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PART-OF-HIERARCHY: EXAMPLE MULTIRESOLUTION DATA

� Multiresolution data is everywhere: biology, computer vision, telecommunications ...
� Older Generation Technology⇒ Data in Coarse Resolution
� Newer Generation Technology⇒ Data in Fine Resolution
� How to analyze data in multiple resolutions in a single analysis?

BAYESIAN NETWORK FROM
MULTIPLE RESOLUTIONS
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A ∼ Europe; B ∼ Finland; C ∼ Sweden;
D ∼ Denmark; E ∼ Espoo; F ∼ Tampere;
G ∼ Turku; H ∼ Stockholm; I ∼ Copenhagen;

IMPUTING MISSING RESOLUTIONS USING BAYESIAN NETWORKS
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Accuracy in Imputing Missing Values

For a joint distribution P(A,B,C) and an evidence B=true, marginal inference calculation is:
P(A | B = true) ∝ ∑

C
P(A, B = true, C).

To impute missing values, we draw samples under given evidence from consistent junction
tree using BRMLToolbox. Comma in labels in X-axis separates dimensions of two datasets.

MIXTURE MODEL WITH MULTIRESOLUTION COMPONENTS

A multiresolution mixture model 
Parameters of a component distribution (θ

ji
)

...

...
Components of the mixture model (π

j
)

The components of mixture model are Bayesian networks themselves. We use EM algorithm
in a 10-fold cross-validation setting to learn parameters of the mixture model.

MIXTURE MODELLING RESULTS

Multiresolution
Model

Single Resolution Model

The Y-axis shows the negative log likelihood, there-
fore, the shorter the bar, better the result

The work is funded by Helsinki Doctoral Programme in Computer
Science - Advanced Computing and Intelligent Systems (Hecse)
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PREDICTING THE HARDNESS OF LEARNING BAYESIAN NETWORKS
Brandon Malone, Kustaa Kangas, Matti Järvisalo, Mikko Koivisto, Petri Myllymäki

Motivation: There are various algorithms for finding a Bayesian network structure that is optimal with respect to a given scoring function. Due
to the chaotic nature of the running times of such algorithms, it is a priori not clear which algorithm will solve a given problem instance fastest.
Results: 1) We can train models that predict the running time of an algorithm on a given instance with reasonable accuracy based on features
of the instance. 2) Even very simple features admit an efficient hybrid algorithm, or portfolio, that runs the algorithm predicted to be fastest.

INTRODUCTION
BAYESIAN NETWORKS

A Bayesian network is a graphical model
on random variables X1, . . . , Xn.

The structure of a Bayesian network is a di-
rected acyclic graph (DAG) G.

A scoring function s measures how well G
fits observed data on the variables. Typical
scoring functions decompose into a sum

s(G) =
n

∑
i=1

si(Gi) ,

where Gi is the set of parents of Xi in G.

Common s: penalized likelihood, minimum
description length, BDeu, etc.

STRUCTURE LEARNING PROBLEM

Input: A set Gi of candidate parent sets for
each variable Xi and the local scores si(Gi)

for all Gi ∈ Gi.

Task: Find a DAG G such that Gi ∈ Gi and
the score s(G) is maximized. (NP-hard)

MODEL TRAINING
1. Select a set of training instances.

2. Select a set of instance features.

3. Compute the features of each instance.

4. Run all algorithms on all instances and
record their running times.

5. Using the data, learn for each algorithm
a model that maps a feature vector to a
running time prediction.

FEATURES

We consider 74 features of various types:

1. Number of variables n, number of can-
didate parent sets m = ∑n

i=1 |Gi| (typi-
cally |Gi| � 2n−1 due to pruning).

2. Sizes of Gi ∈ Gi: mean, variance, etc.

3. Properties of cyclic upper bound graphs:
average degree, number of leaves, etc.

4. Probing: Properties extracted by running
one algorithm for a few seconds: best
network found, lower bounds, etc.

PREDICTORS

We use REP trees to train two predictors:

Predictor A: Uses the features n and m.
Predictor B: Uses all features.

PORTFOLIO
Given a new instance, a simple portfolio
runs the algorithm predicted to be fastest
by predictor A. Comparison to individual
algorithms and the Virtual Best Solver that
makes perfect predictions:

 0

 100

 200

 300

 400

 500

 600

10
0

10
1

10
2

10
3

n
u

m
b

e
r 

o
f 

in
s
ta

n
c
e

s
 s

o
lv

e
d

time (s)

VBS
portfolio

ILP
A*
BB

Orthogonality between dominant solvers
w.r.t. n and m. Blue instances were solved
faster by ILP, red ones by A*:

 20

 30

 40

 50

 60

10
0

10
1

10
2

10
3

10
4

10
5

10
6

n
u

m
b

e
r 

o
f 

v
a

ri
a

b
le

s
 (

n
)

mean number of candidate parent sets (m/n)

PREDICTION
Although the simple predictor A already
admits an efficient portfolio algorithm, pre-
dictor B makes more accurate predictions:
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ALGORITHMS
Various exact algorithms are guaranteed to
find an optimal G while avoiding exhaus-
tive search in the space of all DAGs:

Dynamic programming over variable sub-
sets finds an optimal ordering of variables
that is compatible with an optimal DAG.

A* search formulates the DP approach as a
shortest-path problem, uses admissible best-
first heuristics to prune the search space.

Integer linear programming searches a con-
vex polytope where each vertex is a feasible
solution. Cutting planes are added during
search to enforce acyclicity.

Branch and bound searches a relaxed space
of cyclic graphs and breaks cycles by branch-
ing on arcs to remove in best-first order.
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LEMPEL-ZIV FACTORIZATION IN EXTERNAL MEMORY
Juha Kärkkäinen
Dominik Kempa
Simon J. Puglisi

For over three decades, the Lempel-Ziv factorization (or LZ77 parsing)
has been a fundamental tool for data compression (e.g. in 7-zip). More
recently it has become the basis for several compressed text indexes
which are particularly effective for massive, highly repetitive data sets.

When computing the parsing for such large data sets, the space re-
quirements of algorithms can become a problem. We escape the lim-
itations of RAM by describing the first external memory LZ77 parsing
algorithms and present their experimental comparison.

LEMPEL–ZIV FACTORIZATION

Lempel-Ziv factorization LZ(T) of string T is a
greedy partition of T into longest previous factors
(LPFs). LPF at position i is the longest factor
T[i..i + `) that also occurs at some position j < i.

