
©1981–2004, Deitel & Associates, Inc. All rights reserved.

 Freely ye have received, freely give.
—Matthew 10:8—

The world is moving so fast these days that the man who says it can’t be
done is generally interrupted by someone doing it.

—Elbert Hubbard—

When your Daemon is in charge, do not try to think consciously. Drift,
wait and obey.

—Rudyard Kipling—

I long to accomplish a great and noble task, but it is my chief duty to
accomplish small tasks as if they were great and noble.

—Helen Keller—

Our children may learn about heroes of the past. Our task is to make our-
selves architects of the future.

—Jomo Mzee Kenyatta—

Chapter 20
©1981–2004, Deitel & Associates, Inc. All rights reserved.

Chapter 20

Case Study: Linux
Objectives
After reading this chapter, you will understand:

• Linux kernel architecture.

• the Linux implementation of operating system components such as process,

memory and file management.

• the software layers that compose the Linux kernel.

• how Linux organizes and manages system devices.

• how Linux manages I/O operations.

• interprocess communication and synchronization mechanisms in Linux.

• how Linux scales to multiprocessor and embedded systems.

• Linux security features.

Chapter Outline

2

©1981–2004, Deitel & Associates, Inc. All rights reserved.

20.1
Introduction

20.2
History

20.3
Linux Overview

20.3.1 Development and Community

20.3.2 Distributions

20.3.3 User Interface

20.3.4 Standards

20.4
Kernel Architecture

20.4.1 Hardware Platforms

Mini Case Study: User-Mode Linux
(UML)

20.4.2 Loadable Kernel Modules

20.5
Process Management

20.5.1 Process and Thread Organization

20.5.2 Process Scheduling

20.6
Memory Management

20.6.1 Memory Organization

20.6.2 Physical Memory Allocation and
Deallocation

20.6.3 Page Replacement

20.6.4 Swapping

20.7
File Systems

20.7.1 Virtual File System

20.7.2 Virtual File System Caches

20.7.3 Second Extended File System
(ext2fs)

20.7.4 Proc File System

20.8
Input/Output Management

20.8.1 Device Drivers

20.8.2 Character Device I/O

20.8.3 Block Device I/O

20.8.4 Network Device I/O

20.8.5 Unified Device Model

20.8.6 Interrupts

20.9
Kernel Synchronization

20.9.1 Spin Locks

20.9.2 Reader/Writer Locks

20.9.3 Seqlocks

20.9.4 Kernel Semaphores

3

©1981–2004, Deitel & Associates, Inc. All rights reserved.

20.10
Interprocess Communication

20.10.1 Signals

20.10.2 Pipes

20.10.3 Sockets

20.10.4 Message Queues

20.10.5 Shared Memory

20.10.6 System V Semaphores

20.11
Networking

20.11.1 Packet Processing

20.11.2 Netfilter Framework and Hooks

20.12
Scalability

20.12.1 Symmetric Multiprocessing
(SMP)

20.12.2 Nonuniform Memory Access
(NUMA)

20.12.3 Other Scalability Features

20.12.4 Embedded Linux

20.13
Security

20.13.1 Authentication

20.13.2 Access Control Methods

20.13.3 Cryptography

Web Resources | Key Terms | Exercises | Recommended Reading | Works Cited

4 Case Study: Linux

©1981–2004, Deitel & Associates, Inc. All rights reserved.

20.1 Introduction
The Linux kernel version 2.6 is the core of the most popular open-source, freely dis-
tributed, full-featured operating system. Unlike that of proprietary operating sys-
tems, Linux source code is available to the public for examination and modification
and is free to download and install. As a result, users of the operating system bene-
fit from a community of developers actively debugging and improving the kernel,
an absence of licensing fees and restrictions, and the ability to completely customize
the operating system to meet specific needs. Though Linux is not centrally pro-
duced by a corporation, Linux users can receive technical support for a fee from
Linux vendors or for free through a community of users.

The Linux operating system, which is developed by a loosely organized team
of volunteers, is popular in high-end servers, desktop computers and embedded sys-
tems. Besides providing core operating system features, such as process scheduling,
memory management, device management and file system management, Linux
supports many advanced features such as symmetric multiprocessing (SMP), non-
uniform memory access (NUMA), access to multiple file systems and support for a
broad spectrum of hardware architectures. This case study offers the reader an
opportunity to evaluate a real operating system in substantial detail in the context
of the operating system concepts discussed throughout this book.

20.2 History
In 1991, Linus Torvalds, a 21-year-old student at the University of Helsinki, Finland,
began developing the Linux (the name is derived from “Linus” and “UNIX”) ker-
nel as a hobby. Torvalds wished to improve upon the design of Minix, an educa-
tional operating system created by Professor Andrew S. Tanenbaum of the Vrije
Universiteit in Amsterdam. The Minix source code, which served as a starting point
for Torvalds’s Linux project, was publicly available for professors to demonstrate
basic operating system implementation concepts to their students.1

In the early stages of development, Torvalds sought advice about the short-
comings of Minix from those familiar with it. He designed Linux based on these
suggestions and made further efforts to involve the operating systems community in
his project. In September of 1991, Torvalds released the first version (0.01) of the
Linux operating system, announcing the availability of his source code to a Minix
newsgroup.2

The response led to the creation of a community that has continued to
develop and support Linux. Developers downloaded, tested, and modified the
Linux code, submitting bug fixes and feedback to Torvalds, who reviewed them and
applied the improvements to the code. In October, 1991, Torvalds released version
0.02 of the Linux operating system.3

Although early Linux kernels lacked many features implemented in well-
established operating systems such as UNIX, developers continued to support the
concept of a new, freely available operating system. As Linux’s popularity grew,

20.2 History 5

©1981–2004, Deitel & Associates, Inc. All rights reserved.

developers worked to remedy its shortcomings, such as the absence of a login mech-
anism and its dependence on Minix to compile. Other missing features were floppy
disk support and a virtual memory system.4 Torvalds continued to maintain the
Linux source code, applying changes as he saw fit.

As Linux evolved and drew more support from developers, Torvalds recog-
nized its potential to become more than a hobby operating system. He decided that
Linux should conform to the POSIX specification to enhance its interoperability
with other UNIX-like systems. Recall that POSIX, the Portable Operating System
Interface, defines standards for application interfaces to operating system services,
as discussed in Section 2.7, Application Programming Interfaces (API).5

The 1994 release of Linux version 1.0 included many features commonly
found in a mature operating system, such as multiprogramming, virtual memory,
demand loading and TCP/IP networking.6 It provided the functionality necessary
for Linux to become a viable alternative to the licensed UNIX operating system.

Though it benefited from free licensing, Linux suffered from a complex instal-
lation and configuration process. To allow users unfamiliar with the details of Linux
to conveniently install and use the operating system, academic institutions, such as
the University of Manchester and Texas A&M University, and organizations such
as Slackware Linux (www.slackware.org), created Linux distributions, which
included software such as the Linux kernel, system applications (e.g., user account
management, network management and security tools), user applications (e.g.,
GUIs, Web browsers, text editors, e-mail applications, databases, and games) and
tools to simplify the installation process.7

As kernel development progressed, the project adopted a version numbering
scheme. The first digit is the major version number, which is incremented at Tor-
valds’s discretion for each kernel release that contains a feature set significantly dif-
ferent from that of the previous version. Kernels that are described by an even
minor version number (the digit directly following the first decimal point), such as
version 1.0.9, are considered to be stable releases, whereas an odd minor version
number, such as 2.1.6, indicates a development version. The digit following the sec-
ond decimal point is incremented for each minor update to the kernel.

Development kernels include new features that have not been extensively
tested, so they are not sufficiently reliable for production use. Throughout the
development process, developers create and test new features; then, once a devel-
opment kernel becomes stable (i.e., the kernel does not contain any known bugs),
Torvalds declares it a release kernel.

By the 1996 release of version 2.0, the Linux kernel had grown to over 400,000
lines of code.1 Thousands of developers had contributed features and bug fixes, and
more than 1.5 million users had installed the operating system.9 Although this
release was appealing to the server market, the vast majority of desktop users were

1 Red Hat version 6.2, which included version 2.0 of the Linux kernel, contained approxi-
mately 17 million lines of code. By comparison, Microsoft Windows 95 contained approx-
imately 15 million lines of code and Sun Solaris approximately 8 million. 8

6 Case Study: Linux

©1981–2004, Deitel & Associates, Inc. All rights reserved.

still reluctant to use Linux as a client operating system. Version 2.0 provided enter-
prise features such as support for SMP, network traffic control and disk quotas.
Another important feature allowed portions of the kernel to be modularized, so
that users could add device drivers and other system components without rebuild-
ing the kernel.

Version 2.2 of the kernel, which was released by Torvalds in 1999, improved
the performance of existing 2.0 features, such as SMP, audio support and file sys-
tems, and added new features such as an extension to the kernel’s networking sub-
system that allowed system administrators to inspect and control network traffic at
the packet level. This feature simplified firewall installation and network traffic for-
warding, as requested by server administrators.10

Many new features in version 2.2, such as USB support, CD-RW support and
advanced power management, targeted the desktop market. These features were
labeled as experimental, because they were not sufficiently reliable for use in pro-
duction systems. Although version 2.2 improved usability in desktop environments,
Linux could not yet truly compete with popular desktop operating systems of the
time, such as Microsoft’s Windows 98. The desktop user was more concerned with
the availability of applications and the “look and feel” of the user interface than
with kernel functionality. However, as Linux kernel development continued, so did
the development of Linux applications.

The next stable kernel, version 2.4, was released by Torvalds in January, 2001.
In this release a number of kernel subsystems were modified and, in some cases,
completely rewritten to support newer hardware and to use existing hardware more
efficiently. In addition, Linux was modified to run on high-performance architec-
tures including Intel’s 64-bit Itanium, 64-bit MIPS and AMD’s 64-bit Opteron, and
handheld-device architectures such as SuperH.

