
1

TCP Enhancements in Linux

Pasi Sarolahti
Berkeley Summer School

6.6.2002

2

Outline

n TCP details per IETF RFC’s
n Pitfalls in the specifications
n Linux TCP congestion control engine
n Features
n Discussion on performance
n Aside from Linux: F-RTO
n Conclusions

2

3

TCP Basics

n Slow start, congestion avoidance
n Receiver generates duplicate ACKs when data is

missing
n Fast retransmit at third duplicate ACK
n Fast recovery to keep the ”ACK clock” in pace

n Standard Reno (RFC 2581) or NewReno (RFC 2582)

n Without SACK at most one retransmission in RTT
n Retransmission Timer adjusted smoothly based on

measured round-trip times
n SRTT + 4 * RTTVAR

4

Some TCP Enhancements

n SACK: allow several retransmissions in RTT
n acknowledge separate blocks of received data
n conservative: ”holes” are still outstanding
n Forward ACKs (FACK): ”holes” are considered lost

n D-SACK: report duplicate segments using SACK
n Timestamps: measure RTT for retransmissions
n Eifel: report unnecesary retransmissions using

timestamps
n ECN: Explicit Congestion Notification
n Limited transmit: Avoid timeouts with small window

3

5

Discussion on Specifications

n RFC 2581 & RFC 2582: Congestion Control
n Cwnd is artificially increased on duplicate ACKs. It does not

correspond to real number of segments allowed to be in
flight

n SACK congestion control draft
n Separate document that assumes SACK is in use
n Cwnd is not artificially increased
n We need to implement both? Nah…

n RFC 2988 does not work well with high-granularity
timers
n No one sees this, because RTTs are generally below 1000ms

in flight = SND.NXT – SND.UNA

in flight = SND.NXT – SND.UNA – SACKed

6

RFC 2988: RTO Calculation

n RTO estimator decays
rapidly

n When measured RTT
drops, RTO goes up

n No one cares, because
n Min limit of 1000ms
n Coarse-grain timers

RTTVAR <- ¾ * RTTVAR + ¼ * | SRTT – MRTT |

SRTT <- 7/8 * SRTT + 1/8 * MRTT

RTO <- max(1000ms, SRTT + 4 * RTTVAR)

4

7

Linux Approach

n Common congestion control with Reno, SACK, FACK
n sacked_out: # of segments surely left network

n SACK: number of SACKed segments
n Reno: number of duplicate ACKs

n lost_out: # of segments suspected lost
n SACK & Reno: first unacknowledged is considered lost
n FACK: holes between SACKs are considered lost

n scoreboard markings are updated accordingly

in flight = packets_out – sacked_out – lost_out + retrans_out

8

CA States

n <reordering> is adjusted when unnecessary retransmission
is detected
n by default 3

n Window is increased in Open and Loss states
n Window is decreased in CWR and Recovery states

Open

Disorder Recovery

Loss

CWR dupacks

<reordering>
successive
dupacks

RTO

ECN

5

9

Features

n Implements Explicit Congestion Notification (ECN)
n Congestion window is decreased steadily every

second ACK in CWR and Recovery states
n as in "rate-halving"

n Disorder state implements "Limited transmit" in
practice

n Congestion window validation: If congestion window
is not fully used for a while, it is reduced

n Congestion control state is cached for future
connections

10

Linux Retransmission Timer

n Based on RFC 2988

n min. RTO = 200 ms
n min. RTTVAR = 50 ms
n RTTVAR reduced once

per round-trip time
n but increased instantly

n if RTT drops
significantly, RTTVAR
weight is reduced to
1/32

6

11

Congestion Window Undoing

n TCP sender can make false retransmits, e.g. due to
n false RTOs caused by unexpected delay
n dupacks caused by reordering in network

n False retransmits can be detected by using
n TCP timestamps: receiver echoes timestamp of original

segment after retransmission
n D-SACKs: a retransmitted segment is acknowledged in

cumulative ACK and in D-SACK

n After detecting false retransmission the sender sets
n cwnd <- max(cwnd, ssthresh * 2)

n ssthresh <- prior_ssthresh

12

Undoing on TCP Timestamps

n A 3-second excessive
delay occurs on
256Kbps link

n Triggers RTO, but ACKs
for original segments
arrive after RTO

n congestion window is
halved

n 65 KB acknowledged
between 5 and 10 s.

Without timestamps

7

13

Undoing on TCP Timestamps

n Next ACK after RTO
echoes timestamp of
original segment

n Spurious timeout is
detected
n continue by

transmitting new data
n revert recent changes

on congestion control
parameters

n 75 KB acknowledged
between 5 and 10 s.

With timestamps

14

Undoing Can Fail

n Link outage: One
window of data
segmenents and ACKs
are dropped

n ACKs echo latest
timestamp that updated
window

n Because ACKs are lost,
sender thinks new ACK
acknowledged earlier
data
n Declares RTO spurious

8

15

Delayed Acknowledgements

n Delayed acknowledgements should be used to avoid
silly window syndrome

n Linux receiver measures interarrival times and
adjusts delay timer accordingly
n goal is to get an ACK out for every second segment

n Quick acknowledgements can be used at the
beginning of the connection
n causes the sender to increase the window faster

n to avoid SWS, no more than (advwin / 2) quick
acknowledgements are allowed

16

Effect of Quick Acks

n 256 Kbps, 200 ms delay
=> BW*delay more
than 12 KB

n 4-5 round-trips until the
link is fully utilized

n every second segment
is acknowledged

n 50 KB transmitted in 2.5
seconds

Without quickacks

9

17

Effect of Quick Acks

n For the first 32 KB every
segment is
acknowledged

n 50 KB transmitted in 2
seconds

With quickacks

18

F-RTO

n Why should we retransmit everything after RTO?
n Transmit two new segments after the RTO
n If the resulthing two ACKs advance the window, we

have a suspected spurious timeout in our hands
n If they don't advance the window, reset cwnd to 1 +

RTT's after RTO = 3, and retransmit unacknowledged
n No need for SACK or timestamps
n F-RTO is _not_ about congestion window undoing
n ...but works well together with Eifel or D-SACK

10

19

F-RTO Behaviour

n On RTO the first
segment is
retransmitted

n Next two ACKs advance
window => continue by
transmitting new data

n At least the second ACK
was for delayed
segment

n Congestion window is
reduced to half due to
RTO

Delay on the link

20

F-RTO Behaviour

n First ACK advances the
window => transmit
two new segments

n Second ACK does not
=> start retransmitting
in slow start

Burst error on the link

11

21

Performace with Delays

22

Performace with Burst Errors

12

23

Concluding Remarks

n Implementation follows packet conservation in
practice
n congestion window always holds a valid value
n counters try to estimate how many packets really are

outstanding

n If the data structures tracking outstanding and
supspected losses are incorrect they are corrected, if
incorrectness is detected

n Retransmission timer tries to avoid the pitfalls of the
original algorithm

