

Efficient Transport in 2.5G3G Wireless Wide Area Networks

Andrei Gurtov

Licentiate Thesis
Department of Computer Science
UNIVERSITY OF HELSINKI

UNIVERSITY OF HELSINKI – HELSINGIN YLIOPISTO – HELSINGFORS UNIVERSITET

Faculty – Tiedekunta/Osasto – Fakultet/Sektion

 Science

Department – Laitos – Institution

 Computer Science
Author – Tekijä – Författare

 Andrei Gurtov
Title – Työn nimi – Arbetets title

 Efficient Transport in 2.5G3G Wireless Wide Area Networks
Subject – Oppiaine – Läroämne

 Computer Science
Level – Työn laji – Arbetets art

 Licentiate Thesis

Month and Year – Aika – Datum

 September 2002

Number of pages – Sivumäärä – Sidoantal

 28 + 120 p.
Abstract– Tiivistelmä – Referat

Multibillion investments are committed to licenses and infrastructure of second (2.5G) and third
(3G) generation wireless wide area networks to deliver multimedia services to mobile users.
Interactive, conversational, streaming and background applications use transport protocols to
communicate over unreliable wireless links. Achieving efficient transport in 2.5G3G networks
implies meeting QoS requirements of applications while preserving radio resources, battery power
and friendliness to other flows in the Internet.

In this thesis, existing and emerging wireless wide area networks are examined through
measurements, simulations and emulation. Such events as delay spikes, bandwidth oscillation and
connectivity outages are difficult to prevent in the heterogeneous and dynamic wireless
environment. For instance, delay spikes can be caused by handovers, higher priority voice calls or
persistent loss recovery at the link layer. Furthermore, link characteristics can change by an order
of magnitude when a user switches between 2.5G and 3G networks. Such disruptive events can
cause delivery of stale real-time data, spurious TCP timeouts and low utilization of the wireless
link. Therefore, achieving efficient transport in this environment demands coordinated efforts from
the radio network and from the end-to-end transport protocol.

We introduce a framework to deal with these challenges in a resource-efficient way while
minimizing QoS violations seen by applications. The framework includes enhancements in the
radio network and in end-to-end transport. In the radio network, we deal with resource
management, link level retransmissions, inefficient cross-layer interactions, active queue
management and user charging.

We study end-to-end transport of real-time and non-real-time data. For non-real-time data, TCP is a
highly suitable transport protocol when profiled with state-of-the-art features and when its
robustness to delay spikes is improved. In this thesis, response of different TCPs to delay spikes is
measured; algorithms to alleviate negative performance effects of spurious TCP timeouts are
presented and evaluated.

Delay spikes in the network can often make real-time data useless to the receiver. For real-time
transport we suggest using a transport protocol that incorporates explicit lifetime into packet
headers. The link layer discards stale data instead of transmitting them over the radio link. This
preserves radio resources and battery power of wireless users. However, we found that discarding
stale data can incorrectly trigger congestion control at the end systems.

Finally, we propose a receiver congestion manager to utilize locally available information on
priority of flows and available bandwidth at the mobile client.

Computing Reviews Classification:
C.2.1 (Network Architecture and Design): Wireless Communication,
C.4 (Performance of Systems)

Keywords – Avainsanat – Nyckelord

 Wireless networks, mobile computing, transport protocols
Where deposited – Säilytyspaikka – Förvaringställe

 Library of the Dept. of Computer Science, Report C–2002–42
Additional information– Muita tietoja – Övriga uppgifter

Acknowledgments

Gaining hands-on wireless networking experience while working in Sonera Corp. was important to
complete this work. I would like to acknowledge support from Sami Grönberg, Ville Saarikoski,
Mika Raitola, Sami Ala-Luukko, Heimo Laamanen and all colleagues at the Cellular Systems
Development department. In particular, Matti Passoja, Olli Aalto and Jouni Korhonen contributed
to this work through many hours of measurements and tracing.

I would like to thank Prof. Kimmo Raatikainen for supporting this work at the Department of
Computer Science. Pasi Sarolahti and Markku Kojo provided many useful comments on TCP.

Dr. Reiner Ludwig from Ericsson Research was my advisor and a beacon of high quality research
standards. Dr. Michael Meyer, Dr. Roger Kalden, and Hannes Ekström provided valuable details
on GPRS and UMTS networks.

Many thanks to the IETF community, especially to the PILC and Transport Area working groups,
for many friendly discussions and social events; to the Linux networking community and foremost
to Alexey Kuznetsov for many rewarding emails; to graduate students and to Prof. Randy Katz at
the University of California at Berkeley for inspiring discussions and for arranging two summer
schools.

Completing this work would not be possible without love and patience of my wife Anastasia.

Contents

Overview

[P1] J. Korhonen, O. Aalto, A. Gurtov, H. Laamanen, Measured Performance of

GSM HSCSD and GPRS. In Proceedings of the IEEE Conference on
Communications, June 2001.

[P2] A. Gurtov, Effect of Delays on TCP Performance, IFIP Personal Wireless

Communications, August 2001.

[P3] M. Kojo, A. Gurtov, J. Manner, P. Sarolahti, T. Alanko, and K. Raatikainen.

Seawind: a Wireless Network Emulator. In Proceedings of 11th GI/ITG
Conference on Measuring, Modelling and Evaluation of Computer and
Communication Systems, September 2001.

[P4] A. Gurtov, Making TCP Robust Against Delay Spikes, University of

Helsinki, Department of Computer Science, Series of Publications C, No C-
2001-53, November 2001.

[P5] A. Gurtov, R. Ludwig, Evaluating the Eifel Algorithm for TCP in a GPRS

network, In Proceedings of European Wireless, February 2002.

[P6] H. Inamura, G. Montenegro, R. Ludwig, A. Gurtov, F. Khafizov, TCP over

Second (2.5G) and Third (3G) Generation Wireless Networks, RFCxxxx.

[P7] A. Gurtov, M. Passoja, O. Aalto, M. Raitola , Multi-Layer Protocol Tracing

in a GPRS Network. IEEE Vehicular Technology Conference, September
2002.

[P8] A. Gurtov, R. Ludwig, Responding to Spurious Timeouts in TCP, submitted

for publication.

[P9] A. Gurtov, R. Ludwig, Exploiting Packet Lifetime for Efficient Real-Time

Transport, submitted for publication.

o-1

p-1

p-6

p-24

p-40

p-57

p-64

p-92

p-97

p-109

List of Acronyms

2.5G3G Extended Second and Third Generation
3GPP Third Generation Partnership project
ACK Acknowledgment
ADU Application Data Unit
AIMD Additive Increase Multiplicative Decrease
ALF Application Layer Framing
API Application Programming Interface
ARQ Automatic Repeat Request
BSC Base Station Controller
BTS Base Transceiver Station
CDMA Code Division Multiple Access
CRC Cyclic Redundancy Check
DCCP Datagram Congestion Control Protocol
DupThresh Duplicate Acknowledgment Threshold
DUPACK Duplicate Acknowledgement
ECN Explicit Congestion Notification
EDGE Enhanced Data for GSM Evolution
ETSI European Telecommunications Standards Institute
FACK Forward Acknowledgment
FEC Forward Error Correction
FTP File Transfer Protocol
GGSN Gateway GPRS Serving Node
GPRS General Packet Radio Service
GSM Global System for Mobile communications
HSCSD High Speed Circuit Switch Data
HTTP Hyper Text Transfer Protocol
IETF Internet Engineering Task Force
IFIP International Federation for Information Processing
IP Internet Protocol
IS-96 Interim Standard #96
LLC Logical Link Control
MPEG Motion Picture Experts Group
MS Mobile Station
MTU Maximum Transmission Unit
NRT None Real Time
NS2 Network Simulator version 2
NTT DoCoMo Nippon Telephone & Telegraph, Do Communications over the Mobile network
PDC-P Personal Digital Cellular Packet-switched
PILC Performance Implications of Link Characteristics
QoS Quality of Service
RED Random Early Detection
RFC Request for Comments
RLC Radio Link Control
RNC Radio Network Controller
RT Real Time
RTO Retransmission Timeout
RTP Real Time Protocol
RTT Round Trip Time
SACK Selective Acknowledgment
SCTP Stream Control Transmission Protocol
SGSN Serving GPRS Support Node

SR Selectively Reliable
TBF Temporal Block Flow
TCP Transmission Control Protocol
TFRC TCP-Friendly Rate Control
UDP User Datagram Protocol
UMTS Universal Mobile Telecommunications System
WAP Wireless Application Protocol
WCDMA Wideband Code Division Multiple Access
WLAN Wireless Local Area Network
WWAN Wireless Wide Area Network
VoIP Voice over Internet Protocol

Overview: Contents

1 Introduction 1
2 Background 3

2.1 Applications.. 3
2.2 Transport Protocols... 4

2.2.1 Reliable Transport ... 4
2.2.2 Unreliable Transport.. 5

2.3 2.5G3G Networks ... 5
2.3.1 Deployments.. 5
2.3.2 Link Characteristics... 6

2.4 The Problem: Efficient Transport ... 8
2.4.1 Radio Network Challenges.. 8
2.4.2 End-to-End Transport Challenges ... 9

2.5 Related Work .. 10
2.5.1 Cross-Layer Interactions ... 10
2.5.2 Adaptive Transport .. 11
2.5.3 Overlay Networks and Intermittent Connectivity 11
2.5.4 Congestion Control.. 11

3 Methodology 12
3.1 Simulation... 12
3.2 Emulation.. 12
3.3 Measurements ... 13
3.4 Modelling Assumptions.. 14

4 Radio Network Optimizations 14
4.1 Active Queue Management .. 14
4.2 Cross-Layer Interactions... 15
4.3 Efficiency at the Link Layer ... 16
4.4 New Charging Principles.. 17

5 End-to-End Optimizations 18
5.1 The General TCP Profile for 2.5G3G Networks .. 18
5.2 Responding to Spurious Timeouts in TCP ... 19
5.3 Avoiding Spurious Timeouts in TCP Loss Recovery....................................... 19
5.4 Exploiting Packet Lifetime for Real-Time Transport....................................... 20
5.5 Receiver Congestion Manager.. 21

6 Research History 22
7 Conclusions and Future Work 23
References 24

o-1

1 Introduction

Wireless data access for nomadic users is the key enabling technology for the future Internet
[30]. Therefore, existing second-generation wireless wide area networks such as GSM [40] are
upgraded to support packet switched radio access. The upgraded networks are referred to as 2.5G
and are in extending use today. Wide deployment of third generation systems is several years
ahead. The transition to 3G is expected to be a gradual process. Initially, 3G will be deployed to
introduce high capacity and high-speed access in densely populated areas. Mobile users with mul-
timode terminals will be able to utilize existing coverage of 2.5G systems in the rest of the terri-
tory. Operators have invested tremendous amounts of money into 3G spectrum licenses and no less
is required to create the new network infrastructure. With these commitments in mind it is crucial
for the industry and society to deliver advanced data services to mobile users in an efficient way.

The primary goal of this study is to explore efficient end-to-end transport of user data in a heter-
ogeneous and dynamic environment of 2.5G3G networks. Our secondary goal is to provide the
user with means to prioritize among ongoing data transfers and to examine requirements for fair
charging in 2.5G3G networks. Applications, the fixed network and the radio network are designed
by independent groups of people often unaware of the effect of their solutions on the other layers.
Therefore, it is an additional challenge to converge these distinct views to provide a well-function-
ing system.

Efficient transport requires addressing the challenges on the application, network and radio
bearer level as illustrated in Figure 1. At the application layer the requirement is to satisfy
demands on Quality of Service such as low response time, high throughput, and reliability [55]. To
guarantee a long-term Internet stability, data flows must follow congestion control principles [15].
Scarce radio bandwidth and battery power require that duplicate or stale data are not sent over a
wireless link. We argue that due to the nature of the wireless medium, QoS violations cannot be
totally avoided in 2.5G3G networks. It is the task of a transport protocol to minimize the negative
impact of events such as delay spikes or data losses on the application and at the same time avoid
loading the network with unnecessary transmissions.

We perform multi-layer tracing [P7], simulation [19] and emulation [P3] of 2.5G3G systems.
Some of the known problems in a wireless environment such as bursty data losses, long latency,
overbuffering and intermittent connectivity [35] are still present in 2.5G3G networks. New prob-
lems include delay spikes resulting from cell reselections, resource pre-emption [P2] and band-
width oscillation due to on-demand allocation of radio resources [65]. An inter-system vertical
handover in addition to a delay spike and packet losses can often cause an order-of-magnitude
change in bandwidth and latency of the data link [59], [7], because a user moves from a wider area
and slower radio network into a smaller area and faster overlay network. In such a dynamic and

Figure 1. Requirements for efficient transport in wireless networks.

A p p lic a tio n N e tw o rk R a d io n e tw o rk

Sa
tis

fie
d

Q
oS

Fa
ir

C
on

ge
st

io
n

C
on

tr
ol

Pr
es

er
ve

d
Sp

ec
tr

um
 a

nd
 B

at
te

ry

E f f ic ie n t T ra n s p o rt

o-2

heterogeneous environment, loss of efficiency easily occurs due to unnecessary retransmissions by
a reliable transport protocol such as TCP or delivery of stale data by a protocol with real-time con-
strains.

The contribution and the structure of this thesis is summarized in Figure 2. On the methodology
side, the contribution is in creating new tools and extending the existing ones. The tools for net-
work measuring and tracing are critical to identify performance problems. Currently deployed pro-
tocols and networks are rich in implementation flaws and we attempt to filter out fundamental
issues behind poor performance. After we understand the problems, we can suggest new solutions
and evaluate existing ones. Finally, the solutions need to be standardized or submitted to network
vendors to ensure their deployment.

Figure 3 shows our contributions in more detail. We first describe modifications at the end host
improving efficiency of end-to-end transport. The improvements are located in Internet servers
used for delivery of reliable non-real-time data and unreliable real-time data. Today TCP is the
most widely used reliable transport protocol accounting for more than 90% of total Internet traffic
[8]. TCP is a mature and robust protocol highly suitable for dominant applications such as WWW,
FTP, remote login and many other non-real-time (NRT) Internet applications. We show that state-
of-the-art TCP [P6] performs well in 2.5G3G networks in general, although there are some corner
cases such as robustness to delay spikes that would benefit from further study. We improve robust-
ness of TCP to delay spikes and bandwidth oscillation with response mechanisms to spurious tim-
eouts [P8].

There is a growing demand for real-time (RT) applications such as video telephony, audio
streaming, or stock quote updates. Such applications often favour timeliness instead of perfect reli-
ability. We assume that the Selectively Reliable Real-time Transport Protocol (SR-RTP) on top of
the Datagram Congestion Control Protocol (DCCP) is used for delivery of real-time data; the pro-
tocols are described in Section 2.2 on page 4. Real-time data is often useless to the receiver if
delayed beyond a certain limit in the network. We suggest discarding stale data already in the radio
network to improve efficiency by preserving wireless bandwidth and battery power. The data life-
time can be available in the wireless network as a part of the negotiated QoS profile or, alterna-
tively, by attaching the real-time server and the base station to a global clock.

M ethodology:
Em ulation,

sim ulation and
tracing tools

Perform ance evaluation
(HSCSD, GPRS, UM TS) New Solutions

Reports to vendors
Standardization

(IETF, 3G PP, W AP)

Figure 2. A path to achieve efficient transport in 2.5G3G networks.

Q o S ra d io s c h e d u le r
N R T d u a l th re s h o ld d ro p

R T d e a d lin e q u e u e

N R T s e rv e r
o p tim iz e d T C Pc lie n t

re c e iv e r c o n g e s tio n
m a n a g e r

o p tim iz e d R T b e a re r

R T s e rv e r
D C C P /S R -R T P
 e x p lic it l ife tim e

o p tim iz e d N R T b e a re r

Figure 3. A framework for achieving efficient non real-time (NRT) and real-time (RT) transport in
2.5G3G networks.

o-3

At the mobile host, to give the end user a capability to prioritize among ongoing transfers, we
propose a receiver congestion manager. The receiver congestion manager utilizes locally available
information such as link bandwidth, hints on imminent handovers from the link layer and priority
of transfers from the user to selectively throttle real-time and non-real-time flows.

We study active queue management and behavior of link-layer protocols in the radio network. A
task of link buffering for non-real-time flows such as TCP is to smooth traffic burstiness and vary-
ing transmission delay at the link. At the same time, negative effects such as high queueing delay
and heavy data losses due to congestion need to be avoided. We propose a simple Dual Threshold
Drop algorithm that fulfils these goals in an environment with only a few concurrent flows [18]. At
the radio link level, we suggest several protocol enhancements based on live network tracing that
help avoiding unnecessary retransmissions of data frames. We also study cross-layer interactions
of end-to-end protocols with resource allocation and scheduling at the link layer. Finally, we pro-
pose new charging principles that could improve overall system capacity by rewarding social
behavior of users.

The rest of the thesis overview is organized as follows. Section 2 provides the necessary back-
ground on applications, transport protocols and 2.5G3G networks. Furthermore, it defines the
problem of efficient transport in detail and reviews related work. In Section 3 we introduce new
measurement, simulation and emulation tools we have developed and used. Section 4 describes
optimizations in the radio access network that includes enhanced operation of the link protocols,
active queue management and scheduling. Section 5 concentrates on solutions at the end hosts.
That includes TCP improvements, applying explicit packet lifetime to real-time transport proto-
cols, and the receiver congestion manager. Section 6 documents the research history of publica-
tions included into this thesis. Finally, Section 7 sums up our main results and outlines future
work.

2 Background

2.1 Applications

The first component of achieving efficient transport is satisfying the QoS requirements for appli-
cations. It was suggested to divide 2.5G3G applications into four classes: background, streaming,
interactive and conversational [55].

Examples of background applications include file transfer and email download. Background
applications normally require reliable data delivery but are not highly sensitive to interpacket jitter
and can also tolerate high RTT delay. Thus, the main performance goal for such applications is
high throughput or the inverse, short download time. TCP is a highly suitable protocol for such
applications.

Interactive applications include web browsing and remote terminal access. Users of such appli-
cations expect an immediate result of their actions. Therefore, the most important characteristic for
interactive applications is low response time. Interactive applications often exhibit ‘click from
page to page’ behavior. For example, when the user selects a new Web link, the ongoing transac-
tion is aborted and data buffered in the network become obsolete.

Streaming applications playback video or audio contents without waiting for the entire down-
load to complete. Such applications typically buffer data at the receiver to accommodate jitter in
packet delivery. However, the buffer size available at the receiver is often limited due to memory

o-4

size limitations in mobile devices and a possible change of the play point by the user. Streaming
applications do not require perfect reliability but favor on-time delivery. In fact, data packets may
only be useful for a streaming application before the receiver playback buffer becomes empty. A
transport protocol is most attractive for streaming applications if it provides partial reliability by
performing retransmissions only within the allowed time frame before the buffer is depleted.

Conversational traffic is also referred to as voice over IP (VoIP) and includes bi-directional
video and audio. Conversational traffic does not necessarily require high data rates, but it has strin-
gent requirements on latency and delay jitter. The acceptable one-way latency is 100-300 ms
which often leaves no time for loss recovery through retransmissions.

Other real-time services such as stock quotes or news ticker updates often present a mixture of
properties of streaming and conversational traffic classes.

2.2 Transport Protocols

2.2.1 Reliable Transport

The Transmission Control Protocol (TCP) [47], [54] is the most widely used transport proto-
col in the Internet. TCP provides applications with reliable byte-oriented delivery of data on the
top of the Internet Protocol (IP). Figure 4 shows functions of loss recovery and congestion control
in TCP. A TCP sender transmits data in segments and expects acknowledgments (ACKs) from the
receiver. TCP has two basic mechanisms for recovery of lost data segments. The first mechanism
is a retransmission timer at the sender, which expires when no new ACKs arrive for the duration of
the retransmission timeout (RTO). RTO is set up dynamically based on the current round trip time
(RTT) and its variation [28]. The second mechanism is a fast retransmit algorithm followed by a
loss recovery phase. Fast retransmit is triggered when three Duplicate Acknowledgments
(DUPACKs) arrive to the sender. DUPACKs are generated by the receiver as a response to out-of-
order segments. A fast retransmit algorithm often allows quicker recovery from a lost segment
than via a retransmission timeout.

The congestion control is required for estimation of available bandwidth in the network and fair
co-existence with other flows [15]. Congestion control in TCP is tightly connected with loss
recovery because a packet loss is taken as an indication of congestion in the network [28]. A TCP
connection begins with the slow start until a packet loss is detected or the slow start threshold is
reached. In slow start, TCP approximately doubles the load on the network in every RTT. In con-
gestion avoidance, TCP enters an additive increase phase raising the load approximately by one

cwnd > ssthresh3rd DUPACK

Slow
Start

ACKFast
Recovery

DUPACK

RTO

 Congestion
 Avoidance

RTO

Timeout

3rd DUPACK

Figure 4. Loss recovery and congestion control in TCP. A steady connection state is in congestion
avoidance.

o-5

segment per an acknowledged congestion window. Upon a fast retransmit, the congestion window
is halved. After a timeout the estimate of available network capacity (the congestion window) is
set to one packet.

TCP has an important property of self-clocking also known as the packet conservation principle
[28]. In the equilibrium condition each arriving ACK indicates that a segment has left the network
and triggers a transmission of a new segment. To prevent a fast sender from overflowing a slow
receiver, TCP implements flow control based on a sliding window. When the total size of outstand-
ing segments, segments in flight (FlightSize), reaches the window advertised by the receiver, fur-
ther transmission of new segments is blocked until an ACK arrives.

When a delay spike in the network exceeds the current value of the retransmit timer, a timeout
occurs. The TCP sender retransmits the oldest outstanding segment. Since the original segment or
the corresponding ACK is only delayed but not lost, the retransmission is unnecessary and the tim-
eout is said to be spurious. TCP suffers from a retransmission ambiguity problem [29]. ACKs bear
no information that would allow the TCP sender to distinguish an ACK for the original segment
from that for the retransmission. Therefore, the sender interprets the ACK generated by the
receiver in response to the original segment as corresponding to the retransmitted segment. This
leads to unnecessary go-back-N retransmission behavior and violation of the packet conservation
principle [33].

2.2.2 Unreliable Transport

The User Datagram Protocol (UDP) [46] is the basic unreliable transport protocol. It includes
only the essential transport mechanisms such as port numbers and a checksum.

The Real-time Transport Protocol (RTP) [51] is an application-layer protocol based on the
Application Layer Framing (ALF) [9] concept. RTP supports sequence numbers, timestamps and
the media source identifiers which are common features required for real-time applications. By
itself RTP makes no guarantees on data delivery. However, there are extensions such as Selectively
Reliable RTP (SR-RTP) [11] that allow for selective retransmissions and congestion control.

The Datagram Congestion Control Protocol (DCCP) [38] is a new connection-oriented proto-
col that uses ACKs for congestion control. However, DCCP does not provide any reliability. The
most important feature of DCCP is TCP-friendly congestion control (TFRC) [16] that achieves
smoother bandwidth adaptation than the Additive Increase Multiple Decrease (AIMD) algorithm
used in TCP [28]. Therefore, DCCP is a suitable protocol for applications that cannot tolerate rapid
variation in throughput.

We generally assume in this thesis that SR-RTP on top of DCCP is used as a real-time transport
protocol.

2.3 2.5G3G Networks

2.3.1 Deployments

The second generation cellular systems are commonly referred to as 2G. The 2G phase began in
the 1990s when digital voice encoding had replaced analog systems (1G). 2G systems are based on
various radio technologies including frequency-, code- and time- division multiple access. Exam-
ples of 2G systems include GSM (Europe), PDC (Japan), and IS-95 (USA). Data links provided by
2G systems are mostly circuit-switched and have a transmission speed of 10-20 kbps uplink and
downlink. Demand for higher data rates, instant connectivity, charging based on data volume
rather than on connection time, and lack of radio spectrum allocated for 2G led to the introduction
of 2.5G (GPRS, EDGE, PDC-P) and 3G (UMTS, cdma2000) systems. A taxonomy of mobile

o-6

radio networks can be found in [58].
The integrated GPRS-UMTS infrastructure is shown in Figure 5. The General Packet Radio Ser-

vice (GPRS) [6] is an extension to GSM that provides higher data rates and ‘always on’ capability
that allows users to remain connected to the network also during the idle periods. GPRS is based
on a packet-switched technology, that permits efficient sharing of radio resources among users.
Built on top of the GSM radio interface, GPRS allows a user to utilize multiple GSM timeslots
which increases the data rate available to the user up to 40 kbps. GPRS supports handovers of
ongoing data connections. The Radio Link Control (RLC) protocol provides recovery of error
losses on the radio link between the mobile station (MS) and the Base Station Controller (BSC).
The Logical Link Control (LLC) protocol spans from the mobile station to the Serving GPRS Sup-
port Node (2G-SGSN) and retransmits lost data primary during handovers. The GPRS Gateway
Support Node (GGSN) serves as a router connecting the GPRS network to the Internet and via
dedicated links to enterprise users or service providers. A GPRS handover is called a cell reselec-
tion as the mobile terminal is responsible for activating the cell change procedure.

High-Speed Circuit-Switched Data (HSCSD) is an extension for GSM that allows the user to
utilize multiple timeslots creating a fast circuit-switched link. Enhanced Data for GSM Evolution
(EDGE) is a new modulation technique and new channel coding that increases the bandwidth of
the radio link. EDGE applied to GPRS can threefold the data rate for a single user up to 120 kbps.

The radio technology of Universal Mobile Telecommunication System (UMTS) in Europe and
Japan and cdma2000 in USA is based on code division multiple access allowing for higher data
rates and higher spectrum utilization than 2G systems. 3G systems provide both packet-switched
and circuit-switched connectivity. A UMTS core network in an evolved version of GPRS and
some network elements, for example GGSN, can be shared between UMTS and GPRS as shown in
Figure 5. 3G-SGSN has only a limited functionality compared to 2G-SGSN, because many func-
tions are moved to the radio access network composed of Radio Network Controllers (RNC). We
will use the term base station to refer both to BSC and RNC.

The transition to 3G is expected to be a gradual process. Initially, 3G will be deployed for high
capacity and high speed access in densely populated areas. Mobile users with multimode terminals
will be able to utilize existing coverage of 2.5G systems in the rest of the territory. An inter-system
handover between 2.5G and 3G is also called a vertical handover because a user moves from a
wider area and slower radio network into a smaller area and faster overlay network [7], [59].

2.3.2 Link Characteristics

This section describes user-visible performance aspects of 2.5G3G links [P1], [P6].
Data rates. The main incentives for transition from 2G to 2.5G to 3G are increased data rates for

users and greater network capacity for operators. 2.5G systems have data rates of 10-20 kbps in
uplink and 10-40 kbps in downlink. 3G systems are expected to have bit rates around 64 kbps in
uplink and 384 kbps in downlink. The per user data rate is dynamic and depends on the number of
users in the cell, amount of voice traffic and amount of radio resources reserved for packet-
switched traffic. Furthermore, a user located on a cell boundary cannot obtain as high a data rate as
close to the base station due to rapidly increasing error rates and interference. The link data rate
can oscillate rapidly due to switching of a high-speed radio channel among multiple users [65].

Asymmetry. 2.5G3G systems have built-in asymmetry in uplink and downlink data rates. The
uplink data rate is limited by the battery power consumption and complexity limitations of mobile
terminals. Bandwidth available in the downlink direction is typically 3-6 times higher than in
uplink. This asymmetry is well-suited for mobile users who are more likely to consume the infor-
mation than produce it.

Latency. The latency of 2.5G3G links is high due to interleaving on the radio link and process-

o-7

ing delays in networking equipment. A typical RTT on an unloaded link varies between a few hun-
dred milliseconds to more than one second.

Delay spikes. 2.5G3G links are likely to have delay spikes significantly exceeding the typical
RTT due to following reasons. (1) A delay spike can be the result of link layer recovery during an
outage due to temporal loss of radio coverage, for example, while driving into a tunnel or stepping
into an elevator. (2) During a handover the mobile terminal may have to perform some time-con-
suming actions before data can be transmitted in a new cell. Some wide area wireless networks try
to internally re-route packets from the old to the new base station at the expense of additional
delay. (3) Blocking by high-priority traffic may occur when an arriving circuit-switch call or
higher priority data user temporarily preempts the radio channel..

Error losses. In general, 2.5G3G systems have a low rate of error losses thanks to link-level
retransmissions. However, link layer recovery introduces variable delays in data delivery which
may not be acceptable for real-time flows. Therefore, the link should be flow adaptive, i.e. perform
retransmissions only for flows that require reliable data delivery [35]. 2.5G3G systems can suffer
from congestion-unrelated losses during handovers.

Intersystem handovers. As mentioned in Section 2.3.1, it is likely that 3G systems will be used
as a 'hot spot' technology while 2.5G systems will provide lower speed data service on the rest of
territory. A mobile user can roam between 2.5G and 3G networks while keeping ongoing TCP
connections. Figure 6 (a) shows the envisaged operation in the integrated environment of WLAN,
UMTS and GPRS. The first challenge for seamless mobility is a high delay spike caused by a ver-
tical handover to ongoing flows. Loss from a few to all outstanding packets during a handover pre-
sents a second challenge. Furthermore, the link characteristics after a handover can be radically
different from the old cell. The bandwidth and latency can change by two orders of magnitude, for
example from 20 kbps bandwidth in GPRS to over 2 Mbps in WLAN.

Intermittent connectivity. In case the user does not have multimode terminals, or the overlay
coverage is not available in the area, the data access is only available sporadically as shown in
Figure 6 (b). A further development of this concept relies on very high speed access available only
in a limited number of spots called Infostations [26].

Figure 5. A combined UMTS and GPRS network architecture. The laptop is connected to the
mobile terminal using an access link such as IrDA, Bluetooth, or a serial cable [58].

IP c o r e

I n t e r n e t s e r v e r

u s e r
c o - lo c a t e d s e r v e r

B S C 2 g - S G S N

G G S N

3 g - S G S N

R N C

I n t e r n e t

M S

o-8

2.4 The Problem: Efficient Transport

2.4.1 Radio Network Challenges

This section describes challenges to efficient end-to-end transport in the radio access and core
part of 2.5G3G networks. The fundamental resources in the radio network is battery capacity at the
mobile terminal and the radio spectrum. Secondary resources are computational capacity of net-
working elements and limited bandwidth of last-mile links from the core network to the base sta-
tions. Last-mile links are often point-to-point microwave radio links.

Radio resource allocation. Although 2.5G3G networks provide packet-switched connectivity,
at the link layer they still require setting a temporal radio resource allocation before user data can
be transmitted [58]. A decision on how long to maintain this link-level resource allocation affects
transport efficiency. It is a research problem to find an optimal allocation algorithm based on antic-
ipated end-to-end protocol behavior and user workload.

Radio link control protocols typically operate in a selective acknowledged mode. The impor-
tant issue is how frequent link protocol ACKs are sent and on which radio channel. There are
involved trade-offs between preserving radio resources to avoiding large delays in transmission.
The retransmission policy at the link protocol layer is also important for timely recovery and
avoidance of unnecessary retransmits.

Cross-layer interactions. Radio networks include multiple protocol layers that may interact
inefficiently. One example of inefficient interaction could be data fragmentation. There should be a
clear understanding of how IP packets are fragmented into link layer frames and radio blocks.
Fragmentation policies affect performance of loss recovery, scheduling as well as header over-
head. Another aspect is competition among multiple protocol layers for error recovery. Some radio
networks, for example GPRS, include more than one protocol level capable of error recovery in
the radio network in addition to end-to-end recovery at the transport layer.

Scheduling. Radio scheduling is crucial to achieve differentiation among flows to fulfil QoS
requirements. Although priority scheduling ensures that the most important data gets transmitted
first, lengthy delays of background TCP flows should be avoided as it may cause spurious time-
outs and unnecessary retransmissions. The amount of allocated radio resources should take into
account the current traffic activity of the user. The allocation is typically controlled by the radio
network that has no information on how much data a user wants to transmit in the near future. A
situation is possible, when abundant resources are allocated to a user.

Buffer management. The end-to-end transport protocols treat the network as a black box and
attempt to estimate the appropriate transmission rate based on data losses due to buffer overflows.
Therefore, adequate buffering is important to enable efficient transport. An overly small buffer
results in link underutilization, inability to handle bandwidth variation and an insufficient window
for error recovery [54]. An overly large buffer increases link RTT, which is particularly harmful
for real-time traffic. Deploying ‘smarts’ in the base station such as deleting stale real-time data,
duplicate packets or data from aborted transfers can significantly improve the efficiency. Addi-
tional functions are often required from buffer management such as policing of real-time and shap-
ing of non-real-time flows.

Additional issues that are not directly in our scope include protocol header compression and
mobility issues.

Compression. Sending less data over the radio link is more efficient. Traditional compression
protocols such as Van Jacobson’s header compression do not work well with a high level of data
losses in a wireless environment [35]. The Robust Header Compression working group in IETF is
developing new solutions suitable for 2.5G3G networks [24].

o-9

IP mobility and context transfer. Handovers in 2.5G3G networks are so-called ‘layer 2’ han-
dovers because the upper layers including IP and TCP protocols remain unaware of it. IP-level
solutions are required, for example, for WLAN-GPRS mobility. IP mobility solutions include pag-
ing to locate dormant nodes and discovery of new access routers. These issues are addressed by the
Seamoby working group in IETF [23]. During vertical handovers it can be beneficial to transfer
buffered data or protocol state, such as the header compressor state, from the old to the new net-
work.

2.4.2 End-to-End Transport Challenges

A task of the transport protocol is to meet QoS requirements of applications by facing difficult
network characteristics. This section describes challenges for efficient end-to-end transport as seen
by transport protocols at the communicating hosts [P1], [P2].

The well-known problems in wireless networking are error losses and utilization of high-band-
width delay paths. These problems have been extensively studied [4]. Losses on wireless links
often do not relate to congestion, but occur due to corruption at the radio link or due to handovers.
Such losses may cause lengthy retransmission timeouts and underutilization of the radio link. On
high-speed networks of high latency ramping up to an appropriately large transmission window
takes a long time for TCP. Using state-of-the-art TCP and reducing the network latency whenever
possible lowers the negative effect of these problems.

Vertical handovers and intermittent connectivity shown in Figure 6 (a) and (b) can cause the fol-
lowing anomalies:
• A delay spike
• A delay increase due to decreased bandwidth
• A bandwidth-delay product change.

For transport protocols such events cause the following problems:
A spurious timeout is a timeout that would not occur had the sender waited longer. The trans-

port protocols that rely on timeouts to signal loss data will falsely deduce a loss event in such case.
Spurious timeouts lead to unnecessary retransmissions that can violate the packet conservation
principle. Inefficient cross-layer interactions can occur when error recovery at the link layer is

(a) Vertical handovers between wire-
less overlay networks

M o b ile
H o s t

M o b ile
H o s t

B T S

B T S

B T S

M o b ile
H o s t W L A N

U M T S

G P R S

M o b ile
H o s t

M o b ile
H o s t

B T S

B T S

Figure 6. Varying connectivity presents challenges for efficient transport.

(b) Intermittent connectivity e.g. to high-
speed Infostations.

o-10

seen by the transport protocol as a delay spike. Spurious timeouts can also occur after an abrupt
increase in the link RTT due to a sudden decrease of link rate, for example, due to release of a
high-speed radio channel.

A link is overbuffered if it persistently has a longer queue than required for its efficient utiliza-
tion. In static network conditions, overbuffering usually occurs when a redundantly large buffer is
allocated in the network. Underutilization is typical in the initial phase of a TCP connection due
to slow start or due to non-congestion related losses. In general, overbuffering or underutilization
appear when an estimate of the network capacity made by the transport protocol does not match
the real network capacity. When the network conditions change at once, for example due to a ver-
tical handover, the amount of outstanding data can be radically different than optimally required
for efficiently using the network. When a connection is moved from a slow to fast cell, it can
underutilize the available bandwidth, since in the congestion avoidance phase TCP increases the
sending rate slowly. Changing from a fast to slow cell is handled well by TCP due to a self-clock-
ing mechanism. However, a large TCP window used in a faster cell can create the overbuffering
problem in the slower cell. Intersystem handovers can cause performance problems for ongoing
TCP connections as many features (e.g. window scaling) are negotiated at the connection estab-
lishment and cannot be changed later in the connection lifetime.

Genuine retransmission timeouts occur when a large amount of data is lost in the network, for
instance due to a vertical handover. Alternatively, a retransmission is lost, which cannot be typi-
cally recovered without a timeout by existing transport protocols.

A dependability issue arises when a delay spike lasts for minutes and is more appropriately
referred to as an outage. In this case the transport protocol can often exceed its maximum number
of retransmissions and give up. Ideally, the persistency of the transport protocol is controlled by
the application by specifying the maximum time it is willing to wait for data delivery.

2.5 Related Work

This section provides a high-level description of the latest directions in the transport research
area. A good overview of TCP performance problems and improvements in wireless environments
can be found in [4], [35], [63] and in our previous work [18]. A description of Internet QoS mech-
anisms is given in [60] and of wireless QoS aspects in [58], [64].

2.5.1 Cross-Layer Interactions

A recent work on eliminating inefficient cross-layer interactions in wireless networks [35] is
based on measurements of GSM circuit-switched data links. On the radio network level the major
contribution was a concept of flow-adaptive links that change their characteristics based on QoS
requirements of a flow. This concept is partly implemented in 2.5G3G networks. At the transport
layer, two major contributions were the Eifel algorithm [33] for detecting spurious timeouts and a
new more accurate retransmission timer for TCP. We extend the results [35] to the new environ-
ment of 2.5G3G packet-switched networks.

Loss recovery by a reliable link layer protocol is seen as delay jitter by the transport layer. There
exists a possibility of competing error recovery when the transport protocol decides that outstand-
ing segments were lost and retransmits them. In fact, these segments can be still being recovered
by the link layer. In such a case the timeout in the transport protocol is spurious, as simply waiting
longer would allow for the link layer to complete the recovery. Spurious TCP timeouts present two
problems as described in Section 2.2.1. The Eifel algorithm stores the timestamp of the first TCP
retransmission after a timeout. By comparison with the timestamp of the first ACK received after
the timeout, the algorithm detects whether the timeout has been spurious. After a spurious timeout,

o-11

transmission is resumed with a next unsent segment and the congestion control state is restored.
The TCP sender returns to the equilibrium state as before the timeout.

An alternative response algorithm to spurious timeouts in TCP has been proposed [49]. A differ-
ent example of interaction of TCP with link-layer resource allocation causing bandwidth oscilla-
tion is studied in [65]. The feasibility of cross-layer interactions of TCP lower layers in GPRS is
studied in [39].

2.5.2 Adaptive Transport

Adaptive Video Streaming work [12] focuses on developing an open-source, widely accepted
streaming video application. The Internet imposes packet loss on data, which can severely hamper
the quality of a compressed bit stream with interdependencies. Available bandwidth and delays on
the Internet are variable, which causes problems for an application that wants to play out received
data at a constant rate. A streaming application should adjust its sending rate and the quality of the
transmitted bit stream in accordance with these changes. The SR-RTP software selectively recov-
ers the most important lost data within its lifetime [11] and adapts to the varying network condi-
tions using the congestion manager [5].

Many of current multimedia applications and protocols including RTP originate from the
Columbia University [52]. RTP and related protocols are further developed and standardized by an
IETF working group on audio and video transport [25].

The Stream Control Transmission Protocol (SCTP) [43] is a recently introduced protocol prima-
rily for transport of signalling over IP networks. The most important difference compared to TCP
is the ability to deliver user messages within multiple streams and network-level fault tolerance
through support of multihoming. SCTP is built on similar congestion control algorithms as TCP.

2.5.3 Overlay Networks and Intermittent Connectivity

The BARWAN research project [7] developed a scalable architecture that can support wireless
access across multiple overlay networks while delivering high levels of end-to-end performance to
applications. It allows mobile applications to seamlessly operate with network connectivity that
provides best bandwidth/battery use and price trade-off in the current location. The project gener-
ated many well-known contributions, such as the Snoop protocol for TCP-aware link layer loss
recovery [4].

A standard TCP connection is bound to the IP interface and address on which it was initiated.
This presents a problem for mobile hosts that often acquire a new IP address on the move, for
instance using Mobile IP. Alternatively, a user may want to switch from an office desktop to a por-
table laptop while maintaining an ongoing file transfer. These problems are tackled in the Migrate
project [53]. Migrate supports address changes and disconnectivity handling for legacy applica-
tions through a shim session layer and provides a set of system primitives for new mobility-aware
applications.

2.5.4 Congestion Control

The Congestion Manager (CM) [5] is an end-to-end framework for congestion control and man-
agement, bandwidth sharing, independent of specific transport protocols, for example TCP, and
applications. Its end-system architecture enables logically different flows such as multiple concur-
rent Web downloads, concurrent audio and video streams to adapt to congestion, share network
information, and share varying available bandwidth well. Rather than have each stream act in iso-
lation and thereby adversely interact with the others, the CM maintains host- and domain-specific

o-12

path information, and orchestrates all transmissions. The CM's internal algorithms ensure social
and stable network behavior; its API enables a variety of applications and transport protocols to
adapt to congestion and varying bandwidth.

Unsuitability of TCP-like AIMD congestion control for real-time flows triggered developing
TCP-friendly rate control (TFRC) algorithms [16], [61]. TCP can introduce an arbitrary delay
because of its reliability and in-order delivery requirements; thus, the applications such as on-line
gaming and streaming use UDP instead. This growth of long-lived non-congestion-controlled traf-
fic, relative to congestion-controlled traffic, poses a real threat to the Internet stability. TFRC is
friendly to TCP in the long run, but avoids abrupt changes in the transmission rate which makes it
attractive for real-time applications.

3 Methodology

3.1 Simulation

Simulation is an ideal approach for preliminary evaluation of protocol design, as it allows a
rapid exploration of a wide parameter space. The Network Simulator (NS2) [57] is a de facto stan-
dard tool for evaluation of Internet protocols. NS2 provides a reproducible and controllable envi-
ronment with reference protocol implementations. We have contributed new modules
implementing our protocol modifications and a delay spike generator [19].

For experiments we use a simple topology shown in Figure 7. The end points implement the
transport protocol under study. A 2.5G3G link is represented as a link with variable bandwidth,
packet losses and periodic delay spikes. The bottleneck queue preceding the link is controlled by a
queue management algorithm such as drop-tail or RED [13]. The details of configuration differ
from case to case, please refer to the methodology part of the publications.

3.2 Emulation

Emulators allow researchers to create network topologies and conditions that are difficult to
achieve in a controlled and reproducible manner in production networks. Furthermore, emulators
allow experimenting with real prototype protocols and applications. The principal difference
between simulation and emulation is that an emulator replaces one component of the system, in

Figure 7. Simulation setup in NS2. A Constant Bit Rate (CBR) source represents a real-time application.

1 Mbps
30 msclient MS BS

NRT
server

RT
server256kbps

10 ms
30 kbps
200ms 1 Mbps 30 ms

TCP Eifel

CBR
source

TCP Eifel,
CBR sink

o-13

our case the communication network, in a way that enables the system to practically operate in
real-time. Simulation, on the other hand, presents an abstract model of the complete system exe-
cuted in virtual time.

Available network emulators imitate delay, packet drop, and queue management commonly
present in computer networks. In wireless networks, the network characteristics can change drasti-
cally due to the movement of mobile terminals. A key functionality that is missing in existing
emulators such as DummyNet [50] or ONE [1] is ability to change network characteristics during
an experiment. For effective evaluation of 2.5G3G networks, changing sets of parameters in the
course of an experiment is important to model the user mobility. An emulator developed for trace-
based modelling of wireless networks best suits for reproducing characteristics of existing net-
works, but provides a limited capability to study networks only in the design phase [42].

We developed an emulator named Seawind that suits well for modelling next generation wireless
wide area networks [P3]. Execution of a fine-grain real-time event schedule on off-the-shelf com-
puter platforms is challenging. A study of the issues related to real-time emulation in Linux
describes possible methods to achieve accurate results [20]. Figure 8 depicts a test setup used dur-
ing Seawind experiments. The mobile host and fixed host are running a real implementation of the
transport protocol or application under study. Seawind intercepts data traffic between two hosts
and imitates limited bandwidth, latency, delay spikes and packet losses.

3.3 Measurements

A powerful multi-layer tracing methodology was introduced in [32] to study the GSM data
transmission. We adapt this methodology to perform multi-layer tracing in a GPRS test network.
Tracing at radio and link layers in a GPRS network is done using a commercial tool NetHawk [41]
as shown in Figure 9. NetHawk is capable of recording packets of GPRS protocols for a particular
user in BSC and SGSN. End-to-end protocol behavior is captured using the tcpdump utility. We
measured end-to-end performance in a live GPRS network while driving in a urban environment in
the Helsinki area. The exact test configuration including types of mobile terminals can be found in
[P7]. Throughput measurements are performed using the ttcp tool and latency using the standard
ping utility.

We developed a number of techniques to estimate the size of bottleneck network buffer and
delay jitter. Such estimates are necessary since detailed characteristics of commercial networking
equipment are often unavailable. The buffer size is calculated according to the amount of outstand-
ing packets at the time the first packet loss occurs in a TCP connection with a large receiver win-
dow [18]. Delay jitter is measured by generating a stream of small packets sent at the regular

Figure 8. Measurement setup using the Seawind real-time emulator.

Fixed ServersM obile C lient

Seawind

100 m bps
Ethernet

100 m bps
Ethernet

o-14

interval using an rtptools utility package.

3.4 Modelling Assumptions

In most tests we use a uni-directional bulk TCP transfer as workload. It is a simple, well-under-
stood and commonly used type of workload. During measurements of response time for transac-
tional traffic such as in [P1], request and reply messages are sent of a size estimated from logs of a
local web proxy. For latency measurements, the standard ping program provides a simple and
widely used workload.

For mobile users and operators battery power consumption and radio resource preservation are
often as important as the throughput across the wireless link. Therefore, throughput (calculated
based on all data transmitted by the sender including retransmissions) and goodput (calculated
based on useful data arrived to the receiver) are equally important performance metrics. Additional
metrics are used when necessary for a specific experiment. For example, in [P8] we also give the
average number of spurious and genuine timeouts for each connection to indicate how susceptible
a TCP modification is to timeouts.

We make typical modelling assumptions that TCP connections are long-lived and there is no
congestion in the opposite direction. Determining the extent to which these assumptions hold in
the Internet is a hard problem [17]. For example, HTTP connections commonly transfer only 10
kilobytes of data ([31], p. 380). However, we suppose that conclusions based on our assumptions
generally hold in 2.5G3G networks.

4 Radio Network Optimizations

This section presents a number of optimizations developed during a measurement study in a test
GPRS network [P7]. The issues appear to be general enough to be considered for other 2.5G3G
networks as well.

4.1 Active Queue Management

Radio networks often have a large buffer with drop-tail policy which has been shown to perform
poorly [32]. Our GPRS measurements indicated the downlink bottleneck buffer of approximately

Figure 9. Multi-layer protocol tracing in a test GPRS network at Abis and Gb interfaces.

rtpdump
tcpdump
rtpdump

tcpdump

 NetHawk

G
b

Abis

o-15

50 KB [P7]. This is several times larger than is required to smooth traffic burstiness and utilize the
link. In our earlier work [18] we studied an effect of applying the Random Early Detection (RED)
algorithm [13] in the emulated radio network. The major design goals for RED were maintaining a
normally small packet queue in the router but allowing for short-term traffic bursts and avoiding
synchronization among flows.

When only a few connections share the bottleneck queue, RED is not efficient to prevent the
start-up buffer overshoot and avoid overbuffering. The main reason is that the moving average of
the queue size used to calculate a dropping probability in RED reacts too slowly to the exponential
TCP slow start.

Therefore, we suggested the following buffering scheme. The idea is to define a soft threshold in
the router queue, close to the delay-bandwidth product of the link. The hard threshold can be two-
three times larger than the soft limit. When the queue size reaches the soft threshold, a single
packet is dropped. When the TCP sender detects a packet loss, it decreases the transmission rate
and the buffer overflow is prevented. If the hard queue threshold is reached, the router drops all
arriving packets. Extending this algorithm to work well for multiple concurrent connections
requires a counter or a timer-based mechanism to determine when to drop a packet from another
flow. Some heuristics that favor connections with small packets can be implemented to protect
interactive flows. An evaluation of this algorithm shows improved performance of TCP and TFRC
flows [10].

An active Internet user often aborts ongoing TCP connections, for example, by clicking from
page to page in a web browser. Due to the significant amount of buffering found in 2.5G3G net-
works, packets from aborted TCP connections are still transmitted to the user that wastes
resources. When a TCP connection is aborted at the receiver, an arriving data segment on that con-
nection is discarded and a reset packet is sent to the sender. For example, GPRS measurements
show that after aborting a file download, data packets are still unnecessary delivered to the mobile
host during 30 s. This problem can also be partly solved by limiting the bottleneck buffer space to
the necessary minimum or throttling flows from the receiver as proposed in Chapter 5.5. Here we
describe a complete solution located at the bottleneck buffer in the base station.

The TCP receiver generates reset (RST) segments in response to arriving packets on a aborted
connection ([54], p. 247). We suggest intercepting such RST packets in the bottleneck network
queue located before the wireless link. Then, buffered packets in the opposite direction that belong
to the aborted connection are deleted [21]. The performance gain from such an approach could be
significant and the method works robustly for all TCP applications including WWW, FTP, and
email.

The method is implemented as follows. The network node located before the bottleneck link (we
assume that the wireless link is the bottleneck in most cases) examines headers of all TCP seg-
ments and looks for the 'RST' reset bit set. When it notices such a packet, it removes all buffered
packets in the opposite direction belonging to the same TCP connection as identified by the IP
source and destination address together with the TCP source and destination port. The node then
forwards the RST packet further to the destination so that the TCP sender aborts the connection. In
case the RST packet gets lost after that, the sender will retransmit a TCP segment that will not be
dropped at the node according to the algorithm. Instead, it will generate another RST packet at the
receiver that gets forwarded to the sender. In case of a repeated loss of a data or RST segments the
algorithm relies on the TCP sender’s retransmission timeout.