Example:
i 0 1 2 3 4 5 6 7 8 9

T[i] A B A B B A B B A B

LPF[2] = AB (j = 0)
LPF[5] = ABBAB (j = 2)

LZ(T): A B A B B A B B A B

text

LZscan

LZ

Algorithm:
LZscan
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BASIC ALGORITHMS

Name I/O complexity Space

SAscan [4] O
(

n
B

(
1 + n log σ

M log n

))
6.5n

eSAIS [1] O
(

n
B log M

B

n
B

)
28n

eSAISlcp [1] O
(

n
B log M

B

n
B

)
54n

LCPscan [3] O
(

n
B

(
1 + n log2 σ

M log2 n

))
16n

EM-LPF [5, 2] O
(

n
B log M

B

n
B

)
26n

LZscan [5] O
(

n
B ·

n log σ
M log n

)
1.5n

SE-KKP [5] O
( n

B
)

21n

EXPERIMENTAL COMPARISON

We implemented and compared all LZ factoriza-
tion algorithms depicted on the right. The al-
gorithms were executed on varying size prefixes
of two testfiles: a large data set containing En-
glish text (left) and a database of Wikipedia ar-
ticles containing many versions of the same arti-
cles (right). All algorithms were allowed to use

3.5GiB of internal memory. The results depend
on the amount of repetitions in the input text.
LZscan dominates all other algorithms for highly
repetitive input but performs poorly when the
data is less repetitive, such as the English test file.
The fastest algorithm for such data is determined
by the ratio of input size to available RAM.
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DETAILED RUNTIME BREAKDOWN

Below we present a detailed runtime breakdown
of LPF-eSAISlcp and LPF-SAscan executed on En-
glish text. The graphs reveal that most of the
time is spent during the computation of support-
ing data structures (SA and LCP). The LCP array
construction is significantly accelerated with the

use of our new algorithm (LCPscan) which makes
SA construction the slowest phase of the factor-
ization. The main challenge in efficient and scal-
able LZ factorization is therefore developing new
methods for suffix sorting, possibly using paral-
lel or distributed computation.
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DISCOVERING SIGNIFICANT EPISODES
NIKOLAJ.TATTI@AALTO.FI
Aalto University, Helsinki Institute of Information Technology

SEQUENTIAL PATTERNS

What event sets occur close to each other?

Episodes:

a set of events
constraints on the order
(repsesented by DAG)

G

a
b

c
d

a should occur first
then b and c, or c and b

finally d

OCCURRENCE AND SUPPORT

When an episode appears in the sequence?

all events should appear in the sequence
DAG should be respected
gaps are allowed

How often episode occur?

Input: Many (short) sequences

a b c d e

b c e

a c e b d

a f e

Input: One long sequence

sliding windows of fixed size
a b c d e a c e b d

minimal windows
a b c d e a c e b d

Testing occurrence is NP-hard
...not sure how to map nodes to a sequence

a b

a c
a b a c

a b

a c
a c a b

Not a problem in practice:

episodes are small: do full enumeration
polynomial delay
use subclasses

parallel / serial / strict

FREQUENT EPISODE MINING

Find all episodes that have high support.

Support is monotonic.
We can generate episodes efficiently by

adding nodes
adding edges
stop if the episode is not frequent

Pattern explosion

High support:

discovered patterns are trivial

Low support:

too many patterns
mostly redundant

PATTERN RANKING

compute the support using some statisti-
cal model
compare the observed support with the
expectation
patterns with large devation are
interesting

INDEPENDENCE MODEL

What is the expected support w.r.t. the inde-
pendence model?

Construct a finite state machine from the
episode:

H1 H2

H3

H4

H5 H6a
b

c

c

b

d

G appears in the sequence if and only if we
can reach H6 from H1

Compute the probabilities iteratively

P (Hi | k) =
∑

Hj∈par(Hi)

p(lab)p(Hj | k − 1)

+ qp(Hi | k − 1),

where

q = 1−
∑

Hj∈par(Hi)

p(lab) .

Example:

p(H6 | k) = p(d)p(H5 | k − 1)

+ (1− p(d))p(H6 | k − 1) .

p(H5 | k) = p(b)p(H4 | k − 1)

+ p(c)p(H3 | k − 1)

+ (1− p(b)− p(c))p(H5 | k − 1) .

PARTITION MODEL

If b occurs often aftern a, then both

G

a
b

c
d

and G1

a
b

are significant.

How to report only G1 and downrank G?

Reduce redundancy using a partition model.

divide episode into two subepisodes
model how soon we can discover each
subepisode and assume independence
between them
use the new model to compute more ac-
curate expected support

G1

a
b G2

c
d

Model how soon b occurs after a and how
soon d occurs after c.

H1 H2

H3

H4

H5 H6a
b

c

c

b

d

Use the new model to compute the expected
support:

b appears soon after a
transition probabilities from H2 to H3 and
from H4 to H5 are large
expected support is increased
observed support is closer to the expected
support
G is not highly ranked anymore

EXAMPLES FROM TEXT DATA

Inaugural addresses by
the Presidents of
The United States

vice presid

chief justice

four

year

ago

preserv

protect

defend

constitut

unit

state

Abstracts from Journal of Machine Learning
(JMLR)

reproduce kernel hilbert space

support vector machin svm

real world data set



> Detailed solution 
If the cost function is the squared error: C(x,y) = |x-y|2, 

the optimization problem is an instance of the k-medoids 

clustering problem.!
!

The  optimization  problem  is  NP-hard,  but  can  be 

approximated  efficiently  using  the  Clustering  LARge 

Applications (Clara) algorithm [1].!
!

We  modify  the  algorithm  by  using  the  smart  seeding 

from  the  k-means++  algorithm  [2],  providing  an 

approximation guarantee. We call this algorithm Clara++.!

!

> Publication 
A  preliminary  version  has  appeared  as  Lijffijt, 

Papapetrou & Puolamäki. Size matters: Finding the most 

informative set  of window lengths.  In Proc. of  ECML-

PKDD, 2012.!
!

The full paper is currently under review.!

> Size matters < 

Finding the most informative set of window lengths 
 

Jefrey Lijffijt 1, Panagiotis Papapetrou 2 and Kai Puolamäki 3 
 

1 Aalto University, 2 Stockholm University, and 3 Finnish Institute for Occupational Health 

> Problem setting 
When looking for local patterns in sequential data, it is 

often difficult to choose the right granularity (window 

length) for analysis.!
!

> Solution 
Select the most informative window length by mapping 

the problem to a regression problem.!
!

Even better, select a small set of window lengths.!
!

> Problem statement 
Let S = <si,…, sn> denote an event sequence and Si,m = 

<si,…, si+m-1> a subsequence of length m.!
!

Given an algorithm that takes as input a subsequence of 

any length m and as output gives a real number f(Si,m),  

a set of possibly interesting window lengths W, the set 

of k most informative window lengths W* is given by!

> References 
[1] Kaufman & Rousseeuw. Finding Groups in Data: An Introduction 

to Cluster Analysis. John Wiley & Sons, 1990. 

[2] Arthur & Vassilvitskii. k-means++: the advantages of careful 

seeding. In Proc. of SODA, 2007. 
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> Example!