Enterprise systems companies such as IBM and Oracle had become increas-
ingly interested in Linux as it continued to stabilize and spread to new platforms.
Viability in the enterprise systems market, however, required Linux to scale to both
high-end and embedded systems, a need fulfilled by version 2.4.11

Version 2.4 addressed a critical scalability issue by improving performance on
high-end multiprocessor systems. Although Linux had included SMP support since
version 2.0, inefficient synchronization mechanisms and other issues limited perfor-
mance on systems containing more than four processors. Improvements in version
2.4 enabled the kernel to scale to 8, 16 or more processors.12

Version 2.4 also addressed the needs of desktop users. Experimental features
in the 2.2 kernel, such as USB support and power management, matured in the 2.4
kernel. This kernel supported a large set of desktop devices; however, a variety of
issues, such as Microsoft’s market power and the small number of user-friendly
Linux applications, prevented widespread Linux use on desktop computers.

Development of the version 2.6 kernel focused on scalability, standards com-
pliance and modifications to kernel subsystems to improve performance. Kernel
developers focused on scalability by increasing SMP support, providing support for

20.3 Linux Overview 7

©1981–2004, Deitel & Associates, Inc. All rights reserved.

NUMA systems and rewriting the process scheduler to increase the performance of
scheduling operations. Other kernel enhancements included support for advanced
disk scheduling algorithms, a new block I/O layer, improved POSIX compliance, an
updated audio subsystem and support for large memories and disks.

20.3 Linux Overview
Linux has a distinct development process and benefits from a wealth of diverse
(and free) system and user applications. In this section we summarize Linux kernel
features, discuss the process of standardizing and developing the kernel, and intro-
duce several user applications that improve Linux usability and productivity.

In addition to the kernel, Linux systems include user interfaces and applica-
tions. A user interface can be as simple as a text-based shell, though standard Linux
distributions include a number of GUIs through which users can interact with the
system. The Linux operating system borrows from the UNIX layered system
approach. Users access applications via a user interface; these applications access
resources via a system call interface, thereby invoking the kernel. The kernel may
then access the system’s hardware, as appropriate, on behalf of the requesting appli-
cation. In addition to creating user processes, the system creates kernel threads that
perform many kernel services. Kernel threads are implemented as daemons, which
remain dormant until the scheduler or another component of the kernel wakes
them.

Because Linux is a multiuser system, the kernel must provide mechanisms to
manage user access rights and provide protection for system resources. Therefore,
Linux restricts operations that may damage the kernel and/or the system’s hard-
ware to a user that has superuser (also called root) privileges. For example, the
superuser privilege enables a user to manage passwords, specify access rights for
other users and execute code that modifies system files.

20.3.1 Development and Community
The Linux project is maintained by Linus Torvalds, who is the final arbiter of any
code submitted for the kernel. The community of developers constantly modifies
the operating system and every two or three years releases a new stable version of
the kernel. The community then shifts to the development of the next kernel, dis-
cussing new features via e-mail lists and online forums. Torvalds delegates mainte-
nance of stable kernels to trusted developers and manages the development kernel.
Bug fixes and performance enhancements for stable releases are applied to the
source code and released as updates to the stable version. In parallel, development
kernels are released at various stages of the coding process for public review, testing
and feedback.

Torvalds and a team of approximately 20 members of his “inner circle”—a set
of developers who have proven their competency by producing significant additions
to the Linux kernel—are entrusted with enhancing current features and coding new

8 Case Study: Linux

©1981–2004, Deitel & Associates, Inc. All rights reserved.

ones. These primary developers submit code to Torvalds, who reviews and accepts
or rejects it, depending on such factors as correctness, performance and style. When
a development kernel has matured to a point at which Torvalds is satisfied with the
content of its feature set, he will declare a feature freeze. Developers may continue
to submit bug fixes, code that improves system performance and enhancements to
features that are under development.13 When the kernel is near completion, a code
freeze occurs. During this phase only code that fixes bugs is accepted. When Tor-
valds decides that all important known bugs have been addressed, the kernel is
declared stable and is released with a new, even kernel minor version number.

Though many Linux developers contribute to the kernel as individuals, corpo-
rations such as IBM have invested significant resources in improving the Linux ker-
nel for use in large-scale systems. Such corporations typically charge for tools and
support services. Free support is provided by other users and developers in the
Linux community. Users may ask questions in user groups, electronic mailing lists
(also called listservs) or forums, and may find answers to questions in FAQs (fre-
quently asked questions) and HOWTOs (step-by-step guides). URLs for such
resources can be found via the sites in the Web Resources section at the end of the
chapter. Alternatively, dedicated support services can be purchased from vendors.

Linux is free for users to download, modify and distribute under the GNU
General Public License (GPL). GNU (pronounced guh-knew) is a project created
by the Free Software Foundation in 1984 that aims to provide free UNIX-like oper-
ating systems and software to the public.14 The General Public License specifies
that any distribution of the software under its license must be accompanied by the
GPL, must clearly indicate that the original code has been modified and must
include the complete source code. Although Linux is free software, it is copyrighted
(many of the copyrights are held by Linus Torvalds); any software that borrows
from Linux’s copyrighted material must clearly credit its source and must also be
distributed under the terms of the GPL.

20.3.2 Distributions
By the end of the 1990s, Linux had matured but was still largely ignored by desktop
users. In a PC market dominated by Microsoft and Apple, Linux was considered
too difficult to use. Those who wished to install Linux were required to download
the source code, manually customize configuration files and compile the kernel.
Users still needed to download and install applications to perform productive work.
As Linux matured, developers realized a need for a friendly installation process,
which led to the creation of distributions that included the kernel, applications and
user interfaces as well as other tools and accessories.

Currently more than 300 distributions are available, each providing a variety of
features. User-friendly and application-rich distributions are popular among users—
they often include an intuitive GUI and productivity applications such as word pro-
cessors, spreadsheets and Web browsers. Distributions are commonly divided into
packages, each containing a single application or service. Users can customize a

20.3 Linux Overview 9

©1981–2004, Deitel & Associates, Inc. All rights reserved.

Linux system by installing or removing packages, either during the installation pro-
cess or at runtime. Examples of such distributions are Debian, Mandrake, Red Hat,
Slackware and SuSE.15 Mandrake, Red Hat and SuSE are commercial organizations
that provide Linux distributions for markets such as high-end servers and desktop
users.16, 17, 18 Debian and Slackware are nonprofit organizations comprised of volun-
teer developers who update and maintain Linux distributions.19, 20 Other distribu-
tions tailor to specific environments, such as handheld systems (e.g., OpenZaurus)
and embedded systems (e.g., uClinux).21, 22 All parts of distributions using GPL-
licensed code can be freely modified and redistributed by end-users, but the GPL
does not prohibit distributors from charging a fee for distribution costs (e.g., the cost
of packaging materials) or technical support.23, 24

20.3.3 User Interface
In a Microsoft Windows XP or Macintosh OS X environment, the user is presented
with a standard, customizable user interface composed of the GUI and an emulated
terminal or shell (e.g., a window containing a command-line prompt). On the con-
trary, Linux is simply the kernel of an operating system and does not specify a
“standard” user interface. Many console shells, such as bash (Bourne-again shell),
csh (a shell providing C-like syntax, pronounced “seashell”) and esh (easy shell) are
commonly found on user systems.25

For users who prefer a graphical interface to console shells, there are several
freely available GUIs, many of which are packaged as part of most Linux distribu-
tions. Those most commonly found in Linux systems are composed of several lay-
ers. In most Linux systems, the lowest layer is the X Window System
(www.XFree86.org), a low-level graphical interface originally developed at MIT in
1984.26 The X Window System provides to higher layers the mechanisms necessary
to create and manipulate windows and other graphical components. The second
layer of the GUI is the window manager, which builds on mechanisms in the X Win-
dow System interface to control the placement, appearance, size and other
attributes of windows. An optional third layer is called the desktop environment.
The most popular desktop environments are KDE (K Desktop Environment) and
GNOME (GNU Network Object Model Environment). Desktop environments
tend to provide a file management interface, tools to facilitate access to common
applications and utilities, and a suite of software, typically including Web browsers,
text editors and e-mail applications.27

20.3.4 Standards
A more recent goal of the Linux operating system has been to conform to a variety of
widely recognized standards to improve compatibility between applications written
for UNIX-like operating systems and Linux. The most prominent set of standards to
which Linux developers strive to conform is POSIX (standards.ieee.org/
regauth/posix/). Two other sets prominent in UNIX-like operating systems are the
Single UNIX Specification (SUS) and the Linux Standards Base (LSB).

10 Case Study: Linux

©1981–2004, Deitel & Associates, Inc. All rights reserved.

The Single UNIX Specification (www.unix.org/version3/) is a suite of
standards that define user and application programming interfaces for UNIX oper-
ating systems, shells and utilities. Version 3 of the SUS combines several standards
(including POSIX, ISO standards and previous versions of the SUS) into one.28 The
Open Group (www.unix.org), which holds the trademark rights and defines stan-
dards for the UNIX brand, maintains SUS. To bear the UNIX trademarked name,
an operating system must conform to the SUS; The Open Group certifies SUS con-
formance for a fee.29

The Linux Standard Base (www.linuxbase.org) is a project that aims to
standardize Linux so that applications written for one LSB-compliant distribution
will compile and behave exactly the same on any other LSB-compliant distribution.
The LSB maintains general standards that apply to elements of the operating sys-
tem, including libraries, package format and installation, commands and utilities.
For example, the LSB specifies a standard file system structure. The LSB also main-
tains architecture-specific standards that are required for LSB certification. Those
who wish to test and certify a distribution for LSB compliance can obtain the tools
and certification from the LSB organization for a fee.30

Until recently, standards compliance has been a low priority for the kernel,
because most kernel developers are concerned with improving the feature set and
reliability of Linux. Consequently, most kernel releases do not conform to any one
set of standards. During the development of the version 2.6 Linux kernel, develop-
ers modified several interfaces to improve compliance with the POSIX, SUS and
LSB standards.

20.4 Kernel Architecture
Although Linux is a monolithic kernel (see Section 6.13, Operating System Archi-
tectures), recent scalability enhancements have included modular capabilities simi-
lar to those supported by microkernel operating systems.31 Linux is commonly
referred to as a UNIX-like or a UNIX-based operating system because it provides
many services that characterize UNIX systems, such as AT&T’s UNIX System V
and Berkeley’s BSD. Linux is composed of six primary subsystems: process man-
agement, interprocess communication, memory management, file system manage-
ment, I/O management and networking. These six subsystems are responsible for
controlling access to system resources (Fig. 20.1). In the following sections, we
examine these kernel subsystems and their interactions.