4.2 Cross-Layer Interactions

This section discusses resolving four types of undesired cross-layer interactions [P7].
Fragmentation and reassembly. Lower protocol layers in radio networks often fragment (and

o-16

reassemble) IP packets into smaller units. Fragmentation is done to achieve better throughput in
presence of data corruption. A smaller size can also provide a finer-grain scheduling. However, a
small fragment size also increases the header overhead that wastes radio resources and possibly
decreases the user throughput. The fragment size is often chosen without considering typical
packet sizes at the upper layers. For instance, in GPRS measurements the typical IP MTU of 1500
bytes gives slightly lower throughput than that of 1480 bytes. Tracing at the Gb interface showed
inefficient fragmentation at the LLC layer. The maximum LLC frame size was configured to 500
bytes, thus IP packets were fragmented into four frames, with the fourth frame only a few bytes
long. Sending small frames reduces efficiency due to higher header overhead.

Competing error recovery. The presence of multiple protocol layers in the radio network (for
example RLC and LLC in GPRS) creates a possibility for competing error recovery between these
protocols. We did not observe any such cases in GPRS multi-layer tracing because our network
was operating with unacknowledged LLC. However, the upper protocol layer should ensure that
the lower protocol has discarded the data before retransmission. It can be achieved with less per-
sistence at a lower layer than a typical value of a retransmit timeout at the upper layer. Alterna-
tively, a flush-buffer message can be sent to the lower layer when a timeout occurs on the upper
layer.

Channel allocation. A radio channel in a packet-switched network is often allocated on
demand. Until the interval between data packet arrivals to the link is less than the channel release
timeout, the resource allocation is triggered frequently. Keeping the radio channel for the time
equal to average link RTT could avoid this problem. The challenge is that the packet interarrival
time depends on traffic characteristics. It may be lower for bulk TCP connections and higher for
interactive connections such as carrying HTTP traffic. The network configuration should be tuned
according to the prevailing type of traffic, for example, separately for each traffic class described
in Section 2.1 on page 3.

During GPRS measurements we observed oscillations in RTT of subsequent ping packets of
approximately 200 ms [P7]. Prior to transmitting user data, a Mobile Station (MS) must activate a
Temporal Block Flow (TBF) toward BSC. MS contends on an ALOHA-style random access chan-
nel to receive a resource allocation from the network. According to release 97 specifications, TBF
should be turned down immediately when the data buffer in the base station becomes empty [56].
Such a policy interacts badly with the TCP layer by increasing the RTT, as every segment and
ACK may trigger setup of a new TBF. Keeping TBF for longer periods has been suggested [62]
and is reflected in Enhanced GPRS specifications. The extended TBF release decreases the mini-
mum RTT seen by TCP by more than a hundred milliseconds and reduces the signaling load. How-
ever, the BSC is unaware if an MS with an active TBF has any data to transmit and therefore also
has to schedule idle MSs, thus wasting radio resources. Furthermore, the number of simultaneous
TBFs is limited and postponing the TBF release may prevent data transmission by other MSs.

Priority blocking. During GPRS measurements we observed situations when a scheduler in the
radio network caused spurious timeouts in TCP connections. The reason was found to be in a
scheduling algorithm allocating a long timeslot for one data flow, which starved other flows. To
avoid this problem, the scheduler should assign weights and a switching interval to flows appropri-
ately. Blocking caused by voice calls is more difficult to address, as most mobile terminals are
only capable of either a data or voice connection at a time.

4.3 Efficiency at the Link Layer

By tracing data transfers in GPRS we have identified the following problems related to trade-
offs between higher throughput and an efficient use of resource [P7]. These appear to be general
issues worth considering for any selective repeat link protocol.

o-17

Idle retransmissions. The first issue is premature retransmissions when there are unacknowl-
edged blocks outstanding on the RLC layer but no new blocks to transmit. The RLC sender
retransmits unacknowledged blocks in round robin until an ACK is received. On one hand, it
increases the probability of data blocks to get through the radio link. On the other hand, it may
waste radio resources and battery power of an MS. However, the MS has no knowledge whether
there is new data in BSC to be sent and therefore has to decode the assigned timeslots anyway,
which consumes the battery power as well. Avoiding such retransmissions when other users have
data to transmit would prevent waste of radio resources.

Redundant retransmissions. The second issue is multiple retransmissions of lost blocks when
an RLC receiver generates multiple ACKs in response to lost data. Such ACKs indicate the same
lost blocks and therefore can trigger unnecessary retransmissions at the RLC sender. The sender
normally retransmits lost radio blocks already on a first ACK indicating their loss. However, the
sender cannot tell if a next ACK indicating the same blocks as missing is generated before the
retransmissions arrived to the receiver or that the retransmissions were lost. A timer at the RLC
receiver could prevent repeated retransmission of blocks approximately for one RLC RTT ([58], p.
355). This gives enough time for the retransmissions to arrive and be acknowledged. Alternatively,
the receiver can generate ACKs less frequently.

ACK frequency. According to specifications the radio network controls generation of ACKs
and schedules ACKs in uplink and downlink ‘when needed’ [56]. Less frequent ACKs preserve
radio resources and battery power, but increase the probability of stalling the window. We suggest
that a BSC during uplink transfers sends a selective ACK immediately or shortly after a missing
block is detected [45]. On the other hand, when all blocks are received correctly, infrequent ACKs
suffice. In downlink transfers, a BSC can poll an MS for ACKs more frequently when the link
quality is poor.

Amount of allocated radio resources. Radio resources should be allocated for the user when
needed, i.e. when there is enough data to be sent in the given direction. It is not always the case;
we observed in GPRS that redundant downlink resources are allocated during an uplink data trans-
fer using TCP. Three timeslots are assigned for an MS in the downlink direction. Only small-size
TCP ACKs are sent in downlink, which leaves a large part of assigned resources unused. Amount
of required resources could be determined by monitoring the recent traffic volume or amount of
buffered data for an MS. We suggest allocating only the minimum resources (e.g. one timeslot) per
MS by default. If the initially assigned radio resources are fully utilized, the MS should be allo-
cated more resources to support its sending rate. If the MS decreases the transmission rate, the
amount of allocated resources should be decreased.

4.4 New Charging Principles

It is a current practice to charge users in a packet-switched wireless network based on the
amount of bytes that cross a gateway connecting the wireless network to an external packet net-
work. With this approach the user pays for data discarded within the wireless network, for example
due to buffer overflows. On the other hand, the user (in this context a user refers to a human user,
the TCP/IP stack in user’s laptop, or radio protocols in the user’s mobile terminal) is not motivated
to utilize the radio network efficiently as retransmissions over the radio interface are free. We sug-
gest that data delivery in poor radio conditions, mobility and delivering of bursty traffic should be
seen as additional services provided by the operator. These services present an additional value to
the customer and a cost in radio resources to the operator. Therefore, they can be charged more
than a basic data delivery service to match the actual use of the radio interface by user data and sig-
nalling. This proposal solves both problems present while charging at the network gateway.

Overcharging. The bottleneck buffer queue in the downlink direction is located downstream

o-18

from the router where charging data is collected. Therefore, if data arrives from the external net-
work at twice the rate that the wireless link can handle, half of the packets are lost due to buffer
overflow. The user is paying for data not received. When charging counters are located in the radio
network this situation is avoided.

Undercharging. If charging counters are collected before the radio link, the user is not inter-
ested in improving the efficiency of the radio resource use. For instance, the user is not interested
to move closer to a base station (it could be visible as a tower or located by a field strength indica-
tor in a mobile terminal), as retransmissions done by the radio link are free although they consume
radio resources. Furthermore, such activities as mobility or allocation of a radio channel due to
bursty traffic create plenty of signalling loading control channels and possibly degrading service
provided to other users. Thus, charging for the use of the radio link may motivate users to switch to
a coding scheme that requires less retransmissions although provides a lower data rate, move
closer to a base station, download files in a single cell, and deploy applications producing less
bursty traffic. These incentives increase the capacity of a radio network, which is good for other
users and the operator.

Shortcomings of the proposed approach are in increased complexity of the charging system and
in user acceptance of an idea of paying more for receiving worse service. Furthermore, data trans-
mission in poor radio conditions or on the move often has a direct cost to the user in increased
response times and lower throughput that might already provide enough incentive to transfer data
in more favorable conditions.

In summary, charging is a powerful tool to stimulate useful behavior from the user and from the
operator side. For instance, the operator could be obligated to charge less for data retransmitted by
the transport protocol such as TCP or RTP. Consequently, the operator would be more interested in
providing a higher quality link with less losses and delay jitter to the user.

5 End-to-End Optimizations

This section describes improvements at the end-to-end transport layer. First, we propose three
TCP enhancements. The general TCP profile for 2.5G3G is a starting point for our further study.
TCP robustness to delay jitter is improved in the normal transmission state and during a loss recov-
ery phase. Second, we show how deadline-based queueing at the link layer can be utilized by a
real-time transport protocol. Finally, we propose a receiver congestion manager which controls
non-real-time and real-time flows at the mobile host to prioritize among them and reduce conges-
tion losses.

5.1 The General TCP Profile for 2.5G3G Networks

Operators who have control over handset configuration, such as NTT DoCoMo, as well as stan-
dardization organizations, such as WAP Forum, who wish to adapt TCP for use in 2.5G3G net-
works would benefit from the recommendations on a wireless TCP profile. A document [P6]
defines and motivates use of state-of-the-art standard-track TCP features found in modern TCP
stacks. These TCP features are widely available, can be used safely in the Internet, and include:
• A large initial window
• A window scale option

o-19

• The Limited Transmit algorithm [3]
• Discovery of the path Maximum Transfer Unit (MTU)
• Selective Acknowledgments (SACK) [38]
• Explicit Congestion Notification (ECN) [48]
• A timestamp option [27]
• Disabling TCP/IP header compression which is not robust to packet losses.

We found that the TCP timestamp option increases accuracy of RTT measurements in band-
width-limited networks and decreases likelihood of spurious timeouts [P4]. According to previous
work, the timestamp option was not considered useful for a general use in the Internet [2].

5.2 Responding to Spurious Timeouts in TCP

A basic TCP response to spurious timeouts was suggested by Ludwig [33]. When a timeout
occurs, the Eifel algorithm at the sender stores current values of the slow start threshold and the
congestion window. Upon detecting a spurious timeout, the sender can restore them and resume
transmission with the next unsent segment. We improved the Eifel response to achieve the follow-
ing goals:
• Efficient recovery from packet losses
• Appropriate restoration of the congestion control state
• Adapting the retransmit timer to avoid further timeouts.

The results are published in [P5], [P8]. Our proposed response of a TCP sender to a spurious
timeout is as follows. After a spurious timeout the transmission always resumes with the next
unsent segment and TCP always restores the congestion window. We also recommend restoring
the slow start threshold, but optionally the threshold can be limited to the congestion window. The
TCP sender uses Limited Transmit [3] together with Forward Acknowledgments (FACK) [37] or
NewReno-SACK [P8] and adapts the RTO using the back-off counter. We believe this response is
efficient and robust under a wide range of networking conditions and increases throughput and
goodput. Over links with a high delay-bandwidth product such as in a 3G or satellite environment
we obtained up to 350% gain in throughput compared to TCP without the Eifel algorithm [P8].

5.3 Avoiding Spurious Timeouts in TCP Loss Recovery

The Eifel algorithm can be applied for detection of spurious timeouts when a TCP connection is
in the slow start or congestion avoidance phase as illustrated in Figure 4 on page 4. However, spu-
rious timeouts can also occur in the fast recovery phase that starts when a fast retransmit is trig-
gered by DUPACKs (upon reaching the threshold, DupThresh, which is commonly set to three
DUPACKs) and ends when the foremost segment outstanding on a first DUPACK (the ‘recovery
point’) is acknowledged [28].

A spurious timeout in a fast recovery phase causes an unnecessary reduction of congestion con-
trol parameters and unnecessary retransmission of segments that in certain cases can even destabi-
lize the TCP connection. The latter is possible because unnecessary retransmissions cause a long
series of DUPACKs sent in response to duplicate segments. The TCP sender in this situation can
experience repeating spurious timeouts.

The problem of spurious timeouts in the fast recovery phase can be solved by a more conserva-

o-20

tive restart policy for the retransmit timer and a careful retransmission scheme. On the other hand,
the fast recovery phase in a situation of a real packet loss must not be significantly prolonged.
These two conflicting goals are addressed by the following algorithm [P4]:
• When receiving a DUPACK, restart the retransmit timer if the number of received DUPACKs is

not more than DupThresh
• After exceeding the DupThresh, restart the timer on DUPACKs only when an advanced loss

recovery scheme is implemented which is capable of recovering lost retransmissions
• If a timeout does occur during a DUPACK series, ignore further arriving DUPACKs

The first two steps ensure that spurious timeouts do not occur very frequently in the recovery
phase, while the third one ensures that a spurious timeout has only little negative effect. Recovery
of lost retransmissions in the second step can be implemented by counting DUPACKs or utilizing
the information from SACK blocks.

5.4 Exploiting Packet Lifetime for Real-Time Transport

Achieving timely delivery and avoidance of unnecessary transmissions is difficult purely on the
end-to-end basis, especially when such disruptive events as delay spikes are unavoidable in the
network. The end points have little information about the current network conditions, about how
much data is still in the network and where it is buffered. The lack of information causes two dif-
ferent problems [P9]. First, in wireless networks the transport protocol can prematurely assume
that outstanding segments were lost and retransmit them, while the original segments are still held
by the link layer. A concurrent retransmission by the link and the transport protocol layer is called
competing error recovery ([35], p. 34). Second, the application can re-generate a fresh version of a
data object rendering the old object buffered in the network obsolete and blocking the way for the
new data.

A possible approach to these two problems is to minimize the amount of data kept in the net-
work by configuring an appropriately small router buffer size. However, a large delay-bandwidth
product, a large number of hops, and rapidly changing bandwidth in the network can put a limit on
the lowest buffer size. Thus, it is desirable to control for how long the network is allowed to buffer
the data. Carrying the packet lifetime that controls the link level persistency solves the first prob-
lem. We believe this further advances the idea of differentiated treatment of packets at the flow-
adaptive link layer [36]. This solves the problem of competing error recovery, because by the time
the transport protocol performs a retransmission, it can be sure that the link layer has already given
up on the packet in question. The second problem is solved when applications provide the trans-
port protocol with the lifetime of a data object, so that the transport layer struggles to deliver the
object within its lifetime but discards it afterwards. This prevents obsolete application data in the
network to block the way for a newly generated data objects.

The proposed solution can be useful, for instance, for streaming applications. Such applications
may not require perfect reliability, but cannot tolerate high delays variation in data delivery as it
causes a buffer depletion and discontinued playback. The option of increasing the size of the play-
back buffer is not always available due to memory and battery power limitations of portable
devices. On the other hand, delivering live streaming limits the amount of possible delay intro-
duced by a large buffer. Often, a streaming application would greatly benefit if several attempts are
made by the transport protocol to recover lost data, as long as the buffer is not depleted.

Communicating data lifetime to the wireless link is essential for detection of stale data. Some of
existing wireless networks already allow a wireless host to signal the maximum buffering delay
[55]. Alternatively, IP packets can carry an expiration deadline in the IP timestamp option. This is

o-21

convenient when the real-time server determines data lifetime, but requires a global clock for the
server and the base station. A transport protocol sets packet lifetime to the minimum of application
provided lifetime and the retransmission timeout value thus eliminating duplicate delivery but
allowing for selective recovery of packet losses.

5.5 Receiver Congestion Manager

QoS requirements of applications need to be mapped into transmission capabilities available at
the lower layers. Classifying packets into QoS classes in the network purely on IP or TCP headers
can be difficult. For instance, the HTTP protocol can be used to transport nearly any kind of traffic
including background downloads, interactive web browsing and streaming [31]. Furthermore, a
user may temporary put a higher priority to a bulk data application, which would normally be con-
sidered low-priority background traffic in the network. Therefore, the user should have control
over the priority of active transfers, perhaps through an interactive tool that would display and pri-
oritize currently active data flows.

We suggest a congestion manager at a data receiver which is located behind a slow access link
[22]. It utilizes locally available information such as the bandwidth of the access link and priorities
of data flows from the user. It could improve QoS by reducing congestion losses, preventing
excessive buffering in the network, reducing the response time for interactive applications and pre-
serving performance when handovers occur. For TCP connections, the receiver sets the aggregate
window slightly above the bandwidth-delay product of the access link. The receiver then allocates
a part of that aggregate window to each TCP connection based on its priority. This allows giving
more bandwidth to high priority connections and avoids overbuffering and congestion losses. It is
possible because the rate of each flow is limited to a fraction of bandwidth of the bottleneck link.
Furthermore, it allows a faster adaptation during inter-system handovers as follows. When a TCP
sender is limited by the receiver window, it can still increase the congestion window. Therefore, by
increasing the advertised window after switching to a high-speed network, the receiver can cause a
burst at the TCP sender that will allow utilizing the new link.

For UDP receivers, it is possible to deliberately drop packets to cause throttling of flows. As an
alternative to the receiver window, the receiver can also use an Explicit Congestion Notification
(ECN) [48] for keeping the flows at the desired share of the access link bandwidth. ECN can also
be used to control UDP flows that implement some form of congestion control. However, ECN
does not allow triggering bursts for TCP such as with the receiver window.

The proposed solution assumes that the receiver knows the rate of an access link. When it is not
known, it can be estimated, for example, using Additive Increase Multiplicative Decrease (AIMD)
algorithm, similar to the bandwidth estimation at the TCP sender. The ideas presented in this sec-
tion are preliminary as we performed only an initial evaluation of the proposal.

o-22

6 Research History

This section describes the contribution of the author and main results for each publication
included into this thesis. The first publicly available performance measurement of GPRS is pre-
sented in [P1]. Measurements show on the average a 50% degradation in throughput and occa-
sional loss of connectivity during bulk TCP transfers due to user mobility. The author’s
contribution is in performing measurement tests and writing the analysis part of the paper. In [P2]
reasons for the performance problems are explained. First, we measured the duration of cell rese-
lections in GPRS, which is found to be the main source of TCP misbehavior. Cell reselections can
cause an outage in the data transmission as high as 15 sec. The GPRS environment is reproduced
in the Seawind emulator to study the effect of such delay spikes on Linux, FreeBSD and Windows
TCP implementations. The results show that all TCPs exhibit so-called go-back-N behavior after a
spurious timeout resulting from a delay spike. The New Reno algorithm [14] is shown to worsen
TCP recovery from spurious timeouts. Furthermore, FreeBSD and Windows TCP have even pre-
sented unstable behavior after a spurious timeout producing a chain of unnecessary retransmis-
sions. The entire study was performed by the author.

The Seawind emulator is presented in detail in [P3]. Seawind is a tool that allows emulating the
transmission paths provided by cellular wireless networks and allows testing of real protocol
implementations. The author’s contribution is in the design and implementation of the core of the
emulator including event scheduling, real-time execution, delay and packet loss generation, and in
being the key author of the paper.

Further work on TCP concentrated on improving robustness to delay spikes. In [P4], the TCP
error recovery phase is enhanced by appropriate restarting of the retransmit timer and suppressing
unnecessary retransmits. In combination with existing recovery methods, the proposed scheme
allows avoiding the retransmission timeouts caused by lost retransmissions. Furthermore, this
study illustrates the usefulness of timestamps [27] for TCP connections over bandwidth-limited
links. The entire study was performed by the author.

In [P5], we evaluated the Eifel algorithm [33] for detection and recovery from spurious timeouts
in a simulated GPRS environment. In the environment without packet losses, an improvement of
20% in goodput and 12% in throughput can be achieved. Surprisingly, when packet losses are
present, Reno with Eifel performed worse than Reno due to poor recovery from packet losses. The
main contribution of the paper resides in this finding and in showing that using standard enhance-
ments such as SACK [38] and Limited Transmit [3] can largely overcome this difficultly. The
entire study was performed by the author.

The general TCP profile for 2.5G3G networks is specified in [P6]. The author’s contribution is
in writing part of the introduction, Section 2 reviewing link characteristics of 2.5G3G networks,
Section 3.3 describing the GPRS architecture, and Section 4.8 advocating the use of timestamps.
The GPRS protocol stack operation is traced in [P7]. Author’s contribution is in performing part of
the measurements, analysis of all the measurement data, and writing the paper.

Both [P8] and [P9] present on-going work performed by the author. In [P8] the goal is to finalize
the response to spurious TCP timeouts for the Eifel algorithm and show that it is useful and safe
for widespread deployment. A side contribution of this study is in extending the NS simulator with
a delay generator tool and implementation of the Eifel algorithm [19]. In [P9] the goal is to exploit
lifetime data available for real-time traffic to avoid unnecessary transmissions of stale data over an
expensive wireless link.

o-23

7 Conclusions and Future Work

Achieving efficient transport in 2.5G3G networks implies meeting QoS requirements of applica-
tions while preserving radio resources, battery power and friendliness to other flows in the Inter-
net. Such events as high delay spikes, bandwidth oscillation and connectivity outages are difficult
to prevent in the 2.5G3G environment. Therefore, achieving efficient transport demands coordi-
nated efforts from the radio network and the end-to-end transport protocol. We have introduced a
framework that allows achieving efficient transport for both non-real-time and real-time flows.

The concept of flow-adaptive links together with the Eifel algorithm for reducing inefficient
cross-layer interactions [35] has been an important step towards efficient transport. We studied
three new types of inefficient cross-layer interactions including on-demand channel allocation,
fragmentation and scheduling at the link layer. We explained how these inefficient interactions can
be resolved in 2.5G3G networks. Ideally, these mechanisms should be tailored to the pattern of the
user traffic. We showed that the current practice of placing a large drop-tail buffer before the wire-
less link is poor, as it allows for high latency and unnecessary delivery of stale data. We calculated
the optimal buffer size for 2.5G3G networks and proposed active queue management algorithms to
prevent poor TCP behavior. We extended the concept of flow-adaptive links to include the explicit
lifetime of data packets. This allows the link error recovery protocol to perform a limited amount
of retransmissions until the packet is still worth delivering to the receiver. On the other hand, stale
data is removed from the queue, thus preserving radio spectrum and battery power.

At the end-to-end transport layer, our work focused on TCP optimization and efficient delivery
of real-time data. A proposed general TCP profile for 2.5G3G networks is used in the WAP v2
specifications and in TCP implementations in mobile phones by NTT DoCoMo. We enhanced the
Eifel response to spurious TCP timeouts making it more robust to packet losses and repeated delay
spikes. In addition, we improved TCP robustness to delay spikes during the loss recovery phase.
We showed that with support from the link-layer, a real-time transport protocol can eliminate
unnecessary delivery of stale data over the wireless link. We studied interactions of expiration
losses at the link layer with existing end-to-end congestion control algorithms. Furthermore, nec-
essary adjustments to the calculation of the retransmission timer at the transport protocol are
explained.

Finally, in heterogeneous network environments the end systems cannot always rely on the net-
work to provide the required QoS. The network may not be able to appropriately prioritize among
flows or provide adequate buffering. Furthermore, only the consumer of the data, i.e. the user, can
properly assign priorities for concurrent data flows. Therefore, we suggest a Receiver Congestion
Manager to selectively throttle data flows at the mobile host. Our preliminary results suggest that it
can prioritize among flows, reduce congestion losses, prevent excessive buffering in the network,
reduce the response time for interactive applications and preserve performance when handovers
occur.

Our future work on GPRS will include a study of network-controlled cell reselections, measure-
ments of throughput and battery lifetime under varying radio conditions and network load, and
performance of streaming. UMTS measurements will commence as soon as the first terminals
become available. Implementing QoS in the GPRS and UMTS network is also in our plans. We are
further developing a more accurate TCP retransmission timer based on [34]. The accuracy of a
timer assumes a reduced fraction of spurious timeouts and moderate waiting time for unavoidable
timeouts.

o-24

References

[1] M. Allman, A. Caldwell, and S. Ostermann. ONE: The Ohio Network Emulator. Technical
Report TR-19972, School of Electrical Engineering and Computer Science, Ohio Univer-
sity, August 1997.

[2] M. Allman, V. Paxson, On Estimating End-to-End Network Path Properties, In Proceed-
ings of ACM SIGCOMM’99, September 1999.

[3] M. Allman, H. Balakrishnan, S. Floyd, Enhancing TCP's Loss Recovery Using Limited
Transmit, RFC 3042, January 2001.

[4] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, R. H. Katz, A Comparison of Mecha-
nisms for Improving TCP Performance over Wireless Links, IEEE/ACM Transactions on
Networking, Vol 5, No 6, pages 756-769, December 1997.

[5] H. Balakrishnan, H. Rahul, S. Seshan, An Integrated Congestion Management Architec-
ture for Internet Hosts, In Proceedings of ACM SIGCOMM’99, September 1999.

[6] G. Brasche, B. Walke. Concepts, services and protocols of the new GSM phase 2+ General
Packet Radio Service, IEEE Communications Magazine, Vol 35, No 8, pages 94-104,
August 1997.

[7] E. Brewer, R. H. Katz, E. Amir, H. Balakrishnan, Y. Chawathe, A. Fox, S. Gribble, T.
Hodes, G. Nguyen, V. Padmanabhan, M. Stemm, S. Seshan, and T. Henderson, A Network
Architecture for Heterogeneous Mobile Computing, IEEE Personal Communications
Magazine, Vol 5, No 5, pages 8-24, October 1998.

[8] Caida, Traffic Workload Overview, http://www.caida.org/, June 2002.

[9] D. D. Clark, D. L. Tennenhouse. Architectural considerations for a new generation of pro-
tocols, In Proceedings of ACM SIGCOMM’90, August 1990.

[10] H. Ekstrom, R. Ludwig, Active Queue Magement for Links with Low Statistical Multi-
plexing, submitted for publication.

[11] N. Feamster and H. Balakrishnan, Packet Loss Recovery for Streaming Video, 12th Inter-
national Packet Video Workshop, Pittsburgh, PA, April 2002.

[12] N. Feamster, H. Balakrishnan, Adaptive Video Streaming, http://nms.lcs.mit.edu/projects/
videocm/, August 2002.

[13] S. Floyd, V. Jacobson, Random early detection gateways for congestion avoidance, IEEE/
ACM Transactions on Networking, Vol 1, No 4, pages 397-413, August 1993.

[14] S. Floyd, T. Henderson, The NewReno Modification to TCP's Fast Recovery Algorithm,
RFC 2582, April 1999.

o-25

[15] S. Floyd, K. Fall, Promoting the Use of End-to-End Congestion Control in the Internet,
IEEE/ACM Transactions on Networking, Vol 7, No 4, pages 458-472, August 1999.

[16] S. Floyd, M. Handley, J. Padhye, J. Widmer, Equation-Based Congestion Control for Uni-
cast Applications, In Proceedings of ACM SIGCOMM’00, August 2000.

[17] S. Floyd, V. Paxson, Difficulties in Simulating the Internet, IEEE/ACM Transactions on
Networking, Vol 9, No 4, pages 392-403, August 2001.

[18] A. Gurtov, TCP Performance in the Presence of Congestion and Corruption Losses, Mas-
ter's Thesis, University of Helsinki, Department of Computer Science, Helsinki, Decem-
ber 2000.

[19] A. Gurtov, Extensions of NS2, http://www.cs.helsinki.fi/u/gurtov/ns/, August 2002.

[20] A. Gurtov, Technical Issues of Real-Time Simulation on Linux, In Proceedings of Finnish
Data Processing Week’99, June 1999.

[21] A. Gurtov, M. Raitola, Deleting packets from aborted TCP connections, a patent applica-
tion filed by Sonera, June 2002.

[22] A. Gurtov, A method to achieve QoS at the mobile data receiver, a patent application filed
by Sonera, September 2002.

[23] IETF, Context Transfer, Handoff Candidate Discovery, and Dormant Mode Host Alerting ,
http://www.ietf.org/ html.charters/seamoby-charter.html, July 2002.

[24] IETF, Robust Header Compression, http://www.ietf.org/ html.charters/rohc-charter.html,
July 2002.

[25] IETF, Audio/Video Transport Working Group, http://www.ietf.org/html.charters/avt-char-
ter.html, July 2002.

[26] J. Irvine, D. Pesch, D. Robertson, D. Girma, Efficient UMTS Data Service Provision using
INFOSTATIONS, In Proceedings of IEEE Vehicular Technology Conference'98, May
1998

[27] V. Jacobson, R. Braden, D. Borman, TCP Extensions for High Performance, RFC 1323,
May 1992.

[28] V. Jacobson, Congestion avoidance and control, In Proceedings of ACM SIGCOMM '88,
August 1988.

[29] P. Karn, C. Partridge, Improving Round-Trip Time Estimates in Reliable Transport Proto-
cols, In Proceedings of ACM SIGCOMM’87, August 1987.

[30] L. Kleinrock, Breaking Loose, Communications of the ACM, Vol 44, No 9, pages 41-45,
September 2001.

[31] B Krishnamurthy, J. Rexford, Web Protocols and Practice: HTTP/1.1, Networking Proto-

o-26

cols, Caching, and Traffic Measurement, Addison-Wesley, May 2001.

[32] R. Ludwig, B. Rathonyi, A. Konrad, K. Oden, A. Joseph, Multi-Layer Tracing of TCP
over a Reliable Wireless Link, In Proceedings of ACM SIGMETRICS’99, May 1999.

[33] R. Ludwig, R. H. Katz, The Eifel Algorithm: Making TCP Robust Against Spurious
Retransmissions, ACM Computer Communication Review, Vol 30, No 1, January 2000.

[34] R. Ludwig, K. Sklower, The Eifel Retransmission Timer, ACM Computer Communica-
tions Review, Vol 30, No 3, July 2000.

[35] R. Ludwig, Eliminating Inefficient Cross-Layer Interactions in Wireless Networking,
Doctoral Dissertation, Aachen University of Technology, Germany, April 2000.

[36] R. Ludwig, A. Konrad, A. D. Joseph, R. H. Katz, Optimizing the End-to-End Performance
of Reliable Flows over Wireless Links, ACM/Baltzer Wireless Networks, Vol 8, No 2/3,
March 2002.

[37] M. Mathis, J. Mahdavi, Forward Acknowledgment: Refining TCP Congestion Control, In
Proceedings of ACM SIGCOMM’96, August 1996.

[38] M. Mathis, J. Mahdavi, S. Floyd, A. Romanow, TCP Selective Acknowledgement
Options, RFC 2018, October 1996.

[39] M. Meyer, TCP Performance over GPRS, In Proceedings of IEEE Wireless Communica-
tions and Networking Conference’99, September 1999.

[40] M. Mouly, M.-B. Pautet, The GSM System for Mobile Communications, Cell&Sys, 1992.

[41] NetHawk, http://www.nethawk.fi, August 2002.

[42] G. T. Nguyen, R. H. Katz, B. D. Noble, M. Satyanarayanan, A Trace-based Approach for
Modeling Wireless Channel Behavior, In Proceedings of Winter Simulation Conference,
December 1996.

[43] L. Ong, J. Yoakum, An Introduction to the Stream Control Transmission Protocol (SCTP),
RFC3286, May 2002.

[44] S. Parker, C. Schmechel, Some Testing Tools for TCP Implementors, RFC 2398, August
1998.

[45] M. Passoja, M. Raitola, O. Aalto, A. Gurtov, Improvement for RLC uplink acknowledge-
ments of GPRS, a patent application filed by Sonera, January 2002.

[46] J. Postel, User Datagram Protocol, RFC768, August 1980.

[47] J. Postel, Transmission Control Protocol - DARPA Internet Program Protocol Specifica-
tion, RFC 793, September 1981.

[48] K. Ramakrishnan, S. Floyd, D. Black, The Addition of Explicit Congestion Notification

o-27

(ECN) to IP, RFC 3168, September 2001.

[49] P. Sarolahti, M. Kojo, and K. Raatikainen, F-RTO: A New Recovery Algorithm for TCP
Retransmission Timeouts, University of Helsinki, Department of Computer Science,
Technical Report C-2002-07, February 2002.

[50] L. Rizzo, DummyNet: a simple approach to the evaluation of network protocols, ACM
Computer Communication Review, Vol 27, No 1, pages 31-41, January 1997.

[51] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson, RTP: A Transport Protocol for Real-
Time Applications, RFC1889, January 1996.

[52] H. Schulzrinne, Internet Telephony and Multimedia Services, http://www.cs.colum-
bia.edu/IRT/imm/, August 2002.

[53] A. C. Snoeren, J. Salz, D. G. Andersen, H. Balakrishnan, F. Kaashoek, The Migrate Inter-
net Mobility Project, http://nms.lcs.mit.edu/projects/migrate/, August 2002.

[54] W. R. Stevens, TCP/IP Illustrated, Volume 1 (The Protocols), Addison Wesley, November
1994.

[55] The Third Generation Partnership Project, QoS Concept and Architecture, TS 23.107
V5.4.0, http://www.3gpp.org/specs/specs.htm, March 2002.

[56] The Third Generation Partnership Project, TS 04.60 V8.6.0 Mobile Station (MS) - Base
Station System (BSS) interface; Radio Link Control/ Medium Access Control (RLC/
MAC) protocol, http://www.3gpp.org/specs/specs.htm, March 2002.

[57] UCB/LBNL/VINT, The NS2 network simulator, http://www.isi.edu/nsnam/ns/, August
2002.

[58] B. Walke, Mobile Radio Networks, Networking and Protocols (2. Ed.), Wiley & Sons,
Chichester 2001.

[59] H. J. Wang, R. H. Katz, J. Giese, Policy-Enabled Handoffs Across Heterogeneous Wire-
less Networks, In Proceedings of 2nd IEEE Workshop on Mobile Computing Systems and
Applications, February 1999.

[60] Z. Wang, Internet QoS: Architectures and Mechanisms for Quality of Service, Morgan
Kaufmann, 2001.

[61] WebTP, A User-Centric Framework for WebTransport, http://webtp.eecs.berkeley.edu/,
December 2000.

[62] H. Wiemann, A. Schieder, H. Ekström, Enhanced TBF Features in GERAN, In Proceed-
ings of the Forth International Symposium on Wireless Personal Multimedia Communica-
tions, Septemeber 2001.

[63] G. Xylomenos, G. Polyzos, P. Mahonen, M. Saaranen, TCP Performance Issues over Wire-
less Links, IEEE Communications Magazine, Vol. 39, No 4, pages 52-58, April 2001.

o-28

[64] G. Xylomenos, G. Polyzos, Quality of Service Support over Multi-Service Wireless Inter-
net Links, Computer Networks, Vol 37, No 5, pages 601-615, July 2001.

[65] N. Yavuz, F. Khafizov, TCP over Wireless Links with Variable Bandwidth, In Proceedings
of IEEE Vehicular Technology Conference, September 2002.

1

Abstract – In this paper we present results of measurements
on the performance of GSM HSCSD and GPRS data
transmission. We used a measurement tool that we have
developed to study the performance of various wireless links as
perceived by nomadic applications using the TCP protocol. The
results show that in stationary connections the throughput and
response time were stable and, in general, close to the
theoretical values. However, the throughput and response time
varied a lot when connections were used in motion. One of the
reasons is that TCP was not capable to adapt itself properly to
the variability of QoS of HSCSD and GPRS, and therefore, it
did a lot of unnecessary retransmissions causing performance
slowdown. The performance of HSCSD was better than the
performance of GPRS. Reliability was adequate in stationary
connections, but in moving connections there were unwanted
disconnections or long pauses in data transfer.

I. INTRODUCTION

The basic GSM data services [1] have been in the market
for about 6 years. However, they have not reached wide scale
usage. Some of the basic reasons are low throughput and
dependability of GSM data transmission. ETSI [2] has
planned a technology path to higher throughput and more
dependable services. High Speed Circuit Switched Data
(HSCSD) [3, 4] and 14400 bps channel coding (144CC) [5]
were the first steps in the path. General Packet Radio
Services (GPRS) [6] is entering the market, and Universal
Mobile Telecommunications Services (UMTS) [7] will
succeed them within next 2-3 years.

HSCSD offers higher transfer rates by combining two or
more time slots. It implements a flexible time slot allocation
scheme. The allocation of time slots depends on the
following factors: end user's subscription, air capacity, and
network load. HSCSD uses an Automatic Link Adaptation
scheme (ALA) for the best channel coding at each occasion.
GPRS enhances GSM data services to a packet switched data
transmission. GPRS has also a flexible time slot allocation
scheme and ALA. In the first phase, GPRS uses CS-1 (9.05
kbps line rate) and CS-2 (13.4 kbps line rate) channel
codings [15].

We made this study to understand the performance of
HSCSD and GPRS from the viewpoint of nomadic

applications. In the study we used a performance
measurement tool (Wireless Link Tester – WLT) [11] that we
have developed to study the performance of various wireless
links. WLT implements a client – server model and uses TCP
as its transport protocol. With WLT we can measure the
throughput, round-trip time, and reliability of a wireless link.
We made the measurements on HSCSD using the public
GSM network and on GPRS using the public GPRS network
in Helsinki surroundings operated by Sonera.

 Our major results are the following:
1. Generally, in stationary connections the performance

was stable meaning that the variation in both the throughput
and round-trip time was small and there were only few
disconnections [11].

2. In moving connections, the variation in both the
throughput and the round-trip time was high, and there were
several disconnections or long pauses in data transfer.
Disconnections happened on the average every 11th-12th
minute. In addition, there were cases where the round-trip
time was exceptionally long and the throughput was very
low.

3. The measurements indicated that TCP was not capable
to adapt itself properly to the variability of QoS of HSCSD
and GPRS. Therefore, TCP did unnecessary retransmissions
causing significant performance slowdown.

The rest of the paper is organized as follows: Section 2
discusses HSCSD and GPRS. Section 3 describes our
measurements including WLT, measurement setup, and
traffic loads. We then present the results of the
measurements in Section 4. Finally we summarize the study
in Section 5.

II. HSCSD AND GPRS

HSCSD consists of two separate technologies: multislot
capability and modified channel coding scheme. The former
provides the usage of several parallel time slots per user thus
increasing the user data rate respectively. The first phase of
HSCSD specifications allows the usage of 4+4 time slots, but
in practice, the mobile equipment manufacturers implement
more limited versions of that. At the beginning of HSCSD
services, the maximum number of time slots is mostly limited

Measured Performance of GSM HSCSD and GPRS

Jouni Korhonen
Olli Aalto

Andrei Gurtov
Heimo Laamanen
Sonera Corporation

P.O.Box 970
00051 Helsinki, Finland

2

to 1+3 and 2+2 (Fig. 1). The specifications define
asymmetric traffic in such a way, that the amount of time
slots in uplink direction cannot exceed the number of time
slots in downlink direction.

The 144CC scheme provides a 14.4 kbps line rate instead
of the original 9.6 kbps line rate. In order to achieve higher
line rates there is a more efficient puncturing method used,
which on the other hand decreases the radio interface error
correction performance. This means, that 144CC cannot be
used, when there are a lot of noise and interference affecting
the quality of the radio signal.

The specifications define upgrading and downgrading of
air interface resources. It means that the amount of parallel
time slots can vary between one and the maximum defined
value. Up- and downgrading may occur when the signal
level, interference level or capacity varies during a
connection. The system can also use ALA, which means that
the data rate can be 14.4 kbps or 9.6 kbps for an individual
time slot depending on the radio path conditions. Both up-
and downgrading of the resources and ALA can happen
during a data transfer. Even though, the specifications allow
the up- and downgrading and ALA, the combinations might
be limited depending on the network and mobile terminal
capabilities.

In the first phase, the maximum data rate of HSCSD is
limited to 64.0 kbps due to the A-interface [4]. Depending on
the connection type and the infrastructure capabilities of the
network, the maximum user rate can be 38.4 kbps using
ISDN V.110 protocol, and 57.6 kbps using ISDN V.120
protocol.

GPRS maintains the GSM Base Station Subsystem (BSS)
access technologies with some modifications to the allocation
of air interface resources. In contrary to HSCSD, time slots
are allocated for a terminal when needed and up to eight
terminals may share one time slot. GPRS uses a flexible time
slot allocation scheme with up to 8+8 time slots. GPRS has
four channel coding schemes (CS-1 9.05 kbps, CS-2 13.4
kbps, CS-3 15.6 kbps, and CS-4 21.4 kbps below the RLC
level). In practice CS-1 provides about 8.0 kbps data rate and
CS-2 about 12.0 kbps data rate [16]. Different coding has
different performance and error resiliency characteristics.
Most important new components to support packet switched
data transmission in the Network Subsystem are: the Serving
GPRS Support Node (SGSN), the Gateway GPRS Support
Node (GGSN), and the Border Gateway (BG) [12, 13].

III. MEASUREMENTS

In this section, we describe our measurement tool,
measurement setup, and traffic workloads used in the study.

A. Measurement Tool

WLT is designed to measure the throughput and round-trip
time of a wireless link. WLT also collects TCP segment
counters and link disconnections.

No data compressions (Van Jacobson [8], V.42bis [9], etc.)
are used, so the actual throughput – not improved by data
compressions – is measured.

The Dialup Networking (DUN) and Remote Access
Service (RAS) of Windows NT4SP6a are used to establish
the data link connection between the mobile computer and
the desktop computer. The configuration of the measurement
tool is shown in Fig. 2.

B. Measurement Setup

For HSCSD measurements we used 1+3 time slot
allocation with 144CC and ALA in the air interface and
V.110 protocol in the ISDN interface between MSC IWU
and the desktop computer. Fig. 3 shows the HSCSD test
configuration. For GPRS measurements we used 1+2 time
slot allocation with CS-2 because that was the best the
mobile terminal was able to support. During live GPRS tests
the ALA functionality was disabled in the GPRS network.
The requested reliability class was “Unacknowledged GTP
and LLC; Acknowledged RLC, Protected data”. Fig. 4 shows
the GPRS test configuration.

We have used following TCP parameters: MSS of 536
bytes and the receiver window of 16 kilobytes. No other TCP
options (SACK, timestamps, etc.) were enabled.

C. Traffic Workloads

We measured two types of workloads: bulk data transfers

0 1 7 6 5 4 3 2

0 1 7 6 5 4 3 2

0 1 7 6 5 43 2

0 1 76 5 4 3 2

symmetrical 2+2 asymmetrical 1+3

Fig. 1. Example of symmetric and asymmetric HSCSD
multi slot-scheme

TCP

PPP

WLT Client WLT Server

IP

TCP

PPP

IP

Win NT4 SP6 Win NT4 SP6

DUN

HSCSD
driver

NT RAS

Mobile Computer Desktop Computer

GSM HSCSD Fixed Network

GPRS
driver

ISDN
driver

Ethernet
driver

IP Network / LANGPRS

TCP

PPP

WLT Client WLT Server

IP

TCP

PPP

IP

Win NT4 SP6 Win NT4 SP6

DUN

HSCSD
driver

NT RAS

Mobile Computer Desktop Computer

GSM HSCSDGSM HSCSD Fixed NetworkFixed Network

GPRS
driver

ISDN
driver

Ethernet
driver

IP Network / LANGPRSGPRS

Fig. 2. Configuration of the measurement tool

3

and request – reply transfers. Bulk data transfer simulates for
example FTP transfers or a retrieval of large image. The bulk
transfer sequences consisted of 40 repetitions of 150000
bytes data transfers.

The request – reply transfers simulate HTTP transactions.
The test sequences are described in Table 1. The sizes for
request – reply measurements are based on a real HTTP trace
collected from one Sonera's Internet service access point and
its transparent proxy. The HTTP trace was collected during
one week and contains almost two billion requests. The
selection criteria for the message sizes of the measurements
were the frequencies of message sizes categorized by
appropriate ranges. We intentionally rejected browser's cache
hits and huge downloads. This scales minimum reply sizes up
and maximum reply sizes down than those of typical Web
browsing; however, the overall response time of Web
browsing can be estimated from our results.

IV. RESULTS OF MEASUREMENTS

In this section, we present the results of the measurements.

A. HSCSD Bulk Data Transfers

Stationary connections had generally a stable throughput
[11]. Measured throughput for moving connections is
illustrated in Fig. 5.

The uplink throughput was the following: maximum 23.3

kbps, minimum 4.1 kbps, and average 9.6 kbps. We
experienced some variation in the throughput and few
significant peaks. The cause for variation was mostly ALA.
The peaks can be explained by our network configuration;
the tested network allocated 2+2 time slots instead of 1+3, if
there was no capacity to provide three downlink time slots.
About 18% of uplink test sequences had significant amount
of TCP retransmissions – in some cases even all segments
were resent.

The downlink throughput was the following: maximum
27.9 kbps, minimum 13.4 kbps, and average 22.7 kbps. There
was less variation in downlink than in uplink throughput. We
also experienced less TCP retransmissions; 5% of test
sequences had over 1/3 of all segments resent.

B. HSCSD Request – Reply Transfers

Response times for each request – reply test sequences are
illustrated in Fig. 6. The performance was good; though, the
variation increased considerably when the request – reply
data size increased. Small transactions (280/499) had the
following round-trip times: the average 1.0 sec, the minimum
0.8 sec, and the maximum 7.2 sec. The average round-trip
time for medium size transactions (348/4758) was 2.7 sec,
the minimum was 2.1 sec, and the maximum was 13.3 sec,
whereas for large size transactions (539/5070) the average
round-trip time was 3.1 sec, the minimum was 2.3 sec, and
the maximum was 26.8 sec. Although there were variations,
they were less than half of those of GPRS. Over 60% of the
test sequences had only a few TCP retransmissions. But there
were some large size (539/5070) test sequences where over
1/3 of segments was resent.

C. GPRS Bulk Data Transfers

Uplink bulk data transfers in GPRS (Fig. 7) were more
problematic than downlink, which was similar to HSCSD.

Base
Station
Controller

ISDN

Mobile Computer
(client)

Desktop Computer
(s erver)

Toshiba Tecra 8000
Nokia Card Phone 2.0
(PCMCIA GSM phone)

Compaq Deskpro 6000
Zyxcel Elite 2864I ISDN/MODEM

Sonera GSM network

RS-232

HSCSD

BTS

I W U

Mobile
Switching
Center (MSC)

ISDN pool

Max 38.4 kbs

ISDN
V.110

Base
Station
Controller

ISDNISDN

Mobile Computer
(client)

Desktop Computer
(s erver)

Toshiba Tecra 8000
Nokia Card Phone 2.0
(PCMCIA GSM phone)

Compaq Deskpro 6000
Zyxcel Elite 2864I ISDN/MODEM

Sonera GSM network

RS-232

HSCSD

BTS

I W U

Mobile
Switching
Center (MSC)

ISDN pool

Max 38.4 kbs

ISDN
V.110

ISDN
V.110

Fig. 3. HSCSD test configuration
Compaq
Deskpro 6000

Desktop Computer
(server)

Mobile Computer
(client)

Toshiba
Portégé 7200
Motorola Timeport 260

GPRS
Core Network

SGSN

GGSN

GPRS
Radio Network

IP Network / LAN
Compaq
Deskpro 6000

Desktop Computer
(server)

Mobile Computer
(client)

Toshiba
Portégé 7200
Motorola Timeport 260

GPRS
Core Network

SGSN

GGSN

GPRS
Radio Network

GPRS
Radio Network

IP Network / LAN

Fig. 4. A model of GPRS used in test

TABLE 1
 TEST SEQUENCES IN REQUEST - REPLY TRANSFERS

Number of

Tests
Average Request
Message (bytes)

Average Reply
Message (bytes)

19*120 280 499
19*120 348 4758
19*120 539 5070

4

Almost all uplink data transfers have retransmitted segments,
in some cases the amount of retransmissions have exceeded
the size of transferred user data. Only a small part of
retransmissions was recovering lost segments, the larger part
of retransmissions was unnecessary. We could observe this
by studying the receiver-side TCP traces and comparing the
number of segments sent and received. The maximum
throughput in the uplink direction was 7 kbps, which is
significantly less than the data rate of 12 kbps, even with
TCP/IP header overhead included. Some transfers took a
very long time to complete. The lowest throughput was only
1.8 kbps, which is more than six times less than the data rate.
The average uplink throughput in GPRS of 3.8 kbps was less
than a half of HSCSD.

In the downlink direction, only a few transfers have had
retransmissions and throughput was good (results cannot be
directly compared to HSCSD, since GPRS tests have had two
timeslots allocated versus three for HSCSD). Downlink tests
were stable; 90% of tests have had throughput close to the
maximum of 20 kbps, which still is 17% lower than the data
rate of 24 kbps. However, the lowest throughput of 2.6 kbps
was almost ten times less than the data rate.

D. GPRS Request – Reply Transfers

On the average, all transactions showed satisfactory

performance over GPRS (Fig. 8). However, the maximum
response time was extremely high, in the order of several
minutes. For small transactions (260/499), we noticed only a
few retransmissions, but the minimum response time of 1.5
seconds was almost twice as large as for HSCSD. For
medium (348/4758) and large (539/5070) transactions, the
minimum response time was approximately 30 % larger than
for HSCSD and 90 % of transactions took approximately
twice longer to complete over GPRS than over HSCSD.
Approximately 10% of segments were retransmitted.

E. Reliability

In general, in the case of HSCSD the reliability of
stationary connections was adequate for nomadic end users.
However, in moving connections there were disconnections
caused by handover failures, air interface failures, and remote
equipment failures. On the average, there was a
disconnection every 11th - 12th minute. In the case of GPRS,
in moving connections there were several cases, where
transfer was paused for exceptionally long time. One of the
reasons was that GPRS is still in earlier phase, and thus, there
were software faults causing performance slow down.