!

!

!

!

!

!

!

!

!

!

Figure  1:  Generative  processes  may  have  multiple  components. 

Such structure can only be uncovered by studying multiple window 

lengths concurrently.!
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> Sensor measurements 
We applied our method to data from a strain sensor on 

De Hollandse Brug, a bridge in the Netherlands.!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

Figure 3: By using multiple window lengths, we can see different 

patterns in the data. The three lines show trends of the amount of 

traffic on the bridge at  different  time scales.  The blue and green 

lines are fairly similar, suggesting that two window lengths suffice.!
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> Burstiness of words 
We  computed  optimal  sets  of  window  lengths  for 

several bursty and non-bursty words in Jane Austen’s 

Pride & Prejudice.!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

Figure 2:  Bursty words give longer window lengths,  because the 

scale structure is less gradual then for uniformly distributed words.!
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REGRESSION MODELS FOR DATA STREAMS WITH MISSING VALUES
Indrė Žliobaitė and Jaakko Hollmén

Aalto University, Dept. of Information and Computer Science and Helsinki Institute for Information Technology, Finland
{indre.zliobaite, jaakko.hollmen}@aalto.fi

PROBLEM SETTING AND ASSUMPTIONS
• Predictive modeling for streaming data

– data arrives and needs to be analyzed in real time
– data distribution may change over time
– predictive model adapts during operation

• Problem: massively missing input data (∼50% of records),
while predictions are needed non-stop

• Our approach: make predictive models robust to missing data
• Focus: linear regression models
• Benefits: very fast imputation,

computationally light and online updatable models

POSSIBLE SOLUTIONS

What
to do?

Impute
missing
values Model based

imputation
/Computationally
infeasible

Single
imputation /Biased estimates

Models
on subspaces

/Computationally
infeasible

Case
deletion

/No predictions

EXPECTED PREDICTION ERROR

The expected error of a linear prediction model with mean imputation is

E[MSEp] = (1− p)E[MSE0] + p− p(1− p)βT(Σ− I)β,

p - probability of a missing value in an observation vector, β - regression coefficients,
Σ - covariance matrix of the input data, MSE0 - the error when no data is missing.
Assumption: variables are missing independently with the uniform prior probability.

Deterioration index: D = βT(Σ− I)β.

Implications
• If Σ = I (independence), then D = 0 and MSE increases linearly in p.
• If Σ 6= I and D < 0 (overfitting) then MSE increases quadratically.
• If Σ 6= I and D > 0 then MSE increases only sub-linearly.

EXAMPLE

Data: x1 = x2 = x3 = x4 = y, x1 ∼ N (0, 1).

0 0.5 1
0

1

2

probability of missing (p)

Th
eo

re
tic

al
M

SE
p

Overfitted
Independent
PCA
ROB (our model)
naive

Four regression models (for all MSE0 = 0):
• Independent: ŷ = x1;
• PCA: ŷ = 0.25x1 + 0.25x2 + 0.25x3 + 0.25x4;
• Overfitted: ŷ = 2x1 − 1.5x2 + x3 − 0.5x4;
• ROB regression: different model for each value of p.

HOW TO BUILD ROBUST REGRESSION MODELS?
Minimize E[MSEp]. Theoretically optimal solution is

β̂ROB =
(
(1− p)XTX + pnI

)−1
XTy,

p - probability of a missing value in an observation vector, X - training data inputs,
y - training targets, n - training set size, I - identity matrix.

ROB is similar to the Ridge regression β̂RR = (XTX + λI)−1XTy.

ONLINE UPDATES WITH STREAMING DATA

For each new observation x, predict ŷ = xβ̂.

When the true target y arrives, update the model:
• S← S + xxT − p(xxT − I)
• β̂← β̂ + S−1x(y− xT β̂)− S−1 p(xxT − I)β̂

S is the covariance estimate, offline for centered data S = XTX/n.

Compared models: ROB and

Inputs Optimization
OLS RR

all r ALL rALL
selected k SEL rSEL

PCA k PCA rPCA
PLS k PLS

OLS - Ordinary least squares,
RR - Ridge regression

PERFORMANCE
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The proposed ROB regression consistently achieves the best performance.

References: Žliobaitė, I., Hollmén, J. (2013). Fault tolerant regression for sensor data. Proc. of the European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in Databases (ECMLPKDD’13), Springer LNAI 8188, p. 449-464.
Žliobaitė, I., Hollmén, J. Optimizing regression models for data streams with missing values. Journal paper under review (MLJ).
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Major part of star formation, be it low- or high-mass stars,
takes place in clusters. The clusters are not bound and will
eventually disrupt e.g. because of the Galactic differential
rotation. The stellar clusters trace therefore the recent
Galactic star formation. The younger the clusters are the
more compact they are and the more closely they are
associated with the interstellar gas and dust clouds they
formed in. Detailed study of young clusters still associated
with their parent cloud will provide information on the star
formation process and the stellar initial mass function.

At the moment some 2000 Galactic stellar clusters are
known. This is only a small fraction of the estimated total
population of which a major part is obscured by interstellar
dust to us and can not be observed in optical wavelengths.
However, the extinction decreases at longer wavelengths
and in the K-band (2.2 microns in the near infrared) the
extinction is only 11 percent of that in the optical V-band
(0.55 microns).

The aim of this research is to develop methods to locate
previously unknown stellar clusters from two near infrared
surveys: the UKIDSS Galactic Plane Survey (GPS; Lucas et
al. 2008) mapping the northern plane of the Milky Way,
and the VISTA variables in the Vía Láctea (VVV; Minniti et
al. 2010) survey mapping the Galactic bulge and the
southern disk. These new surveys don't cover the whole sky
but they are many times deeper than their predecessor, the
Two-Micron All-Sky Survey (2MASS; Skrutskie et al. 2006)
covering the whole Milky Way.

The search method takes pre-filtered catalogue data, divided into overlapping bins, and
performs a maximum likelihood fitting of a mixture of a Gaussian density and a uniform
background. On each bin the fitting is done using the standard Expectation Maximization
(EM) algorithm. The real clusters and locations of star formation are selected by visually
inspecting the images of the cluster candidate areas suggested by the automated search of
the catalogue data. In addition to the UKIDSS and VVV catalogues, stars brighter than 10m

in K from the 2MASS survey are used, because the brighter stars saturate in UKIDSS and
VVV, and moreover tend to produce false positives around them.

Scrutiny of the data base and the survey images reveals that the survey pipeline source
detection algorithm tends to classify most of the objects within regions of variable surface
brightness as non-stellar (parameter mergedClass=+1), whereas objects with intensity
profiles similar to the cameras point spread function are classified as star-like
(mergedClass=-1). Clustering non-stellar sources directs the search to stellar clusters either
embedded in or near molecular/dust clouds. Besides stellar clusters, the search targets also
the locations of non-clustered star formation and single embedded stars with associated
nebulosities. The surface brightness, either due to outflow activity or reflection, will
produce "cluster" detections.