Process execution on a Linux system occurs in either user mode or kernel
mode. User processes run in user mode and must therefore access kernel services
via the system call interface. When a user process issues a valid system call (in user
mode), the kernel executes the system call in kernel mode on behalf of the process.
If the request is invalid (e.g., a process attempts to write to a file that is not open),
the kernel returns an error.

20.4 Kernel Architecture 11

©1981–2004, Deitel & Associates, Inc. All rights reserved.

The process manager is a fundamental Linux subsystem that is responsible for
creating processes, providing access to the system’s processor(s) and removing pro-
cesses from the system upon completion (see Section 20.5, Process Management).
The kernel’s interprocess communication (IPC) subsystem allows processes to com-
municate with one another. This subsystem interacts with the process manager to
permit information sharing and message passing using a variety of mechanisms, dis-
cussed in Section 20.10, Interprocess Communication.

The memory management subsystem provides processes with access to mem-
ory. Linux assigns each process a virtual memory address space, which is divided
into the user address space and the kernel address space. Including the kernel
address space within each execution context reduces the cost of context switching
from user mode to kernel mode because the kernel can access its data from every
user process’s virtual address space. The algorithms to manage free (i.e., available)
memory and select pages for replacement are discussed in Section 20.6, Memory
Management.

Users access files and directories by navigating the directory tree. The root of
the directory tree is called the root directory. From the root directory, users can
navigate any available file systems. User processes access file system data through

Figure 20.1 | Linux architecture.

User space

Kernel space

Hardware

System call interface

Applications Services

Process
manager

Memory
manager

Virtual
file
system

Network
interface

Interprocess
communication
system

Physical
file
systems

I/O interface

12 Case Study: Linux

©1981–2004, Deitel & Associates, Inc. All rights reserved.

the system call interface. When system calls access a file or directory in the direc-
tory tree, they do so through the virtual file system (VFS) interface, which provides
to processes a single interface to access files and directories stored in multiple het-
erogeneous file systems (e.g., ext2 and NFS). The virtual file system passes requests
to particular file systems, which manage the layout and location of data, as dis-
cussed in Section 20.7, File Systems.

Based on the UNIX model, Linux treats most devices as files, meaning that
they are accessed using the same mechanisms with which data files are accessed.
When user processes read from or write to devices, the kernel passes requests to the
virtual file system interface, which then passes requests to the I/O interface. The I/O
interface passes requests to device drivers that perform I/O operations on the hard-
ware in a system. In Section 20.8, Input/Output Management, we discuss the I/O
interface and its interaction with other kernel subsystems.

 Linux provides a networking subsystem to allow processes to exchange data
with other networked computers. The networking subsystem accesses the I/O inter-
face to send and receive packets using the system’s networking hardware. It allows
applications and the kernel to inspect and modify packets as they traverse the sys-
tem’s networking layers via the packet filtering interface. This interface allows sys-
tems to implement firewalls, routers and other network utilities. In Section 20.11,
Networking, we discuss the various components of the networking subsystem and
their implementations.

20.4.1 Hardware Platforms
Initially, Torvalds developed Linux for use on 32-bit Intel x86 platforms. As its pop-
ularity grew, developers implemented Linux on a variety of other architectures. The
Linux kernel supports the following platforms: x86 (including Intel IA-32), HP/
Compaq Alpha AXP, Sun SPARC, Sun UltraSPARC, Motorola 68000, PowerPC,
PowerPC64, ARM, Hitachi SuperH, IBM S/390 and zSeries, MIPS, HP PA-RISC,
Intel IA-64, AMD x86-64, H8/300, V850 and CRIS.32

Each architecture typically requires that the kernel use a different set of low-
level instructions to perform operating system functions. For example, an Intel pro-
cessor implements a different system call mechanism than a Motorola processor.
The code that performs operations that are implemented differently across archi-
tectures is called architecture-specific code. The process of modifying the kernel to
support new architecture is called porting. To facilitate the process of porting Linux
to new platforms, architecture-specific code is separated from the rest of the kernel
code into the /arch directory of the kernel source tree. The kernel source tree
organizes each significant component of the kernel into different subdirectories.
Each subdirectory in /arch contains code corresponding to a particular architec-
ture (e.g., machine instructions for a particular processor). When the kernel must
perform processor-specific operations, such as manipulating the contents of a pro-
cessor cache, control passes to the architecture-specific code that was integrated
into the kernel at compile time.33 Although Linux relies on architecture-specific

20.4 Kernel Architecture 13

©1981–2004, Deitel & Associates, Inc. All rights reserved.

code to control computer hardware, Linux may also be executed on a set of virtual
hardware devices. The mini case study, User-Mode Linux (UML), describes one
such Linux port.

For a system to execute properly on a particular architecture, the kernel must
be ported to that architecture and compiled for a particular machine prior to execu-
tion. Likewise, applications may need to be compiled (and sometimes redesigned)
to properly operate on a particular system. For many platforms, this work has
already been accomplished—a variety of platform-specific distributions provide
ports of common applications and system services.34

User-Mode Linux (UML)
Kernel development is a compli-
cated and error-prone process
that can result in numerous bugs.
Unlike other software, the kernel
may execute privileged instruc-
tions, meaning that a flaw in the
kernel could damage a system’s
data and hardware. As a result,
kernel development can be a
tedious (and risky) endeavor.
User-Mode Linux (UML) facili-
tates kernel development by
allowing developers to test and
debug the kernel without damag-
ing the system on which it runs.

User-Mode Linux (UML) is a
version of the Linux kernel that
runs as a user application on a
computer running Linux. Unlike
most versions of Linux, which con-
tain architecture-specific code to
control devices, UML performs all
architecture-specific operations

using system calls to the Linux sys-
tem on which it runs. As a result,
UML is interestingly considered to
be port of Linux to itself.40

The UML kernel runs in user
mode, so it cannot execute privi-
leged instructions available to the
host kernel. Instead of controlling
physical resources, the UML ker-
nel creates virtual devices (repre-
sented as files on the host system)
that simulate real devices.
Because the UML kernel does not
control any real hardware, it can-
not damage the system.

Almost all kernel mecha-
nisms, such as process scheduling
and memory management, are
handled in the UML kernel; the
host kernel executes only when
privileged access to hardware is
required. When a UML process
issues a system call, the UML ker-

nel intercepts and handles it
before it can be sent to the host
system. Although this technique
incurs significant overhead, UML’s
primary goal is to provide a safe
(i.e., protected) environment in
which to execute software, not to
provide high performance.41

The UML kernel has been
applied to more than just testing
and debugging. For example,
UML can be used to run multiple
instances of Linux at once. It can
also be used to port Linux such
that it runs as an application in
operating systems other than
Linux. This could allow users to
run Linux on top of a UNIX or a
Windows system. The Web
Resources section at the end of
this chapter provides a link to a
Web site that documents UML
usage and development.

Mini Case Study

14 Case Study: Linux

©1981–2004, Deitel & Associates, Inc. All rights reserved.

20.4.2 Loadable Kernel Modules
Adding functionality to the Linux kernel, such as support for a particular file sys-
tem or a new device driver, can be tedious. Because the kernel is monolithic, drivers
and file systems are implemented in kernel space. Consequently, to permanently
add support for a device driver, users must patch the kernel source by adding the
driver code, then recompiling the kernel. This can be a lengthy and error-prone pro-
cess, so an alternative method has been developed for adding features to the ker-
nel—loadable kernel modules.

A kernel module contains object code that, when loaded, is dynamically
linked to a running kernel (see Section 2.8, Compiling, Linking and Loading). If a
device driver or file system is implemented as a loadable kernel module, it can be
loaded into the kernel on demand (i.e., when first accessed) without any additional
kernel configuration or compilation. Also, because modules can be loaded on
demand, moving code from the kernel into modules reduces the memory footprint
of the kernel; hardware and file system drivers are not loaded into memory until
needed. Modules execute in kernel mode (as opposed to user mode) so they can
access kernel functions and data structures. Consequently, loading an improperly
coded module can lead to disastrous effects in a system, such as data corruption.35

When a module is loaded, the module loader must resolve all references to
kernel functions and data structures. Kernel code allows modules to access functions
and data structures by exporting their names to a symbol table.36 Each entry in the
symbol table contains the name and address of a kernel function or data structure.
The module loader uses the symbol table to resolve references to kernel code.37

Because modules execute in kernel mode, they require access to symbols in the
kernel symbol table, which allows modules to access kernel functions. However, con-
sider what can happen if a function is modified between kernel versions. If a module
was written for a prior kernel version, the module may expect a particular, yet invalid,
result from a current kernel function (e.g., an integer value instead of an unsigned
long value), which may in turn lead to errors such as exceptions. To avoid this prob-
lem, the kernel prevents users from loading modules written for a version of the ker-
nel other than the current one, unless explicitly overridden by the superuser.38

Modules must be loaded into the kernel before use. For convenience, the ker-
nel supports dynamic module loading. When compiling the kernel, the user is given
the option to enable or disable kmod—a kernel subsystem that manages modules
without user intervention. The first time the kernel requires access to a module, it
issues a request to kmod to load the module. Kmod determines any module depen-
dencies, then loads the requested module. If a requested module depends on other
modules that have not been loaded, kmod will load those modules on demand.39

20.5 Process Management
The process management subsystem is essential to providing efficient multiprogram-
ming in Linux. Although responsible primarily for allocating processors to processes,

20.5 Process Management 15

©1981–2004, Deitel & Associates, Inc. All rights reserved.

the process management subsystem also delivers signals, loads kernel modules and
receives interrupts. The process management subsystem contains the process sched-
uler, which provides processes access to a processor in a reasonable amount of time.

20.5.1 Process and Thread Organization
In Linux systems, both processes and threads are called tasks; internally, they are
represented by a single data structure. In this section, we distinguish processes from
threads from tasks where appropriate. The process manager maintains a list of all
tasks using two data structures. The first is a circular, doubly linked list in which
each entry contains pointers to the previous and next tasks in the list. This structure
is accessed when the kernel must examine all tasks in the system. The second is a
hash table. When a task is created, it is assigned a unique PID (process identifier).
Process identifiers are passed to a hash function to determine their location in the
process table. The hashing method provides quick access to a specific task’s data
structure when the kernel knows its PID.42

Each task in the process table is represented by a task_struct structure,
which serves as the process descriptor (i.e., the PCB). The task_struct structure
stores variables and nested structures containing information describing a process.
For example, the variable state stores information about the current task state.
[Note: The kernel is primarily written using the C programming language and
makes extensive use of structures to represent software entities.]