187 218 254

0

5

10

15

20

25

30

280/499 348/4758 539/5070

se
co

nd
s AVG

MIN
MAX
90 %

Fig. 8. Response times of GPRS request – reply transfers

0

5

10

15

20

25

30

280/499 348/4758 539/5070

se
co

nd
s AVG

MIN
MAX
90 %

Fig. 6. Response times of HSCSD request – reply transfers

0

5000

10000

15000

20000

25000

30000

35000

40000

Uplink Downlink

bp
s

AVG
MIN
MAX
90 %
Line rate

Fig. 5. Throughput of HSCSD (38*150000 bytes transfers)

0

5000

10000

15000

20000

25000

30000

35000

40000

Uplink Downlink

bp
s

AVG
MIN
MAX
90 %
Line rate

Fig. 7. Throughput of GPRS (40*150000 bytes transfers)

5

V. SUMMARY

In general, in good radio signal quality environment, both
HSCSD and GPRS provided significantly better throughput
and response time than the basic GSM data service. The
throughput and round-trip time in stationary connections
were stable. However, in moving connections they may
change a lot; for example, the throughput changed between
23.2 kbps and 2.4 kbps and response time changed between
2.3 sec and 26.8 sec. One of the reasons to the high variance
was the behavior of TCP. TCP could not cope properly with
the characteristics of HSCSD and GPRS data transmission,
thus causing performance slow down by doing a lot of
unnecessary retransmissions. The problems with TCP are
discussed, for example, in [10]. IETF has started to address
these problems [14].

HSCSD provided better performance than GPRS does.
GPRS had higher variance in performance than HSCSD. The
high variance needs to be addressed when developing
nomadic applications over GPRS.

 The reliability in stationary connections is adequate.
But the reliability in moving connections – a disconnection
every 11th-12th minute (HSCSD) or long pauses in data
transfer (GPRS) – may create problems, for example, in long
web browsing sessions or in long file transfers. Therefore,
the reliability of moving connections may create problems, if
a distributed application cannot cope properly disconnections
or long pauses.

Future studies will include performance measurements
using simulated UMTS.

REFERENCES

[1] Michel Mouly, Marie-Bernadette Pautet, “The GSM
System for Mobile Communications”, 1992.

[2] European Telecommunications Standards Institute,
WWW.ETSI.ORG, checked 19.2.2001.

[3] GSM Technical Specification, “GSM 02.34, High Speed
Circuit Switched Data (HSCSD), Stage 1”, Version
5.2.0. ETSI, July 1997.

[4] GSM Technical Specification, “GSM 03.34, High Speed
Circuit Switched Data (HSCSD), Stage 2+”, Version
5.2.0. ETSI, May 1999.

[5] GSM Technical Specification, “GSM 10.14 version
1.0.1, Digital cellular telecommunications system
(Phase 2+), System Overview for 14.4 kbit/s Work
Item”, ETSI, 1997.

[6] GSM Technical Specification, “GSM 02.60 version
6.1.0, GPRS Service Description, Stage 1”, ETSI 1998.

[7] WWW.3GPP.ORG, checked 19.2.2001.
[8] Van Jacobson, “Compressing TCP/IP Headers for Low-

Speed Serial Links”, RFC 1144, 1990.
[9] ITU-T, “Recommendation V.42bis: Data Compression

Procedures for Data Circuit Terminating Equipment
(DCE) Using Error Correction Procedures”, ITU-R,
January 1990.

[10] Reiner Ludwig, and Randy H. Katz, “The Eifel
Algorithm: Making TCP Robust Against Spurious
Retransmissions”, Computer Communication Review,
Vol 30, Number 1, January 2000.

[11] H. Laamanen, J. Penttinen, and J. Laukkanen,
”Measured Performance of GSM High Speed Circuit
Switched Data Link”, BAS2000, 5th Computer
Networks Symposium, June 2000.

[12] GSM Technical Specification, “GSM 03.60 version
7.4.0, Digital cellular telecommunications system
(Phase 2+), General Packet Radio Service (GPRS)
Service Description – Stage 2”, ETSI, 2000.

[13] Jian Cai, David Goodman, “General Packet Radio
Service in GSM”, IEEE Communications Magazine,
October 1997.

[14] G. Montenegro, et al, “Long Thin Networks”, RFC
2757, January 2000.

[15] GSM Technical Specification, “GSM 03.64 version
7.1.0, Digital cellular telecommunications system
(Phase 2+), Overall description of the GPRS radio
interface, Stage 2”, ETSI 1999

[16] M. Mayer, “TCP Performance over GPRS”, IEEE
Wireless Communications and Networking Conference
1999, New Orleans, LA, September 21-24, 1999

Effect of Delays on TCP Performance

Andrei Gurtov
Cellular Systems Development, Sonera Corporation

Key words: TCP, delay, GPRS, Eifel.

Abstract: This paper has several contributions. First, we report that long sudden delays
during data transfers are not uncommon in the GPRS wireless WAN. Long
sudden delays can lead to spurious TCP timeouts and unnecessary
retransmissions. Second, we show that the New Reno algorithm increases the
penalty of spurious TCP timeouts and that an aggressive TCP retransmission
timer may trigger a chain of spurious retransmissions. Third, we test how four
widely deployed TCP implementations recover from a spurious timeout and
notice that two of them have severe problems to recover. Finally, we discuss
several existing ways to alleviate the problems.

1. INTRODUCTION

The number of nomadic users that access the Internet using wireless
technology grows rapidly. Nowadays Wireless Wide Area Networks (W-
WAN) are the primary means for nomadic users to access the data services.
With all advantages, mobile computing introduces an environment quite
different from the one found in fixed networks due to scarce radio bandwidth
and intermittent connectivity. Data services provided by W-WANs allow for
a rather low link speed; error losses, changing line rate and variable delays
present additional challenges for an efficient data transport. The Global
System for Mobile Communications (GSM) is a widely successful effort to
build a W-WAN system with millions of users in Europe and worldwide [20,
25]. GSM data, High Speed Circuit Switch Data (HSCSD), and General
Packet Radio Service (GPRS) [4] are data transmission services offered by
GSM.

Many popular Internet applications including World-Wide Web (WWW),
File Transfer Protocol (FTP) and email require reliable data delivery over the
network. The Transmission Control Protocol (TCP) is the most widely used
transport protocol for this purpose; traffic studies in the Internet report that
the dominant fraction of the traffic belongs to TCP [29]. TCP was designed
and tuned to perform well in fixed networks, where the key functionality is
to utilize the available bandwidth and avoid overloading the network.
However, nomadic users want to run their favorite applications that are built
on TCP over a wireless connection, as well. Packet losses due to

2 Andrei Gurtov

transmission errors, high latency and long sudden delays occurring on the
wireless link may confuse TCP and yield throughput far from the available
line rate. Some wireless networks try to hide all data losses from the sender
by performing link-level retransmissions, seamless mobility and deep
buffering inside the network. The reliability comes at the cost of variable
delays in data transmission that can create problems for TCP. While
optimizing TCP for a wireless environment has been an active research area
for the last few years, not much attention has been paid to ensure that TCP
implementations react well to long sudden delays, since sudden delays are
not typical in fixed networks.

The rest of the paper is organized as follows. In Section 2 we give the
background information on the TCP protocol and list possible sources of
delays in W-WANs. In Section 3 we describe the reaction of TCP to large
sudden delays. In Section 4 the effect of the New Reno algorithm and the
TCP retransmission timer on spurious TCP timeouts is considered. In
Section 5 we test how four widely deployed TCP implementations recover
from spurious timeouts. Section 6 discusses several existing methods to
strengthen TCP against spurious timeouts.

2. BACKGROUND

2.1 TCP

The Transmission Control Protocol (TCP) [24, 3, 2] is the most used
transport protocol in the Internet. TCP provides applications with reliable
byte-oriented delivery of data on the top of the Internet Protocol (IP). TCP
sends user data in segments not exceeding the Maximum Segment Size
(MSS) of the connection. Each byte of the data is assigned a unique
sequence number. The receiver sends an acknowledgment (ACK) upon
reception of a segment. TCP acknowledgments are cumulative; the sender
has no information whether some of the data beyond the acknowledged byte
has been received. TCP has an important property of self-clocking; in the
equilibrium condition each arriving ACK triggers a transmission of a new
segment. Data are not always delivered to TCP in a continuous way; the
network can lose, duplicate or re-order packets. Arrived bytes that do not
begin at the number of the next unacknowledged byte are called out-of-order
data. As a response to out-of-order segments, TCP sends duplicate
acknowledgments (DUPACK) that curry the same acknowledgment number
as the previous ACK. In combination with a retransmission timeout (RTO)
on the sender side, ACKs provide reliable data delivery [3]. The
retransmission timer is set up based on the smoothed round trip time (RTT)
and its variation. RTO is backed off exponentially at each unsuccessful

Effect of Delays on TCP Performance 3

retransmit of the segment [22]. When RTO expires, data transmission is
controlled by the slow start algorithm described below. To prevent a fast
sender from overflowing a slow receiver, TCP implements the flow control
based on a sliding window [28]. When the total size of outstanding
segments, segments in flight (FlightSize), exceeds the window advertised by
the receiver, further transmission of new segments is blocked until ACK that
opens the window arrives.

Early in its evolution, TCP was enhanced by congestion control
mechanisms to protect the network against the incoming traffic that exceeds
its capacity [10]. A TCP connection starts with a slow-start phase by sending
out the initial window number of segments. The current congestion control
standard allows the initial window of one or two segments [2]. During the
slow start, the transmission rate is increased exponentially. The purpose of
the slow start algorithm is to get the “ACK clock” running and to determine
the available capacity in the network. A congestion window (cwnd) is a
current estimation of the available capacity in the network. At any point of
time, the sender is allowed to have no more segments outstanding than the
minimum of the advertised and congestion windows. Upon reception of an
acknowledgment, the congestion window is increased by one, thus the
sender is allowed to transmit the number of acknowledged segments plus
one. This roughly doubles the congestion window per RTT. The slow start
ends when a segment loss is detected or when the congestion window
reaches the slow-start threshold (ssthresh). When the slow start threshold is
exceeded, the sender is in the congestion avoidance phase and increases the
congestion window roughly by one segment per RTT. When a segment loss
is detected, it is taken as a sign of congestion and the load on the network is
decreased. The slow start threshold is set to the half of the current congestion
window. After a retransmission timeout, the congestion window is set to one
segment and the sender proceeds with the slow start.

TCP recovery was enhanced by the fast retransmit and fast recovery
algorithms to avoid waiting for a retransmit timeout every time a segment is
lost [26]. Recall that DUPACKs are sent as a response to out-of-order
segments. Because the network may re-order or duplicate packets, reception
of a single DUPACK is not sufficient to conclude a segment loss. A
threshold of three DUPACKs was chosen as a compromise between the
danger of spurious loss detection and a timely loss recovery. Upon the
reception of three DUPACKs, the fast retransmit algorithm is triggered. The
DUPACKed segment is considered lost and is retransmitted. At the same
time congestion control measures are taken; the congestion window is
halved. The fast recovery algorithm controls the transmission of new data
until a non-duplicate ACK is received. The fast recovery algorithm treats
each additional arriving DUPACK as an indication that a segment has left
the network. This allows inflating the congestion window temporarily by one
MSS per each DUPACK. When the congestion window is inflated enough,

4 Andrei Gurtov

each arriving DUPACK triggers a transmission of a new segment, thus the
ACK clock is preserved. When a non-duplicate ACK arrives, the fast
recovery is completed and the congestion window is deflated.

2.2 Sources of delays

The latency of W-WAN links is typically close to a second, which is several
times higher than on a typical route in the wireline Internet. TCP adapts well
to this type of more or less constant delay. This is because the TCP
retransmission timeout is updated dynamically based on the smoothed mean
and variance of RTT samples of the connection. The TCP retransmission
timer can be considered overly conservative [17]. However, TCP does not
react well to large delays (several times the usual RTT) that occur suddenly.
Without a chance to adapt its retransmission timer to such a delay, TCP has
to assume that outstanding segments were lost and retransmits them. There is
a number of possible reasons for such type of delays in W-WANs.

Link-level error recovery. This is the most widely known source of
varying delays as it presents a possibility for competing of link-level and
end-to-end protocols in recovering error losses on a data link [14]. For
example, an error burst requiring a high number of link-level retransmissions
may be caused by a partial loss of the radio signal while driving into a
tunnel. If the persistence of link-level error recovery exceeds the typical
RTO of TCP over the given connection, spurious timeouts may result.
Although studies report that cases of competing error recovery are infrequent
in the basic GSM data service [16], the situation may be different for other
W-WANs. Some wireless networks can include two or more layers of
protocols capable of error recovery at the link level. For example, the GPRS
wireless network includes both the Radio Link Control (RLC) protocol
operating with small-sized frames at the lower level and the Logical Link
Control (LLC) protocol operating with IP datagrams at the higher level [4].
Both protocols can be used in reliable or unreliable mode and the maximum
number of retransmissions can be set as a network parameter. Optimally
configuring the persistence of individual protocol sublayers may be a
difficult task for a network operator. Thus, the TCP protocol in not
guaranteed against operation over a highly persistent link introducing long
delays in data transfers.

Handovers. During a handover the mobile terminal may have to perform
some time-consuming actions before data can be transmitted in a new cell.
These include, for example, collection of signal quality, transmitting it to the
new base station, authentication, etc. Many W-WANs in such a case try to
provide seamless mobility, that is internally re-route packets from the old to
the new base station at the expense of additional delay. As the result, the
data transfer can be suspended for tens of seconds.

Effect of Delays on TCP Performance 5

Blocking by high-priority traffic. When packet-switched and voice calls
have to co-exist in a W-WAN network, in most cases the network operator
assigns a higher priority to voice calls. An incoming voice call can
temporarily preempt radio resources from packet-switched traffic, thus
causing a delay in data transfer in the order of tens of seconds. Currently the
support for Quality of Service (QoS) is being introduced into packet-
switched W-WANs. Interactive traffic, for example web browsing, may have
higher priority over best-effort bulk data transfers. There can be situations
when the lower-priority traffic is delayed when higher-priority connections
become active.

3. TCP AND DELAYS

3.1 TCP reaction on delays

As large sudden delays have not been a concern in the past, the only detailed
study is presented in [15]. Here we briefly summarize results of that study.
First, however, the method to visualize TCP traces has to be described. TCP
traces in this paper are collected using tcpdump [11] program and presented
as a time-sequence plot. The highest sequence number of a data segment
versus capture time is plotted, compared to the acknowledgment number and
advertised window for an ACK. TCP traces collected at the sender and at the
receiver look differently, as can be seen in Figure 1. In the rest of the paper
we present only sender-side plots, as they provide a better picture of the
behavior of the TCP connection. However, receiver-side traces are used to
verify that all segments have arrived to the receiver and not lost in the
network. More details on displaying TCP traces can be found in [14, p. 52].

When a sudden delay that exceeds the current value of TCP
retransmission timer occurs in the data transfer, TCP times out and
retransmits the oldest outstanding segment. Since data segments are delayed
but not lost, the retransmission is unnecessary and the timeout is spurious. A
spurious TCP timeout is shown in Figure 1 taken from [15]. The delay in this
test was generated by the hiccup tool, and delayed segments are marked with
+ in the plot. The first retransmission that happens at the 42nd second is also
delayed. The sender interprets the ACK generated by the receiver in
response to delayed segment (1) as related to the retransmission, not the
original segment. This happens due to the retransmission ambiguity problem
as the ACK bears no information which segment, original or retransmitted,
has generated it. Encouraged by arriving ACKs, TCP retransmits all
outstanding segments using the slow start algorithm. Also, a number of new
segments allowed by the congestion window are transmitted. Such

6 Andrei Gurtov

retransmission policy is refereed to as go-back-N since the sender forgets
about all segments it has earlier transmitted.

24000

29000

34000

39000

44000

49000

54000

27 32 37 42 47 52 57 62
Time of Day (s)

S
eq

u
en

ce
 N

u
m

b
er

Snd_Data
Snd_Ack
Rcv_Data
Rcv_Ack
hiccup

(1)

(2)

Figure 1. Reaction of TCP on a 13-second delay (sender and receiver traces) [15].

At time (2) retransmitted segments arrive to the receiver and generate
DUPACKs as the original segments have already been delivered. When the
threshold of three DUPACKs is reached at the sender on the 50th second, a
spurious fast retransmit is triggered. The presumably missing segment is
retransmitted and the congestion window is reduced that causes a pause in
transmission of new segments (about 5 seconds starting from the 54th
second) before the connection returns to normal. The BSDi3.0 TCP
implementation used in this experiment has recovered relatively well from a
spurious timeout.

3.2 Delays in a live network

During evaluation of the new GPRS wireless packet-switched data service
[13] we frequently observed pauses during bulk data transfers using TCP.
Tests were performed in a public GPRS network operated by Sonera in
stationary conditions and while driving is Helsinki surroundings. The test
configuration is shown in Figure 2.

Typically, blackout periods had some packet losses causing a
performance slow down. However, here we are most interested in cases
when packets are not lost, but delivered after a long delay. We have
observed several such cases, one example is shown in Figure 3.
Approximately 20 seconds after beginning of the connection, there is a 13-
second sudden delay. No segments are actually lost during the delay, but the

Effect of Delays on TCP Performance 7

TCP connection cannot recover from the delay for its lifetime unnecessary
retransmitting many segments. Our preliminary measurement results indicate
that the handover delay in the live GPRS network can exceed 10 seconds and
thus is a likely reason for spurious TCP timeouts. Figure 4 shows the
handover delay measured between two cells using the standard ping program
with 32-byte packets. While in general the round trip time is stable at 1.3
seconds, it soars up to 10 seconds and more every time when the cell
reselection is forced from the mobile terminal.

WinNT4.0

serial link LAN
Host

Mobile

Win98

Fixed
Host

network
GPRS

Figure 2. Configuration of measurements in the live GPRS network.

While every effort should be done to identify and remove sources of such
delay spikes, it is unlikely that they can be completely eliminated.
Furthermore, it is hardly possible to avoid spurious TCP timeouts occurring
at such delay spikes, as it would require an extremely conservative TCP
retransmission timer hampering the recovery of lost data. Thus, it is actual to
ensure that existing and future TCP implementations recover reasonably
from spurious timeouts.

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14

16

18
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd
win

Figure 3. A delay during a downlink bulk TCP transfer in the GPRS network.

8 Andrei Gurtov

0

2

4

6

8

10

12

14

0 50 100 150 200 250 300 350

Ping sequence number

R
T

T
, s

ec
on

ds

Figure 4. RTT spikes in GPRS when cell reselection is forced from the mobile terminal.

4. INTERACTION WITH TCP ALGORITHMS

This section examines the effect of several TCP algorithms on recovery from
a spurious retransmission timeout.1

4.1 Effect of New Reno

New Reno [6] is a small but important modification to the TCP fast recovery
algorithm. “Normal” fast recovery suffers from timeouts when multiple
packets are lost from the same flight of segments [5]. New Reno can recover
from multiple losses at the rate of one packet per round trip time. If during
fast recovery the first non-duplicate ACK does not acknowledge all
outstanding data prior to the fast retransmit, such an ACK is called a partial
acknowledgment. The New Reno algorithm is based on an observation that a
partial acknowledgment is a strong indication that another segment was also
lost. During the recovery phase New Reno retransmits the presumably
missing segment and transmits new data if the congestion window allows it.
The recovery phase ends when all segments outstanding before the fast
retransmit are acknowledged or the retransmission timer expires.

The description of a TCP spurious timeout in Section 3.1 is missing an
important point if the New Reno algorithm is implemented at the sender.
When the first DUPACK in Figure 1 arrives, the sender has six segments
outstanding. Non-duplicate acknowledgments start to arrive at the 55th

1 Ideas discussed in this section were presented on the end-to-end interest list in August 1-3,

2000

Effect of Delays on TCP Performance 9

second. From the point of view of the New Reno algorithm, these
acknowledgments are partial because they are not confirming the reception
of the foremost outstanding segment at that time. Thus, the algorithm
retransmits the presumably missing segment at each new partial
acknowledgment. In this case, the number of unnecessary retransmitted
segments increases from 10 to 15, thus increasing the penalty of a spurious
timeout by half. The practical example of spurious New Reno
retransmissions is shown in Figure 8 and discussed later in the paper.

Multiple fast retransmits in the context of segment losses are considered
in [6, Section 5]. Here we extend the discussion to TCP recovery after a
spurious timeout. A variant of New Reno, which does not transmit new
segments on partial ACKs2, could further worsen the recovery. Note that
segments retransmitted on partial ACKs also generate DUPACKs for the
foremost outstanding segment. When later on three DUPACKs arrive to the
sender, another false fast retransmit is triggered followed by New Reno
retransmissions. This would continue over and over until too few packets are
in flight to trigger a spurious fast retransmit3. Fortunately, preventing the
first false fast retransmit after the spurious timeout makes this problem a
non-issue.

4.2 Spurious timeouts during fast recovery

A long delay in a TCP transfer triggers a spurious timeout, go-back-N
retransmissions and a spurious fast retransmit. TCP implementations with an
aggressive TCP retransmission timer may time out one or more times during
the fast recovery while DUPACKs generated by go-back-N retransmissions
are arriving. Such a spurious timeout causes more damage than just
unnecessary retransmitting the outstanding segments. Retransmissions create
a new series of DUPACKs that can be long enough to cause another spurious
RTO. Such behavior continues through the connection life time until no
more segments are left in flight to trigger a new spurious timeout. We
suggest that this problem is independent of the problem of spurious New
Reno retransmissions and multiple spurious fast retransmits discussed above.
That is, preventing them does not necessary prevent a chain of spurious
RTOs.

A practical example of such behavior is shown in Figure 6 and discussed
later in this paper. A TCP connection experiencing such problems can send
all data over two or three times, while not a single packet is actually lost. To
avoid spurious timeouts during fast recovery, it may be useful to reset the

2 RFC2582 permits sending new segments on partial ACKs if allowed by the congestion window. The available space in the congestion

window depends on whether retransmitted segments are counted into it, which is not clearly said in RFC2581. Not sending new

segments on partial ACKs seems to be a more conformant version of New Reno.

3 This idea was generated by Reiner Ludwig in private communication

10 Andrei Gurtov

retransmission timer when a DUPACK arrives, which is not currently
considered in [22]. Absence of spurious timeouts during fast recovery would
stop the chain of spurious retransmissions. We have to note, however, that
the RTO can expire only during the exceptionally long fast recovery,
especially if the RTO has been backed off during the preceding delay.
Furthermore, resetting the RTO on DUPACKs makes it more conservative
thus delaying recovery of lost segments in some scenarios.

5. TEST OF TCP IMPLEMENTATIONS

5.1 Test setup

The Software Emulator for Analyzing Wireless Data transfers (Seawind)
[12] replaces the actual wireless link with a model that allows examining
TCP behavior in a configurable and controlled environment. Indeed,
capturing an exact scenario where a delay is present on the real data link is
difficult, and performance comparison of different TCP implementations
may not be valid. Seawind reproduces the basic properties of a wireless data
link such as the limited line rate and a large propagation delay, and also
allows placing a long sudden delay at a certain time in the connection.
Seawind intercepts the flow of packets between a mobile host and a server
and delays IP packets emulating the effect of a wireless link. An advantage
of the emulation approach over tests for example with the NS simulator [9]
is in ability to experiment with and compare the performance of different
existing TCP implementations.

Linux 2.2

LAN
link
serial

Mobile
Host

Seawind
emulator

Fixed
Host

Linux 2.4Linux 2.2, Linux 2.4
Win98, FreeBSD4.1

Figure 5. Configuration of measurements with an emulated W-WAN link.

We have configured Seawind to emulate a link with similar characteristics
as provided by data services of GSM. The line rate was set to 9600 bps, the
propagation delay to 300 ms. Further on, a 10-second delay is introduced
after 5 seconds of the beginning of the TCP connection. For testing we have
selected four major TCP implementations that together form a larger part of
all deployed TCPs: FreeBSD 4.1, Windows 98, Linux 2.2, and Linux 2.4.

Effect of Delays on TCP Performance 11

The TCP implementation in Linux has undergone a major revision from the
kernel release 2.2 to 2.4. The Linux distribution was RedHat 6.2.

TCP parameters in the experiment were as follows: MSS of 256 bytes, the
receiver window of 16 kilobytes, and the SACK option disabled. The New
Reno algorithm was enabled on Linux, disabled in FreeBSD and of unknown
status in Windows 98. A bulk data transfer sending 100 kilobytes of data
from the mobile to the fixed host was generated by ttcp [27].

5.2 Test results

During the delay, the behavior of tested TCPs was generally in accordance
with Figure 1. The TCP timer expires approximately after five seconds of the
delay and the oldest outstanding segment is retransmitted. When ACKs to
delayed segments arrive, all outstanding segments are retransmitted
according to the go-back-N policy. From this point, tested TCP
implementations differ in behavior.

FreeBSD 4.1 (Figure 6) showed particularly poor performance. The huge
initial window (discussed in Section 5.3) leads to a large number of
outstanding segments when the delay occurs. The go-back-N retransmissions
generated enough DUPACKs so that after a spurious fast retransmit, the
RTO has expired two times. Upon each timeout, the outstanding segments
are retransmitted although no non-duplicate ACKs have arrived, which is a
clear implementation fault. Extensive number of unnecessary
retransmissions has triggered a series of spurious fast retransmits and
timeouts collapsing the throughput. Double or triple transmissions of
segments are separated by idle times due to congestion avoidance procedures
done at each timeout and fast retransmit. This continues until the point when
not enough segments are in flight to trigger another spurious timeout.

Windows 98 (Figure 7) is having similar problems after a delay as
FreeBSD, although a small initial window is used. A large number of
spurious retransmissions in this case can be caused by the incorrect RTO
computation or by a strange version of the New Reno algorithm, since
segments were retransmitted after reception of the first partial ACK. At the
point of time between the 50th and 60th second, TCP has stopped
retransmitting segments due to unknown reasons. After that the connection
proceeds normally. In live network tests we have observed the behavior
similar to shown in Figure 3 in a major part of the traces; data segments were
transmitted several times over the link resulting in inadequate throughput.

12 Andrei Gurtov

0 50 100 150 200 250
0

2

4

6

8

10

12
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd
win

Figure 6. Recovery of TCP in FreeBSD 4.1 from a spurious timeout (complete connection).

0 10 20 30 40 50 60 70
0

1

2

3

4

5

6
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd
win

Figure 7. Recovery of TCP in Windows 98 from a spurious timeout (zoomed, total
connection time 191 seconds).

Effect of Delays on TCP Performance 13

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd
win

Figure 8. Recovery of TCP in Linux 2.2.12 from a spurious timeout (zoomed, total
connection time 115 seconds).

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd
win

Figure 9. Recovery of TCP in Linux 2.4.0 from a spurious timeout (zoomed, total connection
time 114 seconds).

14 Andrei Gurtov

Linux 2.2 (Figure 8) recovers relatively well from the spurious timeout.
Arriving DUPACKs trigger a spurious fast retransmit followed by additional
retransmissions caused by the New Reno algorithm. One old and one new
segment is transmitted per each partial ACK thus resulting in nine additional
unnecessary retransmissions. A 10-second pause after partial ACKs is
caused by congestion avoidance procedures. However, from this point the
connection proceeds normally without additional retransmissions.

Linux 2.4 (Figure 9) is similar to Linux 2.2, except that there is no
spurious fast retransmit and no spurious New Reno retransmissions. When
we have noticed the problem in Linux 2.2, it was reported to developers and
corrected in the kernel release 2.4 by implementing the careful version of the
restriction described in Section 6.

5.3 TCP implementation faults

Here we present a number of TCP “features” that were noticed while
examining TCP traces during measurements in the live GPRS network and
during tests with Seawind. Some of these implementation problems are
already discussed in [23, 21].

A huge initial window. We were surprised to observe that FreeBSD used
the initial window of 16 kilobytes instead of one or two segments currently
allowed [2]. Apparently, the initial window is set to this value when the
sender and receiver are located in the same IP subnetwork. This is clearly
not desired when the TCP connection is established over a slow PPP link, as
it has been in our case. The default initial window can be set to a proper
value by changing a system parameter.

Receiver window overruns. We can see in Figure 3 that the TCP sender
exceeds the receiver advertised window in two places, at 38th and 97th
second. We have observed this with Windows 98 and NT in many of
examined TCP traces. Exceeding the advertise window is not allowed and
may create additional performance problems with TCP implementations that
discard TCP segments outside their advertised window.

An incorrect retransmission timeout. One part of the problem with
excessive spurious retransmissions on Windows may be caused by incorrect
calculation of the retransmission timer. On the official support page of
Microsoft, the problem is described as follows [19]. Windows 95, Windows
98, Windows NT4.0 TCP/IP may retransmit packets prematurely as the
retransmit timer is computed incorrectly because of a math error. This can
result in unnecessary retransmissions and lower throughput over high-delay
networks.

Early fast retransmit. In order to avoid spurious fast retransmits when
packets are re-ordered in the network, TCP is required to collect a threshold
of three DUPACKs before a presumably missing segment is retransmitted

Effect of Delays on TCP Performance 15

[2]. Examining TCP traces showed that Windows 98 always has been
triggering a fast retransmit already after the second DUPACK, while
Windows NT after the first DUPACK.

6. METHODS TO STRENGTHEN TCP AGAINST
SPURIOUS TIMEOUTS

Careful version of RFC 2582. Due to performance considerations, fast
retransmits in TCP should be disabled after an RTO until all packets
transmitted earlier are acknowledged [6]. A less careful version of this
restriction allows the fast retransmit when DUPACKs arrive for the foremost
outstanding packet, while a more careful version does not. As we can see in
Figure 1, a spurious timeout presents exactly the situation when DUPACKs
arrive for the foremost outstanding segment. Using the more careful version
of the restriction [6, Section 5] would not allow a spurious fast retransmit in
the case of spurious timeouts limiting the penalty to go-back-N
retransmissions. However, there is still a possibility of a second spurious
RTO if the retransmission timer is not reset upon DUPACKs. Another
scenario unrelated to spurious timeouts where the more careful version
avoids unnecessary retransmissions is given in [8, p. 69]. This empirical
evidence suggests that the careful version should be implemented in all
TCPs.

D-SACK. The Selective Acknowledgment option (SACK) [18] in TCP
allows conveying the information to the sender on exactly which packets are
missing at the receiver. The D-SACK extension of SACK (duplicate-SACK)
allows reporting the sequence number of a packet that triggered a DUPACK
[7]. The sender can use this information to determine whether the segment
has been unnecessary retransmitted and avoid further unnecessary
retransmissions. In our case a spurious fast retransmit and New Reno
retransmits can be avoided. However, D-SACK does not help to prevent the
go-back-N behavior after a spurious timeout, as the retransmission
ambiguity problem is not resolved.

Eifel. The Eifel algorithm [15] is using a timestamp option to distinguish
between original data and retransmissions. It resolves the retransmission
ambiguity problem and entirely avoids unnecessary retransmissions after a
spurious timeout. When an ACK after the first retransmitted segment is
received, its timestamp is compared to the timestamp of the first
retransmission. If the ACK is older than the retransmission, the ACK was
generated by the original transmission and the timeout was spurious. The
Eifel algorithm allows to detect and abort spurious retransmissions, thus
preventing the go-back-N behavior and spurious fast retransmits.

16 Andrei Gurtov

Packet lifetime. Assigning appropriate lifetime to packets inside a W-
WAN network and discarding expired packets makes TCP to apply loss
recovery mechanisms in an intended way, which is more efficient than
recovery from a spurious timeout. For example, GPRS specifications support
packet lifetime in the network components [1]. A long delay exceeding RTO
of TCP would also exceed the lifetime of packets in the network. The TCP
timeout ceases to be spurious, as it leads to retransmission of discarded
segments. No DUPACKs are generated in this case avoiding problems seen
in TCP traces.

7. CONCLUSION

Long sudden delays in data transfers are not typical in wireline networks and
their effect on the TCP protocol has not been extensively studied. Such
delays are not uncommon in W-WANs due to link-level retransmissions,
handovers and temporal resource preemption by high-priority packet traffic
or voice calls. As an example, we give preliminary measurements of the cell
reselection delay in the GPRS network. We have shown that the New Reno
algorithm increases the amount of retransmissions after the spurious timeout
roughly by half and that an aggressive retransmission timer may expire
during the fast recovery generating a chain of spurious retransmissions. We
have tested four widespread TCP implementations in their reaction to a long
delay. All four implementations, FreeBSD 4.1, Windows 98, Linux 2.2 and
Linux 2.4 have exhibited go-back-N retransmissions while the following
behavior has been different. FreeBSD and Windows are recovering
especially poorly, partly due to implementation problems that we also have
listed. We have to highlight the importance of the Eifel algorithm as the only
known solution that prevents go-back-N retransmissions thus nearly
altogether eliminating the penalty of a spurious TCP timeout. We
recommend that all TCPs implement the careful version of New Reno, as it
prevents many of the discussed problems. Resetting the retransmission timer
upon a reception of DUPACK would avoid spurious timeouts during fast
recovery, but we have to study the effect of this modification in more detail.
Future work will include examination of delay sources in the GPRS and
UMTS wireless networks, as well as designing new algorithms to improve
the response of TCP to long sudden delays.

Acknowledgments

Many thanks to Reiner Ludwig, Sally Floyd, Mark Allman, Alexey
Kuznecov, Rod Ragland, Venkat Venkatsubra, Pasi Sarolahti for their
comments and suggestions on the material presented in this paper.

Effect of Delays on TCP Performance 17

Experiment with the live GPRS network could not be done without Olli
Aalto and Heimo Laamanen. I am grateful to Timo Alanko for checking the
paper and invaluable advice on research methodology.

References

[1] BSS GPRS protocol (BSSGP). 3GPP TS 08.18 V8.4.0, October 2000.
[2] M. Allman, V. Paxson, and W. Stevens. TCP congestion control. IETF RFC 2581, April

1999.
[3] R. Braden. Requirements for internet hosts-- communication layers. IETF RFC 1122,

October 1989.
[4] G. Brasche and B. Walke. Concepts, services and protocols of the new GSM phase 2+

general packet radio service. IEEE Communications Magazine, pages 94--104, August
1997.

[5] K. Fall and S. Floyd. Simulation-based comparisons of Tahoe, Reno, and SACK TCP.
ACM Computer Communication Review, July 1996.

[6] S. Floyd and T. Henderson. The NewReno modification to TCP's fast recovery algorithm.
IETF RFC 2582, April 1999.

[7] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky. An extension to the selective
acknowledgment (SACK) option for TCP. IETF RFC 2883, July 2000.

[8] A. Gurtov. TCP performance in presence of congestion and corruption losses. Master's
thesis, Department of Computer Science, University of Helsinki, December 2000.
Available at: http://www.cs.Helsinki.FI/group/iwtcp/papers/.

[9] ISI at University of South California. Network simulator 2. Available at:
http://www.isi.edu/nsnam/ns/.

[10] V. Jacobson. Congestion avoidance and control. In Proceedings of ACM SIGCOMM '88,
pages 314--329, August 1988.

[11] V. Jacobson, C. Leres, and S. McCanne. tcpdump. Available at http://ee.lbl.gov/, June
1997.

[12] M. Kojo, A. Gurtov, J. Mannner, P. Sarolahti, T. Alanko, and K. Raatikainen. Seawind: a
wireless network emulator. Submitted to MMB 2001.

[13] J. Korhonen, O. Aalto, A. Gurtov, and H. Laamanen. Measured performance of GSM
HSCSD and GPRS. In Proceedings of the IEEE International Conference on
Communications, 2001. To appear.

[14] R. Ludwig. Eliminating Inefficient Cross-Layer Interactions in Wireless Networking.
PhD thesis, Aachen University of Technology, April 2000.

[15] R. Ludwig and R. H. Katz. The Eifel algorithm: Making TCP robust against spurious
retransmissions. ACM Computer Communication Review, 30(1), January 2000. Available
at: http://www.acm.org/sigcomm/ccr/archive/2000/jan00/ccr-200001-ludwig.html.

[16] R. Ludwig, B. Rathonyi, A. Konrad, K. Oden, and A. Joseph. Multi-layer tracing of TCP
over a reliable wireless link. In Proceedings of the ACM SIGMETRICS International
Conference on Measurement and Modeling of Computing Systems (SIGMETRICS-99),
volume 27,1 of SIGMETRICS Performance Evaluation Review, pages 144--154, New
York, May 1—4 1999. ACM Press.

[17] R. Ludwig and K. Sklower. The Eifel retransmission timer. ACM Computer
Communication Review, 30(3), July 2000.

[18] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP selective acknowledgement
options. IETF RFC 2018, October 1996. Standards Track.

18 Andrei Gurtov

[19] Microsoft. TCP/IP may retransmit packets prematurely. Available at:

http://support.microsoft.com/support/kb/articles/Q236/9/26.ASP.
[20] M. Mouly and M. Pautet. The GSM System for Mobile Communications. Europe Media

Duplication S.A., 1992.
[21] V. Paxson. Automated packet trace analysis of TCP implementations. In Proceedings of

the ACM SIGCOMM Conference: Applications, Technologies, Architectures, and
Protocols for Computer Communication (SIGCOMM-97), volume 27 of Computer
Communication Review, pages 167--180, Cannes, France, Sept. 14--18 1997. ACM Press.

[22] V. Paxson and M. Allman. Computing TCP's retransmission timer. IETF RFC 2988,
November 2000. Standards Track.

[23] V. Paxson, M. Allman, S. Dawson, W. Fenner, J. Griner, I. Heavens, K. Lahey, J.
Semke, and B. Volz. Known TCP implementation problems. IETF RFC 2988, Mar. 1999.

[24] J. Postel. Transmission control protocol. IETF RFC 793, 1981. Standard.
[25] M. Rahnema. Overview of the GSM system and protocol architecture. IEEE

Communications Magazine, 31(4):92--100, April 1993.
[26] W. Stevens. TCP slow start, congestion avoidance, fast retransmit, and fast recovery

algorithms. IETF RFC 2001, Jan. 1997.
[27] R. H. Stine. FYI on a network management tool catalog: Tools for monitoring and

debugging TCP/IP internets and interconnected devices. IETF RFC 1147, Apr. 1990.
[28] A. S. Tanenbaum. Computer Networks. Prentice-Hall International, 1996.
[29] K. Thompson, G. J. Miller, and R. Wilder. Wide-area internet traffic patterns and

characteristics. IEEE Network, 11(6):10--23, November/December 1997.

Seawind: a Wireless Network Emulator

Markku Kojo, Andrei Gurtov, Jukka Manner,
Pasi Sarolahti, Timo Alanko, and Kimmo Raatikainen

University of Helsinki, Department of Computer Science
P.O.Box 26, FIN-00014 UNIVERSITY OF HELSINKI, Finland�

markku.kojo,andrei.gurtov,jukka.manner,pasi.sarolahti,
timo.alanko,kimmo.raatikainen � @cs.helsinki.fi

Abstract

Behavior of current communication protocols as well as current and future networked ap-
plications is of fundamental importance for technical and commercial success of Mobile
Internet. The forthcoming wireless Wide-Area Networks, such as GPRS and UMTS, are
quite complex and network operators have a large set of parameters to tune the transfer
performance of these networks. In this situation it is of great value to be able to execute
practical experiments. The Seawind emulation software introduced in this paper enables
measurements of protocol implementations in modeled networking environments. The Sea-
wind software provides a rich set of ways to define transfer characteristics including delays
and errors. The software has also means to conduct large sets of experiments in an auto-
matic fashion. In addition, tools of analyzing measurement data has been integrated into the
Seawind software.

1 Introduction

Nowadays Wireless Wide Area Networks (WWAN) are widely used by mobile users to access
data services. New mobile data networks, as for example the General Packet Radio Service
(GPRS) [6, 8], and future third generation mobile communication systems [32] are expected to
provide a high-speed packet data access suitable for a wide range of Internet services. How-
ever, wireless links represent a different communication environment than the wireline Internet.
Hence, protocols and applications not particularly designed for wireless links often require en-
hancements in order to achieve reasonable performance in a wireless environment [4, 17].

Evaluating such enhancements over a real data link or network is often costly; if a system is
only in a development stage, the evaluation may be impossible. A frequently asked question is
whether next-generation wireless networks could provide multimedia services that meet the end-
user expectations. Network emulation is a convenient tool to examine how existing multimedia
applications behave. An emulator can also be used in usability studies involving real end-users.
The main difference to a field trial is that an existing network is replaced by a model describing
characteristics of transfer, delay and error behavior, for example. An emulation also allows
controlling the network characteristics and reproduce the environment. On the other hand, the
problems of emulation include the accuracy of the model; parameters drawn from real-world
phenomena and properties are always estimates.

1

In this paper we describe the Seawind emulator and present a case study that demonstrates
its practical utility. The primary target of Seawind is performance studies of real protocols and
applications as seen by the end user in the present and future wireless networks. Although
Seawind was developed for modeling wireless networks, GPRS in the first hand, the Seawind
emulator is rather generic and it can be used in modeling a wide range of networks.

Emulation is a compromise between two other possible approaches in performance evalua-
tion; between simulation and measurements using a testbed [2]. The main advantage of a net-
work emulator is that the performance of actual implementations of protocols and applications
can be examined. This is a clear advantage, for example, over most of the TCP performance
studies that rely on the abstract TCP model available in the NS simulator [14]. However, most
end users – if not all – connected to the Internet use TCP implementations that are not neces-
sarily close to the one found in the NS simulator (for example, those in Windows or Linux).
Therefore, the NS simulator or other simulators having their own TCP implementations do not
allow a network operator to tune the networking parameters so that the performance is optimized
for real end users and their applications. Furthermore, a real-time emulator provides answers to
”what-if” type of questions. It also allows back-engineering parameters of closed networking
implementations.

Emulation studies can be time-consuming because the duration of an experimental session
is determined by the speed of the modeled network. In order to enhance the usability of the
emulator, the Seawind emulator supports an automatic set up of tests and collection of a suf-
ficient number of test repetitions for statistically valid results. Therefore, the experiments can
be run overnight and during weekends without any human intervention. The Seawind package
also provides basic tools for statistical analysis and for graphical presentation of results. We use
Seawind on the Linux operating system. The Seawind software runs in the user space and can
be easily ported to any Unix operating system.

Several extensive performance studies have been made using Seawind. TCP performance
has been studied in [13, 25] and GPRS performance in [18]. Seawind was also used in the
Monads demonstration at MOBICOM 2000.

The rest of the paper is organized as follows. After a brief summary of related work, we
discuss, in Section 2, common characteristics of wireless links. We also derive the requirements
for a network emulator taking those features into account. In Section 3 we describe the Seawind
architecture. We present the structure of the Seawind simulation Process that is the core of
the Seawind emulator. In Section 4 we discuss the features of Seawind that are important in
emulation of any wireless network. In Section 5 we present how we validated the Seawind
emulator. Finally, a case study is described in Section 6 in order to illustrate the practical value
of Seawind.

2 Related Work

Simulation of communication networks is an active research area. A wealth of different sim-
ulators are found worldwide; most of them are freely available while some are commercial
products. The software tools for network simulations can be divided into two categories: dis-
crete event simulators and real-time simulator or emulators, as we call them. Many simulation
tools are discrete event simulators that operate in virtual time. These simulators have their own
abstract implementations for modeling different links, protocols, and even applications. Prob-
ably the most well-known discrete event simulators are NS [14] and the commercial simulator

2

OPNET [31]. The Monarch Project at Carnegie Mellow University has created a set of wireless
and mobile extensions to NS that provide a more detailed model of the physical and link layer
behavior of a wireless network and allow arbitrary movement of nodes within the network [7].
Other network simulation tools include MobSim [27], SWimNet [5] and GloMoSim [33]. A par-
allel environment for the simulation of mobile wireless network systems, based on the parallel
simulation language Maisie [3], has been presented in [26].

Discrete event simulators are great tools for overall network performance simulations and
other more theoretical testing. These cannot, however, be used with actual protocol imple-
mentations and applications, unless the implementations are ported to the simulation package.
During a product implementation and test, intermediate versions of the software emerge from
time to time, and it would not be feasible to port each version to the simulation environment for
testing. In addition, simulations cannot give a real-time view of how a user would experience
some service using a new application, protocol, or network. Therefore, real-time tests and actual
protocol implementation studies require a real-time simulator.

Real-time simulators or emulators allow researchers to create network topologies and con-
ditions, which are difficult to achieve in a reproducible manner on production networks, or to
perform real-time tests with various prototype protocols and products, for example. Such an
emulator environment is well controlled and reproducible.

The common nominator within the emulators available in this category is that they provide
different delay, packet drop, and queue-handling functionality in order to simulate some com-
munication medium or network. NIST Net [11] is implemented as a kernel module extension to
the Linux operating system and an X Window System-based user interface application. NIST
Net provides parameters such as delay, packet drop probability, fraction of duplicated packets,
and link bandwidth. Dummynet [24] is a similar tool, implemented as a FreeBSD Unix kernel
patch in the IP stack. Dummynet works by intercepting packets on their way through the proto-
col stack; it uses parameters similar to the ones in NIST Net to affect the flow of packets. A third
similar kind of emulator is the Ohio Network Emulator, ONE [1]. ONE uses three parameters
to simulate a communications network, namely a transmission delay, a propagation delay, and
packet queues.

The functionality offered in these emulators enable the simulation of a variety of different
links, networks, and protocols. However, parameters such as delay, bandwidth, and queue sizes
are not enough for all simulation purposes. A key functionality that is missing in the above emu-
lators is the lack of timed events and changes of the simulated network environments. Especially
in wireless networks, the network characteristics can change drastically due to the movement of
mobile terminals and even the present weather conditions. To expand the area of studies that can
be performed with an emulator, changes in the simulated environment and other timed events,
such as handovers, should be provided by an emulator. In addition, the portability of the emu-
lator to other platforms is more complicated in the emulators mentioned above since those have
been tightly coupled with specific operating system kernels.

3 Wireless Network Characteristics

In this section we present a summary of properties of wireless links that present challenges
for efficient data communication. Wireless links typically have relatively low bandwidths, high
latency and high error rates. We discuss how these properties relate to the requirements for the
network emulator.

3

Slow, asymmetric and changing line rate. The line rate of a wireless WAN link does not
often exceed some tens of kilobits per second. Such a link speed is typical also for dial-up
modem users. For some wireless links, the line rate can vary over time, due to a change in the
amount of radio resources assigned to the user or change of the channel encoding scheme. The
line rates may be asymmetric, for example when using certain types of satellite links or GPRS.
Thus, the emulator should provide the desired line rate by delaying data packets and provide
means to emulate changes in the line rate, in both directions independently. For the majority
of W-WANs a rate up to 100 kbps is sufficient. However, modeling future broadband wireless
networks will require line rates at least up to 2 Mbps.

High latency and variable delays. The propagation delay of wireless links is typically high.
The delay comes from the special transmission schemas on the wireless link and from the pro-
cessing delays of the link hardware. For example, the Global System for Mobile Communica-
tions (GSM) uses interleaving of data on the radio link to reduce the effect of error bursts, and
this introduces a latency of 90 ms independent of packet size [20]. Additional latency in using
a GSM data service is caused by the connection to the Internet Service Provider (ISP) and the
processing time within the GSM system. The total one-way latency in GSM sums up to 200-300
ms1. The emulator should correctly model this delay by adding a propagation delay to each
packet. Variable delays may appear on a wireless link due to a number of reasons, for example
Link-level ARQ recovery, radio resource (re-)allocation and handovers to mention a few. There
should be a possibility to add such random delays to a packet flow.

Error losses. Some wireless links impose a significant amount of data corruption due to trans-
mission errors. The error rate depends on the current radio conditions and the strength of the
channel coding schema. For example, in the transparent GSM data service the residual bit er-
ror rate (BER) of the link is allowed to be as high as ������� after the Forward Error Correction
(FEC) [21]. Radio conditions can vary greatly. In the ideal conditions all protocol data units
(PDU) are delivered correctly, and in the worst case nothing can be correctly sent over the link.
For accuracy of emulations and ease of use the emulator should be able to drop packets on a
per-packet basis or using a bit error probability. The transmission error on the link can be seen
by the upper layers as a delay in data delivery (reliable link level), loss of a PDU (error detection
in link layer) or as a corrupted data packet (transparent link layer). The emulator should provide
all three cases.

Congestion losses at the bottleneck queue, over-buffering. The wireless link is often the
bottleneck in the path of a data flow, because fixed networks are fast and reliable compared
to the capabilities of the wireless link. Routers play a significant role because congestion data
losses are most likely to happen at the bottleneck queue. A limited number of buffers can be
allocated in a last-hop router per user. The emulator should contain a queue at the emulated
bottleneck link and provide means to limit the queue size in terms of bytes and number of
packets. Optionally, a timer would be used to limit the time a packet can be buffered. New
queue management algorithms and drop policies should be easily attached.

1Note, that we do not include the transmission delay into the link latency. Thus the round-trip time is defined as
the sum of transmission and propagation delays in both directions.

4

Handovers. In a cellular radio network the mobility is accomplished by changing the access
point that serves the user, according to the user’s current location. The handover process may
cause data losses and a drastic change in the service provided, when the user moves from a less
busy to a more occupied service area. Modeling a handover would cause a change in a number
of simulation parameters at once. For example, in a packet radio network, a new service area
may have more users using the same shared medium than in the previous location; the user will
notice this as less available bandwidth after the handover. In addition, the handover process
itself may cause a delay or loss in data delivery. The emulator should be able to allow changing
a set of parameters at the same point of time to emulate changes in network service.

Link blackouts. Wireless links are prone to temporal interruptions of service. A typical ex-
ample is loss of radio coverage; this might happen due to driving in a tunnel or moving away
from the serving access point. Blackouts cause a situation when, for a period of time, no user
data is successfully transmitted through the link. If QoS support is implemented in the wireless
network, higher priority packet traffic can as well cause blocking of lower priority traffic. The
emulator should provide means to specify the timing of blackout periods and the handling of
PDUs during that time, for example, whether to drop or store the PDUs during the blackout.