For UKIDSS as expected most of the detected new clusters (137) and sites of star formation
(30) are tightly concentrated on the Galactic plane. Relatively few new clusters were
detected in the direction of the northern Galactic plane because this is in the direction of the
Galactic anticentre where the absolute number of clusters is much lower than that in the
inner galaxy. Likewise for VVV most candidates (88 clusters and 39 sites of star formation)
are in the Galactic plane outside the bulge area where the contamination from the field stars
is overwhelming and our method is not able to trap the clusters.

Most images of the new cluster candidate areas show clear signs of reflected light in
particular in in the K-band thus indicating embedded clusters or sites of star formation.

The next step in this research is to locate clusters using the measured colours of the stars.

Besides an IRAS point an MSX source, an HII region and a submillimetre
source are detected in the direction of this candidate.

New cluster candidate identified previously as  an infrared point source

In the leftmost panel are the UKIDSS catalogue entries in the cluster area.
The red points are UKIDSS non-stellar sources brighter than 17m in K,
black points other sources brighter than 17m in K, yellow points sources
fainter than 17m in K, and brown points sources listed in 2MASS but not in
UKIDSS GPS. The red confidence ellipse is the cluster area given by the
EM-algorithm. In the two middle panels are the K-band and JHK false
colour images of the cluster area. In the 2MASS image (the rightmost
panel) of the same area no cluster can be seen.

The number of indicators (IRAS, MSX, (sub)mm sources,masers, and HII
regions) seen in the direction of many candidates gives confidence the new
clusters or embedded star formation locations are real entities and not
produced by chance nor are due to catalogue artefacts. In general radio
surveys find circumstellar dust envelopes and disks, and cold cores of
molecular clouds. In areas where a radio telescope sees only a point source
or signs of e.g. an ultracompact HII region, the UKIDSS and VVV images
show structures of surface brightness and single stars thus verifying the
results of the millimetre/submillimetre radio surveys of suspected star
forming regions.

Specifically, many candidates are associated with infrared dark clouds.
This is not surprising as these clouds are assumed to be the forming sites
of massive clusters.

Zone of avoidance galaxies (ZOAGs) have been identified in the direction
of four of the UKIDSS cluster candidates. So instead of being extragalactic
sources these are Galactic clusters. On the other hand the cluster search
using the VVV survey resulted in four new ZOAGs.

Mining the near infrared sky: star formation and
embedded clusters

The results for both surveys have been published in the journal Astronomy
& Astrophysics (DOI:
10.1051/0004-6361/201118531 and 10.1051/0004-6361/201322890).
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ALGORITHMS FOR
GENOME ASSEMBLY Leena Salmela, Veli Mäkinen, Niko Välimäki, and Esko Ukkonen

Reads

Genome size: 350 Mbp

Melitaea cinxia
Photo: Niclas Fritzén

454 SOLiD Illumina PacBio
Reads 12 million 210 million 349 million 2.7 million
Read length 400–800 bp 50 bp 75–150 bp Up to 23.5 kbp
Errors Indels Mismatches Mismatches Indels
Paired end - - 600 bp, 800 bp -
Mate pairs 7 kbp, 16 kbp 2–5 kbp 1 kbp, 2–4 kbp -
Other Also single Color coding - High error rate

Total input data size: 50000 Mbp

Error Correction
Remove sequencing

errors by aligning the

reads with each other

Hybrid SHREC
• Based on SHREC

by Schröder et al.

• Build a suffix trie
of the read set.

• Correct low weight
nodes in the trie
by comparing to
siblings

• Support for simul-
taneous correction
of color coded and
base coded reads

node with low weight
node with higher weight A T

level=r

L. Salmela: Correction of sequencing errors in a mixed set of
reads. Bioinformatics 26:10(1284–1290), 2010. (Award for best
paper submitted to HiTSeq 2010).

Overlap Computation
Find suffix-prefix

overlaps between reads.

Represent the overlaps

in an overlap graph.

Coral
• Build multiple

alignments of reads
that share k-mers

• Correct reads based
on these multiple
alignments

• Sequencing error
model can be spec-
ified by setting gap
penalty and mis-
match penalty for
multiple alignments

G T A A – G T T G A A C C C T T A
A A A G T T G A A C C C T T A C C

G T T G A A C C – T T A C C C G G

G A C C C C T T A C C C G G T T C A

L. Salmela and J. Schröder: Correcting errors in short reads
by multiple alignments. Bioinformatics 27(11):1455–1461, 2011.
(Also in HiTSeq 2011).

Contig Assembly
Report paths in the

overlap graph as contigs,

i.e. contiguous sequences.

Overlap Tool
• Supports mis-

matches and indels
in the overlaps

• Based on Burrows-
Wheeler transform,
backward backtrack-
ing (Lam et al.
2008) and suffix fil-
ters (Kärkkäinen et
al. 2008)

• Easy to parallelize

• Scales up to mil-
lions of reads

N. Välimäki, S. Ladra, and V. Mäkinen: Approximate all-pairs
suffix/prefix overlaps. Information & Computation 213:49–58,
2012 (CPM 2010 Special Issue).

Scaffolding
Mate pairs give links

between contigs.

Remove minimum

number of mate pairs

so that the remaining

ones are consistent.

MIP Scaffolder
• Partitioning the problem into smaller

subproblems of restricted size

• Solving each subproblem as a mixed integer
program (MIP)

L. Salmela, V. Mäkinen, N. Välimäki, J. Ylinen, and E. Ukko-
nen: Fast scaffolding with small independent mixed integer
programs. Bioinformatics 27:23(3259–3265), 2011.

Superscaffolder
• Break chimeric scaffolds (assignment to several

chromosomes)

• Find paths based on mate pair links between
scaffolds in the same chromosome

• Remove ambiguous connections (manually or
automatically)

Gap Closing
Use paired end reads

to fill the gaps

between contigs.
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Superscaffolding
Use mate pairs and

genetic map as a guide

to connect scaffolds in

the same chromosome.

Validation
Genetic map, Map

ESTs to scaffolds,...

Annotation

Validation with ESTs
• Align ESTs against scaffolds:

– Find local maximal approximate matches
(swift by Rasmussen et al. 2006)

– Produce maximal colinear chains of the
above matches (Abouelhoda 2007)

• Compute the coverage of ESTs

V. Mäkinen, L. Salmela, and J. Ylinen: Normalized N50 as-
sembly metric using gap-restricted co-linear chaining. BMC
Bioinformatics 13:255, 2012.