A task transitions to the running state when it is dispatched to a processor
(Fig. 20.2). A task enters the sleeping state when it blocks and the stopped state
when it is suspended. The zombie state indicates that a task has been terminated
but has not yet been removed from the system. For example, if a process contains
several threads, it will enter the zombie state until its threads have been notified
that it received a termination signal. A task in the dead state may be removed from
the system. The states active and expired are process scheduling states (described in
the next section), which are not stored in the variable state.

Other important task-specific variables permit the scheduler to determine
when a task should run on a processor. These variables include the task’s priority,
whether the task is a real-time task and, if so, which real-time scheduling algorithm
should be used (real-time scheduling is discussed in the next section).43

Nested structures within a task_struct store additional information about a
task. One such structure, mm_struct, describes the memory allocated to a task (e.g.,
the location of its page table in memory and the number of tasks sharing its address
space). Additional structures nested within a task_struct contain information
such as register values that store a task’s execution context, signal handlers and the
task’s access rights.44 These structures are accessed by several kernel subsystems
other than the process manager.

When the kernel is booted, it typically loads a process called init, which then
uses the kernel to create all other tasks.45 Tasks are created using the clone system
call; any calls to fork or vfork are converted to clone system calls at compile

16 Case Study: Linux

©1981–2004, Deitel & Associates, Inc. All rights reserved.

time. The purpose of fork is to create a child task whose virtual memory space is
allocated using copy-on-write to improve performance (see Section 10.4.6, Sharing
in a Paging System). When the child or the parent attempts to write to a page in
memory, the writer is allocated its own copy of the page. As discussed in
Section 10.4.6, copy-on-write can lead to poor performance if a process calls execve
to load a new program immediately after the fork. For example, if the parent exe-
cutes before its child, a copy-on-write will be performed for any page the parent
modifies. Because the child will not use any of its parent’s pages (if the child will
immediately call execve when it executes), this operation is pure overhead. There-
fore, Linux supports the vfork call, which improves performance when child pro-
cesses will call execve. vfork suspends the parent process until the child calls
execve or exit, to ensure that the child loads its new pages before the parent causes
any wasteful copy-on-write operations. vfork further improves performance by not
copying the parent’s page tables to the child, because new page table entries will be
created when the child calls execve.

Figure 20.2 | Task state-transition diagram.

creation

active

running

expired

zombie

dead

stopped

sleeping

Dispatched

New
epoch

Time slice
expires,
interactive
task

Activated states

Task receives
exit or kill
signal

Time slice
expires

Task exits
system

Insert into run queue

Unblock

Continue
signal

Block

Stop signal

20.5 Process Management 17

©1981–2004, Deitel & Associates, Inc. All rights reserved.

Linux Threads and the clone System Call

Linux provides support for threads using the clone system call, which enables the
calling process to specify whether the thread shares the process’s virtual memory,
file system information, file descriptors and/or signal handlers.46 In Section 4.2,
Definition of Thread, we mentioned that processor registers, the stack and other
thread-specific data (TSD) are local to each thread, while the address space and
open file handles are global to the process that contains the threads. Thus, depend-
ing on how many of the process’s resources are shared with its thread, the resulting
thread may be quite different from the threads described in Chapter 4.

Linux’s implementation of threads has generated much discussion regarding
the definition of a thread. Although clone creates threads, they do not precisely
conform to the POSIX thread specification (see Section 4.8, POSIX and Pthreads).
For example, two or more threads that were created using a clone call specifying
maximum resource sharing still maintain several data structures that are not shared
with all threads in the process, such as access rights.47

When clone is called from a kernel process (i.e., a process that executes ker-
nel code), it creates a kernel thread that differs from other threads in that it directly
accesses the kernel’s address space. Several daemons within the kernel are imple-
mented as kernel threads—these daemons are services that sleep until awakened by
the kernel to perform tasks such as flushing pages to secondary storage and sched-
uling software interrupts (see Section 20.8.6, Interrupts).48 These tasks are gener-
ally maintenance related and execute periodically.

There are several benefits to the Linux thread implementation. For example,
Linux threads simplify kernel code and reduce overhead by requiring only a single
copy of task management data structures.49 Moreover, although Linux threads are
less portable than POSIX threads, they allow programmers the flexibility to tightly
control shared resources between tasks. A recent Linux project, Native POSIX
Thread Library (NPTL), has achieved nearly complete POSIX conformance and is
likely to become the default threading library in future Linux distributions.50

20.5.2 Process Scheduling
The goal of the Linux process scheduler is to run all tasks within a reasonable
amount of time while respecting task priorities, maintaining high resource utiliza-
tion and throughput, and reducing the overhead of scheduling operations. The pro-
cess scheduler also addresses Linux’s role in the high-end computer system market
by scaling to SMP and NUMA architectures while providing high processor affinity.
One of the more significant scalability enhancements in version 2.6 is that all sched-
uling functions are constant-time operations, meaning that the time required to exe-
cute scheduling functions does not depend on the number of tasks in the system.51

At each system timer interrupt (an architecture-specific number set to 1 milli-
second by default for the IA-32 architecture52), the kernel updates various book-
keeping data structures (e.g., the amount of time a task has been executing) and
performs scheduling operations as necessary. Because the scheduler is preemptive,

18 Case Study: Linux

©1981–2004, Deitel & Associates, Inc. All rights reserved.

each task runs until its quantum, or time slice, expires, a higher priority process
becomes runnable or the process blocks. Each task’s time slice is calculated as a
function of the process’s priority upon release of the processor (with the exception
of real-time tasks, which are discussed later). To prevent time slices from being too
small to allow productive work or so large as to diminish response times, the sched-
uler ensures that the time slice assigned to each task is between 10 and 200 timer
intervals, corresponding to a range of 10–200 milliseconds on most systems (like
most scheduler parameters, these default values have been chosen empirically).
When a task is preempted, the scheduler saves the task state to its task_struct
structure. If the process’s time slice has expired, the scheduler recalculates the pro-
cess’s priority, determines the task’s next time slice and dispatches the next process.

Run Queues

Once a task has been created using clone, it is placed in a processor’s run queue,
which contains references to all tasks competing for execution on that processor. Run
queues, similar to multilevel feedback queues (Section 8.7.6, Multilevel Feedback
Queues), assign tasks to priority levels. The priority array maintains pointers to each
level of the run queue. Each entry in the priority array points to a list of tasks—a task
of priority i is placed in the ith entry of a priority array in the run queue (Fig. 20.3).

Figure 20.3 | Scheduler priority array.

P5

Tasks in each level of
the priority array are
scheduled round-robin

Run queue

Processor

P1

P8

P4

P10 P15

–20

19

P16 P1

Priority
array

20.5 Process Management 19

©1981–2004, Deitel & Associates, Inc. All rights reserved.

The scheduler dispatches the task at the front of the list in the highest level of the pri-
ority array. If more than one task exists in a level of the priority array, tasks are dis-
patched from the priority array round-robin. When a task enters the blocked or
sleeping (i.e., waiting) state, or is otherwise unable to execute, that task is removed
from its run queue.

One goal of the scheduler is to prevent indefinite postponement by defining a
period of time called an epoch during which each task in the run queue will execute
at least once. To distinguish processes that are considered for processor time from
those that must wait until the next epoch, the scheduler defines an active state and
an expired state. The scheduler dispatches only processes in the active state.

The duration of an epoch is determined by the starvation limit—an empiri-
cally derived value that provides high-priority tasks with good response times while
ensuring that low-priority tasks are dispatched often enough to perform productive
work within a reasonable amount of time. By default, the starvation limit is set to
10n seconds, where n is the number of tasks in the run queue. When the current
epoch has lasted longer than the starvation limit, the scheduler transitions each
active task in the run queue to the expired state (the transition occurs after each
active task’s time slice expires). This temporarily suspends high-priority tasks (with
the exception of real-time tasks), allowing low-priority tasks to execute. When all
tasks in the run queue have executed at least once, all tasks in that run queue will be
in the expired state. At this point, the scheduler transitions all tasks in the run queue
to the active state and a new epoch begins.53

To simplify the transition from the expired state to the active state at the end
of an epoch, the Linux scheduler maintains two priority arrays for each processor.
The priority array that contains tasks in the active state is called the active list. The
priority array that stores expired tasks (i.e., tasks that are not allowed to execute
until the next epoch) is called the inactive (or expired) list. When a task transitions
from the active state to the expired state, it is placed in the level of the expired list’s
priority array corresponding to its priority when it transitioned to the expired state.
At the end of an epoch, all tasks are located in the expired state and must transition
to the active state. The scheduler performs this operation quickly by simply swap-
ping the pointers to the expired list and the active list. By maintaining two priority
arrays per process, the scheduler can transition all tasks in a run queue using a sin-
gle swap operation, a performance enhancement that generally outweighs the nom-
inal memory overhead due.54

The Linux scheduler scales to multiprocessor systems by maintaining one run
queue for each physical processor in the system. One reason for per-processor run
queues is to assign tasks to execute on particular processors to exploit processor
affinity. Recall from Chapter 15 that processes in some multiprocessor architectures,
such as NUMA, achieve higher performance when a task’s data is stored in a proces-
sor’s local memory and in a processor’s cache. Consequently, tasks can achieve
higher performance if they are consistently assigned to a single processor (or node).
However, per-processor run queues risk unbalancing processor loads, leading to

20 Case Study: Linux

©1981–2004, Deitel & Associates, Inc. All rights reserved.

reduced system performance and throughput (see Section 15.7, Process Migration).
Later in this section, we discuss how Linux addresses this issue by dynamically bal-
ancing the number of tasks executing on each processor in the system.

Scheduling Priority

In the Linux scheduler, a task’s priority affects the size of its time slice and the
order in which it executes on a processor. Upon creation, tasks are assigned a static
priority, also called the nice value. The scheduler recognizes 40 distinct priority lev-
els, ranging from –20 to 19. Conforming to UNIX convention, smaller priority val-
ues denote higher priority in the scheduling algorithm (i.e., –20 is the highest
priority a process can attain).