Finally, a number of features would enhance the usability of the emulator. It is desirable that
the emulator could be running in user space on an unmodified operating system. Binding the
emulator in the operating system kernel is not desirable because it complicates the portability of
the emulator between different operating systems and even between different operating system
versions. The emulator must provide accurate execution of all timed events and notify if some
scheduled event slipped past a certain threshold value and would thus affect the result of the test
run. The emulator should have an easy to use user interface to enable its use by a wide range of
specialists unfamiliar with its implementation details.

4 Seawind Architecture

The fundamental architecture behind the Seawind emulator is shown in Figure 1. Seawind
intercepts the traffic flow between the client and the server transparently to the endpoint hosts.
The desired link characteristics are emulated by delaying, dropping and modifying packets in
the flow. The socket API and the protocol implementations in the client and the server need not
be changed. The client and server can be directly connected to Seawind (e.g. by a serial cable),
or they can be located anywhere in the network. For example, the latter option is useful, if the
researcher wants to experiment with a data transfer over an emulated wireless link to a server
located in the global Internet.

We have been mostly interested in studying the TCP/IP protocols and the behavior of TCP-
based applications. However, Seawind can be used with any data flow, for example with traffic
produced by the WAP protocol [19]. This generic approach allows comparing the performance
of different protocols (e.g. WAP and TCP) or different implementations of the same protocol
(e.g. Windows TCP and Linux TCP) under the same emulated network characteristics.

4.1 Seawind components

Figure 2 illustrates the Seawind components, which are used in setting up the test runs and
running successive performance tests with various parameters automatically. The core of the

5

− queues
− delays

− errors
− packet filters

Protocols

Remote host A

Protocols

Mobile host

Protocols

Network interfacesNetwork interfaces

Emulated link & router
SEAWIND

The Internet

Remote host Bconfiguration data

log data

Seawind control,
data gathering &
analysis

��
��
�

��
��
�

������
������
���

������
������
���

���
���������
	�	�	�	
	�	�	�	

�
�
�
�
�
�
�
�
�
��������������������������
���������

�
�

�
�

��������������

Figure 1: Structure of Seawind.

Mobile host Remote host

Emulation host

daemon daemon

daemon

SP SP

Control interaction

Disk store/fetch

GUI / CT

NPANPA

WLG WLG

configuration

Process creation

Data path

log storage

Protocol
API Protocol

stack

Protocol

stack

files

Figure 2: Architecture of the Seawind emulator.

emulation is the Simulation process (SP) that cause delays and packet losses to emulate the
target link or the target network with various queues and buffers. Before describing the SP
functionality in detail, we briefly introduce the other Seawind components shown in Figure 2.

The user sets up the tests using a Control Tool (CT) with a graphical user interface. With
the control tool the user creates a number of entities called replication sets. A replication set
defines the workload used in the performance tests and the parameters of the emulated network.
For each replication set the user also gives the number of test run repetitions (replications) to
be made with the given parameters. After the user has defined a sequence of replication sets to
be tested, he may save the parameter settings for later use and start the test run with the given
sequence of replication sets.

A replication set configuration consists of a network configuration and a workload configura-
tion which are set up independently. Any combination of workload and network configurations
can be selected to be repeatedly tested in a replication set. Workload configuration defines the
tools that are used for generating the workload for the test and the parameters for the tool. Any
external tool or script can be used as a workload generator. For example, the ttcp tool [30]
can be used with Seawind to generate simple bulk data. Seawind also works in manual mode, in
which the user may launch arbitrary, possibly interactive applications for generating the work-
load (e.g. a web browser and a http server), which communicate through the network emulated
by Seawind. Network configuration consists of parameters defining the characteristics of the

6

emulated network and the Network Protocol Adapter (NPA) configuration, which we describe
below.

In addition to the CT, Seawind uses a number of other processes to set up the tests. CT
controls the creation and the cleanup of the processes in the beginning and in the end of each
replication set. The processes may be distributed into multiple hosts to avoid having multiple
resource-consuming processes running on the same host. To control the processes there is a
Seawind-daemon process running on each host in the background. A Seawind-daemon creates
the processes needed in a test run according to the requests from CT and terminates them after
the test run.

The task of the NPA is to capture network packets from the endpoint host and forward
the packets to the SP. For example, a NPA that captures IP traffic creates a dedicated network
interface from which it captures packets, and adds a route to the created network interface in
the IP routing table. There are various ways for doing this. One alternative is to use Point-
to-Point Protocol (PPP) [28] that uses a pseudo-terminal device connected to NPA. Secondly,
some operating systems support virtual network interfaces that deliver the received packets to
and from the user-space applications. Finally, it is possible to capture packets directly from the
Ethernet. We have implementations for all above-mentioned variants.

After the NPAs have been started and the simulation pipeline is properly initialized, Seawind
starts the workload generators (WLGs) at both ends of the simulation pipeline. Workload gen-
erator can be any conventional tool that generates network traffic. No modifications need to be
made, because the NPAs capture the network traffic transparently to the WLGs. For example,
when IP traffic is used, the workload generator can be any tool that generates IP packets using
the standard application interface (e.g. Berkeley sockets). The packets that are transmitted to the
specified IP address are routed to the network interface connected to NPA and furthermore to
SP. At the receiving end the NPA delivers the packet to the IP protocol using the created network
interface.

The architecture presented above allows replacing any of the WLG, NPA or even SP compo-
nents by alternative implementations. It is also possible to read the emulation data from a serial
port, which makes it possible to connect an arbitrary machine to the emulation host using a null-
modem cable. For example, we have used this facility to connect Windows hosts to Seawind.
Furthermore, the receiving end NPA does not have to be attached to the endpoint host, but it can
optionally be used to forward packets from SP to the network between the SP and the endpoint
host. Thus, any Internet host can be used as an endpoint in the performance tests, making it
possible to create a realistic model of communicating to a host in the Internet over the emulated
link.

4.2 Pipelining

A mobile network typically includes several logical entities that affect the overall performance
and throughput seen by the end user. For example, from the GPRS architecture [8] we can
identify three possible emulated components: the base station subsystem (BSS) including the
wireless link, the Serving GPRS Support Node which acts as a last-hop router in the GPRS net-
work and the Gateway GPRS Support Node, which is the gateway router in the mobile terminal’s
home GPRS network.

As a single SP is often used to model a single network element with a link, to model a
network path with multiple network elements, Seawind allows connecting several SPs together
to form a simulation pipeline. Data packets are forwarded between SPs, and the last SP in the

7

pipeline sends the packet out to the destination.
Some links use flow control at the link level. This means that the rate at which the packets are

transmitted from one network element to another is controlled by the receiving network element.
Seawind supports flow control between SPs and between NPAs by using a sliding window based
algorithm.

4.3 Channel model

While computer networks become increasingly complex, the principle of having a set of routers
(switches, etc.) interconnected by communication links remains the same. In Seawind, a single
Simulation Process models an outgoing link, optionally attached to a network node with buffer-
ing and a specified queue management policy. Several SPs can be pipelined to represent a path
through the network between the client and the server.

The emulated link is modeled as a direction-specific channel, which is maintained separately
for the uplink (towards the fixed end) and for the downlink (towards the mobile end) traffic. The
downlink and uplink channels are largely independent, with an exception of some special events
(for example a blackout). The model of the channel is shown in Figure 3. Packets arriving to the
emulator are placed into the input queue. The maximum queue length can be limited in terms of
bytes or packets. Different packet-drop policies can be applied on the queue (e.g. the traditional
tail-drop or RED active queue management [9]). For example, the input queue can be used to
model a queue in a router, and thus inspect the effect of congestion and congestion-based losses
at a network node.

allocation delay
transmission delay

propagation delay
error delay

INPUT QUEUE LSB LRBLINK

ReassemblyFragmentation

Figure 3: The channel model.

Some link protocols (e.g. Radio Link Control (RLC) [23] in GSM) fragment PDUs of the
upper protocol layer as a part of internal operation. The fragmentation unit before the link and
the reassembly unit after the link allow to logically fragment the data packet into smaller pieces
for the purpose of the different events performed during the emulations. The actual size of the
transmitted data transmitted by lower-level protocols can increase due to protocol overhead (e.g.
added header) or decrease due to compression. This is also taken into account in the calculations.

The channel model also includes Link Send Buffer (LSB) and Link Receive Buffer (LRB) to
model the send and receive buffers that are present with real links. The link send buffer is used
to store the frames to be transmitted to the link, and the link receive buffer is used to store frames
at the receiving end until all pieces of a fragmented unit have arrived, allowing reassembly. The
link receive buffer is also needed to store out-of-order frames, when a link layer Automatic
Repeat Request (ARQ) mechanism is used for retransmitting corrupted or missing frames. The
size of these buffers should be large enough allowing the ARQ sliding window protocol to keep
the link fully utilized. These buffers may significantly increase the buffering capacity of the link.

Before data can be delivered over the link, the radio resources often have to be allocated
first. The delay can be rather high due to possible contention or even queueing for resources. In

8

the current model the allocation delay is triggered when a data unit arrives to an empty queue.
Once the resources are allocated, data units are taken from the head of the queue one-by-one
for “transmission” over the link. The length of the transmission delay is computed according to
the line rate and the packet size. When the transmission delay for the data unit is completed, a
propagation delay is issued for the unit.

Transmission errors on a link are modeled by specifying a probability that is evaluated on
per-packet basis or on per-bit basis. If a data unit is corrupted, the following actions depend on
the desired error mode. In the corrupt mode the data unit is forwarded in the channel with the
corrupted bits. In the drop mode the corrupted data unit is dropped by Seawind (i.e. the link
layer receiver is assumed to detect the transmission error). In the delay model the data unit is
delayed for a user-specified amount of time. This can be used to emulate a link ARQ protocol
retransmitting the corrupted data unit to recover from transmission errors. In such a case the
upper protocol layers experience only an excessive delay for the affected packet.

5 Seawind Features

5.1 Emulation

Protocol filters. A protocol filter is a protocol-specific module that is implemented separately
for each protocol (e.g. TCP, WAP) used with Seawind. New protocol filters can be easily added
using the interface provided. A protocol filter has two functions: packet recognizer recognizes
the packet boundaries from the incoming data and populates Seawind structures used in different
emulation calculations. Usually the packet recognizer is based on the link layer protocol used for
transmitting the Seawind packets (e.g. PPP used over an asynchronous link). Another function
of the protocol filter is the packet printer, which scans the required information from the protocol
headers and stores it to a log file. This information later allows combining the packet trace with
the SP event log to determine various events, like the reason for a packet loss and to measure
round-trip times. For example, when using TCP/IP protocols the packet outputter uses an output
format which is compatible with the tcpdump [15] tool to allow interoperability with existing
tools used for analysis.

State changes. The user can define multiple sets of parameters (states) that are changed during
a test run. For example, the available bandwidth, error properties and delay properties can be
changed simultaneously according to the given time interval distribution. This feature can be
used to model changes in the mobile communication environment, e.g. due to handoffs. The
state is changed synchronously at all SPs used in the emulation. Seawind also provides an
interface to trigger state changes from an external program, thus providing a flexible way for
creating a wide range of mobility scenarios.

Random distributions. A wide variety of random distributions are included in Seawind to
model different kinds of network properties. The list includes the basic distributions (e.g. uni-
form, exponential, Cauchy) and a two-state Markov distribution. Additionally, any arbitrary
distribution can be stored in a file to be used by different parameters during the emulation.
Seawind uses its own random number generator to avoid being affected by the biased random
number generators that some operating systems may have.

9

Parallel workload generators. Seawind allows using an arbitrary number of WLGs in au-
tomatically run tests and in manually executed tests. Starting the workload generating tools
manually is straightforward, as user may launch any number of applications using the command
shell, and Seawind transparently captures the data generated by the applications from the net-
work device interface. In automatic operation the user may enter a number of WLG definitions
with a starting time relative to the beginning of the test run. This makes it possible to inspect
competing traffic flows over the network emulated by Seawind.

Multiple queues. The user data packets may belong to different priority classes. Multiple
queues are present in SP to hold user packets of different priority and background load packets
(Figure 4). A number of algorithms are given for each queue. The classifier algorithm assigns a
specific queue to an arrived packet. The queue management algorithm (e.g. RED [9]) actively
marks packets based on the averaged queue length. The drop policy algorithm (e.g. head drop)
discards packets that exceed state queue size or length limits. Finally, packets can be marked
using Explicit Congestion Notification (ECN) [10]. All algorithms have well-defined interfaces
so new implementations can be easily added. We currently have a basic implementation of the
single-priority traffic, but in the near future we will implement more classifier algorithms for
handling multiple queues.

Background load. In addition to the main workload captured by the NPA components, Sea-
wind provides a framework for generating virtual background load (BGL), which affects the
internal queueing and delay calculations of SP components. With this feature, the user may
create a flexible model of the effects caused by other users in the emulated access network. Fig-
ure 4 illustrates the background load framework and how it can be used with multiple Seawind
input queues. A BGL generator can be attached to any SP in the simulation pipeline to generate
packets according to the defined model. Because the BGL packets exist only virtually, the in-
formation about BGL packets is forwarded to the next SP using a dedicated BGL channel. The
BGL can be consumed by any SP in the pipeline, but it is not forwarded to the NPAs.

Data ch.

BGL ch.

workload data workload data

BGL generator BGL sink

SP #1 SP #2Source Destination

Figure 4: Background load generators with two pipelined SPs with multiple queues.

5.2 Output analysis

The CT collects the log output from various Seawind components and stores them on the disc
for further analysis. Two kinds of logs are generated by the Seawind components. Filter log
is generated by the NPAs and SPs. It contains information about the network packets that have
traversed through Seawind. For example, when monitoring IP packets, Seawind uses tcpdump
for this purpose. The filter log is created by the protocol filter described above and is protocol
dependent. Seawind log contains Seawind-specific information of the test run. SP stores the
information about the events such as delays or losses on each data unit. For each event a times-
tamp is stored to make it possible to verify that the events have been performed on time. Seawind

10

log is also collected from NPAs and WLGs. The contents of those Seawind logs depend on the
mechanism used in NPA or on the tool used as WLG.

During a test run there are usually a large amount of log information generated. Therefore it
is essential to have tools and scripts for analyzing the logs. For a filter log containing tcpdump-
compatible information about IP packets this is easy, as there are a wide variety of publicly
available tools such as tcptrace [22] available.

Currently our scripts collect information about various time measurements, throughput, num-
ber of retransmissions, number of packet losses and fairness (using Jain’s fairness index [16]).
Optionally, the information about different TCP variables in the Linux kernel, such as congestion
window size or RTT/RTO estimates, can also be stored to be coupled with the other statistics.
We also plan to enhance the graph plotting scripts to show various Seawind or Linux TCP events
such as delays, packet losses and retransmission timeouts.

6 Implementation Issues

Developing a real-time emulator for an operating system and network environment that do not
guarantee real-time response is not straightforward [12]. An off-the-shelf personal computer and
Unix OS are not designed for real-time use, have coarse timer resolution, and are prone to delays
caused by the I/O (a disk or network access). Especially in a multi-process environment, keeping
a real-time schedule is hard, because processes have to compete for the system resources.

We have not set any absolute real-time requirement for the response times of Seawind events,
as it would be impossible to guarantee the required response time in the general case. However,
in this section we introduce how we try to ensure that the Seawind response times are accurate
enough for performance tests and how we monitor the accuracy of emulation.

Simulation process. We have enhanced the timing accuracy of the events by waking up SP
a configurable amount of milliseconds prior the event is due and wait in a busy loop until the
actual event time is reached. Before running the performance tests, the user can take a few
preliminary runs to adjust the timing estimator for his environment, if the default value is not
good for some reason. By distributing the Seawind processes we wanted to make it possible to
run the simulation process in a lightly loaded host in order to avoid competition of the system
resources.

After each event Seawind takes a timestamp from the system clock and stores it to the log.
If a threshold value given by the user is exceeded, a warning message is printed so that the user
can discard the results for the particular test. However, if the timing estimator is correctly set
and there are no other resource-consuming processes running, this occurs very rarely. In our
experience the accuracy of Seawind remains within 1 ms with rare exceptions.

During the test runs Seawind avoids unnecessary I/O access, which could cause harmful
context switches. It only reads and writes the workload and background load to and from its
neighboring processes. The configuration file is read before the test starts and the log is only
stored in the memory buffers during the test. After the test is over, the memory buffer is flushed
on the disk.

Communication. The inter-process communication between Seawind components need to be
performed in a timely manner to ensure correct emulation results. Seawind uses TCP connec-
tions between the neighboring components. This is an obvious selection, because the compo-

11

nents can be distributed into multiple hosts located anywhere in the network, and the connection
is required to be reliable. However, certain TCP features, namely the slow start and Nagle’s
algorithm [29], may cause unwanted delays in the delivery of workload data.

The packet size for the workload data should be selected to be small enough to fit in a single
TCP segment in order to avoid the effect of slow start on the transmission rate. Usually this is
the case, as the packet size is selected to be small on the emulated slow link, and on the other
hand, Seawind is often used over Ethernet using 1500-byte frames. We have disabled Nagle’s
algorithm from the TCP connections used in the internal Seawind communication in order to
allow TCP sender to transmit the TCP segments without delaying them. Finally, it is assumed
that the link used to transmit the packets between NPAs and SPs is substantially faster than the
emulated link. For example, 100 Mbps Ethernet is sufficient when emulating line rates up to 2
Mbps.

7 Case Study

We now show an example of how to study the behavior of a real TCP implementation by using
Seawind. Figure 5 illustrates the target environment we are modeling and how it is emulated
using Seawind. In this test case we assume a wireless last-hop link with a bandwidth of 9600
bps and a last-hop router with a buffer size for 7 network packets. The last-hop router is located
on the same 10 Mbps LAN with the remote end host. Additionally, there are link buffers for
four packets at both ends of the wireless link. Thus, the sending link buffer extends the total
buffering capacity to 11 packets. These network properties are close to what GSM data has, for
example. We do 20 replications of this test case.

data flow

ACK flow

Last−hop router
> 2 Mbps

constant
delay

9600 bps

Fixed hostMobile host

TCP dataTCP data

Mobile host Emulation host Fixed host

link buffers

target environment

file server

emulation environment

input queueLRB LSB

LRBLSB
receiver sender

simulation channel

transmission
errors

10 Mbps LAN

GUI/CT

Figure 5: The emulated environment and its setup in Seawind.

In our scenario the wireless link is prone to transmission errors. The transmission errors are
assumed to be detected and the corrupted packets are dropped. In our model the packet-drop
probability is 1 % for the first 40 seconds of the test run. After 40 seconds the link quality
decreases (e.g. the mobile user moves to a location with a weaker radio link quality) and the
packet drop probability decreases to 10 %.

12

In Figure 5 we can see how the emulation is configured to use three hosts. One of the hosts
acts as the mobile-end receiver, one of the hosts is the fixed end sender and one host is dedicated
to the real-time emulation. Table 1 summarizes the Seawind parameters that were used by the
Seawind SP to model the link at the emulation host. The router buffer is modeled with an input
queue that drops the packets that do not fit in the queue using the tail-drop algorithm. The
scenario is modeled with two distinct states in the Seawind state machine, one state for the first
40 seconds and another state for the rest of the test. We have left out from the table the Seawind
parameters regarding the features that were not used in this test case. The workload we are using
in this test is a bulk transfer of 100 KB using a single TCP connection over the IP protocol.

Table 1: Seawind parameters used in the case
study.

Parameter Name Value

input queue length 7 pkts
queue overflow handling drop
queue drop policy tail-drop
link send buffer size 4 pkts
link receive buffer size 4 pkts
transmission rate 9600 bps
propagation delay 200 ms
error handling drop
packet error probability state 1: 0.01, state 2: 0.10

Table 2: Summary of measure-
ments.

Metric Value

Elapsed time, 10th percentile 153.27 s.
Elapsed time, median 170.51 s.
Elapsed time, 90th percentile 196.40 s.
Throughput, median 601 Bps
Rexmitted pkts, median 65
Dropped pkts, median 47

After the 20 replications of the test have been run, Seawind has generated the logs of the test
runs. First, we can have a look at the summary of the measurement results, which are shown in
Table 2. The shown values are measured from the sending end TCP log. The table shows the
median of the selected metrics. Additionally, 10- and 90- percentiles are shown for the elapsed
time to illustrate the level of variability in the results. It is also possible to have a separate look at
the statistics of each of the 20 replications. As every packet is logged with timestamps, protocol
information and related Seawind events, measuring different kinds of metrics and performing
different kinds of analysis is only a matter of having suitable scripts for the purpose.

After inspecting the general statistics for the replication set, the user can have a detailed look
at what happens at the packet level. One way to do this is to generate a time-sequence diagram
of the TCP segments, which is shown in Figure 6. When comparing the time-sequence diagram
to the the Seawind event log, we can have an understanding of what happened during the test
run.

There are only two corruption losses before the error rate changes after 40 seconds. These
two packet losses occur in the beginning of the test and they cause the TCP sender to adjust
its slow start threshold and enter congestion avoidance, in other words, reduce its sending rate.
Thus, the last-hop router buffer load increases moderately, and there are no congestion-related
losses until 35 seconds have passed. After the error rate has changed, there are 44 packet losses
due to emulated transmission errors. Because of the higher loss rate, the TCP sender keeps
transmitting at a low rate and the router buffer queue does not overflow for the rest of the test
run.

We used Linux kernel version 2.4.0 at the endpoint hosts. Therefore the phenomena shown
in the trace would really occur, if the Linux machine in question is used in the environment
similar to what was modeled here.

13

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

x 10
4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd

Figure 6: A time-sequence graph of the TCP segments in a test run.

8 Concluding Remarks

This paper presented a wireless network emulator called Seawind. The emulation approach al-
lows performance evaluation of existing implementations of protocols and applications over a
wide range of network characteristics. User scenarios that are difficult to reproduce in existing
wireless networks or impossible when the network is only in the design phase can be easily
presented in the emulator. Distinguishable features of the Seawind network emulator are its
wireless-oriented design, portability, easy extendibility and an extensive environment of scripts
and tools for the automatic set up of tests and analysis of results. The practical utility of Sea-
wind is demonstrated by a case study and a number of studies beyond this paper. We have
experimented with different operating systems and discovered a number of implementation spe-
cific features, of which some did not conform to the RFC specifications. We believe that slow
links are an environment which have not been considered carefully enough when designing and
testing the different implementations of TCP and other protocols. Therefore, we believe that
Seawind is a valuable tool for testing the protocol implementations in different networking en-
vironments in a controllable fashion.

References

[1] M. Allman, A. Caldwell, and S. Ostermann. ONE: The Ohio Network Emulator. Tech-
nical Report TR-19972, School of Electrical Engineering and Computer Science, Ohio
University, August 1997.

[2] M. Allman and A. Falk. On the effective evaluation of TCP. ACM Computer Communica-
tion Review, 5(29), October 1999.

[3] R. Bagrodia and W-L. Liao. Maisie: A language for design of efficient discrete-event
simulations. IEEE Transactions on Software Engineering, April 1994.

14

[4] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R. H. Katz. A comparison of mech-
anisms for improving TCP performance over wireless links. In Proceedings of ACM SIG-
COMM ’96, Stanford, CA, August 1996.

[5] A. Boukerche, S.K. Das, A. Fabbri, and O. Yildiz. Exploiting model independence for
parallel PCS network simulation. In 13th workshop of Parallel and Distributed Simulation
1999, pages 166–173, May 1999.

[6] G. Brasche and B. Walke. Concepts, services and protocols of the new GSM phase 2+
general packet radio service. IEEE Communications Magazine, pages 94–104, August
1997.

[7] J. Brosh, D. A. Maltz, D. B. Johnson, Y. Hu, and J. Jetcheve. A performance comparison of
multi-hop wireless ad hoc network routing protocols. In Proceedings of the Fourth Annual
ACM/IEEE International Conference on Mobile Computing and Networking (MOBICOM),
pages 85–97, Dallas, Texas, October 1998.

[8] J. Cai and D. J. Goodman. General packet radio service in GSM. IEEE Communications
Magazine, pages 122–131, October 1997.

[9] S. Floyd and V. Jacobson. Random Early Detection Gateways for Congestion Avoidance.
IEEE/ACM Transactions on Networking, 1(4):397–413, August 1993.

[10] S. Floyd and K. K. Ramakrishnan. A proposal to add explicit congestion notification (ECN)
to IP. IETF RFC 2481, January 1999.

[11] NIST Internetworking Technology Group. NIST net network emulation package.
http://www.antd.nist.gov/itg/nistnet/, June 2000.

[12] A. Gurtov. Technical Issues of Real-Time Network Emulation in Linux. In Proceedings of
FDPW, June 1999. Available at: http://www.cs.Helsinki.FI/u/gurtov/papers/.

[13] A. Gurtov. TCP performance in presence of congestion and corruption losses. Master’s
thesis, Department of Computer Science, University of Helsinki, December 2000. Avail-
able at:
http://www.cs.Helsinki.FI/group/iwtcp/papers/.

[14] ISI at University of South California. Network simulator 2. Available at:
http://www.isi.edu/nsnam/ns/.

[15] V. Jacobson, C. Leres, and S. McCanne. tcpdump. Available at http://ee.lbl.gov/, June
1997.

[16] R. Jain. The Art of Computer Systems Performance Analysis: Techniques for Experimental
Design, Measurement, Simulation and Modeling. John Wiley & Sons, 1991.

[17] M. Kojo, K. Raatikainen, M. Liljeberg, J. Kiiskinen, and T. Alanko. An efficient trans-
port service for slow wireless links. IEEE Journal on Selected Areas In Communications,
15(7):1337–1348, September 1997.

15

[18] J. Korhonen, O. Aalto, A. Gurtov, and H. Laamanen. Measured performance of GSM
HSCSD and GPRS. In Proceedings of the IEEE International Conference on Communica-
tions, 2001.

[19] N. Leavitt. Will WAP deliver the wireless internet. IEEE Computer, 33(5):16–20, May
2000.

[20] R. Ludwig. Eliminating Inefficient Cross-Layer Interactions in Wireless Networking. PhD
thesis, Aachen University of Technology, April 2000.

[21] M. Mouly and M. Pautet. The GSM System for Mobile Communications. Europe Media
Duplication S.A., 1992.

[22] S. Ostermann. tcptrace. Available at: http://jarok.cs.ohiou.edu/software/tcptrace/tcptrace.html.

[23] M. Rahnema. Overview of the GSM system and protocol architecture. IEEE Communica-
tions Magazine, 31(4):92–100, April 1993.

[24] L. Rizzo. Dummynet: A simple approach to the evaluation of network protocols. 27(1):31–
41, January 1997.

[25] P. Sarolahti. Performance analysis of TCP improvements for congested reliable wireless
links. Master’s thesis, Department of Computer Science, University of Helsinki, February
2001. Available at:
http://www.cs.Helsinki.FI/group/iwtcp/papers/.

[26] J. Short, R. Bagrodia, and L. Kleinrock. Mobile wireless network system simulation.
In Proceedings of the First Annual International Conference on Mobile Computing and
Networking (MOBICOM), pages 195–209, Berkeley, CA USA, November 1995.

[27] Simulation Laboratory (SimLab). MobSim++. Web page:
http://www.it.kth.se/labs/sim/demoVisTool/mobsimdemo.html, October 1995.

[28] W. Simpson. The point-to-point protocol (PPP). IETF RFC 1661, July 1994.

[29] W. Stevens. TCP/IP Illustrated, Volume 1; The Protocols. Addison Wesley, 1995.

[30] R. H. Stine. FYI on a network management tool catalog: Tools for monitoring and debug-
ging TCP/IP internets and interconnected devices. IETF RFC 1147, April 1990.

[31] OPNET Technologies. OPNET Modeler. Commercial, Information at:
http://www.mil3.com/products/modeler/home.html, 2001.

[32] B. H. Walke. Mobile Radio Networks: Networking and Protocols. John Wiley, first edition,
1999.

[33] X. Zeng, R. Bagrodia, and M. Gerla. GloMoSim: a library for parallel sim-
ulation of large-scale wireless networks. In Proceedings of the 12th Workshop
on Parallel and Distributed Simulations (PADS ’98), May 1998. Available at:
http://pcl.cs.ucla.edu/projects/glomosim/documents.html.

16

University of Helsinki

Department of Computer Science

Series of Publications C, No. C-2001-53

Making TCP Robust Against Delay Spikes

Andrei Gurtov

Helsinki, November 2001

Report C-2001-53

University of Helsinki

Department of Computer Science

P. O. Box 26 (Teollisuuskatu 23)

FIN-00014 University of Helsinki, FINLAND

The papers in the series are intended for internal use and are distributed by the author. Copies

may be ordered from the library of Department of Computer Science.

Making TCP Robust Against Delay Spikes

Andrei Gurtov

Department of Computer Science, University of Helsinki

Report C-2001-53

November 2001

14 pages

Abstract. This document discusses optimizations for a TCP sender that are most helpful in the presence

of delays spikes, but are seemingly suitable for general deployment. The motivation for this work is

increasing popularity of links (e.g. provided by cellular networks) that have delay spikes exceeding

the usual link latency by several times. The effect of a delay spike on TCP Tahoe, Reno, NewReno

and SACK is described. The document recommends timing every segment and restarting the retrans-

mit timer to achieve a more conservative RTO estimate. Furthermore, it discusses how a series of

DUPACKs should be treated.

Key Words: TCP, cellular networks, delay spike, spurious timeout

CR Classification: C.2.1

Making TCP Robust Against Delay Spikes ii

Contents

1. Introduction 1

2. Sources of delay spikes 2

3. Delays and interactions with TCP mechanisms 2

4. Making TCP robust against delay spikes 5

4.1 Restarting the retransmit timer . 5

4.2 Timing every segment . 6

4.3 Treating a DUPACK series . 8

4.4 Ignoring DUPACKs for oldest outstanding segment after RTO 11

5. Conclusions 12

References 13

Making TCP Robust Against Delay Spikes 1

1. Introduction

The increasing number of users access the Internet via data links provided by cellular Wide Area

Wireless Networks (W-WANs). Due to link outages, handovers, and priority blocking delay spikes

in order of tens of seconds can occur leading to spurious TCP timeouts and unnecessary retrans-

missions.

Making TCP robust against delay spikes may include mechanisms on signalling [LU01a], de-

tection [LU01b] and response [LG01] [BA01c] to spurious timeouts. Recommendations made in

this documents are expected to be suitable for general deployment even when these mechanisms

are implemented.

This document proposes several mechanisms to increase the conservativeness of the TCP re-

transmission timer. It has a positive effect of making it more tolerable to delays spikes. However, a

more conservative RTO timer also has the drawback of a lengthy recovery in case the RTO has not

been spurious, i.e. occurred due to segment losses [AP99]. To avoid this performance drawback,

non-spurious RTOs should be avoided as much as possible. Thus, all relevant mechanisms that

reduce a probability of RTO in presence of packet losses are recommended. Two most important

such mechanisms are SACK [RFC2018] [BA01a] and the Limited Transmit algorithm [RFC3042].

The New Reno algorithm [RFC2582] may be used by the TCP sender when the SACK option is

not available on the connection. A list of other experimental methods for enhancing loss recovery

and avoiding non-spurious RTOs can be found in [RFC3155].

An important observation is that for W-WAN users and operators the battery power consumption

and radio resource usage are often as important as the throughput of the link. This suggests that the

amount of data sent over the wireless link should be minimized even at the trade-off of extra delay

in data delivery. With regard to this document it means that TCP features that avoid unnecessary

packet retransmissions have an extra value.

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD

NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this document, are to be

interpreted as described in [RFC2119]. A segment that acknowledges new data is referred as

an ACK. The DupThresh corresponds to the number of DUPACKs necessary to trigger the fast

retransmit algorithm, the default value is three DUPACKs.

Making TCP Robust Against Delay Spikes 2

2. Sources of delay spikes

TCP does not react well to large delays (several times the usual RTT) that occur suddenly. Without

a chance to adapt its retransmission timer to such a delay, TCP has to assume that outstanding

segments were lost and retransmits them. There is a number of possible reasons why delay spikes

in order of tens of seconds can occur [GU01a].

(1) A long delay spike can be a result of link layer recovery from a link outage due to temporal

loss of radio coverage for example while driving into a tunnel or stepping into an elevator.

(2) During a handover the mobile terminal may have to perform some time-consuming actions

before data can be transmitted in a new cell. Many W-WANs in such a case try to provide seamless

mobility, that is internally re-route packets from the old to the new base station at the expense of

additional delay.

(3) Blocking by high-priority traffic may occur when an arriving circuit-switch call or higher

priority data user temporally preempts the radio channel.

Delay spikes in the Internet can occur for example due to routing changes, but are less frequent

than in cellular networks [AP99]. Delay spikes are often coupled with increased likelihood of

packets losses in the network. In addition, the network path conditions can change heavily after

a delay, for example the available bandwidth can shrink tenfold, after a handover from a fast to a

slower cell.

3. Delays and interactions with TCP mechanisms

This section briefly summarizes reaction of a conformant TCP to a delay spike. The Reno de-

scription is borrowed from [LK00]. Description of Tahoe, New Reno and SACK is based on

experiments in the NS2 simulator [NS] version 2.1b8. The experiment included inserting a delay

approximately three times the RTT in the beginning of the TCP connection without data losses.

The line rate was 9.6 kbps and the latency 300 ms. Traces are available at [GU01b].

When a sudden delay that exceeds the current value of the TCP retransmission timer occurs in

the data transfer, TCP times out and retransmits the oldest outstanding segment, as shown in Figure

1. Since data segments are delayed but not lost, the retransmission is unnecessary and the timeout is

spurious. The sender interprets the ACK generated by the receiver in response to a delayed segment

as related to the retransmission, not the original segment. This happens due to the retransmission

ambiguity problem as the ACK bears no information which segment, original or retransmitted,

Making TCP Robust Against Delay Spikes 3

has generated it. Encouraged by arriving ACKs, TCP retransmits all outstanding segments using

the slow start algorithm. Also, a number of new segments allowed by the congestion window

are transmitted. Such a retransmission policy is called go-back-N since the sender forgets about

all segments it has earlier transmitted. When retransmitted segments arrive to the receiver they

generate DUPACKs since the original segments have already been delivered. When the threshold

of three DUPACKs is reached at the sender, a spurious fast retransmit is triggered. The presumably

missing segment is retransmitted and the congestion window is reduced that causes a pause in

transmission of new segments. From this point, TCP behavior depends on the flavor of the TCP

implementation.

TCP receiver sends DUPACKs in response to out-of-order segments. In other words, a DU-

PACK series appears due to unnecessary retransmissions, if segments have been duplicated by the

network, or due to a packet loss. A DUPACK series triggers a fast retransmit when the DupThresh

is reached, unless not prevented by the ”bug fix” or SACK information (Section 4.3).

TCP Tahoe in Figure 1(a) ignores arriving DUPACKs after the fast retransmit, as it does not im-

plement fast recovery. However, when partial ACKs start to arrive, Tahoe retransmits outstanding

segments unnecessary using the slow start algorithm. This in turn leads to a sequence of DUPACKs

causing a fast retransmit and repeating the cycle until the flight size is reduced to the point when the

fast retransmit cannot be triggered anymore. After that, the connection proceeds normally slowly

increasing the window in congestion avoidance.

TCP Reno in Figure 1(b) enters the fast recovery phase after the false fast retransmit and does

not perform any additional unnecessary retransmissions unless the RTO timer expired during fast

recovery (Section 4.4)

ACKs arriving after false fast retransmit are partial because they are not confirming the reception

of the foremost outstanding segment at that time. The New Reno [RFC2582] algorithm retrans-

mits the presumably missing segment at each new partial acknowledgment in Figure 1(c). A new

DUPACK series is triggered by these unnecessary retransmissions, in a similar way as for Tahoe.

This continues over and over until too few packets are in flight to trigger a spurious fast retransmit.

Fortunately, preventing the first false fast retransmit after the spurious timeout by the ”bug fix”

(Section 4.3) also solves the problem of continues unnecessary retransmits for Tahoe and New

Reno.

TCP SACK in Figure 1(d) can avoid the false fast retransmit but cannot avoid the go-back-N

behavior. The information on the retransmitted segments during go-back-N comes only in DU-

PACKs. Using the D-SACK extension of SACK (duplicate-SACK) allows reporting to the sender

Making TCP Robust Against Delay Spikes 4

snd_data

snd_ack

Segment number

Time, s

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

0 20 40 60 80 100 120

(a) Tahoe

snd_data

snd_ack

Segment number

Time, s

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

0 20 40 60 80 100 120

(b) Reno

snd_data

snd_ack

Segment number

Time, s

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

0 20 40 60 80 100 120

(c) NewReno

snd_data

snd_ack

Segment number

Time, s

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

0 20 40 60 80 100 120

(d) SACK

Figure 1: Response to a spurious timeout by different TCPs. Timestamps are enabled and the ”bug
fix” is disabled.

Making TCP Robust Against Delay Spikes 5

the sequence number of a packet that triggered a DUPACK [RFC2883]. D-SACK info comes too

late to avoid go-back-N retransmissions, but it can be used to learn about unnecessary retransmis-

sions [BA01b] and adapt the for the future.

In our experience, the impact of delay spikes on real-world TCPs is worse than have been

described above. Almost every TCP tested against a delay spike revealed implementation bugs

[GU01b]. One goal of this document is to make the TCP developers aware of the negative effect

of delay spikes.

4. Making TCP robust against delay spikes

4.1 Restarting the retransmit timer

The obvious way to reduce the number of spurious RTOs in the presence of long sudden delays

is to make the RTO timer more conservative than [RFC2988], which recommends restarting RTO

only upon an ACK that acknowledges new data. Restarting the RTO timer also when a segment

is retransmitted or upon a DUPACK is clearly more conservative approach which is explicitly

allowed by [RFC2581].

Restarting the retransmit timer after performing fast retransmit gives a TCP sender more time to

wait for the retransmitted segment to be acknowledged. Otherwise, spurious RTO can occur during

fast recovery as shown in Figure 2(a), even when no delay spike is present and the RTT samples are

collected frequently. Figure 2(b) shows that restarting the retransmit timer when the fast retransmit

is triggered prevents the spurious timeout. Restarting the retransmit timer on fast retransmit is

a common implementation strategy among existing TCPs. The limited transmit algorithm can

increase fast recovery by two DUPACKs, thus raising the likelihood of a spurious RTO, especially

if the retransmit timer is not restarted.

Restarting the retransmit timer on DUPACKs is discussed in more detail in Section 4.3. The

general argument to consider here is that TCP would not want to timeout while it gets some feed-

back that segments are being delivered by the network. In addition, DUPACKs could have useful

SACK information.

Restarting the retransmit timer on partial ACKs is discussed in [RFC2582]. The Impatient vari-

ant of NewReno restarts the retransmit timer only on the first partial ACK, while the Slow-but-

Steady variant upon each partial ACK. The Impatient version may timeout during a lengthy fast

recovery, and proceed with the go-back-N and slow start. This may result in a quicker recovery

when a large number of segments is lost. The Slow-but-Steady version can stay in fast recovery for

Making TCP Robust Against Delay Spikes 6

snd_data

snd_ack

Segment number

Time, s

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50

(a) Without

snd_data

snd_ack

Segment number

Time, s

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50

(b) With

Figure 2: Fast retransmit due to a lost segment with and without reset of the retransmit timer. TCP
Reno with timestamps enabled.

a long time, however avoiding unnecessary retransmissions which are likely during go-back-N. If a

delay spike occurs during the fast recovery phase, the Impatient version is more likely experience a

spurious timeout. In the presence of delay spikes and when unnecessary retransmissions are costly,

the TCP MAY prefer the Slow-but-Steady version, that is restarting the timer on each DUPACK.

Recommendation: The retransmit timer SHOULD be restarted after fast retransmit. TCP MAY

restart the retransmit timer on partial ACKs when unnecessary retransmissions are costly and delay

spikes are likely.

4.2 Timing every segment

Traditionally, TCPs have been collecting one RTT sample per a window of data [Jac88]. This can

lead to underestimating the link RTT and spurious RTOs.

During the slow start phase the queuing delay is increasing rapidly and the RTO value applied

just before a new RTT sample is collected may underestimate the current RTT. Increasing the

RTTvar coefficient from two to four prevents a spurious timeout during the slow start [Jac88]

Making TCP Robust Against Delay Spikes 7

snd_data

snd_ack

Segment number

Time, s

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

0 20 40 60 80 100 120

(a) Reno

snd_data

snd_ack

Segment number

Time, s

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

0 20 40 60 80 100 120

(b) SACK

Figure 3: Response to a spurious timeout when timestamps are disabled.

snd_data

snd_ack

Segment number

Time, s

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50

(a) Without

snd_data

snd_ack

Segment number

Time, s

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50

(b) With

Figure 4: Fast retransmit in TCP Reno due to a lost segment with and without timestamps.

Making TCP Robust Against Delay Spikes 8

assuming no delay spikes are present. Still, the standard RTO timer [RFC2988] may exceed the

link RTT only by a small edge allowing even a small RTT spike to cause a spurious timeout.

In congestion avoidance, a spurious RTO without a delay spike is still possible with the standard

RTO timer, however, only if a very large window is used on a bandwidth-limited link [Jac88].

Unfortunately, overbuffering is seems to be a frequent case for slow links [LU99].

Timing every segment eliminates the effect of lagging RTO behind a rapidly increasing link RTT,

thus decreasing the likelihood of a spurious timeout. Timing every segment can be implemented

with or without the timestamp option [RFC1323]. Using the timestamp option has the advantage

in allowing use of retransmitted segments for RTT measurement which is otherwise blocked by

the Karn’s algorithm [KP87].

Experiments using NS show that the RTT spike tolerated by TCP without a spurious timeout

could be twice higher when every segment is used for RTT estimation [GU01b]. Figure 3(a)

and 3(b) illustrate the response to the same delay spike as in Figure 1(b) and 1(d) when the RTT

sample is collected only once per window. The retransmit timer is clearly more aggressive without

timestamps, as the first retransmission occurs 4 secs earlier. Furthermore, both Reno and SACK

experience a second spurious RTO during a DUPACK sequence when timestamps are not used.

Figure 4(a) shows another example when the spurious RTO occurs during fast recovery. Waiting

for 5 secs more would avoid the timeout in this example. Using the timestamp option in Figure 4(b)

allows to complete the fast recovery phase without a spurious timeout.

Recommendation: TCP SHOULD collect RTT samples more frequently than once per RTT to

decrease the likelihood of a spurious RTO.

4.3 Treating a DUPACK series

Despite of a conservative retransmit timer, a spurious RTO can still occur. The resulting go-back-

N behavior produces a large number of DUPACKs triggered by unnecessary retransmissions. The

DUPACK series can cause a spurious fast retransmit and a spurious RTO.

Without SACK support on the connection, the receiver has no knowledge whether a DUPACK

has been due to a unnecessary retransmission or due to a lost segment. To prevent unnecessary

fast retransmits after a RTO, a ”bug fix” has been suggested [RFC2582]. The ”bug fix” disables

fast retransmits until all segments outstanding at the time when RTO occurred are acknowledged.

A less careful version of this restriction allows the fast retransmit when DUPACKs arrive for the

foremost outstanding packet, while a more careful version does not. A spurious timeout without

Making TCP Robust Against Delay Spikes 9

snd_data

snd_ack

Segment number

Time, s

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

0 20 40 60 80 100 120

(a) Tahoe

snd_data

snd_ack

Segment number

Time, s

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

0 20 40 60 80 100 120

(b) Reno and NewReno

Figure 5: Response to a spurious timeout when the ”bug fix” is enabled.

lost segments presents exactly the situation when DUPACKs arrive for the foremost outstanding

segment. The careful version is recommended [RFC2582]. Response to a spurious timeout with

the careful ”bug fix” is shown in Figure 5(a) and 5(b).

When SACK is supported by the connection, receiving a DUPACK without a SACK block or

with a D-SACK block pointing below the cumulative ACK indicates that the DUPACK was trig-

gered by a unnecessary retransmission (excluding a pathological case when the receiver has agreed

to use SACK but does not send SACK info). Thus, there is no reason to enter the loss recovery

phase, and the same behavior should be followed as without SACK when the fast retransmit is

prevented by the ”bug fix”.

At the moment, the safest way is to follow [RFC2582] and ignore DUPACKs not covering the

highest outstanding segment. Ignoring DUPACKs means no segment (re)transmission or changes

to congestion control state. However, if a TCP sender simply ignores DUPACKs arriving when

fast retransmit is disabled, it can lead to loosing the ACK clock. Whether incoming DUPACKs

can be used to trigger transmission of segments is an open problem, and below we provide some

facts to be considered. Note, that for DUPACKs before DupThresh, transmission of segments is

covered by the limited transmit algorithm. Using the limited transmit algorithm when the ”bug fix”

Making TCP Robust Against Delay Spikes 10

is enabled shares the considerations below.

TCP Reno in NS2 uses DUPACKs to rigger transmission of segments during 37-50 secs as

shown in Figure 5(b). When an ACK arrives at 50 sec, the congestion window is deflated that

produces a pause in packet transmission during 50-58 sec. The alternative behavior when the

congestion window is not inflated is shown in Figure 5(a). Correspondingly, segments are not

transmitted upon DUPACKs and there is no pause due to deflating of the congestion window

when an ACK arrives at 50 sec. There is no clear benefit in either approach, as illustrated by the

equal download time for both connections. A possible modification is shown in Figure 6(a) when

DUPACKs trigger transmission of segments and the congestion window is not deflated. However,

this algorithm produces unstable behavior when evaluated in environment with congestion losses

and therefore cannot be recommended. In opposite, transmitting a new segment every second

DUPACK (similar to the Rate-Halving algorithm) reduces the transmission rate, but still preserves

the ACK clock. Experiments show that this approach is stable in presence of congestion losses and

improves the throughput.

If segments are transmitted on DUPACKs for the segment below the highest outstanding seg-

ment, they are retransmissions. If these retransmissions happen to be unnecessary, a new DUPACK

series is created later. On the other hand, segments transmitted upon DUPACKs for the highest out-

standing segment are new transmissions. Thus, one option would be to allow transmitting segments

on DUPACKs only for the highest outstanding segment.

The retransmit timer may be restarted safely upon DUPACKs if no segments are transmitted after

DupThresh. Restarting the timer decreases likelihood of spurious RTOs during a DUPACK series

when delay spikes occur. However, timing every segment and restarting the timer on reaching

DupThresh seem to provide a conservative enough retransmit timer in many cases. Restarting the

retransmit timer on DUPACKs can lead to a lengthy recovery when the segment was lost.

The reason for banning transmission of a segment AND restarting the retransmit timer on DU-

PACKs is a situation when the last outstanding segment is lost. The receiver will keep sending

DUPACKs until the lost segment is received. A newly transmitted segment on a DUPACK will

trigger another DUPACK in the future creating an endless loop. The retransmit timer in this case

serves as an back-up way to interrupt the loop. With SACK, this problem can appear only in a

pathological case when the receiver does not report losses.

Recommendation: TCP without SACK SHOULD implement the careful version of the ”bug

fix”. TCP with SACK SHOULD NOT enter the loss recovery phase when DUPACKs do not have

a SACK block indicating a lost segment. TCP MAY restart the retransmit timer upon receiving

a DUPACK. Transmitting segments upon DUPACKs above the oldest outstanding segment is an

Making TCP Robust Against Delay Spikes 11

snd_data

snd_ack

Segment number

Time, s

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50

(a) DUPACKs increase the congestion window

snd_data

snd_ack

Segment number

Time, s

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50

(b) DUPACKs for the oldest outstanding segment are
ignored after RTO (timestamps are disabled)

Figure 6: Effect of DUPACKs when the ”bug fix” is enabled.

open issue. However, TCP MUST NOT transmit a new segment and restart the retransmit timer

for DUPACKs above the DupThresh.

4.4 Ignoring DUPACKs for oldest outstanding segment after RTO

TCP can time out during a series of DUPACKs, either during fast recovery phase as shown in Fig-

ure 2(a) and 4(a), or after a large number of unnecessary retransmissions as shown in Figure 4(a).

If DUPACKs are delayed or lost, RTO can occur despite of restarting the retransmit timer upon

DUPACKs. RTO in this situation may or may not be spurious; the recommendation in this section

applies in both cases.

The proper behavior after RTO is specified in [RFC2581], that is to retransmit the oldest out-

standing segment, wait for an ACK and back-off the RTO timer if it expires again. However, a

fairly common behavior among TCPs is to use DUPACKs arriving after RTO to inflate the con-

gestion window and clock out retransmissions of segments, as happens in Figure 4(a) at 25 secs.

This behavior is observed at least in current versions of FreeBSD, Windows, and NS2 TCPs. This

behavior can be a special case of the problem as unnecessary fast retransmits which is discussed in

Making TCP Robust Against Delay Spikes 12

Table 1: Summary of recommendations.

Mechanism Use SACK Section
Restarting the retransmit timer
after DUPACK for DupThresh SHOULD both 4.1
after partial ACK MAY both 4.1
after DUPACK above DupThresh MAY both 4.3
Timing every segment SHOULD both 4.2
Careful ”bug fix” SHOULD w/o 4.3
No recovery on DUPACKs without loss info SHOULD with 4.3
New segment on every second DUPACK MAY both 4.3
(without restarting the retransmit timer)
Ignoring DUPACKs after RTO SHOULD both 4.4

Section 4.3. In this situation the fast retransmit does not make sense, since only a single segment

retransmitted after RTO is assumed to be outstanding, and cannot cause enough DUPACKs to trig-

ger the fast retransmit. Furthermore, since RTO is taken as an indication of severe congestion, it is

unwise to retransmit segments on DUPACKs after RTO without getting any feedback for the first

retransmission.