(Error corrected)
Mate pairs

Genetic map
(Chromosome
assignment for
some scaffolds)
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INTRODUCTION
• Protein-protein interactions (PPI): important for

system-level understanding of biological processes

• BIOLEDGE project: BIO knowLEDGe Extrac-
tor and Modeler for Protein Production, focus on
secretion proteins

• target species: Saccharomyces cerevisiae,
Pichia pastoris, Trichoderma reesei

RESEARCH GOALS
• (I) investigate the descriptive power of different

features extracted from the protein sequences
and genes

• (II) test 3 methods for graph inference: classi-
fication based on local modeling, classification
based on global modeling, unsupervised graph
inference based on expression data

• (III) overlay resulting networks

DATA SETS
Secretion Model by Feizi, Nielson et al. Genome-scale
modeling of Protein Secretory Machinery in Yeast, PLOS
(2013)

• Network of the components of the yeast (S. cere-
visiae) secretory pathway

• 161 Proteins

• 50363 variables

• represents an undirected graph
Figure 1: Number of variables per data source and their
coverage.

KEGG Pathway

• Genome scale metabolic network in S. cerevisiae
from KEGG

• 1335 Proteins

• 200317 variables

• represents a directed graph
Figure 2: Number of variables per data source and their
coverage.

- Sparse, High-Dimensional, Few Instances -
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PROTEIN-PROTEIN-INTERACTION (PPI) PREDICTION
Given a set of proteins V = (v1, ..., vn),
a set of feature vectors Φ(v1), ..., Φ(vn) ∈ <p,
a set of known interactions S = ((e1, y1), ..., (em, ym))

as pairs of vertices: ei ∈ V ×V with yi = [1;−1].

INFERENCE WITH LOCAL MODELS
1. choose a seed vertex vseed ∈ V
2. create local training set
3. feature selection based on confidence of feature-
label pairs
4. train SVM on the local training set
5. predict label of any vertex that has no label
6. repeat step 1.-6. for each vertex vseed ∈ V
7. combine the predicted edges

INFERENCE WITH GLOBAL MODELS
1. define representation of the protein’s attributes for
pairs of proteins
2. binary classification problem over pairs of vertices

* Kernels: direct Sum, direct Product, tensor product
pairwise kernel, maximum tensor product pairwise ker-
nel (MaxK), metric learning pairwise kernel (MLPK)

(both methods from Vert J.P.: Reconstruction of Bio-
logical Networks by Supervised Machine Learning Ap-
proaches. Wiley, pp. 163-188 (2010))

UNSUPERVISED INFERENCE
* based on estimating the inverse covariance matrix of
microarray data ie. yeast2 dataset
* methods: partial correlations (qp-graph de la Fuente
et al: Discovery of meaningful associations in genomic
data using partial correlation coefficients. Bioinformat-
ics Vol. 20 no. 18 (2004)), context likelihood of relat-
edness (CLR) algorithm (Faith et al. Large-Scale Map-
ping and Validation of Escherichia coli Transcriptional
Regulation from a Compendium of Expression Profiles,
PLOS, 2007 )

PPI PREDICTION RESULTS FOR DIFFERENT ’OMICS DATA
Figure 3: Local modeling of Secretion data

Figure 4: Global modeling of Secretion data

Figure 5: Local modeling of KEGG pathway data

Figure 6: Global modeling of KEGG pathway data

best local model best global model best unsupervised
Secretion Model linear SVM AUC = 0.784 MaxK AUC = 0.812 CLR AUC = 0.638
KEGG pathway FS, linear SVM AUC = 0.685 MLPK AUC = 0.654 QP-15 AUC = 0.649

OVERLAYING RESULT NETWORKS
Figure 7: Secretion data Figure 8: KEGG pathway data

best overlay: CombSum
Secretion Model AUC = 0.843
KEGG pathway AUC = 0.703

• integration of multiple data
sources and overlaying of
different result networks in-
creases the prediction ac-
curacyCONCLUSIONS

Drawbacks of current approaches:

• local modeling does not scale well - running
time linear in number of proteins

• global modeling has large memory require-
ments - quadratic in number of proteins

• sequence features like Blast and GTG are more
informative than genomic features such as ex-
pression data for biological network prediction

• undirected graphs are easier to predict than di-
rected ones
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MODELING AND PREDICTING REGULATORY AREAS
Jarkko Toivonen and Esko Ukkonen, Department of Computer Science

REGULATION OF GENES

The basic question is why gene expression dif-
fers between cells of single organism even though
the cells contain the same DNA.
What affects the gene expression of a cell?

• Environmental condition

• Cell type

• The stage of development of an organism

What mechanism regulates the expression of genes?

• A promoter is an area in DNA close to the
beginning of a gene. Transcription of a
gene starts here.

• Certain proteins, called transcription fac-
tors (TF), can regulate the transcription of
the gene by binding to its promoter area.

A MODEL FOR A BINDING SITE

Binding sites of transcription factors

• In order to understand how the regula-
tory system works, it is important to be
able to describe and predict the binding
sites of transcription factors in the genome

• A model that describes the binding sites
where the TF prefers to bind is called mo-
tif, which can be represented, for exam-
ple, by

– A consensus sequence of a TF is the
DNA sequence with the highest bind-
ing affinity to the TF

– Regular expression (like ACG[GC]TT)

– Position Weight Matrix (PWM) and
its sequence logo, shown on left

DATA

The SELEX procedure (Systematic evolution of lig-
ands by exponential enrichment) is a high-throughput
in vitro method for selecting DNA sequences ac-
cording to the binding affinity of the TF to the
sequence.
From this dataset we can learn a motif model for
the transcription factor in question.
Why use SELEX?

• Lots of TF bound sequences are produced
which enable high precision motifs

• Fast and relatively inexpensive

LEARNING A PWM FROM SELEX DATA

Using the SELEX data

• The SELEX procedure results in a set of
fixed length sequences that were bound
by the transcription factor

• Sequences are fed to a motif finding pro-
gram which produces an alignment of the
binding sites

• An example of counts from the aligment
of the SELEX experiment with the ERG
transcription factor

1 2 3 4 5 6 7 8 9
A 164 22 23 0 0 164 164 98 6
C 10 164 164 0 0 1 1 9 42
G 37 23 0 164 164 0 1 164 21
T 31 3 0 0 1 1 40 2 164

• These counts are then normalized column-
wise, resulting in a multinomial distribu-
tion in each of the columns. This matrix
can be visualised as a sequence logo.