One goal of the Linux scheduler is to provide a high level of system interactiv-
ity. Because interactive tasks typically block to perform I/O or sleep (e.g., while
waiting for a user response), the scheduler dynamically boosts the priority (by dec-
rementing the static priority value) of a task that yields its processor before the
task’s time slice expires. This is acceptable because I/O-bound processes normally
use the processor only briefly before generating an I/O request. Thus, giving I/O-
bound tasks high priority has little effect on processor-bound tasks, which might use
the processor for hours at a time if the system makes the processor available on a
nonpreemptible basis. The modified priority level is called a task’s effective priority,
which is calculated when a task sleeps or consumes its time slice. A task’s effective
priority determines the level of the priority array in which a task is placed. There-
fore, a task that receives a priority boost is placed in a lower level of the priority
array, meaning it will execute before tasks of a higher effective priority value.

To further improve interactivity, the scheduler penalizes a processor-bound
task by increasing its static priority value. This places a processor-bound task in a
higher level of the priority array, meaning tasks of a smaller effective priority will be
executed before it. Again, this ultimately has little effect on processor-bound tasks
because the higher-priority interactive tasks execute only briefly before blocking.

To ensure that a task executes at or near the priority it was initially assigned,
the task scheduler does not allow a task’s effective priority to differ from its static
priority by more than five units. In this sense, the scheduler honors the priority lev-
els assigned to a task when it was created.

Scheduling Operations

The scheduler removes a task from a processor if the task is interrupted, preempted
(e.g., if its time slice expires) or blocks. Each time a task is removed from a proces-
sor, the scheduler calculates a new time slice. If the task blocks, or is otherwise
unable to execute, it is deactivated, meaning that it is removed from the run queue
until it becomes ready to execute. Otherwise, the scheduler determines whether the
task should be placed in the active list or the inactive list. The algorithm that deter-
mines this has been empirically derived to provide good performance; its primary
factors are a task’s static and effective priorities.

20.5 Process Management 21

©1981–2004, Deitel & Associates, Inc. All rights reserved.

The result of the algorithm is depicted in Fig. 20.4. The y-axis of Fig. 20.4 indi-
cates a task’s static priority value and the x-axis represents a task’s priority adjust-
ment (i.e., boost or penalty) The shaded region indicates sets of static priority
values and priority adjustments that cause a task to be rescheduled, meaning that it
is placed at the end of its corresponding priority array in the active list. In general, if
a task is of high priority and/or has received a significant bonus to its effective prior-
ity, it is rescheduled. This allows high-priority, I/O-bound and interactive tasks to
execute more than once per epoch. In the unshaded region, tasks that are of low
priority and/or have received priority penalties are placed in the expired list.

When a user process clones, it may seem reasonable to allocate each child its
own time slice. However, if a task spawns a large number of new tasks, and all of its
children are allocated their own time slices, other tasks in the system might experi-
ence unreasonably poor response times during that epoch. To improve fairness,
Linux requires that each parent process initially share its time slice with its children
when a user process clones. The scheduler enforces this requirement by assigning
half of the parent’s original time slice to both the parent process and its child the
child is spawned. To prevent legitimate processes from suffering low levels of ser-

Figure 20.4 | Priority values and their corresponding levels of interactivity.
55

Interactive tasksProcessor-bound tasks

Key

10

0

5

Prio
rity

ad
ju

stm
en

t

–5

Requeued in active list
when time slice expires

Sent to expired list
when time slice expires

Static priority (niceness)

19

–10

–20

22 Case Study: Linux

©1981–2004, Deitel & Associates, Inc. All rights reserved.

vice due to spawning child processes, this reduced time slice applies only during the
remainder of the epoch during which the child is spawned.

Multiprocessor Scheduling

Because the process scheduler maintains tasks in a per-processor run queue, tasks
will generally exhibit high processor affinity. This means that a task will likely be
dispatched to the same processor for each of its time slices, which can increase per-
formance when a task’s data and instructions are located in a processor’s caches.
However, such a scheme could allow one or several processors on an SMP system
to lie idle even during a heavy system load. To avoid this, if the scheduler detects
that a processor is idle, it performs load balancing to migrate tasks from one proces-
sor to another to improve resource utilization. If the system contains only one pro-
cessor, load balancing routines are removed from the kernel when it is compiled.

The scheduler determines if it should perform load balancing routines after
each timer interrupt, which is set to one millisecond on IA-32 systems. If the proces-
sor that issued the timer interrupt is idle (i.e., its run queue is empty), the scheduler
attempts to migrate tasks from the processor with the heaviest load (i.e., the proces-
sor that contains the largest number of processes in its run queue) to the idle pro-
cessor. To reduce load balancing overhead, if the processor that triggered the
interrupt is not idle, the scheduler will attempt to move tasks to that processor
every 200 timer interrupts instead of after every timer interrupt.56

 The scheduler determines processor load by using the average length of each
run queue over the past several timer interrupts, to minimize the effect of variations
in processor loads on the load balancing algorithm. Because processor loads tend to
change rapidly, the goal of load balancing is not to adjust the size of two run queues
until they are of equal length; rather, it is to reduce the imbalance between the
number of tasks in each run queue. As a result, tasks are removed from the larger
run queue until the difference in size between the two run queues has been halved.
To reduce overhead, load balancing is not performed unless the run queue with the
heaviest load contains 25 percent more tasks than the run queue of the processor
performing the load balancing.57

When the scheduler selects tasks for balancing, it attempts to choose tasks
whose performance will be least affected by moving from one processor to another.
In general, the least-recently active task on a processor will most likely be cache-cold
on the processor—a cache-cold task does not contain much (or any) of the task’s
data in its processor’s cache, whereas a cache-hot task contains most (or all) of the
task’s data in the processor cache. Therefore, the scheduler chooses to migrate tasks
that are most likely cache-cold (i.e., tasks that have not executed recently).

Real-Time Scheduling

The scheduler supports soft real-time scheduling by attempting to minimize the
time during which a real-time task waits to be dispatched to a processor. Unlike a
normal task, which is eventually placed in the expired list to prevent low-priority
tasks from being indefinitely postponed, a real-time task is always placed in the

20.6 Memory Management 23

©1981–2004, Deitel & Associates, Inc. All rights reserved.

active list after its quantum expires. Further, real-time tasks always execute with
higher priority than normal tasks. Because the scheduler always dispatches a task
from the highest-priority queue in the active list (and real-time tasks are never
removed from the active list), normal tasks cannot preempt real-time tasks.

The scheduler complies with the POSIX specification for real-time processes
by allowing real-time tasks to be scheduled using the default scheduling algorithm
described in the previous sections, or using the round-robin or FIFO scheduling
algorithms. If a task specifies round-robin scheduling and its time slice has expired,
the task is allocated a new time slice and is enqueued at the end of its priority array
in the active list. If the task specifies FIFO scheduling, it is not assigned a time slice
and therefore will execute on a processor until it exits, sleeps, blocks or is inter-
rupted.58 Clearly, real-time processes can indefinitely postpone other processes if
coded improperly, resulting in poor response times. To prevent accidental or mali-
cious misuse of real-time tasks, only users with root privileges can create them.

20.6 Memory Management
During the development of kernel versions 2.4 and 2.6, the memory manager was
heavily modified to improve performance and scalability. The memory manager
supports both 32- and 64-bit addresses as well as nonuniform memory access
(NUMA) architectures to allow it to scale from desktop computers and worksta-
tions to servers and supercomputers.

20.6.1 Memory Organization
On most architectures, a system’s physical memory is divided into fixed-size page
frames. Generally, Linux allocates memory using a single page size (often 4KB or
8KB); on some architectures that support large pages (e.g., 4MB), kernel code may
be placed in large pages. This can improve performance by minimizing the number
of entries for kernel page frames in the translation lookaside buffer (TLB).59 The
kernel stores information about each page frame in a page structure. This structure
contains variables that describe page usage, such as the number of processes shar-
ing the page and flags indicating the state of the page (e.g., dirty, unused, etc).60

Virtual Memory Organization

On 32-bit systems, each process can address 232 bytes, meaning that each virtual
address space is 4GB. The kernel supports larger virtual address spaces on 64-bit
systems—up to 2 petabytes (i.e., 2 million gigabytes) on Intel Itanium processors
(the Itanium processor uses only 51 bits to address main memory, but the IA-64
architecture can support up to 64-bit physical addresses).61 In this section, we focus
on the 32-bit implementation of the virtual memory manager. Entries describing
the virtual-to-physical address mappings are located in each process’s page tables.
The virtual memory system supports up to three levels of page tables to locate the
mappings between virtual pages and page frames (see Fig. 20.5). The first level of
the page table hierarchy, called the page global directory, stores addresses of sec-

24 Case Study: Linux

©1981–2004, Deitel & Associates, Inc. All rights reserved.

ond-level tables. Second-level tables, called page middle directories, store addresses
of the third-level tables. The third level, simply called page tables, maps virtual
pages to page frames.

The kernel partitions a virtual address into four fields to provide processors
with multilevel page address translation information. The first three fields are indi-
ces into the process’s page global directory, page middle directory and page table,
respectively. These three fields allow the system to locate the page frame corre-
sponding to a virtual page. The fourth field contains the displacement (also called
offset) from the physical address of the beginning of the page frame.69 Linux dis-
ables page middle directories when running on the IA-32 architecture, which sup-
ports only two levels of page tables when the Physical Address Extension (PAE)
feature is disabled. Page middle directories are enabled for 64-bit architectures that
support three or more levels of page tables (e.g., the x86-64 architecture, which sup-
ports four levels of page tables).

Virtual Memory Areas

Although a process’s virtual address space is composed of individual pages, the ker-
nel uses a higher-level mechanism, called virtual memory areas, to organize the vir-
tual memory a process is using. A virtual memory area describes a contiguous set of
pages in a process’s virtual address space that are assigned the same protection

Figure 20.5 | Page table organization.

Address of
page global
directory a

Page table
origin register

b

Virtual address v = (g, m, t, d)

c

g
g

m t d

p’
Page
frame
p’

Displacement
d

Physical address

+

a
g

b +

a

b

m

c

t

m

c + t

b + m

a + g

+

c

t

Page
global
directory

Page
middle
directory

Page
table

20.6 Memory Management 25

©1981–2004, Deitel & Associates, Inc. All rights reserved.