It has been observed with real TCPs that transmitting segments on DUPACKs after RTO can lead

to a series of spurious timeouts as follows. TCP times out during a long DUPACK series caused

by go-back-N retransmissions. After RTO, DUPACKs are triggering unnecessary retransmission

of segments; resulting DUPACKs in the future cause RTO again. When DUPACKs are ignored

after RTO as shown in Figure 6(b), a spurious RTO during a DUPACK series can only lead to

unnecessary reduction of the congestion window and slow start threshold, but does not produce a

series of spurious RTOs.

Recommendation: TCP SHOULD ignore DUPACKs for the oldest outstanding segment after

RTO.

5. Conclusions

A TCP connection can experience delay spikes due to various reasons like handovers, priority

blocking, temporal link outages or route changes. We described the response of Tahoe, Reno, New

Reno and SACK TCP to a spurious timeout resulting from a delay spike. We have studied the

behavior of the retransmit timer and ways to treat a DUPACK series using the NS simulator. The

resulting summary of recommendations is shown in Table 1.

Making TCP Robust Against Delay Spikes 13

Acknowledgements

Many thanks to Reiner Ludwig, Mark Allman, and Sally Floyd for discussions on the contents of

this document and to Timo Alanko for supporting this work.

References

[AP99] M. Allman and V. Paxson, On Estimating End-to-End Network Path Properties, ACM

SIGCOMM ’99, September 1999, Cambridge, MA.

[BA01a] E. Blanton, M. Allman. A Conservative SACK-based Loss Recovery Algorithm for TCP.

Internet-Draft draft-allman-tcp-sack-07.txt, July 2001, work in progress.

[BA01b] E. Blanton, M. Allman. Using TCP DSACKs and SCTP Duplicate TSNs to Detect Spu-

rious Retransmissions, August 2001, work in progress.

[BA01c] E. Blanton, M. Allman, Adjusting the Duplicate ACK Threshold to Avoid Spurious Re-

transmits, work in progress, July 2001.

[Jac88] V. Jacobson, ”Congestion Avoidance and Control”, In proceedings of ACM SIGCOMM’88,

1988.

[GU01a] A. Gurtov, Effect of Delays on TCP Performance, In Proceedings of IFIP Personal Wire-

less Communications, August 2001.

[GU01b] A. Gurtov, Traces of TCP connections experiencing a delay spike,

http://www.cs.helsinki.fi/u/gurtov/tcp/, November 2001.

[RFC1323] V. Jacobson, R. Braden, D. Borman, TCP Extensions for High Performance, RFC

1323, May 1992.

[RFC2018] M. Mathis, J. Mahdavi, S. Floyd, A. Romanow, TCP Selective Acknowledgement

Options, RFC 2018, October 1996.

[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, RFC 2119,

March 1997.

[RFC2026] S. Bradner. The Internet Standards Process – Revision 3, RFC 2026, October 1996

[RFC2581] M. Allman, V. Paxson, W. Stevens, TCP Congestion Control, RFC 2581, April 1999.

[RFC2582] S. Floyd and T. Henderson. The NewReno modification to TCP’s fast recovery algo-

rithm. IETF RFC 2582, April 1999.

Making TCP Robust Against Delay Spikes 14

[RFC2883] S. Floyd, J. Mahdavi, M. Mathis, M. Podolsky, A. Romanow, An Extension to the

Selective Acknowledgement (SACK) Option for TCP, RFC 2883, July 2000.

[RFC2988] V. Paxson, M. Allman, Computing TCP’s Retransmission Timer, RFC 2988, Novem-

ber 2000.

[RFC3042] Allman, M., Balakrishnan, H. and S. Floyd, Enhancing TCP’s Loss Recovery Using

Limited Transmit, RFC 3042, January, 2001.

[RFC3155] S.Dawkins, G. Montenegro, M. Kojo, V. Magret, N. Vaidya. End-to-end Performance

Implications of Links with Errors, RFC3155, August 2001.

[KP87] P. Karn, C. Partridge, Improving Round-Trip Time Estimates in Reliable Transport Proto-

cols, In Proceedings of ACM SIGCOMM 87.

[LK00] R. Ludwig, R. H. Katz, The Eifel Algorithm: Making TCP Robust Against Spurious

Retransmissions, ACM Computer Communication Review, Vol. 30, No. 1, January 2000.

[LU99] R. Ludwig, B. Rathonyi, A. Konrad, K. Oden, and A. Joseph. Multi-layer tracing of TCP

over a reliable wireless link. In Proceedings of the ACM SIGMETRICS, May 1999.

[LG01] R. Ludwig, A. Gurtov, Responding to Spurious Timeouts in TCP, work in progress, Novem-

ber 2001.

[LU01a] R. Ludwig, TCP Retransmit (RXT) Flag, work in progress, November 2001.

[LU01b] R. Ludwig, The Eifel Algorithm for TCP, work in progress, November 2001.

[NS] ISI, Network Simulator 2, http://www.isi.edu/nsnam/ns

1

Evaluating the Eifel Algorithm for TCP in a GPRS Network

Andrei Gurtov
University of Helsinki – Finland

e-mail: Andrei.Gurtov@cs.Helsinki.FI

Reiner Ludwig
Ericsson Research – Germany

e-mail: Reiner.Ludwig@Ericsson.com

ABSTRACT
Large and sudden variations in packet transmission
delays are often unavoidable in GPRS. This may cause
spurious timeouts in TCP. Spurious timeouts affect TCP
performance in two ways: (1) the TCP sender
unnecessarily reduces its load, and (2) the TCP sender
is forced into a go-back-N retransmission mode. The
Eifel algorithm avoids these consequences. We evaluate
the performance of the Eifel algorithm for TCP Reno,
NewReno and SACK in a simulated GPRS network. We
use throughput and goodput as equally important
performance metrics. In all our simulations, we find
that the Eifel algorithm improves goodput; in some
cases by up to 20 percent. When complemented with an
efficient loss recovery scheme (SACK or NewReno), we
find that the Eifel algorithm also improves bulk data
download times in all our simulations; in some cases by
up to 12 percent.

1. INTRODUCTION
An increasing number of mobile users access the
Internet via data links provided by cellular wide area
wireless networks such as the General Packet Radio
Service (GPRS) [1]. GPRS is a packet-switched
extension of the Global System for Mobile
communications (GSM). While it is being actively
deployed globally at the time of writing, GPRS is
already operational in many countries. GPRS
incorporates many physical and link layer techniques
including different forward error correction schemes,
Automatic Repeat reQuest (ARQ), power control, and
frequency hopping that typically ensure a "smooth" data
transmission. Nevertheless, large and sudden variations
in packet transmission delays are often unavoidable.
This often creates a problem for end-to-end protocols.
In particular, the Transmission Control Protocol (TCP)
[11] is not sufficiently robust to cope with such delay
variations.
 Our previous work discusses possible sources of
delay spikes in the GPRS network [5]. Possible events
that may cause suspension of a TCP connection on the
order of seconds are link outages, handovers and radio
resource preemption. Link outages can result from a
transient loss of radio coverage, e.g., while driving
through a tunnel or when using an elevator. During a
handover the mobile terminal may have to perform
time-consuming operations before data can be
transmitted in the new cell. Blocking by high-priority
traffic may occur when an arriving voice call or higher

priority data user temporally preempts the radio
channel.
 Such events do not necessarily cause packet losses
since GPRS implements a rather persistent link layer
retransmission scheme. However, the sudden delay
spikes can cause TCP to timeout prematurely, and
perform unnecessary retransmissions. This paper
presents a quantitative evaluation of the Eifel algorithm
for TCP [4] within the context of GPRS. The Eifel
algorithm is a mechanism to detect and respond to
spurious timeouts and spurious fast retransmits in TCP.
We simulate bulk data connections of TCP Reno,
NewReno [8] and SACK [2] while generating delay
spikes that are typical for those caused by cell
reselections in a GPRS network. Although the study
could have been done in a live GPRS network, it would
have been difficult to reproduce exactly the same
sequences of cell reselections, and thus difficult to
estimate the effect of Eifel. Additionally, it is difficult
to find a flawless TCP implementation. We therefore
used the NS2 [3] simulator. For that, we implemented a
module that simulates a GPRS link and is able to replay
traces of delay variations based on measurements taken
in a live GPRS network.
 An important observation is that for mobile users
and operators the battery power consumption and radio
resource usage are often as important as the download
time over the wireless link. This suggests that the
amount of data sent over the wireless link should be
minimized. Thus, in our evaluating of the Eifel
algorithm in GPRS, we use the download time and the
goodput, i.e., the ratio of useful over total data
transmitted, as equally important performance metrics.
 The rest of the paper is organized as follows. In
Section 2, we describe the cell reselection mechanism in
GPRS. In Section 3, we explain the effect of delay
spikes on TCP, and how the Eifel algorithm makes the
TCP sender robust against the potentially resulting
spurious timeouts. In Section 4, we describe the
methodology and assumptions underlying our analysis.
Our results are presented in Section 5. Section 6
concludes the paper and outlines our plans for future
work.

2. CELL RESELECTION IN GPRS
In GPRS, the mobile terminal selects the serving cell.
This is different from the basic circuit-switched GSM
data service where the network controls the transfer of
on-going data calls between cells [6][7].

2

The cell reselection process causes a delay, and
sometimes packet losses in active data flows. The total
The total delay consists of the radio channel access
delay in the Base Station Subsystem (BSS), and the
delay caused by mobility management procedures in the
core network; more precisely the Serving GPRS
Support Node (SGSN).
 Changing between cells that belong to the same
base station controller can be typically done within the
BSS without involving the SGSN, which reduces the
delay. Some events in the network may cause cell
reselection to be aborted and later restarted which
significantly increases the delay. According to the
GPRS specifications, a cell reselection should be
completed within a few seconds. However, in a live
GPRS network we observed that it can take any time
from a few to a few tens of seconds.
 The frequency of cell reselections is to a large
extent determined by the speed of a user’s movement
and the size of cells. For example, driving in an urban
area may cause frequent cell reselections. A typical
interval between cell reselections in such a case is
around a minute, but can be as small as few tens of
seconds in densely populated environment.
 To show that a delay spike caused by a cell
reselection can indeed trigger a spurious timeout in
TCP, we have performed a simple test. We took a
laptop running Linux (RedHat version 6.2) connected
via a Motorola Timeport GPRS phone to a live GPRS
network. By forcing cell reselections from the phone
and recording the TCP behavior using tcpdump [12],
we have obtained the TCP trace plot shown in Figure 1.
More details on reading TCP trace plots can be found in
[4]. The first cell reselection occurs at 510 s when the
TCP connection is in the slow start phase and takes 7
seconds. The second one occurs at 550 s during the
congestion avoidance phase and takes 8 seconds. In
both cases, TCP experiences a spurious timeout and
performs unnecessary retransmissions.

3. THE EIFEL ALGORITHM
The Eifel algorithm proposed in [4] makes the TCP
sender robust against spurious timeouts and packet
reordering. In this section, we only explain the Eifel
algorithm in the context of spurious timeouts. When a
delay spike exceeds the current value of TCP's
retransmission timer, a timeout occurs, and the TCP
sender retransmits the oldest outstanding segment. If
that segment or the corresponding ACK is only delayed
but not lost, that retransmission was unnecessary and
the timeout is said to be spurious. Figure 2 shows a
spurious timeout for Reno TCP produced using the NS2
simulator. The receiver trace is offset by 25 segments to
prevent an overlap with the sender trace. We enhanced
the hiccup tool [9] to generate the delays in this test.
The first retransmission is sent at second 6, and is also
delayed. The sender interprets the ACK generated by
the receiver in response to the original segment as
corresponding to the retransmission. This happens
because TCP ACKs bear no information that would
allow the TCP sender to distinguish an ACK for the
original segment from that for the retransmission.
Likewise the TCP sender misinterprets the following
original ACKs, and retransmits all outstanding

segments using the slow start algorithm. Also, a number
of new segments allowed by the congestion window are
transmitted in this phase.
 At second 8 the retransmitted segments arrive at the
TCP receiver and generate DUPACKs [13]. When the
threshold of three DUPACKs is reached at the sender, a
spurious fast retransmit is triggered since the TCP
sender does not implement the careful version of the
fast retransmit algorithm [8].
 Figure 3 illustrates the operation of the Eifel
algorithm in the event of a spurious timeout. The Eifel
algorithm stores the timestamp of the first
retransmission occuring at second 6. The first ACK that
acknowledges the retransmission at second 8 carries a
timestamp of 3 s which is when the original
transmission of the corresponding segment took place.
By comparison with the timestamp stored for the
retransmission (6 s) the Eifel algorithm detects that the
timeout was spurious.
 The response to a spurious timeout in the original
study [4] resumes transmission with the next unsent
segment. How the congestion control state is reversed
depends on the number of subsequent spurious
timeouts. After the first timeout, the sender restores the
slow start threshold and the congestion window to the
values before the timeout. Figure 3 shows this situation
when a delay spike occurs in the beginning of the
connection in the slow start phase. After detecting the
spurious timeout at second 8, the slow start phase
continues. The behavior after two subsequent timeouts
is shown later in Figure 7. In this case, the slow start
threshold is set to the previous value of congestion
window, which itself is left halved. In that case, a TCP
sender ignores some of the original ACKs after a
spurious timeout until the congestion window has
sufficiently increased. After three and more subsequent
spurious timeouts the congestion control state is not
reversed at all.
 In this paper, we evaluate the Eifel algorithm as
proposed in [4] leaving the study of various
enchancments to the response part for future work.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

500 510 520 530 540 550 560 570 580
Time of Day (s)

Se
qu

en
ce

 N
um

be
r (

B)

Snd_Data
Snd_Ack

Figure 1. A TCP trace shows spurious
retransmissions caused by two cell reselections in a
live GPRS network.

0

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8 10 12 14 16
Time of Day (s)

Se
gm

en
t N

um
be

r

Snd_Data
Snd_Ack
Rcv_Data
Rcv_Ack

Figure 2. Spurious timeout of TCP Reno due to a 5 s delay spike.

0

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8 10 12 14 16
Time of Day (s)

Se
gm

en
t N

um
be

r

Snd_Data
Snd_Ack
Rcv_Data
Rcv_Ack

Figure 3. Spurious timeout of TCP Reno with Eifel due to a 5 s delay spike.

3
.

4. SETUP OF EXPERIMENTS
We evaluate the Eifel algorithm in three scenarios: easy,
mediocre, and difficult. For each scenario, we assume
different intervals between cell reselections where the
intervals are drawn from a uniform distribution between
a minimum and a maximum interval as shown in
Table 1. The interval times have been chosen in a way
that for a typical download time of 120 s on average
one, two and three delay spikes occur per connection
for the easy, mediocre and difficult scenario,
respectively. We further assume that the time to
complete a cell reselection is uniformly distributed
between 3 and 15 seconds.

Table 1. Interval between Cell Reselections for three

Scenarios.

 Min (s) Max (s)
Easy 80 140
Mediocre 40 80
Difficult 20 40

For our experiments, we used the one-way models of
Reno, NewReno and SACK TCP with delayed
acknowledgments in NS2, and a slightly adapted
version of the Eifel implementation from [9]. The test
configuration is shown in Figure 4. It contains two
nodes and a link with a drop-tail queue. The full-duplex
link has a rate of 30 kbps and a one-way latency of
300 ms. The hiccup tool generates delays on the link.
We have improved hiccup to suspend data flow in
both directions and after the queue.

t
r
e
t
i
t
a
“
[

5
F
f
T
d
r
n
T
w
t

the difficult scenario with growing frequency of delay
spikes.
 In an environment without congestion losses
(100 KB buffer), Eifel reduces the download time and
the number of unnecessarily retransmitted segments in
all scenarios and for all three TCP flavors. Interestingly,
NewReno without Eifel suffers from a large number of
unnecessary retransmissions and increased download
time compared to TCP Reno and SACK [5]. The
goodput for all three TCP flavors with Eifel is close to
100 percent in all scenarios. This is a significant
improvement compared to 87 percent of Reno and
SACK or 80 percent of NewReno in the difficult
scenario. The download time reduction ranges from 4
percent in the easy scenario to 12 percent in the difficult
scenario.
 In case of the small bottleneck buffer size (10 KB),
Eifel improves the goodput for all three TCP flavors in
all scenarios, and reduces the download time of
NewReno and SACK. The goodput of NewReno and
SACK with Eifel is close to 100 percent in all
scenarios, compared to about 90 percent without Eifel
in the difficult scenario. Eifel reduces the download
time for NewReno and SACK by up to 8 percent.
Although Reno with Eifel shows an improvement in
goodput of several percent compared to pure Reno, the
download time is notably increased in all scenarios. To
explain this unexpected result we have closely
examined packet traces of such connections.
Apparently, Reno with Eifel suffers from lengthy non-
spurious timeouts caused by packet losses.
 Figure 7 shows an example of the poor performance
of Reno with Eifel when packet losses occur. The first
timeout at second 30 is caused by a delay and is
spurious. The Eifel algorithm successfully detects the
spurious timeout, and resumes transmission with the
next unsent segment at second 36. In this case, some of
the original segments were lost due to a buffer
overflow. DUPACKs for the first lost segment start to
arrive at second 37 below the highest outstanding

TCP
sender (Eifel)

TCP
sink

30 kbps, 300 ms
drop - tail buffer

Hiccup

Figure 4. Test configuration in NS2.
4

A single test is based on a TCP connection
ransferring 300 KB of bulk data. Each test has been
epeated a hundred times to ensure sound statistics. We
xperimented with a bottleneck buffer size of 10 KB
hat causes congestion losses, and a size of 100 KB that
s large enough to fit the receiver window of data, and
hus avoids any losses. We used the default settings for
ll parameters in the simulator, except for disabling the
bug fix” [8] and enabling the TCP Timestamps option
15].

. RESULTS OF EXPERIMENTS
igure 5 and Table 2 depict the average download times
or the various bulk data transfers, while Figure 6 and
able 3 show the goodput results. As goodput we
efined the ratio of the minimum number of segment
equired for completing the data transfer to the actual
umber of segments transmitted. Results are based on
CP Reno (R), NewReno (N), and SACK (S) with and
ithout the Eifel algorithm. As expected, the download

ime increases and goodput decreases from the easy to

segment. The “bug fix” [8] is disabled, and thus the fast
retransmit is triggered at second 38. However, due to
multiple losses the sender experiences a second timeout
at second 61. That timeout is not spurious. However,
the RTO at that time is huge, as it is calculated from the
timestamps in the delayed segments. Additionally, the
RTO may still be backed-off after the first timeout (It is
not quite clear what the requirement level is in [10] for
resetting the back-off counter once a new RTT sample
is collected. We have instrumented TCP to reset the
counter). When the retransmit timer finally expires at
second 61 lost segments are recovered and normal
transmission resumes. Without Eifel, Reno often avoids
the second non-spurious timeout as it retransmits all
outstanding segments in go-back-N, including the lost
ones. Disabling the “bug fix” (as we have done in our
tests) helps to recover without a non-spurious timeout
when one, and sometimes two, segments are lost.
However, in order to provide good TCP performance in
environments with delay spikes and high loss rate, the
Eifel algorithm should be coupled with efficient loss
recovery schemes like SACK and Limited Transmit
[14].

5

R N S R N S
R N S

R N S
Easy

Mediocre
Difficult

80

100

120

140

160

180

200

D
ow

nl
oa

d
Ti

m
e

(s
)

10 KB

10 KB
100 KB

100 KBEifel
w/o Eifel

Figure 5. Download time of Reno (R), NewReno (N) and SACK (S).

R N S R N S
R N S

R N S
Difficult

Mediocre
Easy

0.75

0.80

0.85

0.90

0.95

1.00

G
oo

dp
ut

10 KB

10 KB
100 KB

100 KBEifel
w/o Eifel

Figure 6. Goodput of Reno (R), NewReno (N) and SACK (S).

6

Table 2. Download time (s) of Reno (R), NewReno (N) and SACK (S).

Eifel NO YES
Buffer 10KB 100KB 10KB 100KB
TCP R N S R N S R N S R N S

Easy 108 101 98 99 103 98 122 100 98 95 95 95
Mediocre 118 113 110 112 125 113 130 110 106 103 103 103
Difficult 145 145 142 142 157 143 184 136 131 125 125 125

Table 3. Goodput of Reno (R), NewReno (N) and SACK (S).

Eifel NO YES
Buffer 10KB 100KB 10KB 100KB
TCP R N S R N S R N S R N S

Easy 0.96 0.97 0.98 0.96 0.92 0.96 0.97 1.00 1.00 1.00 1.00 1.00
Mediocre 0.94 0.94 0.96 0.92 0.85 0.93 0.97 0.99 0.99 0.99 0.99 0.99
Difficult 0.90 0.87 0.90 0.87 0.80 0.87 0.96 0.99 0.99 0.99 0.99 0.99

60000

65000

70000

75000

80000

85000

90000

25 30 35 40 45 50 55 60 65 70
Time of Day (s)

Se
qu

en
ce

 N
um

be
r (

B)

Snd_Data
Snd_Ack
Rcv_Data
Rcv_Ack

Figure 7. Performance problem of Reno with Eifel when packet losses are present.

7

6. CONCLUSIONS
We have studied the Eifel algorithm as defined in [4]
for TCP Reno, NewReno and SACK in a simulated
GPRS network. Large and sudden variations in packet
transmission delays are often unavoidable in GPRS
potentially causing spurious timeouts in TCP. For
example, cell reselections may cause such delay
variations. We simulated different scenarios with on
average between one and three cell reselections taking
place over the course of a two minutes bulk data
transfer.
 For mobile users and operators the battery power
consumption and radio resource usage are often as
important as the throughput across the wireless link. We
therefore used throughput (download times) and
goodput as equally important performance metrics. The
bottleneck queue was assumed to be within the GPRS
network. In bandwidth-dominated systems such as
GPRS, the size of the bottleneck queue can greatly
impact TCP's performance. We used two different sizes
of the simulated drop-tail queue to capture this impact.
 In case of a bottleneck queue that is sufficiently
large to accommodate the maximum receiver window of
a TCP connection, the Eifel algorithm improves the
performance for all TCP flavors in all three scenarios. It
reduces download times by up to 12 percent, and
increases goodput by up to 20 percent. Bottleneck
queues of such a size are often found in real GPRS
networks.
 In case of a smaller bottleneck queues, congestion
losses may occur, and hence the TCP connection
becomes network-limited. In that case, the Eifel
algorithm still improves goodput by up to 10 percent for
all TCP flavors in all three scenarios. For SACK and
NewReno it also improves download times by up to 8
percent in all three scenarios.
 Unexpectedly, TCP Reno yielded a considerable
increase in download times when the Eifel algorithm
was enabled and the bottleneck queue was small. We
found that the reason for that were non-spurious
timeouts with huge RTOs that typically follow a
spurious timeout when packets from the outstanding
flight were in fact lost due to congestion. From that we
conclude that the Eifel algorithm is ideally

complemented with an efficient SACK- or NewReno-
based loss recovery scheme.
 Our future work will focus on studying various
modifications to the response part of the Eifel algorithm
including how to reverse congestion control state, and
how to adapt the round-trip time estimators.

REFERENCES
[1] G. Brasche and B. Walke. Concepts, services and

protocols of the new GSM phase 2+ general packet radio
service. IEEE Communications Magazine, pages 94--
104, August 1997.

[2] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky. An
extension to the selective acknowledgment (SACK)
option for TCP. IETF RFC 2883, July 2000.

[3] ISI at University of South California. Network simulator
2. Available at: http://www.isi.edu/nsnam/ns/.

[4] R. Ludwig and R. H. Katz. The Eifel algorithm: Making
TCP robust against spurious retransmissions. ACM
Computer Communication Review, 30(1), January 2000.

[5] A. Gurtov, Effect of Delays on TCP Performance, In
Proceedings of IFIP Personal Wireless Communications,
2001.

[6] 3GPP TS 05.08 Radio subsystem link control, 2001.
[7] ETSI GSM 04.08, Mobile radio interface; Layer 3

specification.
[8] S. Floyd and T. Henderson. The NewReno modification

to TCP's fast recovery algorithm. RFC 2582, April 1999.
[9] M. Schläger, NS TCP Eifel Page, http://www-tkn.ee.tu-

berlin.de/~morten/eifel/ns-eifel.html
[10] V. Paxson, M. Allman, Computing TCP's

Retransmission Timer, RFC 2988, November 2000.
[11] J. Postel, Transmission Control Protocol, RFC 793,

September 1981.
[12] S. McCanne and V. Jacobson, The BSD Packet Filter: A

New Architecture for User-Level Packet Capture, In
Proceedings of the 1993 Winter USENIX Conference.

[13] W. R. Stevens, TCP/IP Illustrated, Volume 1 (The
Protocols), Addison Wesley, November 1994.

[14] M. Allman, H. Balakrishnan and S. Floyd, Enhancing
TCP's Loss Recovery Using Limited Transmit, RFC
3042, January 2001.

[15] V. Jacobson, R. Braden, D. Borman, TCP Extensions for
High Performance, RFC 1323, May 1992.

Network Working Group H. Inamura (editor)
Internet-Draft NTT DoCoMo, Inc.
Expires: December 30, 2002 G. Montenegro (editor)
 Sun Microsystems Laboratories,
 Europe
 R. Ludwig
 Ericsson Research
 A. Gurtov
 Sonera
 F. Khafizov
 Nortel Networks
 July 1, 2002

 TCP over Second (2.5G) and Third (3G) Generation Wireless Networks
 draft-ietf-pilc-2.5g3g-10

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at http://
 www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on December 30, 2002.

Copyright Notice

 Copyright (C) The Internet Society (2002). All Rights Reserved.

Abstract

 This document describes a profile for optimizing TCP over second
 (2.5G) and third (3G) generation wireless networks. We describe the
 relevant characteristics of 2.5G and 3G networks, and specific

Inamura (editor), et al. Expires December 30, 2002 [Page 1]

Internet-Draft TCP over 2.5G/3G July 2002

 features of example deployments of such networks. We then recommend
 TCP optimization mechanisms and discuss open issues. The
 configuration options in this document are commonly found in modern
 TCP stacks, and are widely available standards-track mechanisms that
 the community considers safe for use on the general Internet.

Table of Contents

 1. Introduction . 3
 2. 2.5G and 3G Link Characteristics 5
 2.1 Latency . 5
 2.2 Data Rates . 5
 2.3 Asymmetry . 6
 2.4 Delay Spikes . 6
 2.5 Packet Loss Due to Corruption 7
 2.6 Intersystem Handovers 7
 2.7 Bandwidth Oscillation 7
 3. 2.5G and 3G Deployments 9
 3.1 2.5G Technologies: GPRS, HSCSD, and EDGE 9
 3.2 W-CDMA . 9
 3.3 CDMA2000 . 10
 4. TCP over 2.5G and 3G . 12
 4.1 Appropriate Window Size (Sender & Receiver) 12
 4.2 Increased Initial Window (Sender) 12
 4.3 Limited Transmit (Sender) 13
 4.4 IP MTU Larger than Default 13
 4.5 Path MTU Discovery (Sender & Intermediate Routers) 14
 4.6 Selective Acknowledgments (Sender & Receiver) 14
 4.7 Explicit Congestion Notification (Sender, Receiver &
 Intermediate Routers) 14
 4.8 TCP Timestamps Option (Sender & Receiver) 15
 4.9 Disabling RFC1144 TCP/IP Header Compression (Wireless Host) 16
 4.10 Summary . 17
 5. Open Issues . 18
 6. Security Considerations 20
 7. IANA Considerations . 21
 8. Acknowledgements . 22
 References . 23
 Authors' Addresses . 27
 Full Copyright Statement 29

Inamura (editor), et al. Expires December 30, 2002 [Page 2]

Internet-Draft TCP over 2.5G/3G July 2002

1. Introduction

 The second generation cellular systems are commonly referred to as
 2G. The 2G phase began in the 1990s when digital voice encoding had
 replaced analog systems (1G). 2G systems are based on various radio
 technologies including frequency-, code- and time- division multiple
 access. Examples of 2G systems include GSM (Europe), PDC (Japan),
 and IS-95 (USA). Data links provided by 2G systems are mostly
 circuit-switched and have transmission speeds of 10-20 kbps uplink
 and downlink. Demand for higher data rates, instant availability and
 data volume-based charging, as well as lack of radio spectrum
 allocated for 2G led to the introduction of 2.5G (GPRS, EDGE, PDC-P)
 and 3G (Wideband CDMA, cdma2000) systems.

 Radio technology for both Wideband CDMA (W-CDMA) (Europe, Japan) and
 cdma2000 (US, South Korea) is based on code division multiple access
 allowing for higher data rates and more efficient spectrum
 utilization than 2G systems. 3G systems provide both packet-switched
 and circuit-switched connectivity in order to address the quality of
 service requirements of conversational, interactive, streaming, and
 bulk transfer applications. The transition to 3G is expected to be a
 gradual process. Initially, 3G will be deployed to introduce high
 capacity and high speed access in densely populated areas. Mobile
 users with multimode terminals will be able to utilize existing
 coverage of 2.5G systems on the rest of territory.

 Much development and deployment activity has centered around 2.5G and
 3G technologies. Along with objectives like increased capacity for
 voice channels, a primary motivation for these is data communication,
 and, in particular, Internet access. Accordingly, key issues are TCP
 performance and the several techniques which can be applied to
 optimize it over different wireless environments[1].

 This document proposes a profile of such techniques, (particularly
 effective for use with 2.5G and 3G wireless networks). The
 configuration options in this document are commonly found in modern
 TCP stacks, and are widely available IETF standards-track mechanisms
 that the community has judged to be safe on the general Internet
 (that is, even in predominantly non-wireless scenarios).
 Furthermore, this document makes one set of recommendations that
 covers both 2.5G and 3G networks. One common set is warranted,
 because 2.5G and 3G networks share similar challenges to TCP
 performance (see Section 2).

 Two example applications of the recommendations in this document are:

 o The WAP Forum [12] (part of the Open Mobile Alliance [13] as of
 June 2002) is an industry association that has developed standards

Inamura (editor), et al. Expires December 30, 2002 [Page 3]

Internet-Draft TCP over 2.5G/3G July 2002

 for wireless information and telephony services on digital mobile
 phones. In order to address WAP functionality for higher speed
 networks such as 2.5G and 3G networks, and to aim at convergence
 with Internet standards, the WAP Forum thoroughly revised its
 specifications. The resultant version 2.0 [18] adopts TCP as its
 transport protocol, and recommends TCP optimization mechanisms
 closely aligned with those described in this document.

 o I-mode[24] is a wireless Internet service deployed on handsets in
 Japan. The newer version of i-mode runs on FOMA [25], an
 implementation of W-CDMA. I-mode over FOMA deploys the profile of
 TCP described in this document.

 This document is structured as follows: Section 2 reviews the link
 layer characteristics of 2.5G/3G networks; Section 3 gives an
 overview of some specific 2.5G/3G technologies like W-CDMA, cdma2000
 and GPRS; Section 4 recommends mechanisms and configuration options
 for TCP implementations used in 2.5G/3G networks, including a summary
 in chart form at the end of the section; finally, Section 5 discusses
 some open issues.

Inamura (editor), et al. Expires December 30, 2002 [Page 4]

Internet-Draft TCP over 2.5G/3G July 2002

2. 2.5G and 3G Link Characteristics

 Link layer characteristics of 2.5G/3G networks have significant
 effects on TCP performance. In this section we present various
 aspects of link characteristics unique to the 2.5G/3G networks.

2.1 Latency

 The latency of 2.5G/3G links is high mostly due to the extensive
 processing required at the physical layer of those networks, e.g.,
 for FEC and interleaving, and due to transmission delays in the radio
 access network [55]. A typical RTT varies between a few hundred
 milliseconds and one second. The associated radio channels suffer
 from difficult propagation environments. Hence, powerful but complex
 physical layer techniques need to be applied to provide high capacity
 in a wide coverage area in a resource efficient way. Hopefully,
 rapid improvements in all areas of wireless networks ranging from
 radio layer techniques over signal processing to system architecture
 will ultimately also lead to reduced delays in 3G wireless systems.

2.2 Data Rates

 The main incentives for transition from 2G to 2.5G to 3G are the
 increase in voice capacity and in data rates for the users. 2.5G
 systems have data rates of 10-20 kbps in uplink and 10-40 kbps in
 downlink. Initial 3G systems are expected to have bit rates around
 64 kbps in uplink and 384 kbps in downlink. Considering the
 resulting bandwidth-delay product (BDP) of around 1-5 KB for 2.5G and
 8-50 KB for 3G, 2.5G links can be considered LTNs (Long Thin Networks
 [1]), and 3G links approach LFNs (Long Fat Networks [4], as
 exemplified by some satellite networks [45]). For good TCP
 performance both LFNs and LTNs require maintaining a large enough
 window of outstanding data. For LFNs, utilizing the available
 network bandwidth is of particular concern. LTNs need a
 sufficiently large window for efficient loss recovery. In
 particular, the fast retransmit algorithm cannot be triggered if the
 window is less than four segments. This leads to a lengthy recovery
 through retransmission timeouts. The Limited Transmit algorithm
 RFC3042 [27] helps avoid the deleterious effects of timeouts on
 connections with small windows. Nevertheless, making full use of the
 SACK RFC2018 [5] information for loss recovery in both LFNs and LTNs
 may require twice the window otherwise sufficient to utilize the
 available bandwidth.

 This document recommends only standard mechanisms suitable both for
 LTNs and LFNs, and to any network in general. However, experimental
 mechanisms suggested in Section 5 can be targeted either for LTNs [1]
 or LFNs [45].

Inamura (editor), et al. Expires December 30, 2002 [Page 5]

Internet-Draft TCP over 2.5G/3G July 2002

 Data rates are dynamic due to effects from other users and from
 mobility. Arriving and departing users can reduce or increase the
 available bandwidth in a cell. Increasing the distance from the base
 station decreases the link bandwidth due to reduced link quality.
 Finally, by simply moving into another cell the user can experience a
 sudden change in available bandwidth. For example, if upon changing
 cells a connection experiences a sudden increase in available
 bandwidth, it can underutilize it, because during congestion
 avoidance TCP increases the sending rate slowly. Changing from a
 fast to a slow cell normally is handled well by TCP due to the self-
 clocking property. However, a sudden increase in RTT in this case
 can cause a spurious TCP timeout as described in Section 2.7. In
 addition, a large TCP window used in the fast cell can create
 congestion resulting in overbuffering in the slow cell.

2.3 Asymmetry

 2.5G/3G systems may run asymmetric uplink and downlink data rates.
 The uplink data rate is limited by battery power consumption and
 complexity limitations of mobile terminals. However, the asymmetry
 does not exceed 3-6 times, and can be tolerated by TCP without the
 need for techniques like ACK congestion control or ACK filtering
 [46]. Accordingly, this document does not include recommendations
 meant for such highly asymmetric networks.

2.4 Delay Spikes

 A delay spike is a sudden increase in the latency of the
 communication path. 2.5G/3G links are likely to experience delay
 spikes exceeding the typical RTT by several times due to the
 following reasons.

 1. A long delay spike can occur during link layer recovery from a
 link outage due to temporal loss of radio coverage, for example,
 while driving into a tunnel or within an elevator.

 2. During a handover the mobile terminal and the new base station
 must exchange messages and perform some other time-consuming
 actions before data can be transmitted in a new cell.

 3. Many wide area wireless networks provide seamless mobility by
 internally re-routing packets from the old to the new base
 station which may cause extra delay.

 4. Blocking by high-priority traffic may occur when an arriving
 circuit-switched call or higher priority data temporarily
 preempts the radio channel. This happens because most current
 terminals are not able to handle a voice call and a data

Inamura (editor), et al. Expires December 30, 2002 [Page 6]

Internet-Draft TCP over 2.5G/3G July 2002

 connection simultaneously and suspend the data connection in this
 case.

 5. Additionally, a scheduler in the radio network can suspend a low-
 priority data transfer to give the radio channel to higher
 priority users.

 Delay spikes can cause spurious TCP timeouts, unnecessary
 retransmissions and a multiplicative decrease in the congestion
 window size.

2.5 Packet Loss Due to Corruption

 Even in the face of a high probability of physical layer frame
 errors, 2.5G/3G systems have a low rate of packet losses thanks to
 link-level retransmissions. Justification for link layer ARQ is
 discussed in [10], [7], [41]. In general, link layer ARQ and FEC can
 provide a packet service with a negligibly small probability of
 undetected errors (failures of the link CRC), and a low level of loss
 (non-delivery) for the upper layer traffic, e.g., IP. The loss rate
 of IP packets is low due to the ARQ, but the recovery at the link
 layer appears as delay jitter to the higher layers lengthening the
 computed RTO value.

2.6 Intersystem Handovers

 In the initial phase of deployment, 3G systems will be used as a 'hot
 spot' technology in high population areas, while 2.5G systems will
 provide lower speed data service elsewhere. This creates an
 environment where a mobile user can roam between 2.5G and 3G networks
 while keeping ongoing TCP connections. The inter-system handover is
 likely to trigger a high delay spike (Section 2.4), and can result in
 data loss. Additional problems arise because of context transfer,
 which is out of scope of this document, but is being addressed
 elsewhere in the IETF in activities addressing seamless mobility
 [47].

 Intersystem handovers can adversely affect ongoing TCP connections
 since features may only be negotiated at connection establishment and
 cannot be changed later. After an intersystem handover, the network
 characteristics may be radically different, and, in fact, may be
 negatively affected by the initial configuration. This point argues
 against premature optimization by the TCP implementation.

2.7 Bandwidth Oscillation

 Given the limited RF spectrum, satisfying the high data rate needs of
 2.5G/3G wireless systems requires dynamic resource sharing among

Inamura (editor), et al. Expires December 30, 2002 [Page 7]

Internet-Draft TCP over 2.5G/3G July 2002

 concurrent data users. Various scheduling mechanisms can be deployed
 in order to maximize resource utilization. If multiple users wish to
 transfer large amounts of data at the same time, the scheduler may
 have to repeatedly allocate and de-allocate resources for each user.
 We refer to periodic allocation and release of high-speed channels as
 Bandwidth Oscillation. Bandwidth Oscillation effects such as
 spurious retransmissions were identified elsewhere (e.g., [17]) as
 factors that degrade throughput. There are research studies [48],
 [50], which show that in some cases Bandwidth Oscillation can be the
 single most important factor in reducing throughput. For fixed TCP
 parameters the achievable throughput depends on the pattern of
 resource allocation. When the frequency of resource allocation and
 de-allocation is sufficiently high, there is no throughput
 degradation. However, increasing the frequency of resource
 allocation/de-allocation may come at the expense of increased
 signaling, and, therefore, may not be desirable. Standards for 3G
 wireless technologies provide mechanisms that can be used to combat
 the adverse effects of Bandwidth Oscillation. It is the consensus of
 the PILC Working Group that the best approach for avoiding adverse
 effects of Bandwidth Oscillation is proper wireless sub-network
 design [10].

Inamura (editor), et al. Expires December 30, 2002 [Page 8]

Internet-Draft TCP over 2.5G/3G July 2002

3. 2.5G and 3G Deployments

 This section provides further details on specific 2.5G/3G
 technologies, namely, Wideband CDMA (W-CDMA), cdma2000 and GPRS.
 Other documents discuss the underlying technologies in more detail.
 For example, ARQ and FEC are discussed in [10], while further
 justification for link layer ARQ is discussed in [7], [41].

3.1 2.5G Technologies: GPRS, HSCSD, and EDGE

 High Speed Circuit-Switched Data (HSCSD) and General Packet Radio
 Service (GPRS) are extensions of GSM providing high data rates for a
 user. Both extensions were developed first by ETSI and later by
 3GPP. In GSM, a user is assigned one timeslot downlink and one
 uplink. HSCSD allocates multiple timeslots to a user creating a fast
 circuit-switched link. GPRS is based on packet-switched technology
 that allows efficient sharing of radio resources among users and
 always-on capability. Several terminals can share timeslots. A GPRS
 network uses an updated base station subsystem of GSM as the access
 network; the GPRS core network includes Serving GPRS Support Nodes
 (SGSN) and Gateway GPRS Support Nodes (GGSN). The RLC protocol
 operating between a base station controller and a terminal provides
 ARQ capability over the radio link. The Logical Link Control (LLC)
 protocol between the SGSN and the terminal also has an ARQ capability
 utilized during handovers.

 Enhanced Data for Global Evolution (EDGE) uses a new modulation
 technique and new channel coding that increases throughput and
 capacity of the radio link. EDGE applied to GPRS (EGPRS) or HSCSD
 (ECSD) can increase the data rate threefold for a single user.

3.2 W-CDMA

 The International Telecommunication Union (ITU) has selected Wideband
 Code Division Multiple Access (W-CDMA) as one of the global telecom
 systems for the IMT-2000 3G mobile communications standard. W-CDMA
 specifications are created in the 3rd Generation Partnership Project
 (3GPP).

 The link layer characteristics of the 3G network which have the
 largest effect on TCP performance over the link are error controlling
 schemes such as layer two ARQ (L2 ARQ) and FEC (forward error
 correction).

 W-CDMA (Wideband CDMA) uses RLC (Radio Link Control) [2], a Selective
 Repeat and sliding window ARQ. RLC uses protocol data units (PDUs)
 with a 16 bit RLC header. The size of the PDUs may vary. Typically,
 336 bit PDUs are implemented [25]. This is the unit for link layer

Inamura (editor), et al. Expires December 30, 2002 [Page 9]

Internet-Draft TCP over 2.5G/3G July 2002

 retransmission. The IP packet is fragmented into PDUs for
 transmission by RLC. (For more fragmentation discussion, see Section
 4.4.)

 In W-CDMA, one to twelve PDUs (RLC frames) constitute one FEC frame,
 the actual size of which depends on link conditions and bandwidth
 allocation. The FEC frame is the unit of interleaving. This
 accumulation of PDUs for FEC adds part of the latency mentioned in
 Section 2.1.

 For reliable transfer, RLC has an acknowledged mode for PDU
 retransmission. RLC uses checkpoint ARQ [2]. Using "status report"
 type acknowledgments: the poll bit in the header explicitly solicits
 the peer for a status report containing the sequence number that the
 peer acknowledged. The use of the poll bit is controlled by timers
 and by the size of available buffer space in RLC. Also, when the
 peer detects a gap between sequence numbers in received frames, it
 can issue a status report to invoke retransmission. RLC preserves
 the order of packet delivery.

 The maximum number of retransmissions is a configurable RLC parameter
 that is specified by RRC [32] (Radio Resource Controller) through RLC
 connection initialization. The RRC can set the maximum number of
 retransmissions (up to a maximum of 40). Therefore, RLC can be
 described as an ARQ that can be configured for either HIGH-
 PERSISTENCE or LOW-PERSISTENCE, not PERFECT-PERSISTENCE, according to
 the terminology in [7].

 Since the RRC manages RLC connection state, Bandwidth Oscillation
 (Section 2.7) can be eliminated by the RRC's keeping RF resource on
 an RLC connection with data in its queue. This avoids resource de-
 allocation in the middle of transferring data.

 In summary, the link layer ARQ and FEC can provide a packet service
 with a negligibly small probability of undetected error (failure of
 the link CRC), and a low level of loss (non-delivery) for the upper
 layer traffic, i.e. IP. Retransmission of PDUs by ARQ introduces
 latency and delay jitter to the IP flow. This is why the transport
 layer sees the underlying W-CDMA network as a network with a
 relatively large BDP (Bandwidth-Delay Product) of up to 50 KB for the
 384 kbps radio bearer.

3.3 CDMA2000

 One of the Terrestrial Radio Interface standards for 3G wireless
 systems, proposed under the International Mobile Telecommunications-
 2000 umbrella, is cdma2000 [52]. It employs Multi-Carrier Code
 Division Multiple Access (CDMA) technology with a single-carrier RF

Inamura (editor), et al. Expires December 30, 2002 [Page 10]

Internet-Draft TCP over 2.5G/3G July 2002

 bandwidth of 1.25 MHz. cdma2000 evolved from IS-95 [53], a 2G
 standard based on CDMA technology. The first phase of cdma2000
 utilizes a single carrier and is designed to double the voice
 capacity of existing CDMA (IS-95) networks and to support always-on
 data transmission speeds of up to 316.8 kbps. At the physical layer,
 the standard allows transmission in 5,10,20,40 or 80 ms time frames.
 Various orthogonal (Walsh) codes are used for channel identification
 and to achieve higher data rates.

 Radio Link Protocol Type 3 (RLP) [54] is used with a cdma2000 Traffic
 Channel to support CDMA data services. RLP provides an octet stream
 transport service and is unaware of higher layer framing. There are
 several RLP frame formats. RLP frame formats with higher payload
 were designed for higher data rates. Depending on the channel speed,
 one or more RLP frames can be transmitted in a single physical layer
 frame.

 RLP can substantially decrease the error rate exhibited by CDMA
 traffic channels [49]. When transferring data, RLP is a pure NAK-
 based finite selective repeat protocol. The receiver does not
 acknowledge successfully received data frames. If one or more RLP
 data frames are missing, the receiving RLP makes several attempts
 (called NAK rounds) to recover them by sending one or more NAK
 control frames to the transmitter. Each NAK frame must be sent in a
 separate physical layer frame. When RLP supplies the last NAK
 control frame of a particular NAK round, a retransmission timer is
 set. If the missing frame is not received when the timer expires,
 RLP may try another NAK round. RLP may not recover all missing
 frames. If after all RLP rounds, a frame is still missing, RLP
 supplies data with a missing frame to the higher layer protocols.

Inamura (editor), et al. Expires December 30, 2002 [Page 11]

Internet-Draft TCP over 2.5G/3G July 2002

4. TCP over 2.5G and 3G

 What follows is a set of recommendations for configuration parameters
 for protocol stacks which will be used to support TCP connections
 over 2.5G and 3G wireless networks. Some of these recommendations
 imply special configuration

 o at the data receiver (frequently a stack at or near the wireless
 device),

 o at the data sender (frequently a host in the Internet or possibly
 a gateway or proxy at the edge of a wireless network), or

 o at both.

 These configuration options are commonly available IETF standards-
 track mechanisms considered safe on the general Internet. System
 administrators are cautioned, however, that increasing the MTU size
 (Section 4.4) and disabling RFC1144 header compression (Section 4.9)
 could affect host efficiency, and that changing such parameters
 should be done with care.

4.1 Appropriate Window Size (Sender & Receiver)

 TCP over 2.5G/3G should support appropriate window sizes based on the
 Bandwidth Delay Product (BDP) of the end-to-end path (see Section
 2.2). The TCP specification [37] limits the receiver window size to
 64 KB. If the end-to-end BDP is expected to be larger than 64 KB,
 the window scale option [4] can be used to overcome that limitation.
 Many operating systems by default use small TCP receive and send
 buffers around 16KB. Therefore, even for a BDP below 64 KB, the
 default buffer size setting should be increased at the sender and at
 the receiver to allow a large enough window.

4.2 Increased Initial Window (Sender)

 TCP controls its transmit rate using the congestion window mechanism.
 The traditional initial window value of one segment, coupled with the
 delayed ACK mechanism [57] implies unecessary idle times in the
 initial phase of the connection, including the delayed ACK timeout
 (typically 200 ms, but potentially as much as 500 ms) [8]. Senders
 can avoid this by using a larger initial window. At the time of
 this writing, an increased initial window setting of two segments is
 already approved [3], and and a further increase up to four segments
 (not to exceed roughly 4 KB) has been proposed to become a standards
 track RFC [8]. Experiments with increased initial windows and
 related measurements have shown (1) that it is safe to deploy this
 mechanism (i.e. it does not lead to congestion collapse), and (2)

Inamura (editor), et al. Expires December 30, 2002 [Page 12]

Internet-Draft TCP over 2.5G/3G July 2002

 that it is especially effective for the transmission of a few TCP
 segments' worth of data (which is the behavior commonly seen in such
 applications as Internet-enabled mobile wireless devices). For large
 data transfers, on the other hand, the effect of this mechanism is
 negligible.

 TCP over 2.5G/3G SHOULD set the initial CWND (congestion window)
 according to Equation 1 in [8]:

 min (4*MSS, max (2*MSS, 4380 bytes))

 This increases the permitted initial window from one to between two
 and four segments (not to exceed approximately 4 KB).

4.3 Limited Transmit (Sender)

 RFC3042 [27], Limited Transmit, extends Fast Retransmit/Fast Recovery
 for TCP connections with small congestion windows that are not likely
 to generate the three duplicate acknowledgements required to trigger
 Fast Retransmit [3]. If a sender has previously unsent data queued
 for transmission, the limited transmit mechanism calls for sending a
 new data segment in response to each of the first two duplicate
 acknowledgments that arrive at the sender. This mechanism is
 effective when the congestion window size is small or if a large
 number of segments in a window are lost. This may avoid some
 retransmissions due to TCP timeouts. In particular, some studies
 [27] have shown that over half of a busy server's retransmissions
 were due to RTO expiration (as opposed to Fast Retransmit), and that
 roughly 25% of those could have been avoided using Limited Transmit.
 Similar to the discussion in Section 4.2, this mechanism is useful
 for small amounts of data to be transmitted. TCP over 2.5G/3G
 implementations SHOULD implement Limited Transmit.

4.4 IP MTU Larger than Default

 The maximum size of an IP datagram supported by a link layer is the
 MTU (Maximum Transfer Unit). The link layer may, in turn, fragment
 IP datagrams into PDUs. For example, on links with high error rates,
 a smaller link PDU size increases the chance of successful
 transmission. With layer two ARQ and transparent link layer
 fragmentation, the network layer can enjoy a larger MTU even in a
 relatively high BER (Bit Error Rate) condition. Without these
 features in the link, a smaller MTU is suggested.

