scope to include data gathering on it's use and
peoples reactions to co-created poetry.

Naturally a part of the future work will be making the
system widely available and disseminating
information on it's use to teachers and pupils.

[1] RITCHIE, G., MANURUNG, R., PAIN, H., WALLER, A., BLACK, R. AND
O'MARA, D. 2007. A ﬁractical application of computational humour. In
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[3] TOIVANEN, J., TOIVONEN, H., VALITUTTI, A. AND GROSS, O. 2012.
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Third International Conference on Computational Creativity.
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We present algorithms for finding occurrences of
a given pattern in a polyphonic music database.
Both the database and the pattern are given in
symbolic form as a sequence of notes.
Applications for polyphonic music search include
music analysis and query by humming.

We consider three types of searches. In all
searches we allow pattern transposition i.e. the
pattern may be located in any key. In exact
search we require that the tempo remains
unchanged. In time-scaled search we allow
constant scaling to the note lengths. In time-
warped search we only require that the notes
appear in the correct order.

For example, consider the opening theme from
Bach’s fugue (BWV 871) in Das Wohltemperierte
Klavier in Staff (a). The theme appears more than
twenty times throughout the fugue in exact, time-
scaled and time-warped form. Staff (b) contains
an exact occurrence, Staff (¢) contains a time-
scaled occurrence and Staff (d) contains a time-
warped occurrence.

Let n denote the number of notes in the database
and m denote the number of notes in the pattern.
The exact search problem can be solved using a
simple O(nm) algorithm [1]. The idea is to use m
pointers to database notes. The first pointer goes
through all possible beginning notes of a pattern
occurrence. The other pointers correspond to the
remaining pattern notes and follow the first
pointer. We present new algorithms for time-
scaled and time-warped search.

Time-scaled search

The previous algorithm [2] for time-scaled search
uses precomputed lists of database note pairs and
priority queues to track pattern occurrences that
have a constant scaling factor. The algorithm
works in O(n2m log n) time.

Instead of this, we use a technique similar to the
exact search. The difference is that we have to go
through all combinations of first two pointer
positions. If we use binary search to calculate the
remaining pointer positions, the running time of
the algorithm is O(n?m log n). However, we
achieve a better running time O(n2m) by
increasing each pointer stepwise as in the exact
search algorithm.

Time-warped search

There are two previous algorithms for time-
warped search. The first algorithm [3] resembles
the previous time-scaled algorithm and its
running time is O(n? m log n) as well. The second
algorithm [4] uses dynamic programming and its
running time is O(n?m) .

In our first approach, we first fix the first note of
the occurrence and then check if all the remaining
notes can be found after it. A straightforward
implementation produces an algorithm with
running time O(n?) . If we use binary search
instead, the running time is only O(nm log n).

An alternative approach is to track the pattern
occurrences simultaneously. First, all database
notes are potential beginning notes for an
occurrence. Then, we extend each occurrence one
note at a time as long as it is possible. This
algorithm can be implemented in O(n(m+log n))
time. Moreover, if the set of possible pitches is
constant, the running time is only O(nm).

In the first experiment, we compared the previous
time-scaled algorithm (S1), our O(n2m log n)
algorithm (S2) and our O(n?m) algorithm (S3).
While S1 and S2 have the same time complexity,
S2 seems to be much faster in practice. S3 was
still somewhat faster, especially for the largest
databases.

time (s)
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In the second experiment, we compared the
previous time-warped algorithms (W1 and W2),
our O(n?) algorithm (W3), our O(nm log n)
algorithm (W4) and our O(n(m-+log n)) algorithm
(W5). W4 and W5 were clearly superior to the
other algorithms, and W3 also performed well.
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ON WORD ASSOCIATIONS

Oskar Gross, Antoine Doucet, Hannu Toivonen

The goal of (multi)document
summarization task is to produce a short
n word summary given a single document
or a set of documents.

We propose a methodology association
mixture which utilizes word associations
to pick sentences from the documents to
generate summaries.

The association mixture model has two
components. Both components contain
sentence wise word co-occurrence counts.
We use the multinomial distribution to
model the probabilities. The counts are
used to approximate model parameters.

Background component contains
word associations calculated from a large
document corpus and describe common
associations between words (e.g., car-
tyre, sylvester-stallone, hotel-paris).

Independence component considers
the word associations found in the
document(s).

We assume that word associations
reflect (on some level of abstraction) the
information presented in the documents.
Some of these associations are fairly
common and some are specific to the
documents. We are interested in latter
ones.

The background component is used in
order to ‘cancel out’ word associations
which are expected (e.g., los-angeles).

In addition, we are also interested in
words which have a high probability
of forming pairs (such as words ‘the’,
‘who’,’we’ ete) in order to decrease the
influence of pairs containing such words.

The word associations strength is obtained
by contrasting the association mixture to
the background component. The strength
between words t, and t; is given in (1).

L(pBJrD-ind)

w(ti,t]') = —210g TD) (1)

For finding the summary we will pick
sentences which best cover the highest
scoring Association Mixture associations.
This is related to the weighted set

cover problem - cover as much of

the associations using the sentences
where, due to the limited length

of the summary, the cost is the

number of words in the sentence.

We use DUC 2007 dataset for evaluation.

The dataset:

« Consists of 45 topics;

« Each topic contains 25 documents;

« Human written summaries by DUC;

« Length of summaries: 250 words;

*«ROUGE (Recall-Oriented Understudy for
Gisting Evaluation) is used for measuring
the accuracy against human summaries.

The comparison to the state-of-the-art
methods is given in Table 1 and Figure 1.
Figure 1 also illustrates how the different
components of the association mixture
behave together.

Methods performance is comparable to
state-of-the-art methods.

We can observe, that already small

corpus improves the performance of the
background component.

Our method is unsupervised and is largely
language independent.

Independence component considers
the word associations found in the
document(s).

The word associations strength is obtained
by contrasting the association mixture to
the background component.

The strength between words t, and t; is
given in (1).

For finding the summary we will pick
sentences which best cover the highest
scoring Association Mixture associations.

Generated by the system by
using text in this poster

NIST BL 0335 0.065 0.019 0.31

DSDR- 0.361 0.072 0.021 0.324

LIN [2]

RANDOM 0.363 0.064 0.018 0.335

DSDR- 0.396 0.074 0.020 0.353

NON [2]

NTDSDR[3] 0.398 0.082 - 0.362

CLASSY04 0.401 0.093  0.031 0.363

ASSOC 0.424* 0.104* 0.036* 0.384"
MIX.*

ETTM*[4] 0.441* 0.104* - -
TTM* [4] 0.447* 0107 - -

TABLE 1: * USES WORDNET AND

TOPIC DESCRIPTIONS AS ADDITIONAL
RESOURCES. * USES BACKGROUND
CORPUS AS AN ADDITIONAL RESOURCE.
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FIGURE 1: PERFORMANCE OF THE
METHODS IN TERMS OF AVERAGE
ROUGE-1 F-MEASURE, AS THE
FUNCTION OF THE SIZE OF THE
BACKGROUND CORPUS B.
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