(e.g., read-only, read/write, executable) and backing store. The kernel stores a pro-
cess’s executable code, heap, stack and each memory-mapped file (see Section 13.9,
Data Access Techniques) in separate virtual memory areas.70, 71

When a process requests additional memory, the kernel attempts to satisfy
that request by enlarging an existing virtual memory area. The virtual memory area
the kernel selects depends on the type of memory the process is requesting (e.g.,
executable code, heap, stack, etc.). If the process requests memory that does not
correspond to an existing virtual memory area, or if the kernel cannot allocate a
contiguous address space of the requested size in an existing virtual memory area,
the kernel creates a new virtual memory area.72

Virtual Memory Organization for the IA-32 Architecture

In Linux, virtual memory organization is architecture specific. In this section, we
discuss how the kernel organizes virtual memory by default to optimize perfor-
mance on the IA-32 architecture.

When the kernel performs a context switch, it must provide the processor with
page address translation information for the process that is about to execute (see
Section 10.4.1). Recall from Section 10.4.3 that an associative memory called the
translation lookaside buffer (TLB) stores recently used page table entries (PTEs)
so that the processor can quickly perform virtual-to-physical address translations
for the process that is currently running. Because each process is allocated a differ-
ent virtual address space, PTEs for one process are not valid for another. As a
result, the PTEs in the TLB must be removed after a context switch. This is called
flushing the TLB—the processor removes each PTE from the TLB and updates the
PTEs in main memory to match any modified PTEs in the TLB. In particular, each
time the value of the page table origin register changes, the TLB must be flushed.
The overhead due to a TLB flush can be substantial because the processor must
access main memory to update each PTE that is flushed. If the kernel changes the
value of the page table origin register to execute each system call, the overhead due
to TLB flushing can significantly reduce performance.

To reduce the number of expensive TLB flush operations, the kernel ensures
that it can use any process’s page table origin register to access the kernel’s virtual
address space. The kernel does this by dividing each process’s virtual address space
into user addresses and kernel addresses. The kernel allows each process to access
up to 3GB of the process’s virtual address space—the virtual addresses from zero to
3GB. Therefore, virtual-to-physical address translation information can vary
between processes for the first 3GB of each 32-bit virtual address space. The kernel
address space is the remaining 1GB of virtual addresses in each process’s 32-bit vir-
tual address space (addresses ranging from 3GB to 4GB), as shown in Fig. 20.6. The
virtual-to-physical address translation information for this region of memory
addresses does not vary from one process to another. Therefore, when a user pro-
cess invokes the kernel, the processor does not need to flush the TLB, which
improves performance by reducing the number of times the processor accesses
main memory to update page table entries.62

26 Case Study: Linux

©1981–2004, Deitel & Associates, Inc. All rights reserved.

Often, the kernel must access main memory on behalf of user processes (e.g.,
to perform I/O); therefore, it must be able to access every page frame in main mem-
ory. However, today’s processors require that all memory references use virtual
addresses to access memory (if virtual memory is enabled). As a result, the kernel
generally must use virtual addresses to access page frames.

When using virtual addresses, the kernel must provide the processor with PTEs
that map the kernel’s virtual pages to the page frames it must access. The kernel could
create these PTEs each time it accessed main memory; however, doing so would cre-
ate significant overhead. Therefore, the kernel creates PTEs that map most of the
pages in the kernel’s virtual address space permanently to page frames in main mem-
ory. For example, the first page of the kernel’s virtual address space always points to
the first page frame in main memory; the 100th page of the kernel’s virtual address
space always points to the 100th page frame in main memory (Fig. 20.6).

Note that creating a PTE (i.e., mapping virtual page to a page frame) does not
allocate a page frame to the kernel or a user process. For example, assume that page
frame number 100 stores a process’s virtual page p. When the kernel accesses vir-
tual page number 100 in the kernel virtual address space, the processor maps the
virtual page number to page frame number 100, which stores the contents of p.
Thus, the kernel’s virtual address space is used to access page frames that may be
allocated to the kernel or user processes.

Ideally, the kernel would be able to create PTEs that permanently map to
each page frame in memory. However, if a system contains more than 1GB of main
memory, the kernel cannot create a permanent mapping to every page frame
because it reserves only 1GB of each 4GB virtual address space for itself. For exam-
ple, when the kernel performs I/O on behalf of a user process, it must be able to
access the data using pages in its 1GB virtual address space. However, if a user pro-

Figure 20.6 | Kernel virtual address space mapping.

Main
memory

Virtual
memory

3GB 4GB

896MB

896MB

Kernel
address
space

The nth page of the
 kernal address space
 maps to the nth page
 frame of main
 memory

0

0

20.6 Memory Management 27

©1981–2004, Deitel & Associates, Inc. All rights reserved.

cess requests I/O for a page that is stored at an address higher than 1GB, the kernel
might not contain a mapping to that page. In this case, the kernel must be able to
create a temporary mapping between a kernel virtual page and a user’s physical
page in main memory to perform the I/O. To address this problem, the kernel maps
most of its virtual pages permanently to page frames and reserves several virtual
pages to provide temporary mappings to the remaining page frames. In particular,
the kernel creates PTEs that map the first 896MB of its virtual pages permanently
to the first 896MB of main memory when the kernel boots. It reserves the remain-
ing 128MB of its virtual address space for temporary buffers and caches that can be
mapped to other regions of main memory. Therefore, if the kernel must access page
frames beyond 896MB, it uses virtual addresses in this region to create a new PTE
that temporarily maps a virtual page to a page frame.

Physical Memory Organization

The memory management system divides a system’s physical address space into
three zones (Fig. 20.7). The size of each zone is architecture dependent; in this sec-
tion we present the configuration for the IA-32 architecture discussed in the previ-
ous section. The first zone, called DMA memory, includes the main memory
locations from 0–16MB. The primary reason for creating a DMA memory zone is to
ensure compatibility with legacy architectures. For example, some direct memory

Figure 20.7 | Physical memory zones on the IA-32 Intel architecture.

896MB

16MB

0

High
memory
zone

Normal
memory
zone

DMA memory
zone

Largest memory address

Data for legacy architectures
Kernel data
User data if other zones are full

User data and most kernel data

User data and some kernel data

28 Case Study: Linux

©1981–2004, Deitel & Associates, Inc. All rights reserved.

access (DMA) devices can address only up to 16MB of memory, so Linux reserves
memory in this zone for such devices. The DMA memory zone also contains kernel
data and instructions (e.g., bootstrapping code) and might be allocated for user pro-
cesses if free memory is scarce.

The second zone, called normal memory, includes the physical memory loca-
tions between 16MB and up to 896MB. The normal memory zone can be used to
store user and kernel pages as well as data from devices that can access memory
greater than 16MB using DMA. Note that because the kernel’s virtual address
space is mapped directly to the first 896MB of main memory, most kernel data
structures are located in the low memory zones (i.e., the DMA or normal memory
zones). If these data structures were not located in these memory zones, the kernel
could not provide a permanent virtual-to-physical address mapping for kernel data
and might cause a page fault while executing its code. Page faults not only reduce
kernel performance but can be fatal when performing error-handling routines.

The third zone, called high memory, includes physical memory locations from
896MB to a maximum of 64GB on Pentium processors. (Intel’s Page Address Exten-
sion feature enables 36-bit memory addresses, allowing the system to access 236 bytes,
or 64GB, of main memory.) High memory is allocated to user processes, any devices
that can access memory in this zone and temporary kernel data structures.64

 Some devices, however, cannot access data in high memory because the num-
ber of physical addresses they can address is limited. In this case, the kernel copies
such data to a buffer, called a bounce buffer, in DMA memory to perform I/O.
After completing an I/O operation, the kernel copies any modified pages in the
buffer to the page in high memory.65, 66, 67

Depending on the architecture, the first megabyte of main memory might con-
tain data loaded into memory by initialization functions in the BIOS (see
Section 2.3.1, Mainboard). To avoid overwriting such data, the Linux kernel code
and data structures are loaded into a contiguous area of physical memory, typically
beginning at the second megabyte of main memory. (The kernel reclaims most of
the first megabyte of memory after loading.) Kernel pages are never swapped (i.e.,
paged) or relocated in physical memory. In addition to improving performance, the
contiguous and static nature of kernel memory simplifies coding for kernel devel-
opers at a relatively low cost (the kernel footprint is approximately 2MB).68

20.6.2 Physical Memory Allocation and Deallocation
The kernel allocates page frames to processes using the zone allocator. The zone
allocator attempts to allocate pages from the physical zone corresponding to each
request. Recall that the kernel reserves as much of the DMA memory zone as pos-
sible for use by legacy architectures and kernel code. Also, performing I/O opera-
tions on high memory might require use of a bounce buffer, which is less efficient
than using pages that are directly accessible by DMA hardware. Thus, although
pages for user processes can be allocated from any zone, the kernel attempts to
allocate them first from the high memory zone. If the high memory zone is full and

20.6 Memory Management 29

©1981–2004, Deitel & Associates, Inc. All rights reserved.

pages in normal memory are available, then the zone allocator uses pages from nor-
mal memory. Only when free memory is scarce in both the normal and the high
zone of memory does the zone allocator select pages in DMA memory.73

When deciding which page frames to allocate, the zone allocator searches for
empty pages in each zone’s free_area vector. The free_area vector contains ref-
erences to a zone’s free lists and bitmaps that identify contiguous blocks of memory.
Blocks of page frames are allocated in groups of powers of two; each element in a
zone’s free_area vector contains a list of blocks that are the same size—the nth
element in the vector references a list of blocks of size 2n.74 Figure 20.8 illustrates
the first three entries of the free_area vector.

To locate blocks of the requested size, the memory manager uses the binary
buddy algorithm to search the free_area vector. The buddy algorithm, described
by Knowlton and Knuth, is a simple physical page allocation algorithm that pro-
vides good performance.75, 76 If there are no blocks of the requested size, a block of
the next-closest size in the free_area vector is halved repeatedly until the resulting
block is of the correct size. When the memory manager finds a block of the correct
size, it allocates it to the process that requested it and places any orphaned free
blocks in the appropriate lists.77

When memory is deallocated, the buddy algorithm groups contiguous free
pages as follows. When a process frees a block of memory, the memory manager
checks the bitmap (in the free_area vector) that tracks blocks of that size. If the
bitmap indicates that an adjacent block is free, the memory manager combines the
two blocks (buddies) into a larger block. The memory manager repeats this process
until there are no blocks with which to combine the resulting block. The memory
manager then inserts the block into the proper list in free_area.78

Figure 20.8 | free_area vector.