 TCP over 2.5G/3G should allow freedom for designers to choose MTU
 values ranging from small values (such as 576 bytes) to a large value
 that is supported by the type of link in use (such as 1500 bytes for
 IP packets on Ethernet). Given that the window is counted in units

Inamura (editor), et al. Expires December 30, 2002 [Page 13]

Internet-Draft TCP over 2.5G/3G July 2002

 of segments, a larger MTU allows TCP to increase the congestion
 window faster [9]. Hence, designers are generally encouraged to
 choose larger values. These may exceed the default IP MTU values of
 576 bytes for IPv4 RFC1191 [19] and 1280 bytes for IPv6 [59]. While
 this recommendation is applicable to 3G networks, operation over 2.5G
 networks should exercise caution as per the recommendations in
 RFC3150 [9].

4.5 Path MTU Discovery (Sender & Intermediate Routers)

 Path MTU discovery allows a sender to determine the maximum end-to-
 end transmission unit (without IP fragmentation) for a given routing
 path. RFC1191 [19] and RFC1981 [21] describe the MTU discovery
 procedure for IPv4 and IPv6, respectively. This allows TCP senders
 to employ larger segment sizes (without causing IP layer
 fragmentation) instead of assuming the small default MTU. TCP over
 2.5G/3G implementations should implement Path MTU Discovery. Path
 MTU Discovery requires intermediate routers to support the generation
 of the necessary ICMP messages. RFC1435 [20] provides
 recommendations that may be relevant for some router implementations.

4.6 Selective Acknowledgments (Sender & Receiver)

 The selective acknowledgment option (SACK), RFC2018 [5], is effective
 when multiple TCP segments are lost in a single TCP window[11]. In
 particular, if the end-to-end path has a large BDP and a high packet
 loss rate, the probability of multiple segment losses in a single
 window of data increases. In such cases, SACK provides robustness
 beyond TCP-Tahoe and TCP-Reno [6]. TCP over 2.5G/3G SHOULD support
 SACK.

 In the absence of SACK feature, the TCP should use NewReno RFC2582
 [38].

4.7 Explicit Congestion Notification (Sender, Receiver & Intermediate
 Routers)

 Explicit Congestion Notification, RFC3168 [23], allows a TCP receiver
 to inform the sender of congestion in the network by setting the ECN-
 Echo flag upon receiving an IP packet marked with the CE bit(s). The
 TCP sender will then reduce its congestion window. Thus, the use of
 ECN is believed to provide performance benefits [22], [40]. RFC3168
 [23] also places requirements on intermediate routers (e.g. active
 queue management and setting of the CE bit(s) in the IP header to
 indicate congestion). Therefore, the potential improvement in
 performance can only be achieved when ECN capable routers are
 deployed along the path. TCP over 2.5G/3G SHOULD support ECN.

Inamura (editor), et al. Expires December 30, 2002 [Page 14]

Internet-Draft TCP over 2.5G/3G July 2002

4.8 TCP Timestamps Option (Sender & Receiver)

 Traditionally, TCPs collect one RTT sample per window of data [37],
 [57]. This can lead to an underestimation of the RTT, and spurious
 timeouts on paths in which the packet transmission delay dominates
 the RTT. This holds despite a conservative retransmit timer such as
 the one specified in RFC2988 [31]. TCP connections with large
 windows may benefit from more frequent RTT samples provided with
 timestamps by adapting quicker to changing network conditions [4].
 However, there is some empirical evidence that for TCPs with an
 RFC2988 timer [31], timestamps provide little or no benefits on
 backbone Internet paths [56]. Using the TCP Timestamps option has
 the advantage that retransmitted segments can be used for RTT
 measurement, which is otherwise forbidden by Karn's algorithm [39],
 [4]. Furthermore, the TCP Timestamps option is the basis for
 detecting spurious retransmits using the Eifel algorithm [17].

 A 2.5/3G link (layer) is dedicated to a single host. It therefore
 only experiences a low degree of statistical multiplexing between
 different flows. Also, the packet transmission and queueing delays
 of a 2.5/3G link often dominate the path's RTT. This already results
 in large RTT variations as packets fill the queue while a TCP sender
 probes for more bandwidth, or as packets drain from the queue while a
 TCP sender reduces its load in response to a packet loss. In
 addition, the delay spikes across a 2.5/3G link (see Section 2.4) may
 often exceed the end-to-end RTT. The thus resulting large variations
 in the path's RTT may often cause spurious timeouts.

 When running TCP in such an environment, it is therefore advantageous
 to sample the path's RTT more often than only once per RTT. This
 allows the TCP sender to track changes in the RTT more closely. In
 particular, a TCP sender can react more quickly to sudden increases
 of the RTT by sooner updating the RTO to a more conservative value.
 The TCP Timestamps option [4] provides this capability, allowing the
 TCP sender to sample the RTT from every segment that is acknowledged.
 Using timestamps in the mentioned scenario leads to a more
 conservative TCP retransmission timer and reduces the risk of
 triggering spurious timeouts [42], [48], [50], [58].

 There are two problematic issues with using timestamps:

 o 12 bytes of overhead are introduced by carrying the TCP Timestamps
 option and padding in the TCP header. For a small MTU size, it
 can present a considerable overhead. For example, for an MTU of
 296 bytes the added overhead is 4%. For an MTU of 1500 bytes, the
 added overhead is only 0.8%.

 o Current TCP header compression schemes are limited in their

Inamura (editor), et al. Expires December 30, 2002 [Page 15]

Internet-Draft TCP over 2.5G/3G July 2002

 handling of the TCP options field. For RFC2507 [35], any change
 in the options field (caused by timestamps or SACK, for example)
 renders the entire field uncompressible (leaving the TCP/IP header
 itself compressible, however). Even worse, for RFC1144 [34] such
 a change in the options field effectively disables TCP/IP header
 compression altogether. This is the case when a connection uses
 the TCP Timestamps option. That option field is used both in the
 data and the ACK path, and its value typically changes from one
 packet to the next. The IETF is currently specifying a robust
 TCP/IP header compression scheme with better support for TCP
 options [16].

 The original definition of the timestamps option [4] specifies that
 duplicate segments below cumulative ACK do not update the cached
 timestamp value at the receiver. This may lead to overestimating of
 RTT for retransmitted segments. A possible solution [44] allows the
 receiver to use a more recent timestamp from a duplicate segment.
 However, this suggestion allows for spoofing attacks against the TCP
 receiver. Therefore, careful consideration is needed in
 implementing this solution.

 Recommendation: TCP SHOULD use the TCP Timestamps option. It allows
 for better RTT estimation, reduces the risk of spurious timeouts, and
 enables the detection of spurious retransmits using the Eifel
 algorithm.

4.9 Disabling RFC1144 TCP/IP Header Compression (Wireless Host)

 It is well known (and has been shown with experimental data) that
 RFC1144 [34] TCP header compression does not perform well in the
 presence of packet losses [40], [48]. If a wireless link error is
 not recovered, it will cause TCP segment loss between the compressor
 and decompressor, and then RFC1144 header compression does not allow
 TCP to take advantage of Fast Retransmit Fast Recovery mechanism.
 The RFC1144 header compression algorithm does not transmit the entire
 TCP/IP headers, but only the changes in the headers of consecutive
 segments. Therefore, loss of a single TCP segment on the link causes
 the transmitting and receiving TCP sequence numbers to fall out of
 synchronization. Hence, when a TCP segment is lost after the
 compressor, the decompressor will generate false TCP headers.
 Consequently, the TCP receiver will discard all remaining packets in
 the current window because of a checksum error. This continues until
 the compressor receives the first retransmission which is forwarded
 uncompressed to synchronize the decompressor [34].

 As previously recommended in RFC3150 [9], RFC1144 header compression
 SHOULD NOT be enabled unless the packet loss probability between the
 compressor and decompressor is very low. Actually, enabling the

Inamura (editor), et al. Expires December 30, 2002 [Page 16]

Internet-Draft TCP over 2.5G/3G July 2002

 Timestamps Option effectively accomplishes the same thing (see
 Section 4.8). Other header compression schemes like RFC2507 [35] and
 Robust Header Compression [33] are meant to address deficiencies in
 RFC1144 header compression. At the time of this writing, the IETF
 was working on multiple extensions to Robust Header Compression
 (negotiating Robust Header Compression over PPP, compressing TCP
 options, etc) [51].

4.10 Summary

 Items Comments
 --
 Appropriate Window Size (sender & receiver)
 based on end-to-end BDP

 Window Scale Option (sender & receiver)
 [RFC1323] Window size > 64KB

 Increased Initial Window (sender)
 [RFC TBA] CWND = min (4*MSS,
 max (2*MSS, 4380 bytes))

 Limited Transmit (sender)
 [RFC3042]

 IP MTU larger than more applicable to 3G
 Default

 Path MTU Discovery (sender & intermediate routers)
 [RFC1191,RFC1981]

 Selective Acknowledgment
 option (SACK)
 [RFC2018] (sender & receiver)

 Explicit Congestion
 Notification(ECN)
 [RFC3168] (sender, receiver &
 intermediate routers)

 Timestamps Option (sender & receiver)
 [RFC1323, R.T.Braden's ID]

 Disabling RFC1144
 TCP/IP Header Compression
 [RFC1144] (wireless host)

Inamura (editor), et al. Expires December 30, 2002 [Page 17]

Internet-Draft TCP over 2.5G/3G July 2002

5. Open Issues

 This section outlines additional mechanisms and parameter settings
 that may increase end-to-end performance when running TCP across
 2.5G/3G networks. Note, that apart from the discussion of the RTO's
 initial value, those mechanisms and parameter settings are not part
 of any standards track RFC at the time of this writing. Therefore,
 they cannot be recommended for the Internet in general.

 Other mechanisms for increasing TCP performance include enhanced TCP/
 IP header compression schemes [16], and active queue management
 RFC2309 [15], link layer retransmission schemes [10], and caching
 packets during transient link outages to retransmit them locally when
 the link is restored to operation [10].

 Shortcomings of existing TCP/IP header compression schemes (RFC1144
 [34], RFC2507 [35]) are that they do not compress headers of
 handshaking packets (SYNs and FINs), and that they lack proper
 handling of TCP option fields (e.g., SACK or timestamps) (see Section
 4.8). Although RFC3095 [33] does not yet address this issue, the
 IETF is developing improved TCP/IP header compression schemes,
 including better handling of TCP options such as timestamps and
 selective acknowledgements. Especially, if many short-lived TCP
 connections run across the link, the compression of the handshaking
 packets may greatly improve the overall header compression ratio.

 Implementing active queue management is attractive for a number of
 reasons as outlined in RFC2309 [15]. One important benefit for 2.5G/
 3G networks, is that it minimizes the amount of potentially stale
 data that may be queued in the network ("clicking from page to page"
 before the download of the previous page is complete). Avoiding the
 transmission of stale data across the 2.5G/3G radio link saves
 transmission (battery) power, and increases the ratio of useful data
 over total data transmitted. Another important benefit of active
 queue management for 2.5G/3G networks, is that it reduces the risk of
 a spurious timeout for the first data segment as outlined below.

 Since 2.5G/3G networks are commonly characterized by high delays,
 avoiding unecessary round-trip times is particularly attractive.
 This is specially beneficial for short-lived, transactional (request/
 response-style) TCP sessions that typically result from browsing the
 Web from a smart phone. However, existing solutions such as T/TCP
 RFC1644 [14], have not been adopted due to known security concerns
 [30].

 Spurious timeouts, packet re-ordering, and packet duplication may
 reduce TCP's performance. Thus, making TCP more robust against those
 events is desirable. Solutions to this problem have been proposed

Inamura (editor), et al. Expires December 30, 2002 [Page 18]

Internet-Draft TCP over 2.5G/3G July 2002

 [17], [26], [36], and standardization work within the IETF is ongoing
 at the time of writing. Those solutions include reverting congestion
 control state after such an event has been detected, and adapting the
 retransmission timer and duplicate acknowledgement threshold. The
 deployment of such solutions may be particularly beneficial when
 running TCP across wireless networks because wireless access links
 may often be subject to handovers and resource preemption, or the
 mobile transmitter may traverse through a radio coverage hole. Such
 disrupting events may easily trigger a spurious timeout despite a
 conservative retransmission timer. Also, the mobility mechanisms of
 some wireless networks may cause packet duplication.

 The algorithm for computing TCP's retransmission timer is specified
 in RFC2988 [31]. The standard specifies that the initial setting of
 the retransmission timeout value (RTO) should not be less than 3
 seconds. This value might be too low when running TCP across 2.5G/3G
 networks. In addition to its high latencies, those networks may be
 run at bit rates of as low as about 10 kb/s which results in large
 packet transmission delays. In this case, the RTT for the first data
 segment may easily exceed the initial TCP retransmission timer
 setting of 3 seconds. This would then cause a spurious timeout for
 that segment. Hence, in such situations it may be advisable to set
 TCP's initial RTO to a value larger than 3 seconds. Furthermore, due
 to the potentially large packet transmission delays, a TCP sender
 might choose to refrain from initializing its RTO from the RTT
 measured for the SYN, but instead take the RTT measured for the first
 data segment.

 Some of the recommendations in RFC2988 [31] are optional, and are not
 followed by all TCP implementations. Specifically, some TCP stacks
 allow a minimum RTO less than the recommended value of 1 second
 (section 2.4 of [31]), and some implementations do not implement the
 recommended restart of the RTO timer when an ACK is received (section
 5.3 of [31]). Some experiments [48], [50], have shown that in the
 face of bandwidth oscillation, using the recommended minimum RTO
 value of 1 sec (along with the also recommended initial RTO of 3 sec)
 reduces the number of spurious retransmissions as compared to using
 small minimum RTO values of 200 or 400 ms. Furthermore, TCP stacks
 that restart the retransmission timer when an ACK is received
 experience far less spurious retransmissions than implementations
 that do not restart the RTO timer when an ACK is received.
 Therefore, at the time of this writing, it seems preferable for TCP
 implementations used in 3G wireless data transmission to comply with
 all recommendations of RFC2988.

Inamura (editor), et al. Expires December 30, 2002 [Page 19]

Internet-Draft TCP over 2.5G/3G July 2002

6. Security Considerations

 In 2.5G/3G wireless networks, data is transmitted as ciphertext over
 the air and as cleartext between the Radio Access Network (RAN) and
 the core network. IP security RFC2401 [29] or TLS RFC2246 [28] can
 be deployed by user devices for end-to-end security. The use of a
 transport gateway introduces conflicts with IPsec; however TLS can be
 used in such architectures.

Inamura (editor), et al. Expires December 30, 2002 [Page 20]

Internet-Draft TCP over 2.5G/3G July 2002

7. IANA Considerations

 This document has been written assuming that Larger Initial Windows
 will be a proposed standard soon. Once this happens, the related
 text in this document should be updated (section 4.2, the table in
 section 4.10 and reference entry [8]). At that point this section
 should be deleted.

Inamura (editor), et al. Expires December 30, 2002 [Page 21]

Internet-Draft TCP over 2.5G/3G July 2002

8. Acknowledgements

 The authors would like to acknowledge the contribution to the text
 from the following individuals:

 Max Hata, NTT DoCoMo, Inc. (hata@mml.yrp.nttdocomo.co.jp)

 Masahiro Hara, Fujitsu, Inc. (mhara@FLAB.FUJITSU.CO.JP)

 Joby James, Motorola, Inc. (joby@MIEL.MOT.COM)

 William Gilliam, Hewlett-Packard Company (wag@cup.hp.com)

 Alan Hameed, Fujitsu FNC, Inc. (Alan.Hameed@fnc.fujitsu.com)

 Rodrigo Garces (rgarces2000@yahoo.com)

 Peter Ford, Microsoft (peterf@Exchange.Microsoft.com)

 Fergus Wills, Openwave (fergus.wills@openwave.com)

 Michael Meyer (Michael.Meyer@eed.ericsson.se)

 The authors gratefully acknowledge the valuable advice from the
 following individuals:

 Gorry Fairhurst (gorry@erg.abdn.ac.uk)

 Mark Allman (mallman@grc.nasa.gov)

 Aaron Falk (falk@ISI.EDU)

Inamura (editor), et al. Expires December 30, 2002 [Page 22]

Internet-Draft TCP over 2.5G/3G July 2002

References

 [1] Montenegro, G., Dawkins, S., Kojo, M., Magret, V. and N.
 Vaidya, "Long Thin Networks", RFC 2757, January 2000.

 [2] Third Generation Partnership Project, "RLC Protocol
 Specification (3G TS 25.322:)", 1999.

 [3] Allman, M., Paxson, V. and W. Stevens, "TCP Congestion
 Control", RFC 2581, April 1999.

 [4] Jacobson, V., Braden, R. and D. Borman, "TCP Extensions for
 High Performance", RFC 1323, May 1992.

 [5] Mathis, M., Mahdavi, J., Floyd, S. and R. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018, October 1996.

 [6] Fall, K. and S. Floyd, "Simulation-based Comparisons of Tahoe,
 Reno, and SACK TCP", Computer Communication Review, 26(3) ,
 July 1996.

 [7] Fairhurst, G. and L. Wood, "Link ARQ issues for IP traffic",
 Internet draft , March 2002, <http://www.ietf.org/internet-
 drafts/draft-ietf-pilc-link-arq-issues-04.txt>.

 [8] Allman, M., Floyd, S. and C. Partridge, "Increased TCP's
 Initial Window", Internet draft (currently under IESG review),
 April 2002, <http://www.ietf.org/internet-drafts/draft-ietf-
 tsvwg-initwin-03.txt>.

 [9] Dawkins, S., Montenegro, G., Kojo, M. and V. Magret, "End-to-
 end Performance Implications of Slow Links", RFC 3150/BCP 48,
 July 2001.

 [10] Karn, P., "Advice for Internet Subnetwork Designers", Internet
 draft , May 2002, <http://www.ietf.org/internet-drafts/draft-
 ietf-pilc-link-design-11.txt>.

 [11] Dawkins, S., Montenegro, G., Magret, V., Vaidya, N. and M.
 Kojo, "End-to-end Performance Implications of Links with
 Errors", RFC 3135/BCP 50, August 2001.

 [12] Wireless Application Protocol, "WAP Specifications", 2002,
 <http://www.wapforum.org>.

 [13] Open Mobile Alliance, "Open Mobile Alliance", 2002, <http://
 www.openmobilealliance.org/>.

Inamura (editor), et al. Expires December 30, 2002 [Page 23]

Internet-Draft TCP over 2.5G/3G July 2002

 [14] Braden, R., "T/TCP -- TCP Extensions for Transactions", RFC
 1644, July 1994.

 [15] Braden, R., Clark, D., Crowcroft, J., Davie, B., Deering, S.,
 Estrin, D., Floyd, S., Jacobson, V., Minshall, G., Partridge,
 C., Peterson, L., Ramakrishnan, K., Shenker, S., Wroclawski, J.
 and L. Zhang, "Recommendations on Queue Management and
 Congestion Avoidance in the Internet", RFC 2309, April 1998.

 [16] IETF, "Robust Header Compression", 2001, <http://www.ietf.org/
 html.charters/rohc-charter.html>.

 [17] Ludwig, R. and R. H. Katz, "The Eifel Algorithm: Making TCP
 Robust Against Spurious Retransmissions", ACM Computer
 Communication Review 30(1), January 2000.

 [18] Wireless Application Protocol, "WAP Wireless Profiled TCP",
 WAP-225-TCP-20010331-a, April 2001, <http://www.wapforum.com/
 what/technical.htm>.

 [19] Mogul, J. and S. Deering, "Path MTU Discovery", RFC 1191,
 November 1990.

 [20] Knowles, S., "IESG Advice from Experience with Path MTU
 Discovery", RFC 1435, March 1993.

 [21] McCann, J., Deering, S. and J. Mogul, "Path MTU Discovery for
 IP version 6", RFC 1981, August 1996.

 [22] Hadi Salim, J. and U. Ahmed, "Performance Evaluation of
 Explicit Congestion Notification (ECN) in IP Networks", RFC
 2884, july 2000.

 [23] Ramakrishnan, K., Floyd, S. and D. Black, "The Addition of
 Explicit Congestion Notification (ECN) to IP", RFC 3168,
 September 2001.

 [24] NTT DoCoMo Technical Journal, "Special Issue on i-mode
 Service", October 1999.

 [25] NTT DoCoMo Technical Journal, "Special Article on IMT-2000
 Services", September 2001.

 [26] Floyd, S., Mahdavi, J., Mathis, M. and M. Podolsky, "An
 Extension to the Selective Acknowledgement (SACK) Option for
 TCP", RFC 2883, July 2000.

 [27] Allman, M., Balakrishnan, H. and S. Floyd, "Enhancing TCP's

Inamura (editor), et al. Expires December 30, 2002 [Page 24]

Internet-Draft TCP over 2.5G/3G July 2002

 Loss Recovery Using Limited Transmit", RFC 3042, January 2001.

 [28] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0", RFC
 2246, January 1999.

 [29] Kent, S. and R. Atkinson, "Security Architecture for the
 Internet Protocol", RFC 2401, November 1998.

 [30] de Vivo, M., O. de Vivo, G., Koeneke, R. and G. Isern,
 "Internet Vulnerabilities Related to TCP/IP and T/TCP", ACM
 Computer Communication Review 29(1), January 1999.

 [31] Paxson, V. and M. Allman, "Computing TCP's Retransmission
 Timer", RFC 2988, November 2000.

 [32] Third Generation Partnership Project, "RRC Protocol
 Specification (3GPP TS 25.331:)", September 2001.

 [33] Bormann, C., Burmeister, C., Degermark, M., Fukushima, H.,
 Hannu, H., Jonsson, L-E., Hakenberg, R., Koren, T., Le, K.,
 Liu, Z., Martensson, A., Miyazaki, A., Svanbro, K., Wiebke, T.,
 Yoshimura, T. and H. Zheng, "RObust Header Compression (ROHC):
 Framework and four profiles: RTP, UDP, ESP, and uncompressed",
 RFC 3095, July 2001.

 [34] Jacobson, V., "Compressing TCP/IP Headers for Low-Speed Serial
 Links,", RFC 1144, Feb 1990.

 [35] Degermark, M., Nordgren, B. and S. Pink, "IP Header
 Compression", RFC 2507, February 1999.

 [36] Blanton, E. and M. Allman, "On Making TCP More Robust to Packet
 Reordering", ACM Computer Communication Review 32(1), January
 2002, <http://roland.grc.nasa.gov/~mallman/papers/tcp-reorder-
 ccr.ps>.

 [37] Postel, J., "Transmission Control Protocol - DARPA Internet
 Program Protocol Specification", RFC 793, September 1981.

 [38] Floyd, S. and T. Henderson, "The NewReno Modification to TCP's
 Fast Recovery Algorithm", RFC 2582, April 1999.

 [39] Karn, P. and C. Partridge, "Improving Round-Trip Time Estimates
 in Reliable Transport Protocols", ACM SIGCOMM 87, 1987.

 [40] Ludwig, R., Rathonyi, B., Konrad, A. and A. Joseph, "Multi-
 layer tracing of TCP over a reliable wireless link", ACM
 SIGMETRICS 99, May 1999.

Inamura (editor), et al. Expires December 30, 2002 [Page 25]

Internet-Draft TCP over 2.5G/3G July 2002

 [41] Ludwig, R., Konrad, A., Joseph, A. and R. Katz, "Optimizing the
 End-to-End Performance of Reliable Flows over Wireless Links",
 Kluwer/ACM Wireless Networks Journal Vol. 8, Nos. 2/3, pp. 289-
 299, March-May 2002.

 [42] Gurtov, A., "Making TCP Robust Against Delay Spikes",
 University of Helsinki, Department of Computer Science, Series
 of Publications C, C-2001-53, Nov 2001, <http://
 www.cs.helsinki.fi/u/gurtov/papers/report01.html>.

 [43] Stevens, W., "TCP/IP Illustrated, Volume 1; The Protocols,",
 Addison Wesley , 1995.

 [44] Braden, R., "TCP Extensions for High Performance: An Update",
 Internet draft , Jun 1993, <http://www.kohala.com/start/tcplw-
 extensions.txt>.

 [45] Allman, M., Dawkins, S., Glover, D., Griner, J., Tran, D.,
 Henderson, T., Heidemann, J., Touch, J., Kruse, H., Ostermann,
 S., Ostermann, S., Scott, K. and J. Semke, "Ongoing TCP Researh
 Related to Satellites", RFC 2760, Feb 2000.

 [46] Balakrishnan, H., Padmanabhan, V., Fairhurst, G. and M.
 Sooriyabandara, "TCP Performance Implications of Network
 Asymmetry", Internet draft , November 2001, <http://
 www.ietf.org/internet-drafts/draft-ietf-pilc-asym-07.txt>.

 [47] Kempf, J., "Problem Description: Reasons For Performing Context
 Transfers Between Nodes in an IP Access Network", Internet
 draft , November 2001, <http://www.ietf.org/internet-drafts/
 draft-ietf-seamoby-context-transfer-problem-stat-04.txt>.

 [48] Khafizov, F. and M. Yavuz, "Running TCP over IS-2000", Proc. of
 IEEE ICC 2002.

 [49] Khafizov, F. and M. Yavuz, "Analytical Model of RLP in IS-2000
 CDMA Networks", Proc. of IEEE Vehicular Technology Conference ,
 September 2002.

 [50] Yavuz, M. and F. Khafizov, "TCP over Wireless Links with
 Variable Bandwidth", Proc. of IEEE Vehicular Technology
 Conference , September 2002.

 [51] Bormann, C., "Robust Header Compression (ROHC) over PPP", RFC
 3241, April 2002.

 [52] TIA/EIA/cdma2000, "Mobile Station - Base Station Compatibility
 Standard for Dual-Mode Wideband Spread Spectrum Cellular

Inamura (editor), et al. Expires December 30, 2002 [Page 26]

Internet-Draft TCP over 2.5G/3G July 2002

 Systems", Washington: Telecommunication Industry Association ,
 1999.

 [53] TIA/EIA/IS-95 Rev A, "Mobile Station - Base Station
 Compatibility Standard for Dual-Mode Wideband Spread Spectrum
 Cellular Systems", Washington: Telecommunication Industry
 Association , 1995.

 [54] TIA/EIA/IS-707-A-2.10, "Data Service Options for Spread
 Spectrum Systems: Radio Link Protocol Type 3", January 2000.

 [55] Dahlman, E., Beming, P., Knutsson, J., Ovesjo, F., Persson, M.
 and C. Roobol, "WCDMA - The Radio Interface for Future Mobile
 Multimedia Communications", IEEE Trans. on Vehicular
 Technology, vol. 47, no. 4, pp. 1105-1118 , November 1998.

 [56] Allman, M. and V. Paxson, "On Estimating End-to-End Network
 Path Properties", ACM SIGCOMM 99, September 1999.

 [57] Braden, R., "Requirements for Internet Hosts - Communication
 Layers", STD 3, RFC 1122, October 1989.

 [58] Gurtov, A. and R. Ludwig, "Making TCP Robust Against Delay
 Spikes", draft-gurtov-tsvwg-tcp-delay-spikes-00 (work in
 progress), February 2002.

 [59] Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6)
 Specification", RFC 2460, December 1998.

Authors' Addresses

 Hiroshi Inamura
 NTT DoCoMo, Inc.
 3-5 Hikarinooka
 Yokosuka Shi, Kanagawa Ken 239-8536
 Japan

 EMail: inamura@mml.yrp.nttdocomo.co.jp
 URI: http://www.nttdocomo.co.jp/

Inamura (editor), et al. Expires December 30, 2002 [Page 27]

Internet-Draft TCP over 2.5G/3G July 2002

 Gabriel Montenegro
 Sun Microsystems Laboratories, Europe
 29, chemin du Vieux Chene
 38240 Meylan
 France

 EMail: gab@sun.com

 Reiner Ludwig
 Ericsson Research
 Ericsson Allee 1
 52134 Herzogenrath
 Germany

 EMail: Reiner.Ludwig@Ericsson.com

 Andrei Gurtov
 Sonera
 P.O. Box 970, FIN-00051
 Helsinki,
 Finland

 EMail: andrei.gurtov@sonera.com
 URI: http://www.cs.helsinki.fi/u/gurtov/

 Farid Khafizov
 Nortel Networks
 2201 Lakeside Blvd
 Richardson, TX 75082,
 USA

 EMail: faridk@nortelnetworks.com

Inamura (editor), et al. Expires December 30, 2002 [Page 28]

IEEE Fall VTC 2002 1

Multi-Layer Protocol Tracing in a GPRS Network

Andrei Gurtov, Matti Passoja, Olli Aalto, Mika Raitola
Cellular Systems Development

Sonera
Helsinki, Finland

Abstract—This paper presents a performance evaluation of GPRS
accomplished by combination of measurement at the end hosts
and tracing inside the network. The multi-layer tracing approach
allows not only observing, but also understanding the network
performance. With end-to-end measurements we assess data
rates, latency, and buffering experienced by users in a live GPRS
network. Comparing the results to our previous measurements
shows a notable improvement in the network and terminals over
past two years. Mobility tests while driving in the urban
environment quantify the interval, duration and data loss caused
by cell reselections. In the test lab, multi-layer tracing of radio,
link and transport protocols gives a closer picture of GPRS
performance. For instance, TCP interacts inefficiently with
resource allocation at the RLC layer and fragmentation at the
LLC layer. Finally, we illustrate delay spikes and data losses
during a cell reselection by tracing of signaling messages during a
cell update and routing area update procedures.

Keywords—performance, wireless, link layer, TCP, protocol

I. INTRODUCTION
General Packet Radio Service (GPRS) [1] is a packet-switched
wireless wide area network being deployed worldwide.
Performance evaluation of GPRS is an active research area. In
particular, TCP performance [3], buffering [4], scheduling [9]
and mobility procedures have been studied through analytical
analysis and simulation. We present a performance study based
on measurement data collected in live and test GPRS networks
[11]. Some of the issues presented in this paper are affected by
implementation details and the standardization status of the
available network and terminal equipment. Therefore, we do
not claim that the results apply for all GPRS users in general.

In the first part of the paper we evaluate performance of
data transmission in live GPRS network from the end user
point of view. Uplink and downlink throughput, round trip
time, buffer size, delay spikes and data losses are characterized

by end-to-end measurements. Comparing with our earlier
results [2], data rates, latency and reliability are notably
improved. For instance, the maximum downlink user
throughput increased from 27 kbps to 43 kbps. As expected,
we have not detected error losses at the transport layer due to
the reliable link layer protocol in GPRS. Instead, we find delay
spikes and bursty losses due to mobility procedures.

Sufficient buffering is crucial to achieve efficient
multiplexing of bursty user traffic over the radio link.
However, our buffer measurement suggests that a GPRS
network may overbuffer user data. Too large buffers cause
negative effects such as high round trip time and delivery of
stale data when the user “clicks from page to page” [6]. From
the TCP point of view, the optimal buffer size should be
slightly above the bandwidth-delay product of the network
[10].

A powerful multi-layer tracing methodology is introduced
in [6] to study the GSM data transmission. We perform multi-
layer tracing in a GPRS test network. We found that if the
frame size at the logical link layer is not configured to match
with a typical IP packet size, small fragments are inefficiently
transmitted. Furthermore, we confirm that the radio resource
allocation can interact inefficiently with TCP [7] and, on the
other hand, that competing error recovery between radio link
and TCP is uncommon [3]. At the radio layer, we observed
unnecessary retransmissions due to trade-offs in the
acknowledgment and retransmission policy.

During mobility tests we measure frequency, duration and
data loss of cell reselections in GPRS. In the test lab we trace
the signaling procedures and end-to-end TCP behavior. In the
test lab the duration of cell reselections is typically below 5 s,
there as in the live network it may take up to twenty seconds.

The rest of the paper is organized as follows. In Section 2
the relevant aspects of data transmission over GPRS are
presented. Section 3 describes the configuration of our GPRS

 MS

UL /DL RLC buffer
Size: 64 RLC blocks

UL/DL LLC buffer
1-255frames

SGSN BSC

DL BSSGP buffer
Dynamic size

UL/DL LLC buffer
1-255frames

UL/DL RLC buffer
Size: 64 RLC blocks

DL BSSGP buffer flow control

DL GTP buffer
Size:

at Max. 10kB

Data flow

BSSGP

Figure 1. Buffering of user data in GPRS.

M S N ew B SC SG SN O ld B SC

PR A C H : P acket
C hannel R equest

M A C M A C
PA C C H : P acket
U plink A ssignm ent

M A C M A C

LLC LLC
A ny LLC -PD U , contains M S identity

B SSG P B SSG P

F lush-LL
(Logical L ink)

B SSG P B SSG P
F lush-LL-A ck

T B F
establishm ent

R elease o f
resources from

the old cell

C ell
update

Switch to
new cell

Figure 2. The cell update procedure in GPRS.

IEEE Fall VTC 2002 2

network and setup of measurement. Section 4 reports end-to-
end and tracing results. Finally, Section 5 sums up the main
findings and outlines the future work.

II. THE GPRS NETWORK
Figure 1 and 3 illustrate the data transmission path of GPRS. The

relevant network elements for us are the Mobile Station (MS), Base
Transceiver Station (BTS), Base Station Controller (BSC),
Serving GPRS Support Node (SGSN) and Gateway GPRS
Support Node (GGSN). BSC handles the medium access and
radio resource scheduling, as well as data transmission toward
MS over the Abis interface. SGSN handles mobility and
controls the data flow toward BSC over the Gb interface.
GGSN provides connectivity to external packet networks. A
firewall shields the GPRS network from the rest of the
Internet. A detailed overview of the GPRS system can be
found in [1].

A. The GPRS Protocol Stack
Figure 1 shows the protocol stack of the user data

transmission plane of GPRS. The Radio Link Control (RLC)
protocol provides acknowledged or unacknowledged data
transfer between MS and BSC in uplink (UL) and downlink
(DL) directions. The Logical Link Control (LLC) protocol
provides acknowledged and unacknowledged mode between
MS and SGSN. The Base Station Subsystem GPRS (BSSGP)
protocol controls the data flow between BSC and SGSN.
Finally, GPRS Tunneling Protocol (GTP) encapsulates user
packets for delivery between SGSN and GGSN.

Medium Access Control (MAC) manages sharing of radio
resources among multiple users. MS can utilize several radio
timeslots simultaneously to increase the data rate and decrease
the transmission latency. The multislot class of MS determines
the maximum number of timeslots in uplink and downlink.
Before transmitting user data, MS must activate a Temporal
Block Flow (TBF) toward BSC. MSs contend on an ALOHA-
style random access channel to receive a resource allocation
from the network. Optionally, a second stage is used for
extending the assignment if MS is not satisfied with allocated
resources.

RLC operates on small (20 to 50 bytes) blocks of user data
that are encoded with one of a coding schemes (CS-1 to CS-4
for basic GPRS) to provide Forward Error Correction (FEC).
RLC uses wrapping sequence numbers for blocks in the range
of 0-127 and a sliding window of 64 blocks. In an
acknowledged mode, a bitmap of received block is used to

retransmit missing blocks. In contrary to TCP, RLC ACKs are
sent on a separate control channel and cannot be piggybacked
onto the reverse data traffic. BSC controls the
acknowledgment frequency by sending ACKs in downlink or
polling MS for ACKs in uplink. As we will see in Section IV,
frequency of ACKs and retransmission policy at the sender are
important to avoid unnecessary retransmissions in RLC. A
situation when too many outstanding unacknowledged blocks
prevent advancing of the sliding window should be avoided.
Then, the window is stalled, and no new data blocks can be
transmitted.

LLC provides a retransmission capability between MS and
SGSN, and is supposed to recover losses caused by mobility.
However, most GPRS networks nowadays operate in the
unacknowledged LLC mode. LLC fragments and reassembles
user packets if they exceed the maximum size. It can be
configured up to 1556 bytes.

B. Buffering of User Data in GPRS
Figure 1 illustrates buffering of user data in GPRS.

Buffering is performed at multiple protocol layers, but a
corresponding buffer is used only if the protocol operates in
the acknowledged mode. In our measurements, reliable RLC
and unreliable LLC modes are used, thus the only enabled
buffers are at the RLC and BSSGP layer. In downlink, LLC
frames are stored in the BSSGP buffer in SGSN prior to
transmission over the Gb interface. Although the buffer is
located in SGSN, it is controlled by the BSSGP function in
BSC. This enables BSC to adjust the data flow rate from
SGSN in order to match it with available radio resources to
prevent an overflow of the RLC buffer. Therefore, BSSGP
buffer can be seen as an extension of the RLC buffer. The RLC
buffer size is 64-128 RLC blocks or up to 6 kilobytes of the
user data. Using multiple timeslots the content of the RLC
buffer can be transmitted in a few hundreds ms. Therefore,
multiple retransmissions can easily stall the window. This
problem is corrected in Enhanced GPRS where the RLC buffer
size can be 64 – 1024 blocks [5].

C. Cell Reselection
In the release 97 GPRS the mobile terminal selects the

serving cell. This is different from circuit-switched GSM data
where a handover is controlled by the network. In the simplest
case when the user changes the serving cell while staying in
the same routing area, a cell update procedure is performed. A
routing area is a group of cell arranged together to balance
between signaling overhead and positioning of MS. When the

Abis

Abis

Mobile client
tcpdump

BSC

Firewall

Fixed server
tcpdump

BTS SGSN
GGSN

BTS

BSC

Gb

Nethawk

Figure 3. Measurement setup in the test lab.

Vendor Model Timeslots
(UL+DL)

Multislot
class

Inter-
face

Ericsson T39m 1+3 4 Serial
Ericsson R520m 1+3 4 Serial
Nokia N8310 2+3 6 IrDA
Motorola T280 1+4 8 USB

Figure 4. Mobile terminals used for measurements.

IEEE Fall VTC 2002 3

new cell belongs to a different routing area, the cell reselection
involves more signaling, especially if GSM-specific location
information is updated as well. Finally, the most complicated
case concerns an inter-SGSN handover. However, it is
expected to be a rare event and therefore we have not
measured it.

Figure 2 shows signaling required to accomplish a cell
update. First, MS makes a cell reselection decision based on
tracking signal power of surrounding cells. After
synchronizing at the frequency in the new cell, MS starts a
random access procedure to acquire radio resources. Then, MS
starts transmitting data in the new cell. When SGSN receives
an LLC frame with a new cell identity, it internally updates the
MS location. Finally, SGSN signals the old cell using BSSGP
protocol to release any resource reservations for MS and
discard buffered data.

Shortcomings of the mobile-driven cell reselection are
widely recognized and improvements are being standardized in
3GPP. A Network Controlled Cell Change (NCCC) will make
the BSC responsible for a cell change decision. NCCC will
eliminate unnecessary cell reselections currently performed by
stationary MSs. A Network Assisted Cell Change (NACC)
should reduce the delay and data losses seen by a moving MS.

III. MEASUREMENT ARRANGEMENTS
At the time of measurements, Sonera’s GPRS network is

implementing the 3GPP release 97. Figure 4 lists mobile
terminals used for measurements. The GPRS network was able
to support the maximum number of time slots defined by the
terminal multislot class. All terminals are forced to use CS-2
encoding, as it provides better throughput with only a small
loss over CS-1 in error recovery. Usage of CS-3 and 4 is
currently not possible due to capacity limitations at the Gb
interface. The network uses unacknowledged LLC. The Van
Jacobson header compression is disabled due to poor
performance in presence of packet losses, high computing
burden on the network and lack of support from terminals.

For end-to-end throughput measurements, we use a tool
generating bulk transfers over TCP. For measuring latency, we
use a standard ping program. The NetHawk tracing tool
records data traffic and signaling messages at the Abis or Gb
interface as shown in Figure 3. Using an engineering mode
available in some terminals it is possible to see an identifier of
the serving cell, as well as force a cell reselection to one of
surrounding cells. Finally, we use tcpdump to record TCP
traces at the end hosts.

IV. MEASUREMENT RESULTS

A. Throughput, Latency and Buffering
Figure 5 and 6 show downlink and uplink throughput

measured with four different terminals. In addition to
minimum, average and maximum throughput observed over 40
replications, graphs also show the line rate computed based on
the available number of timeslots and coding scheme, and the

maximum TCP throughput taking into account TCP/IP header
overhead. The multislot class of the terminal chiefly
determined the throughput; the data rate per slot was
approximately the same for all terminals. In downlink the
maximum measured value is 43 kbps achieved by T280
terminal using four timeslots. In uplink, the maximum value is
21 kbps by N8310 using two timeslots. This is a notable
improvement over earlier measurements [2]; at that time the
maximum downlink throughput was 20 kbps and only 7 kbps
in uplink.

In general, setting a larger IP MTU at the end hosts
resulted in higher throughput. For instance, increasing the
MTU from 576 bytes up to 1480 bytes improves throughput by
one percent due to reduced TCP/IP header overhead. However,
the MTU of 1500 bytes gave slightly lower throughput than of
1480 bytes. Tracing at the Gb interface showed inefficient
fragmentation at the LLC layer. The maximum LLC frame size
was configured to 500 bytes, thus 1500-byte IP packets were
fragmented into four frames, with the fourth frame only a few
bytes long. Sending plenty of small frames reduces efficiency
due to higher header overhead. In the acknowledged LLC
mode, using a smaller frame size than 1556 bytes can be
beneficial by achieving finer grain retransmissions. However,
for the unacknowledged mode we do not see a compelling
reason to reduce the maximum LLC size.

We measured RTT of a GPRS link using 32-byte pings.
RTT varies depending on the terminal and a serving cell in the
range of 500-1100 ms on the unloaded link. A typical value is
700 ms. The minimum RTT improved since our earlier
measurements [2] approximately by 200 ms. Interestingly, we
observed regular oscillations in RTT when every second ping
gets roughly 100 ms higher RTT than the other. This effect
seems to relate to radio resource allocation as explained in the
next section.

To estimate the buffer size of the GPRS link, we started a
bulk TCP transfer with a sufficiently large window (200KB)
to overflow the bottleneck buffer. The amount of outstanding
data when the first loss occurs reflects the size of a drop-tail
buffer. Based on specifications, we expected to see an
approximately 10 kilobytes buffer. However, measurements
indicate the downlink buffer of 50 kilobytes. Apparently,
GPRS implementations include additional backlog buffers not
present in standards. The per-user buffer size for GPRS
downlink is optimally 5-10 packets since the bandwidth-delay
product of a GPRS link does not exceed 5 kilobytes.

The uplink buffer measurement indicated the buffer size in
terminals in the range of 3 to 30 kilobytes. A terminal (not
listed in Figure 4) having only a 3-kilobyte buffer showed
throughput of one-third of other terminals for an uplink bulk
transfer. The reason was in repeating TCP retransmission
timeouts. TCP needs at least three buffers in the network to
utilize the fast retransmit algorithm [10]. On the other hand,
the buffer of 30 kilobyte is excessive as it allows for
unacceptably high link round-trip time and unnecessary
delivery of data from aborted TCP connections.

IEEE Fall VTC 2002 4

B. Tracing at the RLC Layer
Tracing at the Abis interface illustrates several interesting

details on functioning of the RLC protocol. The first problem
is allocation and release of TBF. According to release 97
specifications, TBF should be turned down immediately when
the data buffer empties. Such a policy increases TCP RTT
since every segment and ACK may trigger setup of a new
TBF. Keeping TBF for longer periods has been suggested [7]
and is reflected in Enhanced GPRS specifications [5]. The
extended TBF release decreases RTT seen by TCP by more
than a hundred milliseconds and reduces the signaling load.
However, BSC is unaware if MS with an active TBF has any
data to transmit and has to schedule also idle MSs, which
wastes radio resources. Furthermore, the number of
simultaneous TBFs is limited and postponing the TBF release
can prevent data transmission by other MSs. Figure 7 shows an
RLC trace of a downlink TCP transfer. In uplink, TCP ACKs
are sent in groups of two on separate TBFs. The graph also
shows an increase in TCP RTT caused by signaling to set up
TBF for every TCP ACK in uplink. The network transmits
dummy RLC blocks downlink to keep up TBF for instance at
11.5-12 s.

Another interesting case is premature retransmissions
when there are unacknowledged blocks at the RLC layer but
no new blocks to transmit. The RLC sender retransmits
unacknowledged blocks in round robin until an ACK is
received [8]. It can be seen in Figure 7 for instance at 10.7 s.
On one hand, it increases the probability of data blocks to get
through the radio link. On the other side, it may waste radio
resources and battery power of MS. However, MS has no
knowledge whether there is new data in BSC to be sent and
therefore has to decode assigned timeslots anyway. It
consumes the battery power as well. Avoiding such
retransmissions when other users have data to transmit would
prevent waste of radio resources.

At times the RLC sender retransmits lost blocks several
times unnecessarily. It happens when the RLC receiver
generates several ACKs before the first retransmission has
arrived to it. Such ACKs will indicate the same lost segments
and therefore can trigger unnecessary retransmissions at the
RLC sender. A timer at the RLC receiver could prevent
repeated retransmission of blocks approximately for one RLC
RTT [8]. This gives enough time for the first retransmission to

arrive and be acknowledged. Alternatively, the receiver can
generate ACKs less frequently.

According to specifications, BSC schedules ACKs in
uplink and downlink “when needed” [5]. For instance, BSC in
Figure 7 requests an ACK for every tenth block. Less frequent
ACKs preserve radio resources and battery power, but increase
probability of stalling the window. We suggest that BSC
during uplink transfers sends a selective ACK immediately or
shortly after a missing block is detected. On the other hand,
when all blocks are received correctly, infrequent ACKs
suffice. In downlink transfers, BSC can poll MS for ACKs
more frequently when the link quality drops down.

C. Mobility Measurements
We measured frequency, length and data loss of cell

reselections in a live GPRS network. In the test network we
recorded multi-layer traces of cell reselections.

Tests in the live network were performed while driving in
downtown Helsinki. Cell reselections occurred at irregular
intervals on the average every 40-70 s. The interval depends on
the route and speed, but cell reselections occurring even in
stationary conditions are not uncommon. Cell reselections
suspended the data transfer by 3 to 15 s with most cases below
5 s. There were a few exceptions when a failed cell reselection
made the link unusable for two minutes. By examining
receiver TCP traces it is possible to calculate the number of
lost segments during cell reselections. In downlink direction a
large number and sometimes all outstanding packets were lost.
However, we also observed cases where data segments were
not lost but just delayed. In uplink, data loss was less common.

In the test network we traced LLC and TCP layers during
cell reselections with and without a routing area update. At the
LLC layer cell reselections cause a delay spike in uplink and
downlink transfers of 2-4 s with cell update procedure only.
The delay increases to 4-5 s when a routing area update is also
triggered. We recorded signaling messages when a routing area
update was performed between BSCs from two different
vendors. The message exchange lasted typically less than two
seconds.

During cell reselections about ten TCP segments were lost
in downlink and none or one segment in uplink. The difference
is due to the fact that in uplink transfers buffered data can be
easily sent in the new cell there as in downlink direction data

0

10

20

30

40

50

60

T39m R520m N8310 T280

Th
ro

ug
hp

ut
, k

pb
s

MIN MAX AVG 90% TCP MAX Line rate

Figure 5. Bilk TCP throughput in GPRS downlink.

0

10

20

30

40

50

60

T39m R520m N8310 T280

Th
ro

ug
hp

ut
, k

pb
s

MIN MAX AVG 90% TCP MAX Line rate

Figure 6. Bulk TCP throughput in GPRS uplink.

IEEE Fall VTC 2002 5

need to be transferred to a new cell, which is rarely done.
Therefore, in downlink cell reselections are seen by TCP as
loss bursts that can cause lengthy timeouts and underutilization
of the radio link in a new cell. On the contrary, for uplink
transfers cell reselections are seen by TCP as delay spikes that
can cause spurious timeouts [6]. Figure 8 illustrates two cell
reselections during a downlink transfer. At the LLC layer a
visible break due to cell reselection is approximately 5 s.
However, it takes 5 to 10 s. more for TCP to retransmit lost
segments.

We found three implementation problems in the
mechanism of cell reselection. First, one or two LLC frames
sent in the old cell before a cell reselection were unnecessary
retransmitted in the new cell due to a bug in MS. Second,
SGSN sent the FLUSH-LL message to the new cell instead of
the old cell causing waste of resources in the old cell and loss
of data in the new cell. Third, dummy LLC frames caused an
outage in the LLC data transmission. Dummy frames are
required for completing the cell reselection in case when no
data is available for transmission in MS.

V. CONCLUSIONS AND FUTURE WORK
We measured performance of GPRS in stationary and

mobile operation. The maximum downlink TCP throughput
was 43 kbps and 21 kbps in uplink. The typical RTT of the
unloaded link is around 0.7 s. We have estimated a 50
kilobytes downlink buffer available for a single GPRS user. It
exceeds the optimal value by several times and allows for
undesired effects such as inflated RTT and delivery of stale
data. On the other hand, one terminal had only a two-packet
buffer in the uplink direction and showed throughput of one-
third of the normal. TCP needs at least three buffers per
connection for efficient loss recovery.

By combining end-to-end tracing with tracing performed
within the network, we observed several undesired cross-layer
interactions between RLC, LLC and TCP. In particular, the
slow start phase of TCP and delayed ACKs interact badly with
radio resource allocation at the RLC layer. At the LLC layer,
mismatch between the maximum size of data units in LLC and
in TCP results into inefficient fragmentation. Finally, we
showed situations when RLC retransmits data unnecessary.

While driving in an urban area we observed cell
reselections to occur roughly every minute and to last for five

seconds. In downlink, most of outstanding data gets lost during
a cell reselection. It takes 5 to 10 s. for TCP to recover lost
data. In the uplink, cell reselections often do not cause data
loss, but instead are seen as a delay spike by the upper layers.
In this case, TCP can experience a spurious timeout and
retransmit the outstanding data unnecessarily [12].

Our future work on GPRS will include testing network-
controlled cell reselections, measuring throughput and battery
consumption under varying radio conditions and network load.
We also plan to evaluate performance of real-time streaming
applications and quality of service mechanisms.

ACKNOWLEDGEMENTS
We thank Roger Kalden, Michael Meyer, Janne Peisa, Hannes
Ekström and Reiner Ludwig for useful comments that
improved the paper significantly.

REFERENCES
[1] G. Brasche and B. Walke. Concepts, services and protocols of the new

GSM phase 2+ general packet radio service. IEEE Communications
Magazine, pages 94--104, August 1997.