An example of a PWM logo for the CEBPB factor:

CEBPB 
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CO-OPERATIVE BINDING (COB) MODEL

Distances between closely bound transcription
factors and their relative orientation can affect
the strength of co-operative binding (COB) of two
TFs. The case Head-to-tail (HT) orientation and
distance −2 is illustrated below for factor CEBPB

Visualisation of COB model:

CEBPB
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The value of co-operative binding in each cell is
computed using the count observed in the SE-
LEX data and the expected count in similar but
random background of the case corresponding
to the cell:

log2
observed count
expected count

MODEL FOR REGULATORY AREAS

We have created a model for predicting putative
regulatory clusters called scanner. The model com-
prises of the following parts:

• PWMs describing the binding sites of tran-
scription factors

• COB models describing the interaction be-
tween transcription factor pairs

• A dinucleotide model that describes the
affinity of a nucleosome to DNA

– Nucleosomes pack DNA and ther-
fore affect the availability of the un-
derlying DNA for TF binding

The clusters are found using dynamic program-
ming that searches chains of TF binding sites

• The validity of the model can be tested
with in vivo data, like ChIP-seq

• For n TFs we need n PWM and n2 COB
models

APPLICATION IN CANCER RESEARCH

Even though understanding of the regulatory sys-
tem is important in itself, still the main objective
is cancer research.

• Oncogenes promote cell growth and re-
production

• Tumor suppressor genes inhibit cell divi-
sion and survival

• Mutations in the DNA can affect the ex-
pression of these genes. This can result in
unrestricted growth, i.e. cancer

• The scanner can be used to predict the ef-
fect the mutations have on expression

[1] A. Jolma, T. Kivioja, J. Toivonen, et al. Mul-
tiplexed massively parallel SELEX for char-
acterization of human transcription factor
binding specificities. Genome Res., 20(6):861–
873, Jun 2010.

[2] A. Jolma, J. Yan, T. Whitington, J. Toivonen,
et al. DNA-binding specificities of human
transcription factors. Cell, 152(1–2):327–339,
2013.

This is joint work with Arttu Jolma, Teemu Kiv-
ioja, Pasi Rastas, Mikko Sillanpää, Jussi Taipale
and Esko Ukkonen.
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ABSTRACT
We present new methods for multilabel clas-
sification, relying on ensemble learning on a
collection of random output graphs imposed
on the multilabel and a kernel-based struc-
tured output learner as the base classifier. Di-
versity of base classifiers arises from the dif-
ferent random output structures, a different
approach from boosting or bagging. In our ex-
periments, the random graph ensembles are
very competitive and robust, ranking first or
second on most of the datasets.

ENSEMBLE ANALYSIS
We study the theoretical property of MAM ensem-
ble by analyzing reconstruction error of compatibil-
ity score. Compatibility score for a fixed pair (x, y)
is

ψ(x, y) = ∑
e∈E

ψe(x, ye) = ∑
j∈V

ψj(x, yj).

Denote the ψ∗(x, y) optimal compatibility score. Re-
construction error is given by the squared distance:

∆R
MAM(x, y) =

(
ψ∗(x, y)− ψMAM(x, y)

)2

∆R
I (x, y) =

1
T ∑

t

(
ψ∗(x, y)− ψ(t)(x, y)

)2
.

THEOREM The reconstruction error of compat-
ibility score distribution given by MAM ensemble
∆R

MAM(x, y) is guaranteed to be no greater than the
average reconstruction error given by individual base
learners ∆R

I (x, y). In addition, the gap can be esti-
mated as

∆R
I (x, y)− ∆R

MAM(x, y) = Vart(∑
j∈V

Ψj(x, yj)) ≥ 0.

The variance can be further expanded as

Var(∑
j∈V

Ψj(x, yj)) = ∑
j∈V

Var(Ψj(x, yj))

︸ ︷︷ ︸
diversity

+ ∑
p,q∈V,

p 6=q

Cov(Ψp(x, yp), Ψq(x, yq))

︸ ︷︷ ︸
coherence

.

CONCLUSION
We have put forward new methods for multilabel
classification, relying on ensemble learning on ran-
dom output graphs. In our experiments, models
thus created have favourable predictive performances
on a heterogeneous collection of multilabel datasets.
The theoretical analysis of the MAM ensemble high-
lights the covariance of the compatibility scores be-
tween the inputs and microlabels learned by the
base learners as the quantity explaining the ad-
vantage of the ensemble prediction over the base
learners. Our results indicate that structured out-
put prediction methods can be successfully applied
to problems where no prior known output structure
exists, and thus widen the applicability of the struc-
tured output prediction.
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MODELS
BASE LEARNER (MMCRF)
Can be seen to decompose into a set of "potential func-
tions" Ψ(t)

E (x) = (ψ
(t)
e (x, ue))e∈E(t) ,ue∈Ye

1

j
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k

3

.  .   ..  .   .
.  .   .

I
I
I

 
( )

( ) = ( 
( )

( , )) 2 ( ), 2Y
e

{ψ(t)
e (x,++), ψ

(t)
e (x,+−), ψ

(t)
e (x,−+), ψ

(t)
e (x,−−)}

Prediction is by ŷ(x) = argmaxy∈Y ∑e ψe(x, ye).

MAJORITY VOTING ENSEMBLE (MVE)
In MVE, the ensemble prediction or each microlabel is
the most frequently appearing prediction among the base
classifiers

FMVE
j (x) = argmaxyj∈Yj

(
1
T

T

∑
i=1

1{F(t)j (x)=yj}

)
,

where F(t)(x) = (F(t)
j (x))k

j=1 is the predicted multilabel
in t’th base classifier.

AVERAGE OF MAX-MARGINALS (AMM)
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Our goal is to infer for each microlabel u of each node j its
max-marginal, that is, the maximum score of a multilabel
that is consistent with yj = uj, uj ∈ {+,−}

ψ̃j(x, uj) = max
{y∈Y :yj=uj}

∑
e

ψe(x, ye).

The ensemble prediction for each target is obtained by
averaging the max-marginals of the base models and
choosing the maximizing microlabel for the node:

FAMM
j (x) = argmax

uj∈Yj

1
|T|

T

∑
t=1

ψ̃
(t)
j,uj

(x),

and the predicted multilabel is composed from the pre-
dicted microlabels

FAMM(x) =
(

FAMM
j (x)

)
j∈V

.

MAXIMUM AVERAGE MARGINALS (MAM)
Generate the union graph of the trees underlying
the base models, with average edge labeling scores

1
|Te | ∑t∈T(e) ψ

(t)
e,u(x) (normalized by how many times an

edge appears)
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Inference on the union graph:

FMAM(x) = argmax
y∈Y

∑
e∈∪t Et

1
T

T

∑
t=1

ψ
(t)
e (x, ye)

Interpretation: ensemble prediction is the multilabel max-
imizing the average score over the base models.

EXPERIMENTAL RESULTS
Figure 1: Ensemble learning curve (microlabel accuracy) plotted as the size of ensemble. Average performance of
base learner with random tree as output graph structure is denoted as horizontal dash line.
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Table 1: Prediction performance by microlabel accuracy.