0 1 2

free_area vector
Blocks of 20

page frames
Blocks of 21

page frames
Blocks of 22

page frames

Blocks of
page frames

30 Case Study: Linux

©1981–2004, Deitel & Associates, Inc. All rights reserved.

There are several kernel data structures (e.g., the structure that describes vir-
tual memory areas) that consume much less than a page of memory (4KB is the
smallest page size on most systems). Processes tend to allocate and release many
such data structures during the course of execution. Requests to the zone allocator
to allocate such small amounts of memory would result in substantial internal frag-
mentation because the smallest unit of memory the zone allocator can supply is a
page. Instead, the kernel satisfies such requests via the slab allocator. The slab allo-
cator allocates memory from any one of a number of available slab caches.79 A slab
cache is composed of a number of objects, called slabs, that span one or more pages
and contain structures of the same type. Typically, a slab is one page of memory that
serves as a container for multiple data structures smaller than a page. When the ker-
nel requests memory for a new structure, the slab allocator returns a portion of a
slab in the slab cache for that structure. If all of the slabs in a cache are occupied,
the slab allocator increases the size of the cache to include more slabs. These new
slabs contain pages allocated using the appropriate zone allocator.80

As previously discussed, serious or fatal system errors can occur if the kernel
causes a page fault during interrupt- or error-handling code. Similarly, a request to
allocate memory while executing such code must not fail if the system contains few
free pages. To prevent such a situation, Linux allows kernel threads and device driv-
ers to allocate memory pools. A memory pool is a region of memory that the kernel
guarantees will be available to a kernel thread or device driver regardless of how
much memory is currently occupied. Clearly, extensive use of memory pools limits
the number of page frames available to user processes. However, because a system
failure could result from a failed memory allocation, the trade-off is justified.81

20.6.3 Page Replacement
The Linux memory manager determines which pages to keep in memory and which
pages to replace (known as “swapping” in Linux) when free memory becomes
scarce. Recall that only pages in the user region of a virtual address space can be
replaced; most pages containing kernel code and data cannot be replaced.

As pages are read into memory, the kernel inserts them into the page cache.
The page cache is designed to reduce the time spent performing disk I/O opera-
tions. When the kernel must flush (i.e., write) a page to disk, it does so through the
page cache. To improve performance, the page cache employs write-back caching
(see Section 12.8, Caching and Buffering) to clean dirty pages.82

Each page in the page cache must be associated with a secondary storage device
(e.g., a disk) so the kernel knows where to place pages when they are swapped out.
Pages that are mapped to files are associated with a file’s inode, which describes the
file’s location on disk (see Section 20.7.1, Virtual File System, for a detailed descrip-
tion of inodes). As we discuss in the next section, pages that are not mapped to files
are placed on secondary storage in a region called the system swap file.83

When physical memory is full and a nonresident page is requested by pro-
cesses or the kernel, a page frame must be freed to fill the request. The memory

20.6 Memory Management 31

©1981–2004, Deitel & Associates, Inc. All rights reserved.

manager provides a simple, efficient page-replacement strategy. Figure 20.9 illus-
trates this strategy. In each memory zone, pages are divided into two groups:
active pages and inactive pages. To be considered active, a page must have been ref-
erenced recently. One goal of the memory manager is to maintain the current work-
ing set inside the collection of active pages.84

Linux uses a variation of the clock page-replacement strategy (see
Section 11.6.7). The memory manager uses two linked lists per zone to implement
page replacement: the active list contains active pages, the inactive list contains
inactive pages. The lists are organized such that the most-recently used pages are
near the head of the active list, and the least-recently used pages are near the tail of
the inactive list.85

When the memory manager allocates a page of memory to a process, the
page’s associated page structure is placed at the head of that zone’s inactive list and

Figure 20.9 | Page-replacement system overview.

Referenced
pages

Pages not
referenced

New
pages

Referenced
from
inactive list

Freed
pages

Active list

Tail

Head

Tail

Secondary
storage

Head

Inactive list

32 Case Study: Linux

©1981–2004, Deitel & Associates, Inc. All rights reserved.

that page is marked as having been referenced by setting its referenced bit. The
memory manager determines whether the page has been subsequently referenced
at several points during kernel execution, such as when a PTE is flushed from the
TLB. If the page has been referenced, the memory manager determines how to
mark the page based on whether the page is active or inactive, and whether it has
been referenced recently.

If the page is active or inactive and its referenced bit is off, the bit is turned on.
Similar to the clock algorithm, this technique ensures that recently referenced
pages are not selected for replacement. Otherwise, if the page is inactive and is
being referenced for the second time (its referenced bit is already on), the memory
manager moves the page to the head of the active list, then clears its referenced
bit.86 This allows the kernel to distinguish between referenced pages that have been
accessed once and those that have been accessed more than once recently. The lat-
ter are placed in the active list so that they are not selected for replacement.

The memory manager updates the active list by transferring pages that have
not been recently accessed to the inactive list. This is performed periodically and
when available memory is low. The memory manager attempts to balance the lists
such that approximately two-thirds of the total number of pages in the page cache
are in the active list—an empirically derived value that achieves good performance
in many environments.87 The memory manager achieves this goal by periodically
moving any unreferenced pages in the active list to the head of the inactive list.

This algorithm is repeated until the specified number of pages have been moved
from the tail of the active list to the head of the inactive list. A page in the inactive list
will remain in memory unless it is reclaimed (e.g., when free memory is low). While a
page is in the active list, however, the page cannot be selected for replacement.88

20.6.4 Swapping
When available page frames become scarce, the kernel must decide which pages to
swap out to free page frames for new requests. This is performed periodically by the
kernel thread kswapd (the swap daemon), which reclaims pages by writing dirty
pages to secondary storage. If the pages are mapped to a file in a particular file sys-
tem (i.e., store file data in main memory), the system updates the file with any mod-
ifications to the page in memory. If the page corresponds to a process’s data or
procedure page, kswapd writes them to a region of data in secondary storage called
the system swap file. kswapd selects pages to evict from entries at the tail of the
inactive list.89

When swapping out a page, kswapd first determines whether it exists in the
swap cache. The swap cache contains page table entries that describe whether a
given page already exists in the system swap file on secondary storage. Under cer-
tain conditions, if the swap cache contains an entry for the page being swapped out,
the page frame occupied by the page is freed immediately. By examining the swap
cache, kswapd can avoid performing expensive I/O operations when an exact copy
of the swapped page exists in the swap file.90

20.7 File Systems 33

©1981–2004, Deitel & Associates, Inc. All rights reserved.

Before a page is replaced, the memory manager must determine whether to
perform certain actions to ensure consistency (e.g., updating PTEs and writing data
to disk). A page chosen for replacement cannot be immediately swapped under the
following conditions:

• The page is shared (i.e., referenced by more than one process).

• The page has been modified.

• The page is locked—a process or device relies on its presence in main
memory to perform an operation.91

If a page is being referenced by more than one process, kswapd must first
unmap references to the page. The kernel unmaps a reference to a page by zeroing
its PTE value. Linux uses reverse mapping to quickly find all page table entries
pointing to a page, given a reference to a page frame. This is implemented in the
page structure by a linked list of page table entries that reference the page. Without
reverse mappings, the kernel would be required to search every page table in the
system to find PTEs that map the page that is chosen for replacement. Although
reverse mapping increases the size of each page object in the system, which in turn
increases kernel memory usage, the performance improvement over searching page
tables usually outweighs its cost.92

After the kernel unmaps all the page table entries that reference a page, it
must determine if the page has been modified. Modified (i.e., dirty) pages must be
flushed to disk before they can be freed. To improve performance and reduce data
loss during system crashes, the kernel attempts to limit the number of dirty pages
resident in memory. The kernel thread pdflush attempts to flush pages to disk (i.e.,
clean dirty pages) approximately every 5 seconds (depending on the system load)
and defines an upper limit of 30 seconds during which pages can remain dirty. Once
the disk flushing I/O is complete, kswapd can reclaim the page frame and allocate it
to a new virtual page.93, 94

If a page is locked, kswapd cannot access the page to free it because a process
or device relies on its presence in main memory to perform an operation. For exam-
ple, a page of memory used to perform an I/O operation is typically locked. When
the memory manager searches the inactive page list to choose pages for eviction, it
does not consider locked pages. The page is freed on the next pass through the list if
it is no longer locked and is still a member of the inactive list.95

20.7 File Systems
To meet the needs of users across multiple platforms, Linux must support a variety
of file systems. When the kernel requires access to a specific file, it calls functions
defined by the file system containing the file. Each particular file system determines
how to store and access its data.

In Linux, a file refers to more than bits on secondary storage—files serve as
access points to data, which can be found on a local disk, across a network, or even
generated by the kernel itself. By abstracting the concept of a file, the kernel can

34 Case Study: Linux

©1981–2004, Deitel & Associates, Inc. All rights reserved.

access hardware devices, interprocess communication mechanisms, data stored on
disk and a variety of other data sources using a single generic file system interface.
Developers use this interface to quickly add support for new file systems as they
become available. Linux kernel version 2.6 includes support for more than 40 file
systems that can be integrated into the kernel or loaded as modules.96 These
include general-purpose file systems (e.g., ext2, FAT and UDF), network file sys-
tems (e.g., NFS, CIFS and Coda) and file systems that exist exclusively in memory
(e.g., procfs, sysfs, ramfs and tmpfs). In the sections that follow, we discuss the ext2,
procfs, sysfs, ramfs and tmpfs file systems.

20.7.1 Virtual File System
Linux supports multiple file systems by providing a virtual file system (VFS) layer.
The VFS abstracts the details of file access, allowing users to view all the files and
directories in the system under a single directory tree. Users can access any file in
the directory tree without knowledge of where, and under which file system, the file
data are stored. All file-related requests are initially sent to the VFS layer, which
provides an interface to access file data on any available file system. The VFS pro-
vides only a basic definition of the objects that comprise a file system. Individual
file systems expand that basic definition to include details of how objects are stored
and accessed.97 Figure 20.10 illustrates this layered file system approach. Processes

Figure 20.10 | Relationship between the VFS, file systems and data.