[2] J. Korhonen, O. Aalto, A. Gurtov, H. Laamanen, Measured Performance
of GSM HSCSD and GPRS, IEEE ICC, June 2001.

[3] M. Meyer, TCP Performance over GPRS, IEEE WCNC, September
1999.

[4] Ho, J.; Zhu, Y.; Madhavapeddy, S., Throughput and buffer analysis for
GSM General Packet Radio Service (GPRS), IEEE WCNC, vol. 3, 1999.

[5] 3GPP TS 04.60 V8.6.0 Mobile Station (MS) - Base Station System
(BSS) interface; Radio Link Control/ Medium Access Control
(RLC/MAC) protocol (2000). Release 99.

[6] R. Ludwig, B. Rathonyi, A. Konrad, K. Oden, and A. Joseph. Multi-layer
tracing of TCP over a reliable wireless link. In Proceedings of the ACM
SIGMETRICS, May 1999.

[7] H. Wiemann, A. Schieder, H. Ekström, Enhanced TBF Features in
GERAN, WPMC’01, Aalborg, Denmark, Septemeber 2001.

[8] B. Walke, Mobile Radio Networks, Networking and Protocols (2. Ed.),
Wiley & Sons, Chichester 2001.

[9] J. Sau, C. Scholefield, Scheduling and quality of service in the General
Packet Radio Service, IEEE ICUPC, 1998.

[10] W. Stevens, TCP/IP Illustrated, Volume 1; The Protocols, Addison
Wesley, 1995.

[11] M. Passoja, Effects of Cell Reselection to the Performance of GPRS,
Diploma Thesis, University of Oulu, September 2001.

[12] A. Gurtov, R. Ludwig, Evaluating the Eifel Algorithm for TCP in a
GPRS network, In Proceedings of European Wireless, Florence, Italy,
February 2002.

0

20

40

60

80

100

120

5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0
Time, s

R
LC

 se
qu

en
ce

 n
um

be
r

DL RLC data block

DL RLC ACK

UL RLC data block

Uplink Channel Assignment

UL Channel Request

TCP ACKs

TBF alloc. delay
200ms

TBF upkeeping

Unnecessary RLC
retransmissions

TCP
segments

Figure 7. Interactions of TCP with channel allocation at the RLC layer.

0

50

100

150

200

250

300

350

80 85 90 95 100 105 110 115 120 125 130

Time, s

LL
C

 fr
am

e
nu

m
be

r

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

TC
P

se
nt

 b
yt

es

LLC snd_data
TCP snd_data
TCP snd_ack

 Figure 8. Effect of cell reselections on TCP and LLC in a downlink transfer.

1

Abstract - Delays on Internet paths, especially including
wireless links, can be highly variable. On the other hand, a
current trend for modern TCPs is to deploy a fine-grain re-
transmission timer with a lower minimum timeout value
than suggested by RFC2988. Spurious TCP timeouts cause
unnecessary retransmissions and congestion control back-
off. The Eifel algorithm detects spurious TCP timeouts and
recovers by restoring the connection state saved before the
timeout. This paper presents an enhanced version of Eifel re-
sponse and illustrates its performance benefits on paths with
a high delay-bandwidth product. The refinements concern
the following issues (1) an efficient operation in presence of
packet losses (2) appropriate restoring of congestion control
(3) adapting the retransmit timer to avoid further spurious
timeouts. In our simulations applying the Eifel algorithm on
paths with a high delay-bandwidth product can increase
throughput by up to 250% and at the same decrease the load
on the network by 3%. Eifel also shows adequate perform-
ance on heavily congested paths.

I. INTRODUCTION

Recent measurement studies [9] show that TCP [36] main-
tains its position as the dominant transport protocol in the
Internet. TCP is a stable, mature, and probably the most
thoroughly tested protocol of its kind. Nevertheless, there
are some corner cases where TCP could still be improved.
The problem of spurious timeouts, i.e., timeouts that
would not have occurred had the sender waited “long
enough”, is an example of the above mentioned corner cas-
es.

Internet measurements show highly variable delays on
some paths resulting for example from route flipping
[2][3][7]. Another measurement study reports occasional
delay jitter of several seconds on slow dial-up connections
due to link-layer error recovery by a modem [28]. Espe-
cially on wireless links mechanisms such as error recov-
ery, mobility, on-demand resource allocation and priority
scheduling can cause high delay variation [18]. For exam-
ple, we measured delay spikes in the order of several sec-
onds occurring frequently in a wireless cellular network

due to cell changes [27][19]. Another study reports abrupt
changes in link RTT resulting from on-demand allocation
of a high-speed radio channel [44]. Mobile users start uti-
lizing heterogeneous overlay networks for Internet access.
Currently inter-network handovers are extremely chal-
lenging in terms of delay jitter and data loss, and it seems
unlikely that such disruptions can be completely avoided
in the near future [42].

A sudden delay increase can cause a spurious TCP
timeout which presents two problems. First, outstanding
segments are retransmitted unnecessarily. Second, the
congestion control [22][1] is falsely triggered. The Eifel
algorithm suggested in [29] uses the TCP timestamp op-
tion [23] to reliably detect spurious timeouts and prevent
these two problems.

The role of recovering from spurious timeouts is grow-
ing as many modern TCPs, for instance Linux 2.4, start to
use a finer-grain timer and a low minimum retransmit
timeout value (e.g. 200 ms) [38]. The recent stable kernel
release of Linux 2.4 includes the Eifel algorithm. At the
same time Eifel is advancing through the standardization
process in the IETF [31]. Therefore, it is important to as-
sure that the algorithm is efficient and safe for wide de-
ployment in the Internet. The goal of this paper is to refine
the response part of the algorithm and to demonstrate its
utility in the environment of a high delay-bandwidth prod-
uct. We show that Eifel can potentially have significant
performance benefits for TCP that justifies efforts and ad-
ditional complexity in its development in order to produce
a well-working and robust solution to the problem of spu-
rious timeouts.

The rest of the paper is organized as follows. In Sec-
tion 2 we review the problem of spurious timeouts, the
Eifel algorithm and related work. In Section 3 we motivate
and explain modifications to the Eifel response algorithm.
Section 4 describes our modelling approach and evaluates
the new response for paths with a high bandwidth-delay
product. Finally, Section 6 presents conclusions and plans
for the future work.

Responding to Spurious Timeouts in TCP
Andrei Gurtov

University of Helsinki
Finland

Reiner Ludwig
Ericsson Research

Herzogenrath, Germany

2

II. SPURIOUS TIMEOUTS IN TCP

In this section, we provide a detailed description of how
spurious timeouts affect TCP’s protocol operation. We as-
sume that the reader is familiar with the basics of TCP
[39].

A. Definition of a Spurious Timeout

A retransmission timer is a prediction of the upper limit of
the RTT. In common TCP implementations, an adaptive
retransmission timer accounts for RTT variations [22]. A
spurious timeout occurs when the RTT suddenly increases,
to the extent that it exceeds the retransmission timer that
had been determined a priori. RTT can quickly return back
to normal for example in case of a handover-triggered de-
lay spike. RTT stays high when available bandwidth of the
bottleneck link has suddenly decreased.

On a spurious timeout TCP assumes that all outstand-
ing segments are lost and retransmits them unnecessarily
as shown in Figure 1 (a) (the trace is recorded in NS2 over
a 30 kbps link). It was shown that the go-back-N retrans-
mission behaviour triggered by spurious timeouts has a
root: the retransmission ambiguity [25], i.e., a TCP send-
er’s inability to distinguish an ACK for the original trans-
mission of a segment from the ACK for its retransmission.
Shortly after the timeout ACKs for the original transmis-
sions return to the TCP sender. On receipt of the first ACK
after the timeout, the sender must interpret this ACK as ac-
knowledging the retransmission, and must assume that all
other outstanding segments have also been lost. Thus, the
sender enters the slow start phase, and retransmits all out-
standing segments in this fashion. The go-back-N retrans-
mission triggers the next problem: the receiver generates a
DUPACK for every segment received more than once. The

receiver has to do that because it must assume that its orig-
inal ACKs had been lost. This may trigger a spurious fast
retransmit at the sender.

Another major problem is a distortion of congestion
control. On one hand, the congestion window and slow
start threshold are reduced after a spurious timeout. The re-
duction is unnecessary as no data loss has yet been detect-
ed that would indicate congestion in the network. On the
other hand, TCP makes an assumption that all outstanding
segments were lost and left the network. In fact, they are
probably still located in the bottleneck queue. Therefore,
go-back-N retransmissions performed in slow start lead to
aggressive sender behaviour. That is, while the original
transmissions are draining from the queue, the retransmis-
sions get sent at twice the link rate (assuming the receiver
generates an ACK for each segment). This behaviour vio-
lates the ‘packet conservation’ principle [22] and can cause
real packet losses due to congestion [29]. After a spurious
timeout TCP should behave in a way that does not cause
short-term congestion and does not underutilize the link in
the long run.

Figure 1 (b) shows a spurious timeout resulting from a
bandwidth change. The available bandwidth of a bottle-
neck link is reduced from 300 kbps down to 10 kbps. Such
rapid bandwidth changes can occur due to on-demand al-
location and release of a high speed radio channel [26].
The link RTT is increased from less than 100 ms to almost
2 s which causes a spurious TCP timeout. The sender’s re-
sponse is largely the same as in case of a delay spike.

B. The Eifel Algorithm

Eliminating the retransmission ambiguity requires extra
information in ACKs that the sender can use to unambigu-
ously distinguish an ACK for the original transmission of

Figure 1. Spurious retransmission timeouts in TCP. SACK and timestamps are enabled.

(a) Triggered by a delay spike. (b) Triggered by a bandwidth change.

3

a segment from that of a retransmission. The TCP times-
tamp option provides exactly what we need. When using
the timestamp option the TCP sender writes the current
value of a “timestamp clock” into the header of each out-
going segment. The receiver then echos those timestamps
in the corresponding ACKs according to the rules defined
in [23]. Eliminating the retransmission ambiguity is then
implemented as follows. The sender always stores the
timestamp of the first retransmission triggered by an expi-
ration of the retransmission timer. In our implementation,
we call that timestamp ts_first_rexmit. Then, when the first
ACK that acknowledges the retransmission arrives, the
sender compares the timestamp of that ACK with
ts_first_rexmit. If it is smaller than ts_first_rexmit, this in-
dicates that the retransmission was spurious.

A case when a timeout occurs due to lost ACKs has
been a subject of some discussion. When receiving a dupli-
cate segment below the cumulative ACK some TCPs up-
date a cached timestamp [8], and some do not [23]. If a
TCP sender receives the timestamp from the original seg-
ment after a timeout, it deduces that the timeout was spuri-
ous. Therefore, if the receiver echoes the original
timestamp in response to duplicate segments as the current
standard defines [23], then a timeout due to lost ACKs is
considered spurious. If the receiver echoes timestamps
from retransmissions, the timeout is not considered spuri-
ous. We believe that timeouts due to lost ACKs should be
considered spurious. Restoring the congestion control state
in this situation is justified, since there is no loss and there-
fore no congestion on the forward path.

Including the 12 bytes TCP timestamp option field in
every segment and ACK might seems heavy weight. The
advantage of using the timestamp option is that this
scheme is already a proposed standard and that it is widely
deployed [3]. Existing TCP/IP header compression

schemes [10] [24] do not support compression of TCP op-
tions, but there is ongoing work to enable it [21]. Further-
more, there is some evidence that timestamps are useful in
general on bandwidth-limited paths [17].

C. Related Work

In [16] we evaluated performance of the original Eifel re-
sponse [29] for a mobile user in a General Packet Radio
Service (GPRS) wide-area cellular network [41]. We used
simulation to obtain a controllable environment and refer-
ence TCP implementations. We also confirmed the results
with smaller scale tests in a live GPRS network [18]. In the
lossless scenario, the Eifel algorithm improved the per-
formance for all TCP flavours under varying frequency of
delay spikes. It reduced download times by up to 12 per-
cent, and increased goodput by up to 20 percent. These
gains are valuable on a slow GPRS link, but in relative
numbers they are moderate. All the improvement is com-
ing from eliminating duplicate delivery of packets, but not
from unnecessary reduction of the congestion window. In
this paper, we evaluate Eifel on high capacity links where
unnecessary reduction of the congestion window has
greater impact. Another result of [16] was that in a scenar-
io with congestion losses Eifel can suffer from non-spuri-
ous timeouts, but using efficient loss recovery algorithms
such as SACK [33][6] and Limited Transmit [4] improves
the situation.

A study of a cdma-2000 wireless wide area network
reports ‘bandwidth oscillation’ due to switching of a high-
speed radio channel between several users [26]. The link
bandwidth changes frequently between 300 kbps and 10
kbps increasing the link RTT beyond the estimate of the
TCP retransmission timer and triggering spurious TCP
timeouts. A further study reports that increasing the TCP

Figure 2. TCP sender’s response to a spurious timeout with the Eifel algorithm.

(a) Triggered by a delay spike. (b) Triggered by a bandwidth change.

4

window helps to decrease the number of spurious timeouts
[44]. It is achieved with larger network buffers and a larger
TCP receiver window.

Eifel is not the only possible way to detect spurious
timeouts. The response algorithm described in this paper
can be applied also with other detection algorithms. For in-
stance, a following heuristic was suggested in [2]. When-
ever a TCP retransmits due to a timeout, it measures T, the
time from the retransmission until the next ACK arrives. If
T is less than the minimum RTT measured so far, then ar-
guably the ACK was already in transit when the retrans-
mission occurred, and the timeout was spurious. If the
ACK only comes later than the minimum RTT, then likely
the timeout was necessary.

Waiting for the receiver to signal in DUPACKs that is
has correctly received duplicate segments, as proposed in
[13], would be too late to prevent the unnecessary retrans-
missions during the go-back-N behaviour. However, this
information can be used for restoring congestion control
state afterwards and for adapting the retransmit timer.

A “Forward RTO Recovery” (F-RTO) algorithm [37]
for recovering from TCP timeouts is a TCP sender only al-
gorithm that does not require any TCP options to operate.
After retransmitting the first unacknowledged segment
triggered by a timeout, the F-RTO algorithm at a TCP
sender monitors the incoming acknowledgements to deter-
mine whether the timeout was spurious and to decide
whether to send new segments or retransmit unacknowl-
edged segments. The algorithm starts by transmitting new
segments after a timeout and reverts to standard go-back-
N only if a DUPACK is received. Otherwise, the timeout
is considered spurious and the sender continues transmit-
ting new data. F-RTO cannot properly classify timeout un-
der packet re-ordering [5] or when no new data is available
for transmission. In such cases it uses the standard TCP be-
haviour.

The Eifel algorithm does not concern with spurious
timeouts that occur during fast recovery. In [17] we pro-
pose restarting the timer on DUPACKs and using a method
for recovering lost retransmissions as protection against
spurious timeouts during a DUPACK series and in the re-
covery phase.

III. THE SENDER’S RESPONSE

When a timeout occurs, the Eifel algorithm at the
sender stores the current values of the slow start threshold
and the congestion window. Upon detecting a spurious

timeout, the sender can restore them and resume transmis-
sion with the next unsent segment as shown in Figure 2.
This section defines enhancements to this basic response
algorithm proposed in [29].

A. Efficient Recovery from Packet Losses

The original proposal simply specified that the transmis-
sion after detecting a spurious timeout always resumes
with the next unsent segment [29]. This works fine when
none of delayed segments are lost. In reality, delay spikes
are often coupled with data losses, for instance during a
handover [19]. In the extreme case, all but the oldest out-
standing segment are lost. In such a situation, Eifel still de-
tects a spurious timeout, while recovery using the standard
go-back-N would be faster. Simply transmitting new data
in this case leads to a second non-spurious timeout. How-
ever, it is difficult to select a transmit policy on a first ACK
after a timeout since there is no information available on
the amount of lost data. Therefore, we still believe in re-
suming transmission with the next unsent segment while
relying on efficient loss recovery algorithms to cope with
data losses.

In [16] we show that allowing fast retransmits for out-
standing segments [12], using Limited Transmit [4] and
SACK [33][6] largely solves the problem of poor perform-
ance with packet losses. In this section we start by illustrat-
ing these cases and suggest even more robust recovery
methods.

A single lost segment. This simple case illustrates the
response when one of delayed segments is also lost.
Figure 3 (a) shows Reno that blocks fast retransmit until
the recovery point (snd_max, the highest sequence number
transmitted before the timeout) is acknowledged because
the ‘bug fix’ is enabled [12]. TCP sender has to wait for a
second non-spurious timeout to recover this lost segment.
The RTO value is large as it is calculated from delayed
segments (and even may still be backed-off). The reason to
block fast retransmit until the recovery point is possibility
of a DUPACK series from unnecessarily retransmitted
segments during go-back-N. However, as transmission is
resumed by the Eifel algorithm with the next unsent seg-
ment, there is no unnecessary retransmissions and thus a
DUPACK series can only indicate a lost segment. There is
no reason to block fast retransmit in such a case. As
Figure 3 (b) shows, Reno successfully recovers from a lost
segment with fast retransmit when the bug fix is disabled.
Disabling bug fix applies also to NewReno and SACK

5

TCPs as they still need three DUPACKs to enter the fast
recovery phase.

Loss of all but one segment. A worst-case spurious
timeout occurs when all outstanding segments are lost ex-
cept for the oldest segment that is delayed. We describe re-
sponse of Reno, NewReno and Reno-SACK in this
scenario. It is well recognized that Reno usually experienc-
es a timeout when multiple segments are lost from the
same window [11]. Reno with Eifel is not an exception;
when several of delayed packets are lost, the timeout is in-
evitable. Figure 4 (a) shows response of Reno. Even with
many lost segments the fast retransmit is still possible
since new transmitted segments cause DUPACKs. Limited
Transmit allows to trigger fast retransmit even with a flight
size of one segment assuming no further losses. After a
second, necessary timeout, Reno recovers other lost seg-
ments using go-back-N. Figure 4 (b) shows response of
NewReno in the same scenario. NewReno recovers stead-
ily one segment per RTT and avoids the second timeout.
Figure 4 (c) shows Reno-SACK recovery which is slightly

faster than NewReno. Thus, using the standard-track
mechanisms it is possible to achieve an efficient operation
in many cases.

Loss of segments and ACKs. There are although cas-
es when Reno-SACK cannot recover without a necessary
timeout. Such situations appear when there are large
‘holes’ in the receiver window or a few ACKs are lost. The
sender cannot retransmits segments as it is limited by the
congestion window. The Reno-SACK scheme is conserv-
ative because it considers segments reported missing by
the receiver to be still outstanding in the network.

The Forward Acknowledgment algorithm [32], on the
other hand, considers that missing packets left the network
and can recover without a necessary timeout in such cases.
FACK is not standardized by IETF due to concerns on op-
eration in presence of packet re-ordering, but is used by
some TCPs, for example Linux 2.4 [38].

Therefore, we studied if necessary timeouts for Reno-
SACK could be avoided with a simple modification retain-
ing the principles of conservative recovery. We found that

Figure 3. Response of TCP-Reno with Eifel to a spurious timeout. A single segment is lost.

(a) Fast retransmit is prevented by the ‘bug fix’. (b) Fast retransmit is allowed when the ‘bug fix’ is disabled.

Figure 4. Response of TCPs with Eifel to a spurious timeout. All of delayed segment but one are lost.

(c) SACK.(b) NewReno.(a) Reno.

6

a major part of necessary timeouts of Reno-SACK is due
to lack of retransmissions on partial ACKs. NewReno re-
transmits a packet on every partial ACK and is widely used
in the Internet [34]. We combined the NewReno and
SACK so that the sender always retransmits a packet on a
partial ACK. These retransmissions are accounted into the
pipe estimate and therefore in the long run the NewReno-
SACK sender retains fairness while avoiding retransmis-
sion timeouts more effectively. Although we believe it is a
safe modification for general use, as an extra precaution it
is possible to enable it only after a spurious timeout and
disable it when the recovery point (snd_max) is acknowl-
edged.

B. Restoring the Congestion Control State

In section Section 2.A we described problems with con-
gestion control experienced by conventional TCP after a
spurious timeout. We explain how these problems are re-
solved by Eifel.

The original paper [29] proposed the following op-
tions for restoring of the congestion control state:
1. ssthresh=ssthresh_old, cwnd=cwnd_old
2. ssthresh=cwnd_old/2, cwnd=ssthresh
3. ssthresh=cwnd_old/2, cwnd=1

The first option, complete restoration is achieved by
setting both the slow start threshold and the congestion
window to values stored before the timeout. The second
option, partial restoration is achieved by setting the slow
start threshold to half of congestion window before the
timeout as done normally by TCP. However, instead of
leaving the congestion window at one segment after the
timeout, it is set to the new value of the slow start thresh-
old. Therefore, the connection always continues in conges-
tion avoidance in this case. The third option is not to

restore the congestion control state, i.e. leave the slow start
threshold at half of the old congestion window and the con-
gestion window at one segment.

The first option is used only after a single spurious
timeout. The second option is used after two subsequent
timeouts, and the third option, which is the default TCP be-
haviour, is used after three or more timeouts. However, we
have not found any practical evidence that the length of a
delay reflects the change of characteristics in the network.

A question was raised whether restoring the conges-
tion control state after a spurious timeout can cause unde-
sirable bursty TCP behaviour. This is not the case because
at the same time the Eifel algorithm resumes transmission
with the next unsent segment (snd_nxt=snd_max) which
also restores the estimate of the flight size [1][43]. As TCP
only transmits data when the congestion window is greater
than the flight size, no burst is produced when both param-
eters are restored from the equilibrium state. However, we
emphasize that TCPs such as Linux 2.4 [38] which deter-
mine the flight size in a different way than BSD must ex-
plicitly restore it after a spurious timeout.

Lack of restoring of the slow start threshold can lead
to severe unnecessary underutilization of a link if a spuri-
ous timeout occurs in an early phase of slow start. Addi-
tionally, we found that options 2 and 3 are prone to
timeouts. If the congestion window is not restored fully,
the sender cannot transmit on returning ACKs as shown in
Figure 5 (a) and (b) because the flight size estimate is larg-
er than the congestion window. Experiments in Section 4
indicate that with options 2 and 3 the TCP sender is prone
to non-spurious timeouts. This decreases throughput and
actually increases the load on the network due to a greater
number of unnecessary retransmissions. Given this fact
and that full restoring of the congestion control state does

(b) ssthresh=cwnd_old/2, cwnd=1.(a) ssthresh=cwnd_old/2, cwnd=ssthresh.

Figure 5. Restoring the congestion control state when a spurious timeout occurs in slow start.

(c) ssthresh=cwnd_old, cwnd=ssthresh.

7

not cause bursts, applying the option 1 seems to be an at-
tractive choice.

We did not find much difference between the option 2
and 3 for links with a moderate delay-bandwidth product.
With the option 2 the sender continues in congestion
avoidance incrementing the congestion window only by a
single segment per window. With the option 3, the sender
is in slow start and increments the congestion window by
one segment per ACK. Therefore, it reaches the same size
as used by the option 2 quickly.

We suggest a forth option to restore the congestion
control state
4. ssthresh=cwnd_old, cwnd=ssthresh,

where the slow start threshold is set to the old value of
the congestion window, and the congestion window is ful-
ly restored. This allows the sender to immediately resume
transmission on ACKs as shown in Figure 5 (c). However,
the sender is forced to continue in congestion avoidance
which may lead to underutilization on high-delay band-
width paths. A variation of this approach would restore the
slow start threshold but only when no loss has yet been de-
tected during the connection.

The response when a spurious timeout occurs in con-
gestion avoidance is similar. The sender resumes in con-
gestion avoidance which prevents a short-term congestion
problem caused by slow start go-back-N retransmissions
in conventional TCP.

C. Adapting the Retransmit Timer

With traditional TCP, a sender that uses a too aggres-
sive retransmit timer has to pay the price (i.e. slow down)
after a spurious timeout. Presumably this discourages de-
veloping too aggressive retransmission timers and pre-
serves the network from duplicate retransmissions that do
no useful work. Therefore, some modification to the re-

transmit timer that makes it more conservative after a spu-
rious timeout is needed. This section discusses various
approaches to adapting the retransmit timer after a spuri-
ous timeout. Note, that in order to increase conservative-
ness of the retransmit timer, the TCP sender must be robust
to packet losses. Otherwise, the sender will suffer exces-
sively from waiting for necessary timeouts. TCP-FACK
and NewReno-SACK suggested in Section 3.A seem to be
sufficiently robust to packet losses.

Figure 6 shows RTO parameters of TCP-Reno, TCP-
Reno with timestamps, and TCP-Reno with timestamps
and the Eifel algorithm after a spurious timeout. The RTO
parameters of Reno without timestamps remain nearly at
the same level as before the timeout. In other words, TCP
does not learn much from a delay spike. This situation is
explained by the Karn's algorithm as collecting of RTT
samples from retransmitted segments is denied due to the
retransmission ambiguity problem [25]. Therefore, during
the go-back-N behaviour no RTT samples can be collect-
ed, but RTO is kept backed off. A spurious fast retransmit
present in some TCPs after go-back-N can still delay ob-
taining a valid RTT sample. Once a new RTT sample is
collected, SRTT and RTTVAR are recalculated from the
new sample and the back off counter is reset. The RTO val-
ue basically returns at the level before the delay spike.
Note, that timing every segment without the timestamp op-
tion does not improve the situation, as delayed segments
still cannot be timed due to retransmission ambiguity.

Figure 6 (b) shows behaviour of RTO parameters for
Reno with timestamps. It is less aggressive than RTO com-
puted without timestamps due to delayed segments used
for RTT sampling. Immediately after a timeout when orig-
inal ACKs are arriving, the RTO becomes very high. A
pause in the graph between 10-13 s is due to arriving
DUPACKs which cannot be used for RTT sampling [23].
RTO stabilizes at the new level approximately 10 s after

Figure 6. RTO dynamics after a spurious timeout.

(c) Reno with timestamps and Eifel.(b) Reno with timestamps.(a) Reno.

8

the spurious timeout. This might be a too quick decay to
protect the sender from spurious timeouts in the future.
Making SRTT and RTTVAR weights adaptive to the fre-
quency of RTT sampling as suggested in [30] can solve
this problem.

Figure 6 (c) shows the RTO dynamics of TCP-Reno
with Eifel. The timer naturally uses timestamps since they
are required for the Eifel detection algorithm. Already this
fact makes TCP with Eifel more conservative than widely
used Reno without timestamps. Furthermore, no idle peri-
od in RTO updates due to DUPACKs such as in Figure 6
(b) is present here. Also, the RTO with Eifel does not de-
cay as quickly after the timeout. This is because Eifel re-
stores the congestion control state and gets more data
outstanding in the network. Higher RTT in such a case
makes the timer less prone to spurious timeouts [26].

In summary, using a conservative RTO such as sug-
gested in [35] with timestamps provides a sufficient pro-
tection against excessive spurious timeouts in many cases.
That timer is restarted on ACKs and is limited to the min-
imum RTO value of 1 s.

Further adapting the timer may include the following
options:
1. Re-seed RTO after a spurious timeout
2. Reset the back-off counter only on a necessary timeout
3. Increase the minimum RTO

The first option is implemented by using the first RTT
sample obtained with timestamps from delayed segments
to re-initialize SRTT and RTTVAR variables and restart
the timer. The second option is to keep the back-off coun-
ter at the level set during a spurious timeout and reset it
back only on a necessary timeout. The third option is to
perform additive increase of the minimum RTO value on
each spurious timeout and reset it back to the default value
on a necessary timeout.

IV. PERFORMANCE EVALUATION

A. Methodology

We choose simulation to have a reproducible and con-
trollable environment with reference TCP implementa-
tions. A simple ‘dumb bell’ topology has a bottleneck link
with 2 Mbps and with high latency of 150 ms. Such char-
acteristics are typical for satellite links and third generation
wireless wide area networks [41]. In all measurements the
TCP timestamp option [23] was enabled and the MSS was
1000 bytes. The receiver advertised a window of 150000
bytes and the bottleneck queue was Drop-Tail with 75
buffers. We used one-way models of Reno, NewReno,
Reno-SACK and FACK TCP with delayed acknowledg-

ments. We implemented our modified Eifel response algo-
rithm and made it available at [20].

We also implemented a tool to trigger delay spikes in
both directions and after the queue. The length of delay
spikes is uniformly distributed between 3 and 15 s; they
occur at the interval of 20-40 s. Shorter delay spikes would
suffice to trigger spurious timeouts in our tests, but we de-
cided to use the typical values experienced by a cellular
network user driving in an urban area [19]. In all tests a
conservative timer with a minimum limit on RTO of 1 s
[35] is applied. In one test, the minimum RTO value is in-
creased by 1 s after each spurious timeout and reset back
to 1 s after a necessary timeout. If not mentioned other-
wise, the Eifel algorithm restores the congestion control
state fully.

In the first set of tests we use a single TCP connection
transferring 5 MB of data. In the second set of tests we also
add a competing constant bit rate flow running at 1 Mbps.
It congests the link especially during delay spikes.

TCP studies such as presented in [32] are typically
limited to qualitative analysis that shows the behaviour of
only a few TCP connections. We reuse transport agents in
NS2 which allows to run many test repetitions in a reason-
able time and provide quantitative results. Values given in
the next section are averages over 100 repetitions.

B. Results

For mobile users and operators the battery power con-
sumption and radio resource preservation are often as im-
portant as the throughput across the wireless link. We
therefore used throughput (download times) and goodput
(number of segments) as equally important performance
metrics. We also give the average number of spurious and
necessary timeouts for each connection to indicate how
susceptible a TCP modification is to timeouts.

In the first test, we use Reno-SACK over a link with-
out other traffic. Table 1 show results with and without
Eifel. Applying the Eifel algorithm gives 254% increase in
throughput and at the same time requires 3% less segments
to complete the connection. Most of improvement in

Figure 7. Measurement setup in NS2.

3 Mbps

50 ms
TCP

R2 R1

CBR

TCP3Mbps10 ms 2 Mbps
150ms 3 Mbps50 ms

CBR

3Mbps

10 ms

SourcesSinks

9

throughput comes in this case from restoring of the con-
gestion control state after spurious timeouts. Figure 8 (a)
shows that Reno-SACK reduces the congestion window
and performs go-back-N on every spurious timeout. Ena-
bling the Eifel algorithm in Figure 8 (b) allows the connec-
tion to increase the congestion window until a segment
loss is detected at 20 s. The number of spurious timeouts is
decreased due to shorter connection lifetime.

Table 2 shows results for Reno-SACK over a congest-
ed link with the same delay jitter model. It is a worse-case
scenario for Eifel, as often all segments but one are lost
during a delay spike. The standard go-back-N recovery
would recover lost segments faster in such a case. The
Eifel retransmits lost segments using the SACK recovery
phase. The congestion window and slow start threshold are
fully restored after a spurious timeout, but are reduced
again upon detecting of a packet loss.

Reno-SACK with Eifel has 73% longer download
time in this case due to a large number of necessary time-
outs. Timeouts typically occur when the TCP sender enters
the fast recovery phase but cannot retransmit lost segments
due to large ‘holes’ in the receiver window. Figure 9 (a)
shows three such timeouts at 100 s, 200 s, and 250 s. Ne-
wReno-SACK corrects this problem by recovering at least
one segment per RTT and allows Eifel to achieve higher
throughput and goodput. In Figure 9 (b) no necessary time-
outs are present. TCP-FACK with Eifel achieves 43% re-

duction in download time over Reno-SACK even in such
harsh conditions. Figure 9 (c) shows that FACK avoids
necessary timeouts and recovers from packet losses faster
than NewReno-SACK.

Table 3 shows performance of FACK with Eifel under
different options (described in Section 3.B) of restoring the
congestion control state. Options 2 and 3 perform poorly in
terms of throughput and goodput. Not only the download
time is several times higher than for the option 1, but also
more unnecessary retransmissions are sent wasting the net-
work capacity. Therefore, using these options does not
seem attractive. The option 4 achieves the same through-
put as the option 1 which fully restores the congestion con-
trol state. Thus, the option 4 may be used by an extra
careful sender which does not want to use the option 1.

Table 4 shows results of experiments with adapting
the retransmission timer. Re-seeding the timer with a new
sample after a spurious timeout does not have any effect in

TABLE 1. EFFECT OF EIFEL ON RENO-SACK ON A UNCONGESTED
LINK.

TCP Eifel Time, s Segments
sent

Spurious
RTOs

Necessary
RTOs

Reno-SACK Off 138 5234 4.68 0.00
Reno-SACK On 39 5088 1.37 0.03

Figure 8. Effect of Eifel on Reno-SACK on a uncongested link.

(b) Reno-SACK with Eifel.(a) Reno-SACK.

TABLE 2. EFFECT OF EIFEL ON TCPS OVER A CONGESTED LINK.

TCP Eifel Time, s Segments
sent

Spurious
RTOs

Necessary
RTOs

Reno-SACK Off 191 5251 5.79 0.68
On 331 5237 6.02 4.98

NR-SACK Off 191 5251 5.78 0.69
On 146 5192 4.35 0.57

FACK Off 191 5251 5.74 0.70
On 108 5225 3.24 0.38

TABLE 3. FACK WITH EIFEL ON A CONGESTED PATH WITH
VARYING RESTORATION OF THE CONGESTION CONTROL STATE.

CC
restore Time, s Segments

sent
Spurious

RTOs
Necessary

RTOs
option 1 108 5225 3.24 0.38
option 2 540 5325 8.48 8.43
option 3 912 5558 11.19 14.68
option 4 109 5226 3.26 0.38

10

this scenario. The RTO is already high after a timeout but
re-reseeding it does not help to prevent its fast descent. Us-
ing the back-off approach reduces the number of spurious
timeouts by 40% with only a small decrease in throughput.
This might be an attractive option to use. Increasing the
minimum RTO is slightly less effective in this scenario
than using the back-off counter.

The effect of proposed RTO adaptation methods could
be different for other delay scenarios. For example, when
the link bandwidth oscillates the delay jitter typically only
slightly exceeds the RTO, there as in the scenario we have
studied, RTO is exceeded significantly. Finally, adaptation
techniques could be more effective if learnt characteristics
of the path would be shared between TCP connections to
the same destination [40].

C. Discussion

We believe that TCP with the Eifel algorithm is friendly to
other TCPs as the basic congestion control mechanisms
triggered on a packet loss are unmodified. It gains the ca-
pacity underutilized by other TCPs and reduces the rate
fairly upon congestion in the same way as other TCPs.
Adding competing TCP connections to our experiments
did not show any surprises.

The experiments were re-run with setting Adaptive
RED [15] with automatic configuration of parameters as
the bottleneck queue instead of Drop-Tail. The conclu-
sions made based on the Drop-Tail measurements still hold

and Eifel showed equal or better performance. However, in
general TCP throughput was from slightly to many times
lower than in case of a Drop-Tail queue. We interpret this
as an artifact of our test setup with a low degree of statisti-
cal multiplexing and presence of a competing constant bit
rate flow unresponsive to congestion.

We made typical modelling assumptions that TCP
connections are long-lived and there is no congestion in
the opposite direction. Determining the extend to which
these assumptions hold in the Internet is a hard problem
[14]. Wide-scale Internet measurements of TCP with the
Eifel algorithm would be useful, but they are difficult to
obtain, share and reproduce.

Formally assessing performance gains of applying the
Eifel algorithm is difficult as the result depends on too
many factors [29]. It could be from nothing to several hun-
dred percent depending on the frequency of delay spikes,
path characteristics, the retransmission timer and type of
workload. The best case for Eifel occurs when one of the
segments in the initial window experiences a spurious
timeout on a high-delay bandwidth path. In such a case, the
TCP connection stays in congestion avoidance and is like-
ly to use only a small fraction of the available bandwidth.
A TCP connection with the Eifel algorithm will continue
the slow start until a segment loss indicating a real need to
slow down.

The Eifel algorithm is robust to packet losses caused
by data corruption, but does not perform more aggressive-
ly than traditional TCP as it still relies on a segment loss as
an indication of congestion.

V. CONCLUSION AND FUTURE WORK

Delays in the Internet, especially over wireless links
can be highly variable. For instance, handovers in cellular
networks or on-demand allocation of a high-speed radio

TABLE 4. FACK WITH EIFEL ON A CONGESTED PATH WITH DIFFERENT
RTO ADAPTATION TECHNIQUES.

RTO
adapt.

CC
restore Time, s Segments

sent
Spurious

RTOs
Necessary

RTOs
std option 1 109 5225 3.24 0.38

reseed 109 5225 3.24 0.38
back-off 113 5166 1.92 0.40
min++ 114 5168 2.41 0.43

Figure 9. Effect of Eifel on TCPs over a congested link.

(c) FACK with Eifel.(b) NewReno-SACK with Eifel.(a) Reno-SACK with Eifel.

11

channel to a wireless user can cause delay jitter beyond a
normal RTT of the link. At the same time, modern TCPs
such as in Linux 2.4 use a precise timer (with 10 ms gran-
ularity) and put a low limit on the minimum RTO (200 ms)
[38]. Therefore, the problem of spurious timeouts in TCP
is important to resolve. The Eifel algorithm uses the TCP
timestamp option to robustly detect spurious retransmis-
sion timeouts. The Eifel response prevents unnecessary re-
transmissions and congestion control back-off performed
by conventional TCP. All the required modifications are at
the TCP sender.

This paper shows that in a broadband environment ap-
plying the Eifel algorithm can give up to 250% increase in
throughput and at the same time decrease the load on the
network by 3%. We show that the original response sug-
gested for Eifel [29] could be further improved. In a sce-
nario with heavy congestion, TCP with Eifel suffers from
necessary timeouts even with Reno-SACK and Limited
Transmit. Eifel performs well with FACK, but it may not
be always used due to concerns in presence of packet reor-
dering. Therefore, we suggested combining the NewReno
and SACK algorithms in a single TCP. NewReno-SACK
avoids retransmission timeouts present for Reno-SACK
due to large ‘holes’ in the receiver window. Eifel with Ne-
wReno-SACK works well even under heavy packet losses
and is presumably safe to use in the Internet.

We show that full restoration of the congestion control
state does not lead to bursty behaviour. Furthermore, par-
tial or lack of restoring of the congestion window reduces
the throughput and loads the network with a greater
number of unnecessary retransmissions. This is because if
only the flight size is restored the sender cannot transmit
segments on arriving ACKs which makes it prone to time-
outs. We suggested a new option for partially restoring of
the congestion control state which seems to perform as
well as full restoration but is more conservative.

We studied a number of techniques for adapting of
RTO to avoid further spurious timeouts. TCP with the
Eifel algorithm uses samples from delayed segments to up-
date RTO. It alone provides a more conservative timer than
TCP-Reno without timestamps. However, additional
methods for learning from a spurious timeout may be de-
sirable. Re-seeding the timer with a new sample is ineffec-
tive in the scenario we used. Increasing the exponential
back-off counter decreases the number of spurious time-
outs by 40% with only a small decrease in throughput. In-
creasing the minimum RTO works slightly worse than the
back-off method. Therefore, it is reasonable to implement
one of the latter techniques with the Eifel algorithm. How-
ever, either FACK or NewReno-SACK are required at the

same time to avoid low throughput due to a large number
of necessary timeouts.

The final response of a TCP sender to a spurious time-
out is as follows. After the timeout the transmission always
resumes with the next unsent segment.TCP always re-
stores the congestion window. We also recommend restor-
ing the slow start threshold, but optionally it can be limited
to the congestion window. The TCP sender uses Limited
Transmit together with FACK or NewReno-SACK and
adapts the RTO using the back-off counter. We believe this
response is efficient and robust under a wide range of net-
working conditions.

We implemented this new response and a new tool for
delay generation in NS2. The code is publicly available
[20] and we are working on integrating it into an official
NS2 release. We enhanced the simulator to enable re-use
of transport agents in the same run which allows running a
large number of repetitions in a reasonable time.

In the future work we plan to evaluate behaviour of
other retransmit timers, such as the Eifel timer [30] in pres-
ence of highly variable delays.

ACKNOWLEDGMENTS

We thank Mark Allman, Pasi Sarolahti, Alexey Kuznets-
ov, and Farid Khafizov for constructive criticism and help-
ful suggestions.

REFERENCES

[1] M. Allman, V. Paxson, W. Stevens, TCP Congestion Control,
RFC 2581, April 1999.

[2] M. Allman, V. Paxson, On Estimating End-to-End Network Path
Properties, ACM SIGCOMM, September 1999.

[3] M. Allman, A Web Server's View of the Transport Layer. ACM
Computer Communication Review, vol. 30(5), October 2000.

[4] M. Allman, H. Balakrishnan, and S. Floyd, Enhancing TCP's Loss
Recovery Using Limited Transmit, RFC 3042, January 2001.

[5] J.C.R. Bennett, C. Partridge, N. Shectman, Packet Reordering is
Not Pathological Network Behavior, IEEE/ACM Transactions on
Networking, December 1999.

[6] E. Blanton, M. Allman, K. Fall, A Conservative SACK-based Loss
Recovery Algorithm for TCP, draft-allman-tcp-sack-11.txt, work
in progress, July 2002.

[7] J. C. Bolot, Characterizing End-to-End Packet Delay and Loss in
the Internet, Journal of High Speed Networks, vol. 2(3), pp. 289--
298, September 1993.

[8] R. Braden, TCP Extensions for High Performance: An Update, un-
published, http://www.kohala.com/start/tcplw-extensions.txt,
June 1993.

[9] CAIDA, Traffic Workload Overview, http://www.caida.org/out-
reach/resources/learn/trafficworkload/tcpudp.xml, July 2002.

[10] M. Degermark, B. Nordgren, S. Pink, IP Header Compression,
RFC 2507, February 1999.

12

[11] K. Fall, S. Floyd, Simulation-based Comparisons of Tahoe, Reno,
and SACK TCP, ACM Computer Communication Review, vol.
26(3), July 1996.

[12] S. Floyd, T. Henderson, The NewReno Modification to TCP's Fast
Recovery Algorithm, RFC 2582, April 1999.

[13] S. Floyd, J. Mahdavi, M. Mathis, M. Podolsky, A. Romanow, An
Extension to the Selective Acknowledgement (SACK) Option for
TCP, RFC 2883, July 2000

[14] S. Floyd, V. Paxson, Difficulties in Simulating the Internet, IEEE/
ACM Transactions on Networking, vol 9(4), pp. 392-403, August
2001.

[15] S. Floyd, R. Gummadi, S. Shenker, Adaptive RED: An Algorithm
for Increasing the Robustness of RED's Active Queue Manage-
ment, unpublished, August 2001.

[16] A. Gurtov, R. Ludwig, Evaluating the Eifel Algorithm for TCP in
a GPRS network, European Wireless, February 2002.

[17] A. Gurtov, Making TCP Robust Against Delay Spikes, University
of Helsinki, Department of Computer Science, Technical Report
C-2001-53, November 2001.

[18] A. Gurtov, Effect of Delays on TCP Performance, IFIP Personal
Wireless Communications, August 2001.

[19] A. Gurtov, M. Passoja, O. Aalto, M. Raitola, Multilayer Protocol
Tracing in a GPRS Network, IEEE Vehicular Technology Confer-
ence, September 2002.

[20] A. Gurtov, Implementation of the Eifel algorithm for NS2, http://
www.cs.helsinki.fi/u/gurtov/ns, June 2002.

[21] IETF, Robust Header Compression, http://www.ietf.org/
html.charters/rohc-charter.html, July 2002.

[22] V. Jacobson, Congestion Avoidance and Control, ACM SIG-
COMM, August 1988.

[23] V. Jacobson, R. Braden, D. Borman, TCP Extensions for High Per-
formance, RFC 1323, May 1992.

[24] V. Jacobson, Compressing TCP/IP Headers for Low-Speed Serial
Links, RFC 1144, February 1990.

[25] P. Karn, C. Partridge, Improving Round-Trip Time Estimates in
Reliable Transport Protocols, ACM SIGCOMM, August 1987.

[26] F. Khafizov, M. Yavuz, Running TCP over IS-2000, IEEE Confer-
ence on Communications, April 2002.

[27] J. Korhonen, O. Aalto, A. Gurtov, H. Laamanen, Measured Per-
formance of GSM HSCSD and GPRS, IEEE Conference on Com-
munications, June 2001.

[28] D. Loguinov and H. Radha, Measurement Study of Low-bitrate In-
ternet Video Streaming, ACM SIGCOMM Internet Measurement
Workshop, November 2001.

[29] R. Ludwig, and R. H. Katz, The Eifel Algorithm: Making TCP Ro-
bust Against Spurious Retransmissions, ACM Computer Commu-
nication Review, vol. 30 (1), January 2000.

[30] R. Ludwig, K. Sklower, The Eifel Retransmission Timer, ACM
Computer Communication Review, vol. 30(1), July 2000.

[31] R. Ludwig, M. Meyer, The Eifel Algorithm for TCP, draft-ietf-ts-
vwg-tcp-eifel-alg-03.txt, work in progress.

[32] M. Mathis, J. Mahdavi, Forward Acknowledgment: Refining TCP
Congestion Control, ACM SIGCOMM, August 1996.

[33] M. Mathis, J. Mahdavi, S. Floyd, A. Romanow, TCP Selective Ac-
knowledgement Options, RFC 2018, October 1996.

[34] J. Padhye, S. Floyd, On Inferring TCP Behavior, ACM SIG-
COMM, August 2001.

[35] V. Paxson, M. Allman, Computing TCP's Retransmission Timer,
RFC 2988, November 2000.

[36] J. Postel, Transmission Control Protocol, RFC793, September
1981.

[37] P. Sarolahti, M. Kojo, and K. Raatikainen, F-RTO: A New Recov-
ery Algorithm for TCP Retransmission Timeouts, University of
Helsinki, Department of Computer Science, Technical Report C-
2002-07, February 2002.

[38] P. Sarolahti, A. Kuznetsov, Congestion Control in Linux TCP,
USENIX Annual Technical Conference, June 2002.

[39] W. R. Stevens, TCP/IP Illustrated, Volume 1 (The Protocols), Ad-
dison Wesley, November 1994.

[40] J. Touch, TCP Control Block Interdependence, RFC 2140, April,
1997.

[41] B. Walke, Mobile Radio Networks, Networking and Protocols (2.
Ed.), Wiley & Sons, Chichester 2001.

[42] H. J. Wang, R. H. Katz, J. Giese, Policy-Enabled Handoffs Across
Heterogeneous Wireless Networks, 2nd IEEE Workshop on Mo-
bile Computing Systems and Applications, February 1999.

[43] G. R. Wright, W. R. Stevens, TCP/IP Illustrated, Volume 2 (The
Implementation), Addison Wesley, January 1995.

[44] M. Yavuz, F. Khafizov, TCP over Wireless Links with Variable
Bandwidth, IEEE Vehicular Technology Conference, September
2002.

 1

Abstract – Achieving in-deadline delivery while avoiding unnecessary transmissions is difficult purely on the end-to-end

basis, especially when such disruptive events as delays spikes are unavoidable in the network. The end points have little
knowledge about the current network conditions, about how much data is still in the network and where it is buffered. The
lack of information and control causes two different problems. First, in wireless networks the transport protocol can
prematurely assume that outstanding packets were lost and retransmit them, while the original segments still being hold by
the link layer causing the problem of competing error recovery. Second, the application can re-generate a fresh version of a
data object rendering the old object buffered in the network obsolete and blocking the way for the new data. Thus, it is
desirable to control for how long the network is allowed to buffer the data. Carrying the packet lifetime that controls the link
level persistency. It solves the problem of competing error recovery, because by the time when the transport protocol
performs a retransmission, it can be sure that the link layer has already given up on the packet in question. We believe this
further advances the idea of differentiated treatment of packets at the flow-adaptive link layer. Furthermore, the application
provides the transport protocol with lifetime of a data object, so that the transport layer struggles to deliver the object within
its lifetime and but discards it afterwards. This prevents obsolete application data in the network to block the way for a newly
generated data objects. The suggested solution requires the sender and the bottleneck router be synchronized in clocks.

I. INTRODUCTION

It becomes increasingly evident that two widely deployed Internet protocols, TCP and UDP, cannot satisfy demands
of newly emerging applications. TCP implements the ultimate reliability retransmitting data potentially forever. (Some
TCPs define a maximum number if retransmissions and reset the connection after reaching the limit. However, the
application has no control over this limit). UDP, on the other hand, provides a purely best effort service, without any
guarantees or feedback on delivery of application data. Many of existing and emerging applications have a finer grain
demands on reliability and timeliness of data delivery. In this paper, we consider a class of applications that can benefit
from a data object only if it is delivered with in a given time period. One example of such an application is a news ticker
(NT) that generates news updates at a regular interval and has no interest in the old news object once a newer update is
generated. A different example is a file transfer (FT) started by a user who wants a file in the remaining 5 minutes
before the meeting or not at all. Note, that in for news ticker the object lifetime is determined by the sender, and for a
file transfer by the receiver. We do not address applications that require bounded delay, but also full reliability, for
example telnet.

While meeting the requirements of applications like NT and FT is a challenge in fixed networks, it becomes even
more difficult in wireless environment. Wireless network typically present a highly dynamic environment where link
characteristics such as available bandwidth can change quickly and long sudden delays due to link outages, handovers
and radio resource blocking are possible (experiments with 2.5G and 3G systems show that these problems are not
going to disappear quickly). On the other hand, any transmission on a wireless link directly translates into the terminal
battery power consumption and increased interference to other users. Thus, reducing the amount of unnecessary
transmitted data (data which is of no value to the receiving application either because it has been already delivered
once, or because it has expired) over the wireless link is a top priority task.