DATASET
MICROLABEL ACCURACY

SVM BAGGING ADABOOST MTL MMCRF MAM

EMOTIONS 77.3±1.9 74.1±1.8 76.8±1.6 79.8±1.8 79.2±0.9 80.5±1.4
YEAST 80.0±0.6 78.4±0.7 74.8±0.3 79.3±0.2 79.7±0.3 79.9±0.4
SCENE 90.2±0.3 87.8±0.8 84.3±0.4 88.4±0.6 83.4±0.2 83.0±0.2
ENRON 93.6±0.2 93.7±0.1 86.2±0.2 93.5±0.1 94.9±0.1 95.0±0.2
CAL500 86.3±0.3 86.0±0.2 74.9±0.4 86.2±0.2 86.3±0.2 86.3±0.3
FP 89.7±0.2 85.0±0.7 84.1±0.5 82.7±0.3 89.5±0.3 89.5±0.8
NCI60 84.7±0.7 79.5±0.8 79.3±1.0 84.0±1.1 85.4±0.9 85.7±0.7
MEDICAL 97.4±0.1 97.4±0.1 91.4±0.3 97.4±0.1 97.9±0.1 97.9±0.1
CIRCLE10 94.8±0.9 92.9±0.9 98.0±0.4 93.7±1.4 96.7±0.7 97.5±0.3
CIRCLE50 94.1±0.3 91.7±0.3 96.6±0.2 93.8±0.7 96.0±0.1 97.9±0.2
@Top2 4 0 2 2 5 9

Table 2: Prediction performance by multilabel accuracy.

DATASET
MULTILABEL ACCURACY

SVM BAGGING ADABOOST MTL MMCRF MAM

EMOTIONS 21.2±3.4 20.9±2.6 23.8±2.3 25.5±3.5 26.5±3.1 30.4±4.2
YEAST 14.0±1.8 13.1±1.2 7.5±1.3 11.3±2.8 13.8±1.5 14.0±0.6
SCENE 52.8±1.0 46.5±2.5 34.7±1.8 44.8±3.0 12.6±0.7 5.4±0.5
ENRON 0.4±0.1 0.1±0.2 0.0±0.0 0.4±0.3 11.7±1.2 12.1±1.0
CAL500 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
FP 1.0±1.0 0.0±0.0 0.0±0.0 0.0±0.0 0.4±0.9 0.4±0.5
NCI60 43.1±1.3 21.1±1.3 2.5±0.6 47.0±1.4 36.9±0.8 40.0±1.0
MEDICAL 8.2±2.3 8.2±1.6 5.1±1.0 8.2±1.2 35.9±2.1 36.9±4.6
CIRCLE10 69.1±4.0 64.8±3.2 86.0±2.0 66.8±3.4 75.2±5.6 82.3±2.2
CIRCLE50 29.7±2.5 21.7±2.6 28.9±3.6 27.7±3.4 30.8±1.9 53.8±2.2
@Top2 5 2 2 2 6 8
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TREEDY: A HEURISTIC FOR COUNTING AND SAMPLING SUBSETS
Teppo Niinimäki, Mikko Koivisto

Consider a collection of weighted subsets of a ground set N. We present a tree-based greedy heuristic, Treedy, that for a given query subset
Q of N and a tolerance d approximates the weighted sum over all subsets of Q within relative error d. It also enables approximate sampling of
subset of Q proportionally to the weights within total variation distance d. Experimental results show that approximations yield dramatic savings
in running time compared to exact computation, and that Treedy typically outperforms a previously proposed sorting-based heuristic.

INTRODUCTION
PROBLEM DEFINITION

Input: A downward closed collection C of
subsets of a ground set N. Weights w(S) ≥
0 for S ∈ C and w(S) = 0 otherwise.

Query: Query set Q ⊆ N. Tolerance d ≥ 0.

Counting problem:
Approximate

W(Q) = ∑
S⊆Q

w(S)

within relative error d.

Sampling problem:
Draw a random subset S ⊆ Q from a dis-
tribution within total variation distance d
from Pr(S) = w(S)/W(Q).

APPLICATION: BAYESIAN
NETWORK LEARNING

Order-MCMC [1] is a method for learning
the structure of a Bayesian network. It

• samples node orderings v1v2 · · · vn from
the posterior distribution

Pr(v1v2 · · · vn) =
n

∏
i=1

Wi({v1, . . . , vi−1})

where Wi(Q) = ∑S⊆Q wi(S) is a sum
over possible parent sets of vi

⇒ n subset counting queries

• optionally samples DAGs from orderings

⇒ n subset sampling queries

ALGORITHMS
”Collector algorithm” approach: Visit the
subsets of Q that are in C (called relevant
sets) and add up their weights until the sum
is guaranteed to be within tolerance d.

ALGORITHM: EXACT

A baseline method that visits all relevant
sets. Computes the sum exactly.

ALGORITHM: IDEAL

An idealized method that visits the mini-
mum number of heaviest relevant sets to
reach tolerance d. (Simulated in the experi-
ments.)

ALGORITHM: SORTED

An improved version of the heuristic of
Friedman and Koller for order-MCMC [1].

Preprocessing: Sorts the sets in C by
weight starting from the heaviest set.

Per query: Traverses the sorted C until
the weight of the remaining sets is small
enough compared to accumulated weight.

ALGORITHM: TREEDY

A novel heuristic based on tree traversal.

Preprocessing: Builds a ”greedy tree” with
the sets in C as nodes. Computes weight
potentials φ and aggregate potentials ψ.
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Per query: Traverses the tree greedily w.r.t.
ψ. Ignores irrelevant branches. Stops once
the weight of remaining branches is small
enough compared to accumulated weight.

FROM COUNTING TO SAMPLING

Sampling within total variation distance d
to the exact distribution is possible by first
visiting relevant sets up to tolerance d and
then drawing samples from visited sets.

EXPERIMENTS
We measured the time (s) per subset count-
ing query as a function of approximation
tolerance d. Parameter k ∈ {4, 5} was used
to restrict the size of the subsets in C.

ARTIFICIAL INSTANCES

Runtimes for different types of artificial
weight functions (n = 60, k = 5):
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BAYESIAN NETWORK LEARNING

Runtime of order-MCMC for data from
ALARM-network (n = 37, k = 5):
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Runtime of order-MCMC for datasets from
the UCI repository (n ∈ [34, 61], k ∈ {4, 5}):
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[1] N. Friedman and D. Koller. Being Bayesian about network structure: A Bayesian approach to structure discovery in Bayesian networks.
Machine Learning, 50:95–125, 2003.



Introduction
Direct temperature measurements are only available from 

the past few hundred years. Therefore, proxy measure-

ments must be used. We study the use of different envi-

ronmental proxy variables for temperature reconstruction. 

Differences in both the time coverage of the proxies (Fig. 1) 

and the temperature signal pre-

sent in them pose a challenge 

to the recovery of reliable tem-

perature records (Fig. 2).

Environmental Proxy Selection Problem
• Identify the most informative proxy variables for recon-

struction of temperature in Finland (Fig. 3)

• Different time of year or different geographic location

    z alternative set of good proxies

• With respect to finding solutions to input selection prob-

lems,  we are working on an R version of the backward se-

lection type algorithm SISAL [4].

• Extend [4] by exploring more states by branching

• Software package is ready

• Experiments still needed

The dplR package for R
The dendrochronology program library in R (dplR) [1] is 

an add-on package for the R Project for Statistical Comput-

ing. These are open source software.

We use the package for preprocessing of tree ring meas-

urements and do active development to make it better suit 

our and the users’ needs. Some of our contributions in-

clude:

• Improved performance

• Support for additional data formats (e.g. TRiDaS)

• Other new or borrowed functionality (Fig. 4, 5)

Contributing to dplR can also open possibilities for re-

search collaboration [2].

Analysis of Environmental Proxies

and Dendrochronological Series 
 Mikko Korpela and Jaakko Hollmén

{mikko.korpela, jaakko.hollmen}@aalto.fi
Aalto University School of Science, Department of Information and Computer Science

Helsinki Institute for Information Technology HIIT
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Fig. 1: Rough availability of different proxy measurements

Fig. 2: Different tem-

perature reconstruc-

tions.

Image created by
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Global Warming Art.
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Fig. 5: Two types of sampling windows, small window sizes, with frequency 

response. Left: As used in REDFIT [3]. Right: Fixed (FFT symmetric) win-

dows used in our implementation of the same algorithm, available in dplR [1].
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Fig. 3: Correlation of various temperature and proxy variables
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fitted from x (other lines). Algorithm of 

REDFIT [3] as implemented in dplR [1].
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P O E T R Y  E N G I N E D E S I G N I N G  A N

I N T E R A C T I V E  T O O L  F O R  P O E T R

C O - C R E A T I O N  A T  S C H O O LC O - C R E A T I O N  A T  S C H O O L
The goal of the “Poetry Engine”-project is to develop
a software tool based on computational poetry to
help kids learn and practice creative language use.
Ideally the design should empower pupils from
different age groups to explore and compose poetic
language in an interactive setting with a
computational poetry engine. The tool is designed for
real educational contexts in the Finnish
comprehensive school. It is build on existing poetry
engines and developed with user centered design
methods.

U S E R  A N D  C O N T E X T
D E T A I L S
The first phase of the project
recognized poetry as way
free expression in their pupils
was also found to be important
use of any educational software
that the role of technology
diversify learning, and to
The need for quality material,

M E T H O D O L O G Y
diversify learning, and to
The need for quality material,
to write is evident.

The skills and interests of
individuals and age groups
children have problems with
saving their work, logging
using the English language
with basic reading and writing
language. Some children
concentrating, or working in

Hardware and software vary

The design process uses user centered design
methods, which are an established set of techniques
for developing software to the needs and capabilities
of it’s users as well as the special properties of the
context the software is used in. User centered
methodology has previously been successfully
applied in the development of serious applications
for computational creativity by Richie et al. [1], who

Hardware and software vary
but computers are mainly
and online software is in
are usually used alone or in

Important usability factors
writing mechanisms, enough
children’s own vocabulary,
clear and responsive interface
feel was also promoted by the

T H E  P R O T Ofor computational creativity by Richie et al. [1], who
built a joke generating tool for children with special
needs.

The final design will be powered by existing
computational poetry engines developed by the
Discovery Research Group at the University of
Helsinki. These include the P.O.Eticus engines based
on two different approaches: Generating poetry from
a corpus of patterns via replacement [3] and with
constraints [2].

The corpus based approach already allows for the

T H E  P R O T O

The corpus based approach already allows for the
user to define a topic for the poem. This topic is then
used for finding semantically related content in a
word association network. The syntax and the
morphology of the poem are fetched from another
corpus. The selection of the corpora offers some
further possibility for user involvement in the initial
stages of poetry creation.

The constraint based approach is based on the
corpus approach and has two components, the
specifier and the explorer. The specifier determines
the syntactical and aesthetical rules of poem creation

The system is developed as
deliver it to multiple platforms
installation. The back end
Django framework with a database
is developed with HTML5.
offers a python API for connecting

Notably there are at least
in the system: the engine and
therefore allow for communic
between the two creators
latency. Additionally, the poetry
hierarchy, and communicatethe syntactical and aesthetical rules of poem creation

and the explorer composes poems according to these
rules. The specifier component can take input from
the user, or use other inspirational material for
automatizing the input generation for the explorer.

To achieve optimal levels of user and machine co-
creation, we will possibly need to develop fast ways
of producing poetic fragments instead of full poems.

hierarchy, and communicate
higher level engine that orchestrate
an ideal situation the users
as equal partners creating one
user is more directly asking
co-operation between the
commission, or even editorial

H E L S I N G I N  Y L I O P I S T O
H E L S I N G F O R S  U N I V E R S I T E T

U N I V E R S I T Y  O F  H E L S I N K I
T E M A A T T I S - L U O N N O N T I E T E E L L I N E N  T I E D E K U N T A

T E M A T I S K - N A T U R V E T E N S K A P L I G A  F A K U L T E T E N
F A C U L T Y  O F  S C I E N C EF A C U L T Y  O F  S C I E N C E
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U S E R  A N D  C O N T E X T

project revealed that teachers
to promote creative and

pupils. The role of the teacher
important as a mediator in the

software. Teachers also think
technology is to modernize and

motivate and aid pupils.
material, especially for learning

motivate and aid pupils.
material, especially for learning

pupils wary a lot between
groups. Especially younger

with basic tasks, such as
in into the software, and

language. Some may also struggle
writing tasks in their native

may have difficulty in
in a group.

vary even within one class,

The current prototype has a simple interface
resembling fridge magnets: Words can be re-ordered
by dragging and dropping, and new words can be
added by clicking. Additionally, a few simple controls
can be used to communicate with the engine asking
for more material. Other controls include forvary even within one class,

connected to the internet
frequent use. Computers

in pairs.

factors relate to offering simple
enough support, using

vocabulary, and in overall building a
interface. A visually pleasant

the teachers.

O T Y P E

for more material. Other controls include for
example the possibility of exporting the poem
outside the framework.

O T Y P E

F U T U R E  W O R K
The next step is to evaluate the design with actual
users in different settings. The user evaluations offer
also a possibility to look at the collaboration between
the children and the poetry engine in more detail.
Later on the system offers possibilities of expanding
it’s scope to include data gathering on it’s use and
peoples reactions to co-created poetry.

as a web service to easily
platforms without the need of

end uses the Python based
database and the front GUI

Additionally the back end
connecting poetry engines.

two contributing creators
and the user. The API must

communicating information
creators with respectively low

poetry engines may form a
communicate with the user through a

Naturally a part of the future work will be making the
system widely available and disseminating
information on it’s use to teachers and pupils.
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