Achieving in-deadline delivery and avoidance of unnecessary transmissions is difficult purely on the end-to-end
basis. The end points have little knowledge about the current network conditions, about how much data is still in the
network and where it is buffered. The lack of information causes two different problems. First, in wireless networks the
transport protocol can prematurely assume that outstanding packets were lost and retransmit them, while the original
segments still being hold by the link layer causing the problem of competing error recovery [20]. Second, the
application can re-generate a fresh version of a data object rendering the old object buffered in the network obsolete and
blocking the way for the new data. A possible approach to these two problems is to minimize the amount of data kept in
the network by configuring an appropriately small router buffer size. However, a large delay-bandwidth product, large
number of hops and rapidly changing bandwidth in the network can put a limit on the lowest possible buffer size. Thus,
it is desirable to control for how long the network is allowed to buffer the data. Carrying the packet lifetime that
controls the link level persistency solves the first problem. We believe this further advances the idea of differentiated

Exploiting Packet Lifetime for Efficient Real-Time Transport

Andrei Gurtov
University of Helsinki

Reiner Ludwig
Ericsson Research

 2

treatment of packets at the flow-adaptive link layer [19]. This solves the problem of competing error recovery, because
by the time when the transport protocol performs a retransmission, it can be sure that the link layer has already given up
on the packet in question. The second problem is solved when applications provide the transport protocol with lifetime
of a data object, so that the transport layer struggles to deliver the object within its lifetime and but discards it
afterwards. This prevents obsolete application data in the network to block the way for a newly generated data objects.
The both suggested solutions require that the sender and the bottleneck router be synchronized in clocks. It may be a
realistic assumption, as for example 3G systems require synchronized clocks and GPS is commonly implemented in
mobile terminals.

While the above solutions can be partly applied to existing protocols (e.g. TCP) we went on to design a new transport
protocol to fully explore the idea of delivering of an application object within its lifetime with avoiding unnecessary
data transmissions. The Advanced Transport Protocol (ATP) is based on the following key principles: the application
level framing (ALF), modular network stack design, TCP-friendly congestion control and the concept of active
networks.

The revolutionary concept of ALF [1] agues that only the application has a complete knowledge of the required data
delivery service, and the application should be given full control in deciding how to cope with such events as delayed or
lost data packets. Our protocol and the application communicate in terms of ADUs. Our contribution to the ALF
principle is that by giving the ADU lifetime the application clearly signals its demands to the transport protocol. It is
widely recognized that a retransmission of the complete ADU once a fragment of it is lost (for example due to
congestion) is inefficient. Thus, selective retransmission of ADU fragments is often included to improve the
performance. We suggest setting the fragment lifetime to the current RTO estimate, which is less than ADU lifetime to
avoid the problem of competing error recovery.

The principle of modular design of protocol stacks (spoken by John Wroclawski in the 51st IETF meeting) argues that
future protocols should be composed of reusable blocks each providing some basic feature like congestion control,
connection establishment, window and flow control, and selective retransmissions [7]. Such approach makes it possible
to quickly produce new protocols accustomed for the needs of a given application and puts the burden off the
application designer (to reinvent the buggy wheel). The principle of conformant congestion control says that in order to
avoid congestion collapse in the future Internet all protocols must implement congestion control, which is fair to TCP
[21]. We study the behavior of congestion control algorithms in the presence of expiration data losses.

Our work does not violate the end-to-end principle as data packets remain unmodified during transit in network and
routers on the path do not have to snoop into headers above the network layer. However, we refer to the idea of active
networks [2] that speaks for including more intelligence into the network. The paper suggests that network routers
should be more actively involved into packet delivery process, potentially replacing a packet with a capsule concept.
Capsules contain a program code that specifies how the application data should be treated. Such approach opens
versatile horizons by tailoring the network behavior to the actual demands of the application.

The rest of the paper is organized as follows. In Section 2 we briefly describe several protocols based on the ALF
concept or including support for packet lifetime. Section 3 outlines the architecture of our new protocol. In Section 4 we
explore how our ideas influence the behavior of existing applications and congestion control algorithms. In Section 5
we evaluate the quantitative performance benefits of ATP in realistic and highly dynamic network environment with
long sudden delays and data losses. Finally, Section 6 concludes the paper and provides grounds for future work.

II. RELATED WORK

The idea of using globally synchronized clocks at the end points and network routers is exploited in [11]. The authors
suggest an improvement to earliest-deadline-first scheduling algorithm that takes into account the remaining number of
hops to the destination. This work has some serious drawbacks: it assumes no packet losses due to errors or congestion,
does not study interaction with congestion control, does not work on reducing unnecessary transmissions, does not
study the problems of competing error recovery and obsolete application data, and does not present a real protocol to
experiment with.

Another work [12] develops a new way to increase efficiency of radio resource usage in a cellular radio network
using the idea of globally synchronized clocks. The effect is achieved by delaying transmission of a packet in poor radio
conditions if its deadline allows waiting until the link quality becomes better.

There are several transport protocols that are based on the ALF principle and are relevant to our work. Design of RTP
[3] has been strongly based on the ALF concept by leaving as much functionality as possible to the application and
providing only bare-bone facilities at the transport layer: multiplexing, timestamps, sequence numbers and source
identifiers. RTP is a purely best-effort protocol that does not have built-in reliability or congestion control. RTCP
protocol is used to provide the receiver feedback about the perceived quality of service and TFRC [4] could be used as a

 3

congestion control mechanism. Currently five different retransmission schemes are proposed for RTP, including a
version integrated with Congestion Manager and ALF [22] [23].

The Xpress Transport Protocol (XTP) [6] is a transport layer protocol designed to provide a wide range of
communication services built on the concept that orthogonal protocol mechanisms can be combined to produce
appropriate paradigms within the same basic framework. Rather than using a separate protocol for each type of
communication, XTP's protocol options and control of the packet exchange patterns allow the application to create
appropriate paradigms such as reliable datagrams, transactions, and unreliable streams. Error control, flow control, and
rate control are each configured to the needs of the communication. In other words, XTP recognizes the limitations of
all-or-nothing service available from TCP and UDP protocol and let the application choose finer grain service. XTP is a
high-speed protocol standardized by ISO. The mechanisms of XTP are specifically designed for high bandwidth, low
delay and low errors rate communication.

The HPF protocol [10] supports packet flows with different quality-of-service requirements on reliability, priority
and deadlines in the same transport connection. The following are the key features of HPF: HPF supports heterogeneous
packet flows with different reliability, priority and timing (delay) requirements in the same transport connection. HPF
decouples the congestion control and reliability mechanisms (that are integrated in TCP) in order to support congestion
control for unreliable and heterogeneous packet flows. HPF supports application-level framing, and provides APIs for
applications to specify the priority, reliability and timing requirements of each frame. HPF enables the use of
application-specified priorities as hints for network routers to preferentially drop low-priority packets during
congestion. This ensures that `important data' gets through with high priority over unimportant data during congestion.
However, the authors do not evaluate the benefits of using the deadline information in routers.

In [13] authors suggest the Image Transport Protocol (ITP) for image transmission over loss-prone congested or
wireless networks. ITP runs over UDP, incorporates receiver-driven selective reliability, and uses the Congestion
Manager (CM) to adapt to network congestion. ITP improves user-perceived latency using out-of-order ADU delivery,
achieving significantly better interactive performance.

Scalable Reliable Multicast [5] is another important realization of the ALF concept. Methods for retransmitting
missing data for streaming applications are evaluated in [24].

The Eifel algorithm [9] presents a competitive end-to-end solution for the problem of competing error recovery. The
algorithm is based on resolving the retransmission ambiguity problem by comparing the timestamp in the returning
ACK with a stored timestamp of the retransmission. If the returning ACK acknowledges the original transmission, not
the retransmission, then the go-back-N behavior and congestion control reaction are aborted. The benefits of the
solution presented in this paper are in further reduction of unnecessary retransmissions over Eifel for the case when the
sender experiences several RTO back offs. Also, end-to-end solutions are not applicable when the ADU lifetime is
comparable with path RTT leaving no time for end-to-end actions. In addition, Eifel has not yet been considered in
terms of real-time applications like the news ticker or streaming.

III. PROTOCOL ARCHITECTURE

A. Interface between applications and ATP

ATP is a transport protocol operating on top of IP providing a simplex data delivery service. The application

ATP

IP

Application

snd(packet, deadline_pkt)

datagram
#2

datagram
#1

datagram
#3

 send(ADU, lifetime_adu)

ab
or

t(A
D

U
 id

)

no
tif

y(
A

D
U

 id
, A

C
K

/E
XP

/C
N

G
)

rcv(ack)

(a) ATP sender

ATP

IP

Application

rcv(packet)

datagram
#2

datagram
#1

datagram
#3

 read(ADU id, buf)

ab
or

t(A
D

U
 id

)

snd(ack)

rc
v_

no
tif

y(
AD

U
 id

, s
iz

e)

(b) ATP receiver
Figure 1. The interaction of ATP with the application and network layer.

 4

communicates with ATP in terms of complete ADUs and their lifetime, as shown in Figure 1. The sender application
passes an ADU to ATP and gets a unique ADU id. Then, ATP struggles to deliver ADU over the network within its
specified lifetime, however not giving any guarantees of in-time delivery. ATP notifies the receiving application of
ADU delivery status. The ADU size may exceed the size of IP MTU, and ATP performs fragmentation and reassembly
for ADU transmission. However, it may not be feasible for an application to pass an arbitrary sized ADU, as the
receiver protocol entity is required to buffer the complete ADU before informing the application. For example, a file
transfer application could want to transfer a 1 GB file as a single ADU. From the practical point of view it is not
possible, since such a big ADU would not fit into protocol buffers. Thus, the sender application must limit the ADU
size to the size of the available buffer space at the receiver protocol. In the given example, an ADU size could
correspond to one disk sector or track size. How to negotiate the available buffer size is an open issue.

An open issue is whether ATP should be connection-oriented, following a TCP-like client-server model, or it should
be connectionless like UDP. In case of a connection-oriented service, the client has to exchange SYNs and FINs with
the server. The data transfer in the connection can go either direction and can include multiple ADUs. However,
connection establishment causes overhead and there is so far no clear demand of connection-oriented service for ATP.
Thus, for now we assume that ATP is connectionless. If the ADU transfer is sender-initiated (like the news ticker), the
sender can just transmit the ADU to the known port of the receiver. The receiver application in this case does not know
about the ongoing ADU transfer until the complete ADU is received, does not have ADU id and cannot abort the
transfer of the given ADU. The application can only unbind from the known port that will cause an ICMP unreachable
message to be returned for all ADUs going to the port. However, if the transfer is receiver-initiated (like a file transfer),
the receiver first has to send a request with ADU URL to the sender and can supply ADU id in the request. Thus, the
receiver is aware of ADU transfer before it is completed and can abort it by giving the ADU is to ATP.

ATP uses a callback mechanism to inform the application on the status of ADU delivery (the application implements
a well-known function name as the callback handler). The status can include a successful delivery of ADU (ok), or
indication that the ADU has expired and is deleted from the network (exp). After receiving a negative status report, the
application may decide to re-send a fresh version of ADU is necessary. In addition, ATP supports a congestion
notification callback to the application (cng), which is triggered if a major loss event is observed in the network. The
application then can reduce the load on the network, for example by increasing the interval between news updates.

Before commencing an ADU transmission, and also possibly during the transmission, ATP can use an estimate of the
available network capacity provided by the congestion control algorithm to evaluate whether it is feasible to deliver the
ADU within its lifetime. If not, the ADU transfer can be aborted.

Both the sender and the receiver application can abort the ADU transfer by calling the ATP with the corresponding
ADU id.

B. ATP protocol functionality

We reuse as many components as possible from existing protocols: de-multiplexing (port numbers), checksum
(header and partly payload), connection establishment (may not be required for the protocol but facilitates operation
through firewalls), flow control (coupled with congestion control).

A tentative header format is shown in Figure 2. This assumes that ATP operates on top of UDP. The flags field
contains the ATP version number (2 bits), the ACK flag (the packet is acknowledgment), ABR (a request to abort the
ADU transmission and to discard all packets belonging to this ADU), EXP (set by the router in subsequent packets after
a discarding of an expired packet to avoid congestion control reaction to missing packet), and reserved bits.

ATP does not number each data byte, like TCP, but instead numbers fixed-size fragments serially within one ADU.
The header contains fields for ADU and for this given fragment. The congestion control parameters depend on the

algorithm used, for example loss rate and RTT estimates for TFRC. The receiver window is replaced by ECN in a way
that if receiver is unable to process packets at the rate they arrive (which is improbable) it can set the CE flag in ACK to
instruct sender to slow down.

Fragment deadline (in IP)
Flags | Checksum

ADU id
ADU length

ADU deadline
Fragment offset
CC parameters

SACK (in ACK)
Figure 2. ATP header fields (each row is 32 bits).

 5

When ADU fragments get lost due to error or congestion it would be inefficient to retransmit the whole ADU. To
avoid it, ATP uses SACK information (a vector that indicates which fragments of ADU are received and which are
missing) whether possible to retransmit the missing fragments. The retransmission algorithm is similar to conservative
SACK recovery in TCP, which makes ATP robust against packet reordering in network.

However, as a backup, ATP keeps a RTO timer, which is computed similarly to TCP (or Eifel timer). Deadline of
fragments is set to current time plus RTO (see section IV.B for recently encountered problems). A heavy congestion or
a long delay can cause all packets to be discarded at the router. The lack of ACKs allows the RTO timer to fire. After
that, fragments are retransmitted from the oldest outstanding, according to the pace allowed by the congestion control
algorithm. Here our main contribution comes to play, that is resolving the link-layer and transport-layer competing error
recovery. Since all fragments after RTO have been deleted from the network, there is not going to be a situation when
both original and retransmitted fragments are located in the network buffers.

ATP receiver sends an ACK for every Nth packet, where N can be discussed with the sender, or after a delayed ACK
timer expires. Every ACK contains a SACK vector displaying which packets have been received. The ATP sender
needs some mean to calculate the RTT to set the RTO, and it is done is some clever way. If the receiver has better
knowledge of ADU lifetime, it sets the ADU deadline field to indicate this to the sender. The receiver can also set the
fragment deadline in ACKs to its RTT estimate to prevent ACK queuing problem on highly asymmetric links. Also, a
burst of ACKs delivered to the sender after a delay is prevented, which saves bandwidth and may prevent a false
congestion control alarm.

C. Router behavior

In order to prevent unnecessary transmissions, the router should detect and discard expired packets. Recall, that we
have assumed synchronized clocks at the sender, the router and possibly the receiver. The router should check the
packet lifetime at least before transmission it. Preferably, the router should check its all packets in the queue every time
a packet is sent or received to make more space in the queue for newly arriving valid packets. If the router has
knowledge on the link RTT or the remaining number of hops to the destination, the router can estimate whether a packet
can be delivered before its deadline. If not, such packet can be discarded even if it is valid at the time of transmission.
Potentially, the deadline information available in the router can be benefited in many more advances ways than just
discarding of expired packets. For example, the Earliest Deadline First algorithm is suggested in the related work.

An important question is whether the router has to discard expired packets or transmit them at a lower priority. In the
related work the second option is used, which is wasting wireless resources. Delivering expired packets makes sense
only if the application may still somehow benefit from expired ADUs. However, delivering expired packets can prevent
problems with congestion control, which requires more research.

As an optimization, the router can drop all packets from the same ADU after a single packet is dropped. This is useful
when transport layer retransmissions are disabled; since such ADU would anyway be discarded at the receiver. The
router can check if packet lifetime is equal to ADU lifetime. If yes, there is no time for retransmitting ADU fragments
and the whole ADU can be dropped in the router. Also, ADU ids are required for the router to detect packets belonging
to the same ADU. This optimization is not useful when packet losses occur due to expiration, because in this case the
following packets after the lost one also most probably will expire and will be discarded automatically. However, an
ADU drop feature is useful when packet losses are present due to congestion or corruption. If ADU drop mode is
enabled at the router, those packets that are sent before the dropped one are also wasting wireless resources. Perhaps the
router can first collect all packets belonging to ADU before start transmitting the first packet. This is problematic for
large ADUs and is potentially dangerous because packets can expire while waiting for other ADU packets.

A method to synchronize clocks at the router and the hosts is required. It is not nowadays uncommon to have GPS
clocks in support nodes in a cellular network. Also, NTP protocol is widely used in the Internet. The older way is the
WWVB clocks discussed in RFC 778 and [17]. The required accuracy of clock synchronization is in order of tens of
milliseconds. If the router clock gets out-of-sync it can have bad effect on ATP. If the clock lags back compared to the
sender clock, then packets do not expire at the router and ATP functionality is not triggered. The worse case if when the
clock is much ahead of the sender clock. In this case the router will discard all packets preventing any data delivery to
the receiver.

D. Congestion Control

Stability of the Internet is based on assumption that all transport protocols must implement the congestion control. In
the absent of reliable signaling method using which the network can report a congestion to the sender, the fundamental
assumption is that when a packet loss is detected and no explicit information is available on the reason of such loss, it
must be treated as an implicit congestion indication.

 6

ATP uses ECN whether possible to signal congestion to avoid unnecessary packet drops in the network. Also, ECN
can be used for flow control to replace TCP’s receiver window. The ultimate congestion signal is detection of a lost
packet via ACK vector or RTO. ATP transmits packets at the rate allowed by the congestion control mechanism. If it
does not allow sending the ADU within its lifetime, ADU expires in ATP buffer, and the application is informed.

The congestion control method can be selected by the application. At least three methods can be used:
AIMD. This is TCP-like congestion control suitable for bulk transfer applications not sensible to large variations in

send rate. ATP should not be sensible to such variations as long as ADU gets delivered in time, but AIMD can have
negative impact on the wireless link utilization. Congestion control is window-based with ACK frequency is per two
packets with maximum delay of 500 ms.

TRFC. This is a method that avoids large variations in sending rate by reacting to congestion signals less rapidly and
ramping up slowly when no congestion is detected. Congestion control is rate-based with one ACK roughly per RTT.

CM. Integrating with congestion manager allows sharing the common bottleneck bandwidth more fairly with other
flows from the same host.

ATP has also a capability for ‘automatic’ congestion control. A growing queue at the router can leads to packet
expiration before the queue actually overflows thus resulting into a congestion signal to the sender and reduction in the
sending rate and consequently the queue size.

It has to be experimentally confirmed which congestion control method is best suited for ATP in general. In
particular, since every packet expiration and drop is treated as a congestion signal, this may lead to reduced goodput if
packet expiration is caused by a delay on the link. A possible alternative is just to transmit packet headers from expired
packets or set EXP bit after an expiration drop in the router to avoid congestion control for expiration losses.

E. Implementation Issues

While ATP is best implemented as an independent transport protocol, some of its features can be added to existing
protocols. Below there is a list of issues arising when adding ATP functionality to existing protocols.

TCP. A separate connection is required per ADU. Packet lifetime is set to TCP RTO+RTT, and TCP is modified to
retransmit lost packets indefinitely (currently TCPs do only a limited number of retransmissions). In addition, a kill
timer is started which resets the TCP connection if it does not complete before ADU lifetime. This approach is well
suitable for larger ADU size, like the FTP example, but may cause too much overhead for small ADUs like news ticker.

UDP includes only basic transport mechanisms such as port numbers and checksum. UDP can provide good basic
services for ATP. ATP then requires addition of ACKs for recovering lost packets and for congestion control. IP
deadline option is set based on RTO estimate from ACKs.

DCP has connection establishment and ACKs that are used for congestion control. However, DCP does not provide
any data reliability. Thus, ATP would need to use the Ack Vector Feature of DCP to retransmit lost packets. Packet
lifetime needs to be set to the RTO estimate obtained by ATP code. Also, DCP has no ALF so it has to be implemented
in ATP layer. DCP may be the best basic platform for ATP.

ITP. This protocol contains a custom header that contains all the fields that ATP needs and ALF support However
ITP is not having any real-time support, and thus ATP is a very good complement for ITP. ITP has timestamp and RTO
estimate in the header, the packet lifetime is set to RTO estimate.

HPF is a TCP-based protocol and supports ALF with ADU lifetime. ATP can be implemented on top of HPF by
setting the packet deadline to RTO value to recover congestion losses.

RTP can be used as the base protocol for ATP with an existing extension that supports selective retransmissions and
congestion control.

The full version ATP has to be implemented on NS and Unix for experimentation. Which protocol to use as the
starting point while implementing ATP depends on the availability of the base protocol for different platforms (Table
1). In addition, a preferable congestion control algorithm should be also available for given platform.

Table 1. Implementations of protocols for Network Simulator, Linux and FreeBSD
 NS Linux FreeBSD
DCP No Planned No
ITP No Yes No
HPF No Yes No
RTP (w/o extensions) Yes Yes Yes
TFRC Yes Yes (user-level) Yes (user-level)
CM No Yes No
AIMD Yes Yes Yes

 7

F. How to carry packet deadline information

The way in which the expiration time (the deadline) is carried in packet headers is of a vital importance if only ATP
is to become any real protocol. It is best done in the IP header, because then all protocols above the IP can use it and
router do not have to snoop into the upper protocol headers. We have identified three possibilities.

1) An IP timestamp option plus scaled TTL IP field. The IP timestamp option is defined in [17][18]. It occupies 8
bytes, and contains a 32-bit time-of-day timestamp in milliseconds modulo 24 from midnight UT. It is unclear
how widely this option is supported by routers and hosts. The IP TTL is a 1-byte field that originally was
supposed to carry a packet lifetime in seconds. However, in practice the routers just decrement this field by one
on each hop. Simply setting the TTL field to packet lifetime does not provide enough resolution and can lead to
ATP-unaware routers to prematurely drop the packet in a likely case when a packet is forwarded in less than a
second. A possible solution is to set TTL to hundreds of milliseconds, which enhances the resolution to
acceptable values and also ATP-unaware routers can safely decrease TTL by one. This gives a range of ADU
lifetimes from 100 ms to 25.6 s, which is probably suitable for a news ticker but not for a file transfer.

2) A custom format of the IP timestamp option. The RFC [18] defines that if the high-order bit is set, then any
custom format for time can be used. We can employ this by setting the IP timestamp to the packet expiration
time and set the high bit, so that ATP-unaware routers do not confuse the option. This gives a maximum ADU
lifetime of 12 hours, which is probably long enough for most of applications. This method seems to be the best.

3) A transport layer timestamp. Alternatives to IP-level are timestamps sometimes readily available in the transport
headers. The advantage of this is that no overhead is needed to carry timestamps in two places. At least TCP,
RTP, ITP and DCP have timestamps in the header. However, TCP timestamps for example are not related to real
time, but just are incrementing counters.

In NS the IP TTL is a 32-bit value, which made our tests simple: we just set TTL to packet deadline. It is not very

accurate as it does not reflect the overhead caused by carrying additional bytes, but it does give some understanding on
protocol behavior.

IV. EFFECT OF ATP ON PROTOCOL BEHAVIOR

In this section we discuss the effect of deadline support in the router. For this purpose we have been using a simple
extension in NS2 to include the deadline information into TTL field of IP packets. The remaining packet lifetime must
be at least FixTtl seconds (which is an estimation of link one-way latency) before transmission over the bottleneck link
to prevent unnecessary transmission of packets that get expired before reaching the receiver. Otherwise a packet is
considered expired and is dropped.

-10

0

10

20

30

40

50

5 15 25 35 45

Time of Day (s)

Li
fe

tim
e

(s
) /

 S
eq

ue
nc

e
N

um
be

r

Rcv_Data

Rcv_Ttl

delay

(a) Without deadline support at the router

-10

0

10

20

30

40

50

5 15 25 35 45

Time of Day (s)

Li
fe

tim
e

(s
) /

 S
eq

ue
nc

e
N

um
be

r

Rcv_Data
Rcv_Ttl

delay

(b) With deadline support at the router.

Figure 3: Reaction of the News ticker application to a 10-sec sudden delay.

 8

A. News ticker on top of UDP without congestion control

The News Ticker (NT) application is assumed to transmit a news update (a fixed-size ADU) at some regular interval.

Once a new tick is available, the old one is considered outdated and should be discarded. If ADU is larger than the
MTU provided by the network, then a tick is sent as multiple packets. The ADU lifetime and packet lifetime is set to
news tick update interval. For our tests we have been using a simple NT implementation on top of UDP which is
sending 5KB ADU every 5 seconds. MTU size is 700 bytes. FixTtl in this test is set to 0.6 s (which is the time to deliver
a 700-byte packet over 9.6 kbps link).

Figure 3 (a) shows the effect of a 10-second delay on the delivery of NT data at the receiver. The rcv_data shows the
sequence number of arriving packets at the receiver, and the rcv_ttl shows the remaining lifetime of the arrived packet.
Negative values in this case mean that the packet is outdated and should be discarded. When the delay starts at 16 sec,
no ADU is delivered until delay ends, but newly arriving ADUs get queued in the buffer. When the delay ends at 26
sec, for the next 15 sec the link delivers only the expired ADUs. The backlog of expired ADUs in this case blocks the
fresh ADU to be delivered to the user. Further on, transmission of expired ADUs wastes the wireless bandwidth.

Figure 3 (b) shows the similar experiment when the router is capable to detect and discard the packets with passed
deadline information. Immediately when the delay ends, fresh ADUs are delivered to the receiver. Further on, no
expired packets are unnecessary sent over the wireless link saving the resources.

In this experiment we have been using a large buffer size (100 KB) in the router. In case a small (e.g. 10 KB) buffer
is used, the ATP has less benefit, because ADUs get dropped during the delay due to a buffer overflow. Also, we
assumed no congestion control at the NT application, which should have slowed down while not getting any feedback
during a delay.

There can be situations when the NT sender transmits ADU with a faster rate when could be handled by the
bottleneck link. If this is the case, a queue forms at the router and all ADUs are delivered expired to the receiver.
Including deadline support at the router does not help in this situation, because a single missing fragment leads to the
whole ADU being dropped at the receiver, as the ADU short lifetime does not allow retransmissions fragment. The
sender should handle this situation by checking if ADU can be sent within RTT (latency-limited) and against bandwidth
estimates provided by CC algorithm (bandwidth -limited).

B. Bulk transfer using TCP

When a sudden delay that exceeds the current value of TCP retransmission timer occurs in the data transfer, TCP
times out and retransmits the oldest outstanding segment. Since data segments are delayed but not lost, the
retransmission is unnecessary and the timeout is spurious. A spurious TCP timeout is shown in Figure 4 (a) produced
using FullTcp. Sequence numbers in the receiver trace are offset by 20000 bytes to prevent an overlap with sequence
numbers of the sender. The delay in generated between 10th and 20th second in this test. The first retransmission that
happens at the 17th second is also delayed. The sender interprets the ACK generated by the receiver in response to the
delayed segment as related to the retransmission, not the original segment. This happens due to the retransmission
ambiguity problem as the ACK bears no information on which segment, original or retransmitted, has generated it.
Encouraged by arriving ACKs, TCP retransmits all outstanding segments using the slow start algorithm. Also, a number
of new segments allowed by the congestion window are transmitted. Such a retransmission policy is refereed to as go-
back-N since the sender forgets about all segments it has earlier transmitted. At 28th second retransmitted segments
arrive to the receiver and generate DUPACKs as the original segments have already been delivered. When the threshold

0
500

1000

1500

2000

2500

3000

3500

4000

0 5 10 15 20 25 30 35 40 45
Time of Day (s)

Snd_Data
Snd_Ack
Rcv_Data
Rcv_Ack

(a) Without deadline support at the router

5000

1000

1500

2000

2500

3000

3500

4000

5 10 15 20 25 30 35 40 45
Time of Day (s)

Snd_Data
Snd_Ack
Rcv_Data
Rcv_Ack

(b) With delay support at the router

Figure 4. Reaction of TCP to a 10-second sudden delay

 9

of three DUPACKs is reached at the sender a spurious fast retransmit is triggered, as the sender does not implement the
bug fix. Further on, new segments are clocked out by arriving DUPACKs.

Figure 4 (b) shows the effect of dropping of expired segments. At the time when the sender times out and retransmits
the first segment at 17th second, all segments previously transmitted are dropped at the sender. If the sender would time
out several times, the previous retransmissions are also dropped. When the delay ends, the sender immediately gets an
ACK for the latest retransmitted segment, and continues retransmitting segments using the slow start. Since all
originally transmitted segments are dropped, there are no negative side effects on TCP. However, the slow start
performed by the TCP sender may become time-consuming on networks with large bandwidth delay product increasing
the download time. In this case the bandwidth delay product is small and the pipe is filled already after two RTTs after
the delay ends.

Setting a correct lifetime setting is difficult for TCP since it is unpredictable when the RTO timer will actually expire.
First, the actual expiration of RTO in TCP is offset by the RTT as the timer is restarted upon every ACK. It is even
worse since the RTO at the time when segment N is sent (at that time segment N-M is the oldest outstanding segment)
is not the RTO that will eventually be used to restart REXMT when N has become the oldest outstanding segment. It is
the RTO calculated from the ACK for segment N-1 that will be used to retransmit segment N should it be lost. If the
packet lifetime is set to RTO then segments get wrongly expired during the slow start due to a large queuing delay. If
the lifetime is set to RTO+RTT then if the delay is just above RTO, then packets do not get expired and there are
unnecessary retransmissions. Both cases can happen for the same connection. A fundamental problem identified here is
that a reliable transport protocol does not know the RTO of a packet at the time of its transmission. A possible solution
to this problem is to set the packet lifetime to RTO+TTL and to use Eifel as a back-up way to prevent unnecessary
retransmissions.

C. TFRC

In this simple test we have been using a TFRC implementation (after fixing some bugs) in NS that sends bulk data
without any reliability provided.

Figure 5 (a) shows the reaction of TFRC sender to a 10-sec delay. As expected due to a lack of feedback during the
delay, the sender gradually slows down to eventually transmit one packet per RTT. When the delay ends, a burst of
ACKs that were delayed comes to the sender. It takes about 15 sec after delay ends for the sender to get to normal
transmission rate. However, since the receiver reports no loss events, the sender does no congestion control reductions
and continues in congestion avoidance.

Figure 5 (b) shows the same case when the router drops the expired packets and ACKs. At the sender lifetime in
packets is set to the RTO estimate. At the receiver lifetime of ACKs is set to RTT estimate plus 3 sec, to allow for a
reasonable lifetime in the beginning of connection until the RTO estimate is unknown at the receiver. Until the delay
ends, the sender behavior is identical to (a), as expected. However, since ACKs report multiple loss events at the
receiver, the sender performs the slow start. In this example, performing slow start does not result in decreased
download time, as the connection ramps up quickly and ACK arrive more frequently compared to case (a). In some tests
we have actually seen (b) to achieve 20% better throughput than (a), mostly due to the fact that due to packet
expirations and unreliable service less data had to be transmitted over the bottleneck link.

Our tests also have indicated that TFRC is rather sensible to the pattern of packet and ACK loss that may trigger
lengthy idle periods in transmission. This needs further investigation.

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70
Time of Day (s)

Se
qu

en
ce

 N
um

be
r

Snd_Data
Snd_Ack

delay

(a) Without deadline support at the router.

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70
Time of Day (s)

Se
qu

en
ce

 N
um

be
r

Snd_Data
Snd_Ack

delay

Slow start in TFRC after expiration losses

(b) With deadline support at the router.

Figure 5. Reaction TFRC to a long delay without deadline support at the router.

 10

V. PERFORMANCE EVALUATION

To illustrate the performance benefits ATP may have for the news ticker (subsection B) and file transfer application
(subsection C) we have used a simple ATP implementation in the NS2 simulator and described in subsection A. For a
more comprehensive ATP evaluation in presence of competing traffic and random losses (subsection D), a complete
ATP implementation is required. The complete ATP implementation could be done on top of one of existing protocols
(Table 1) for NS, Linux or FreeBSD.

A. Setup of Experiments

Our goal is to evaluate ATP in the realistic environment close to observed in the live networks. Three scenarios with
different intervals of delays (cell reselections) are shown in Table 2. The interval times are selected in a way that for a
typical download time of 120 s, correspondingly one, two and three delays occur per connection for the “easy”,
“mediocre” and “difficult” scenario on average. The length of the next cell reselection event is generated randomly
from the uniform distribution with these parameters. We assume the length of the cell reselection delay to be uniformly
distributed between 3 and 15 seconds.

The test configuration in Figure 6 contains two nodes and a link with a drop-tail queue. The full-duplex link has the
rate of 30 kbps and one-way latency of 300 ms. The blockup module inserts delays on the link. We have done two
sets of tests with the bottleneck buffer firstly set to 10 KB, and secondly to 100 KB (which is large enough to avoid
congestion losses).

First, we planned using the hiccup tool to provide delays on the link. However, in real life the delays block the
transfer in both directions at once, and hiccup could not provide this type of a delay. Thus, we have implemented a new
tool ‘blockup’ that allows to implement bi-directional outage after the link queue (although the packet which is being
transmitted on the link when the delay starts is allowed to complete the transmission).

B. TCP/ATP comparison

For experiments we have been using a FullTcp model of Reno-TCP. A single test is based on a TCP connection
transferring 300 KB of bulk data. Tests include TCP connection establishment and termination. Each test has been
repeated a hundred times to ensure sound statistics. We have used default values for all FullTcp parameters, except for
the “bug fix” that has been disabled and the timestamp option that has been enabled. ATP in this test equals Reno TCP
with TTL=RTO+RTT and dropping of expired packets in the router.

The results are shown in Figure 7, ATP does not have much benefit over Reno or Eifel due to the problem of correct
packet lifetime setting (results looked better with hiccup). For a small buffer size, ATP reduces the download time
slightly over Reno and Eifel, and decreases the number of unnecessary retransmissions over Reno. For large buffer,

 Min, s Max, s
Easy 80 140
Mediocre 40 80
Difficult 20 40

Table 2. The interval between delays in three scenarios.

ATP
sender

ATP
receiver

30 kbps, 300 ms
drop-tail buffer

packet lifetime check

Blockup

Figure 6. Test configuration in NS2.

Reno
(10KB) Atp

(10KB) Eifel
(10KB) Reno

(100KB) Atp (100
KB) Eifel

(100KB)

Easy
Mediocre

Difficult

155

152

174

153

148

138126
125

135

122

120

115

111

114
118

108
107

105

80
90

100
110
120
130
140
150
160
170
180

D
ow

nl
oa

d
Ti

m
e

(s
)

(a) Average download time

Reno
(10KB) Atp

(10KB) Eifel
(10KB) Reno

(100KB) Atp (100
KB) Eifel

(100KB)

Easy
Mediocre

Difficult

7.9

2.6
2.1

12.6

2.6

1.3

4.0

1.9
1.8

6.7

1.2
0.7

2.8

1.7 1.8

3.3

0.6
0.4

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

U
nn

ec
es

sa
ry

 re
tra

ns
m

is
si

on
s

%

(b) Average ratio of segments sent unnecessary over
wireless link

Figure 7. Results for Reno and ATP (the bottleneck buffer size in parenthesis).

 11

ATP also reduces download time and retransmissions, but not as good as Eifel. The achieved benefits looks like not
enough to cover the trouble of syncing clocks.

C. UDP/ATP comparison

This tests attempt to evaluate quantitative benefits of ATP for the news ticker application described in section IV.A.
FixTtl in this test is set to 0.6 s (which is the time to deliver a 700-byte packet over 30 kbps 300ms link). In this test
ATP means UDP with packet lifetime set to ADU transmit interval (5 s) and packet lifetime checking in the router.
Figure 8 (a) shows how many valid packets are delivered to the receiver. ATP increases this value considerably both
for small and large buffer. The ratio of unnecessary transmitted packets over the bottleneck link is shown in Figure 8
(b). It is zero for ATP in all cases (if FixTtl is set correctly), while can be as large as 27% for UDP.

The current results are given in terms of packets, not ADUs, which is not quite accurate, because if a single packet is
missing, the whole ADU is dropped at the receiver. When technically implemented, the results should show the ratio of
ADU delivered valid to the receiver.

D. ATP evaluation with congestion control and data losses

This section will provide performance results in NS or the Internet with a complete ATP implementation, and should
be done after ATP design issues are agreed. The application can be the news ticker with TFRC congestion control. The
ATP performance is compared to performance of UDP and TCP SACK. The communication environment should be
highly dynamic with sudden delays, link speed changes, and congestion losses introduced by competing traffic.

Two test set can be done
1) ATP sender performs selective retransmissions of missing ADU fragments (for example due to short ADU

lifetime). In this case, the router can drop a complete ADU once a single fragment is dropped, since the ADU
will be anyway discarded at the receiver.

2) ATP sender performs selective retransmissions of missing ADU fragments. In this case the router should drop
only expired fragments.

VI. CONCLUSION

At the moment the amount of arising problems seems to exceed the amount of benefits ATP can provide, at least for
TCP-like protocols. The problems are in difficulties with setting packet lifetime correctly (the actual RTO is unknown
when packet is transmitted), interaction with congestion control, syncing router and host clocks, overhead in the router.

Hopefully, the ideas presented in this paper can be better suited for streaming or conversational traffic, web
browsing, interactive gaming and other ‘more real-time’ applications than bulk transfer using TCP.

The packet lifetime information can be used in a better way rather than just dropping expired packets, for example by
doing the earliest deadline first scheduling. Priority to ADUs can be added later so that the router can schedule ADUs
accordingly.

To enable proper operation of ATP with IPsec, the protocol fields inspected by an ATP-aware router should not be
encrypted.

Udp
(10KB) Atp

(10KB) Udp
(100KB) Atp

(100KB)

Difficult
Mediocre

Easy

0.9011
0.934

0.9115
0.9366

0.8352

0.8938

0.8604

0.8984

0.6753

0.787

0.7124

0.7948

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Va
lid

 p
kt

s

 (a) Ratio of packets delivered in time

w/o
lifetime
(10KB)

w. lifetime
(10KB) w/o

lifetime
(100KB)

w. lifetime
(100KB)

Easy
Mediocre

Difficult

0.13

0.00

0.29

0.00

0.06

0.00

0.14

0.00

0.04

0.00

0.09

0.00
0

0.05

0.1

0.15

0.2

0.25

0.3

St
al

e
pa

ck
et

s

 (b) Ratio of packets sent unnecessary over the bottleneck link

Figure 8. Results for UDP and ATP (the bottleneck buffer size in parenthesis).

 12

REFERENCES

[1] D. D. Clark and D. Tennenhouse, Architectural Considerations for a New Generation of Protocols, Proc. of the
ACM SIGCOMM '90 Conference, September, 1990.

[2] D. L. Tennenhouse, D. J. Wetherall, Towards an Active Network Architecture, Computer Communication Review,
a publication of ACM SIGCOMM, volume 26, number 2, April 1996.

[3] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson, RTP: A Transport Protocol for Real-Time Applications,
RFC 1889, January 1996.

[4] Floyd, S., Handley, M., Padhye, J., and Widmer, J., Equation-Based Congestion Control for Unicast Applications,
SIGCOMM, August 2000.

[5] Floyd, S., Jacobson, V., Liu, C., McCanne, S., and Zhang, L., A Reliable Multicast Framework for Light-weight
Sessions and Application Level Framing, IEEE/ACM Transactions on Networking, December 1997, Volume 5,
Number 6, pp. 784-803.

[6] A.C. Weaver, Xpress transport protocol specification v4.0. XTP Forum, March 1995.
[7] I. Chrisment, D. Kaplan, and C. Diot, Design, Automated Implementation and Evaluation of an ALF

Communication Architecture, in IEEE Journal of Selected Area Communication, Volume 16, Number 3, April
1998, pp 332-344

[8] S. Bailey, ULP framing for TCP, draft-ietf-tsvwg-tcp-ulp-frame-00.txt, work in progress.
[9] Reiner Ludwig, Randy H. Katz, The Eifel Algorithm: Making TCP Robust Against Spurious Retransmissions.

Appears in ACM Computer Communications Review, Vol. 30, No. 1, January 2000.
[10] J. R. Li, S. Ha and V. Bharghavan, ``A Transport Protocol For Heterogeneous Packet Flows.'' IEEE Infocom '99,

New York, NY. March 1999.
[11] Wong, J.W.; Liu, Y.E., Deadline based network resource management, In Proceedings of the Ninth International

Conference on Computer Communications and Networks, 2000, pages 264 -268.
[12] Lee, K.S., Zarki, M.E., Scheduling real-time traffic in IP-based cellular networks The 11th IEEE International

Symposium on Personal, Indoor and Mobile Radio Communications, Volume 2, 2000, pages 1202 –1206
[13] Raman, S., Balakrishnan, H., Srinivasan, M. An image transport protocol for the Internet. 2000 International

Conference on Network Protocols, 2000, pages 209 -219.
[14] M. Schläger, NS TCP Eifel Page, http://www-tkn.ee.tu-berlin.de/~morten/eifel/ns-eifel.html
[15] A. Gurtov, R. Ludwig. Evaluating the Eifel Algorithm for TCP in a GPRS network. Submitted to European

Wireless'2002.
[16] ISI at University of South California. Network simulator 2. Available at: http://www.isi.edu/nsnam/ns/.
[17] Zaw-Sing Su, A SPECIFICATION OF THE INTERNET PROTOCOL (IP) TIMESTAMP OPTION, RFC 781,

May 1981
[18] J. Postel, Internet Protocol (IP), RFC-791, September 1981.
[19] Ludwig R. and Rathonyi B. Link Layer Enhancements for TCP/IP over GSM In Proceedings of IEEE INFOCOM

1999.
[20] Ludwig R., Rathonyi B., Konrad A., Oden K., and Joseph A., Multi-layer Tracing of TCP over a Reliable Wireless

Link. In Proceedings of ACM SIGMETRICS 1999.
[21] Floyd, S, Congestion Control Principles. RFC 2914, Best Current Practice, September 2000.
[22] Balakrishnan, H., et al., SR-RTP Software Library/Toolkit, http://nms.lcs.mit.edu/software/videocm/main.html
[23] N. Feamster, H. Balakrishnan , Packet Loss Recovery for Streaming Video, 12th International Packet Video

Workshop, April 2002.
[24] D. Loguinov and H. Radha, Retransmission Schemes for Streaming Internet Multimedia: Evaluation Model and

Performance Analysis, ACM SIGCOMM Computer Communication Review (CCR), vol. 32, no. 2, April 2002.

	licen-papers-pn.pdf
	Local Disk
	StampIt - A Stamping Utility for PDF Documents

	licen-papers-.pdf
	infocom03.pdf
	INTRODUCTION
	RELATED WORK
	PROTOCOL ARCHITECTURE
	Interface between applications and ATP
	ATP protocol functionality
	Router behavior
	Congestion Control
	Implementation Issues
	How to carry packet deadline information

	EFFECT OF ATP ON PROTOCOL BEHAVIOR
	News ticker on top of UDP without congestion control
	Bulk transfer using TCP
	TFRC

	PERFORMANCE EVALUATION
	Setup of Experiments
	TCP/ATP comparison
	UDP/ATP comparison
	ATP evaluation with congestion control and data losses

	CONCLUSION

	ccr02.pdf
	Detection
	Response
	Delay spike
	Delay increase

	Which segment to transmit
	Adapting retransmit timer
	Delay spike
	Delay increase

	Reverting CC

	atp-paper.pdf
	INTRODUCTION
	RELATED WORK
	PROTOCOL ARCHITECTURE
	Interface between applications and ATP
	ATP protocol functionality
	Router behavior
	Congestion Control
	Implementation Issues
	How to carry packet deadline information

	EFFECT OF ATP ON PROTOCOL BEHAVIOR
	News ticker on top of UDP without congestion control
	Bulk transfer using TCP
	TFRC

	PERFORMANCE EVALUATION
	Setup of Experiments
	TCP/ATP comparison
	UDP/ATP comparison
	ATP evaluation with congestion control and data losses

	CONCLUSION

	P4:
	stampTemplate:
	pg: p-1

	P5:
	stampTemplate:
	pg: p-2

	P6:
	stampTemplate:
	pg: p-3

	P7:
	stampTemplate:
	pg: p-4

	P8:
	stampTemplate:
	pg: p-5

	P9:
	stampTemplate:
	pg: p-6

	P10:
	stampTemplate:
	pg: p-7

	P11:
	stampTemplate:
	pg: p-8

	P12:
	stampTemplate:
	pg: p-9

	P13:
	stampTemplate:
	pg: p-10

	P14:
	stampTemplate:
	pg: p-11

	P15:
	stampTemplate:
	pg: p-12

	P16:
	stampTemplate:
	pg: p-13

	P17:
	stampTemplate:
	pg: p-14

	P18:
	stampTemplate:
	pg: p-15

	P19:
	stampTemplate:
	pg: p-16

	P20:
	stampTemplate:
	pg: p-17

	P21:
	stampTemplate:
	pg: p-18

	P22:
	stampTemplate:
	pg: p-19

	P23:
	stampTemplate:
	pg: p-20

	P24:
	stampTemplate:
	pg: p-21

	P25:
	stampTemplate:
	pg: p-22

	P26:
	stampTemplate:
	pg: p-23

	P27:
	stampTemplate:
	pg: p-24

	P28:
	stampTemplate:
	pg: p-25

	P29:
	stampTemplate:
	pg: p-26

	P30:
	stampTemplate:
	pg: p-27

	P31:
	stampTemplate:
	pg: p-28

	P32:
	stampTemplate:
	pg: p-29

	P33:
	stampTemplate:
	pg: p-30

	P34:
	stampTemplate:
	pg: p-31

	P35:
	stampTemplate:
	pg: p-32

	P36:
	stampTemplate:
	pg: p-33

	P37:
	stampTemplate:
	pg: p-34

	P38:
	stampTemplate:
	pg: p-35

	P39:
	stampTemplate:
	pg: p-36

	P40:
	stampTemplate:
	pg: p-37

	P41:
	stampTemplate:
	pg: p-38

	P42:
	stampTemplate:
	pg: p-39

	P43:
	stampTemplate:
	pg: p-40

	P44:
	stampTemplate:
	pg: p-41

	P45:
	stampTemplate:
	pg: p-42

	P46:
	stampTemplate:
	pg: p-43

	P47:
	stampTemplate:
	pg: p-44

	P48:
	stampTemplate:
	pg: p-45

	P49:
	stampTemplate:
	pg: p-46

	P50:
	stampTemplate:
	pg: p-47

	P51:
	stampTemplate:
	pg: p-48

	P52:
	stampTemplate:
	pg: p-49

	P53:
	stampTemplate:
	pg: p-50

	P54:
	stampTemplate:
	pg: p-51

	P55:
	stampTemplate:
	pg: p-52

	P56:
	stampTemplate:
	pg: p-53

	P57:
	stampTemplate:
	pg: p-54

	P58:
	stampTemplate:
	pg: p-55

	P59:
	stampTemplate:
	pg: p-56

	P60:
	stampTemplate:
	pg: p-57

	P61:
	stampTemplate:
	pg: p-58

	P62:
	stampTemplate:
	pg: p-59

	P63:
	stampTemplate:
	pg: p-60

	P64:
	stampTemplate:
	pg: p-61

	P65:
	stampTemplate:
	pg: p-62

	P66:
	stampTemplate:
	pg: p-63

	P67:
	stampTemplate:
	pg: p-64

	P68:
	stampTemplate:
	pg: p-65

	P69:
	stampTemplate:
	pg: p-66

	P70:
	stampTemplate:
	pg: p-67

	P71:
	stampTemplate:
	pg: p-68

	P72:
	stampTemplate:
	pg: p-69

	P73:
	stampTemplate:
	pg: p-70

	P74:
	stampTemplate:
	pg: p-71

	P75:
	stampTemplate:
	pg: p-72

	P76:
	stampTemplate:
	pg: p-73

	P77:
	stampTemplate:
	pg: p-74

	P78:
	stampTemplate:
	pg: p-75

	P79:
	stampTemplate:
	pg: p-76

	P80:
	stampTemplate:
	pg: p-77

	P81:
	stampTemplate:
	pg: p-78

	P82:
	stampTemplate:
	pg: p-79

	P83:
	stampTemplate:
	pg: p-80

	P84:
	stampTemplate:
	pg: p-81

	P85:
	stampTemplate:
	pg: p-82

	P86:
	stampTemplate:
	pg: p-83

	P87:
	stampTemplate:
	pg: p-84

	P88:
	stampTemplate:
	pg: p-85

	P89:
	stampTemplate:
	pg: p-86

	P90:
	stampTemplate:
	pg: p-87

	P91:
	stampTemplate:
	pg: p-88

	P92:
	stampTemplate:
	pg: p-89

	P93:
	stampTemplate:
	pg: p-90

	P94:
	stampTemplate:
	pg: p-91

	P95:
	stampTemplate:
	pg: p-92

	P96:
	stampTemplate:
	pg: p-93

	P97:
	stampTemplate:
	pg: p-94

	P98:
	stampTemplate:
	pg: p-95

	P99:
	stampTemplate:
	pg: p-96

	P100:
	stampTemplate:
	pg: p-97

	P101:
	stampTemplate:
	pg: p-98

	P102:
	stampTemplate:
	pg: p-99

	P103:
	stampTemplate:
	pg: p-100

	P104:
	stampTemplate:
	pg: p-101

	P105:
	stampTemplate:
	pg: p-102

	P106:
	stampTemplate:
	pg: p-103

	P107:
	stampTemplate:
	pg: p-104

	P108:
	stampTemplate:
	pg: p-105

	P109:
	stampTemplate:
	pg: p-106

	P110:
	stampTemplate:
	pg: p-107

	P111:
	stampTemplate:
	pg: p-108

	P112:
	stampTemplate:
	pg: p-109

	P113:
	stampTemplate:
	pg: p-110

	P114:
	stampTemplate:
	pg: p-111

	P115:
	stampTemplate:
	pg: p-112

	P116:
	stampTemplate:
	pg: p-113

	P117:
	stampTemplate:
	pg: p-114

	P118:
	stampTemplate:
	pg: p-115

	P119:
	stampTemplate:
	pg: p-116

	P120:
	stampTemplate:
	pg: p-117

	P121:
	stampTemplate:
	pg: p-118

	P122:
	stampTemplate:
	pg: p-119

	P123:
	stampTemplate:
	pg: p-120