Virtual file system

System call interface

File system
A

File system
B

File system
C

read write open

Data A Data B Data C

Processes

20.7 File Systems 35

©1981–2004, Deitel & Associates, Inc. All rights reserved.

issue system calls such as read, write and open, which are passed to the virtual file
system. The VFS determines the file system to which the request corresponds and
calls the corresponding routines in the file system driver, which perform the
requested operations. This layered approach simplifies application programming
and enables developers to add support for new file systems quickly, at the cost of
nominal execution-time overhead.

The VFS uses files to read and write data that are not necessarily stored as bits
on secondary storage. The virtual file system layer defines a number of objects that
locate and provide access to data. One such object, called an inode, describes the
location of each file, directory or link within every available file system. VFS inodes
do not contain the name of the file they represent; rather, inodes are uniquely iden-
tified by a tuple containing an inode number (which is unique to a particular file
system) and a number identifying the file system that contains the inode.98 The VFS
enables several file names to map to a single inode. This allows users to create hard
links—multiple file names that map to the same inode within a file system.

Linux uses files to represent many objects, including named sets of data, hard-
ware devices and shared memory regions. The broad usage of files originates in
UNIX systems, from which Linux borrows many concepts.

The VFS represents each file using a file descriptor, which contains informa-
tion about the inode being accessed, the position in the file being accessed and flags
describing how the data is being accessed (e.g. read/write, append-only).99 For clar-
ity, we refer to VFS file objects as “file descriptors” and use the term “file” to refer
to named data within a particular file system.

To map file descriptors to inodes, the VFS uses a dentry (directory entry)
object. A dentry contains the name of the file or directory an inode represents. A
file descriptor points to a dentry, which points to the corresponding inode.100

Figure 20.11 shows a possible dentry representation of the /home directory and its
contents. Each dentry contains a name and pointers to the dentry of its parent, chil-
dren and siblings. For example, the dentry corresponding to /home/chris contains
pointers to its parent (/home), children (/home/chris/foo, /home/chris/bar and
/home/chris/txt) and sibling (/home/jim) directory entries. Using this informa-
tion, the virtual file system can quickly resolve pathname-to-inode conversions.
Dentries are discussed further in Section 20.7.2, Virtual File System Caches.

The Linux directory tree is comprised of one or more file systems, each com-
prised of a tree of inodes. When a file system is mounted, its contents are attached
to a specified part of the primary directory tree. This allows processes to access data
located in different file systems transparently via a single directory tree. A VFS
superblock contains information about a mounted file system, such as the type of
file system, its root inode’s location on disk and housekeeping information that pro-
tects the integrity of the file system (e.g., the number of free blocks and free inodes
in the system).101 The VFS superblock is created by the kernel and resides exclu-
sively in memory. Each file system must provide the VFS with superblock data
when it is mounted.

36 Case Study: Linux

©1981–2004, Deitel & Associates, Inc. All rights reserved.

The data stored in a file system’s superblock is file-system dependent, but typ-
ically includes a pointer to the root inode (i.e., the inode that corresponds to the
root of the file system) as well as information regarding the size and available space
in the file system. Because a file system’s superblock contains a pointer to the first
inode in the file system, the operating system must load its superblock to access any
other data in the file system. Most file systems place their superblock in one of the
first blocks on secondary storage and maintain redundant copies of the superblock
throughout their storage device to recover from damage.102

The virtual file system interprets data from the superblock, inodes, files and
dentries to determine the contents of available file systems. The VFS defines
generic file system operations and requires that each file system provide an imple-
mentation for each operation it supports. For example, the VFS defines a read
function, but does not implement it. Example VFS file operations are listed in
Fig. 20.12. Each file system driver must therefore implement a read function to
allow processes to read its files. The virtual file system also provides generic file sys-
tem primitives (e.g., files, superblocks and inodes). Each file system driver must
assign file-system-specific information to these primitives.

Figure 20.11 | Dentry organization for a particular /home directory.

/home

/home/jim

/home/chris/foo /home/chris/bar

/home/chris

Key

Root of file system

/home/chris/txt

Dentry

Pointer

Each dentry
points to related

dentries in the
directory tree

20.7 File Systems 37

©1981–2004, Deitel & Associates, Inc. All rights reserved.

20.7.2 Virtual File System Caches
The virtual file system maintains a single directory tree composed of one or more file
systems. To improve performance for file and directory access, the virtual file system
maintains two caches—the directory entry cache (dcache) and the inode cache.
These caches contain information about recently used entries in the directory tree.
The cache entries represent objects in any available mounted file system.103

The dcache contains dentries corresponding to directories that have recently
been accessed. This allows the kernel to quickly perform a pathname-to-inode trans-
lation if the file specified by the pathname is located in main memory. Because the
amount of memory allocated to the dcache is limited, the VFS uses the dcache to
store the most recently used dentries.105 Although normally it cannot cache every
file and directory in the system, the VFS ensures that if a dentry is in the dcache, its
parent and other ancestors are also in the dcache. The only time this might not hold
true is when file systems are accessed across a network (due to the fact that remote
file system information can change without the local system being notified).106

Recall that when the VFS performs a pathname-to-inode translation, it uses
dentries in the dcache to quickly locate inodes in the inode cache. The VFS then
uses these inodes to locate a file’s data when it is cached in main memory. Because
the VFS relies on dentries to quickly locate inodes, each dentry’s corresponding
inode should be present in the inode cache. Therefore, the VFS ensures that each
dentry in the dcache corresponds to an inode in the inode cache.

Conversely, if an inode is not referenced by a dentry, the VFS cannot access
the inode. Therefore the VFS removes inodes that are no longer referenced by a
dentry.107, 108

Locating the inode corresponding to a given pathname is a multistep process.
The VFS must perform a directory-to-inode translation for each directory in the
pathname. The translation begins at the root inode of the file system containing the
pathname. The location of the file system’s root inode is found in its superblock,

VFS operation Intended use

read Copy data from a file to a location in memory.

write Write data from a location in memory to a file.

open Locate the inode corresponding to a file.

release Release the inode associated with a file. This can be per-
formed only when all open file descriptors for that inode are
closed.

ioctl Perform a device-specific operation on a device (represented
by an inode and file).

lookup Resolve a pathname to a file system inode and return a dentry
corresponding to it.

Figure 20.12 | VFS file and inode operations.

38 Case Study: Linux

©1981–2004, Deitel & Associates, Inc. All rights reserved.

which is loaded into memory when the file system is mounted. Beginning at the root
inode, the VFS must resolve each directory entry in the pathname to its corre-
sponding inode.109

When searching for the inode that represents a given directory, the VFS first
checks the dcache for the directory. If the dentry is found in the dcache, the corre-
sponding inode must exist in the inode cache. Note that in Fig. 20.13 the dentry cor-
responding to foo.txt exists in the dentry cache; that dentry then points to an
inode, which points to data in a file system.

If the VFS cannot find the dentry in the dcache, it searches for the inode
directly in the inode cache.110 Figure 20.13 illustrates this case using link.txt, a
hard link to the file bar.txt. In this case, a process has previously referenced
link.txt, meaning that a dentry corresponding to link.txt exists in the dcache.
Because link.txt is a hard link to bar.txt, link.txt’s dentry points to
bar.txt’s inode. When bar.txt is referenced for the first time, its dentry does not
exist in the dentry cache. However, because a process has referenced bar.txt using
a hard link, the inode corresponding to bar.txt exists in the inode cache. When the
VFS does not find an entry for bar.txt in the dcache, it searches the inode cache
and locates the inode corresponding to bar.txt.

If the dentry is not in the dcache and its corresponding inode is not in the
inode cache, the VFS locates the inode by calling its parent directory inode’s lookup
function (which is defined by the underlying file system).111 Once the directory is
located, its associated inode and corresponding dentry are loaded into memory. The
new inode is added to the inode cache and the dentry is added to the dcache.112

The VFS repeats the process of searching the caches before calling the lookup
function for each directory in the pathname. By utilizing the caches, the VFS can

Figure 20.13 | Dentry and inode caches.

VFS File system(s)

Inode cache

link.txt

Dentry not
present, but
inode present
due to hard link

Dentry and
inode present
in cache

bar.txt

foo.txt

Dentry cache

Dentry not found,
search inode cache

foo.txt
“foo.txt”

API

“bar.txt”

File
system 2

File
system 1

20.7 File Systems 39

©1981–2004, Deitel & Associates, Inc. All rights reserved.

avoid lengthy delays due to a file system’s accessing inodes on disk, across a net-
work, or from other media.

The inode lookup function is one of several functions that file systems typi-
cally implement (see Fig. 20.12). The primary responsibilities of the VFS are to
cache file system data and pass file access requests to the appropriate file systems.
Most file systems provide the VFS with their own implementations of functions
such as lookup, read and write to access files, directories and links. The VFS
allows file systems a great deal of flexibility in choosing which functions to imple-
ment and how to implement them.

20.7.3 Second Extended File System (ext2fs)
After its 1993 release, the second extended file system (ext2fs) quickly became the
most widely used Linux file system of its time. The primary goal of ext2fs is to pro-
vide a high-performance, robust file system with support for advanced features.113

As required by the virtual file system, ext2fs supports basic objects such as the
superblock, inodes and directories. The ext2fs implementation of these objects
extends their definitions to include specific information about the location and lay-
out of data on disk, as well as providing functions to retrieve and modify data.

When an ext2fs partition is formatted, its corresponding disk space is divided
into fixed-size blocks of data. Typical block sizes are 1,024, 2,048, 4,096 or 8,192
bytes. The file system stores all file data and metadata in these blocks.114 By default,
five percent of the blocks are reserved exclusively for users with root privileges
when the disk is formatted. This is a safety mechanism provided to allow root pro-
cesses to continue to run if a malicious or errant user process consumes all other
available blocks in the file system.115 The remaining 95 percent of the blocks can be
used by all users to organize and store file data.

An ext2 inode represents files and directories in an ext2 file system—each
inode stores information relevant to a single file or directory, such as time stamps,
permissions, the identity of the file’s owner and pointers to data blocks (Fig. 20.14).
A single block is rarely large enough to contain an entire file. Thus, there are 15
data block pointers (each 32 bits wide) in each ext2 inode. The first 12 pointers
directly locate the first 12 data blocks. The 13th pointer is an indirect pointer. The
indirect pointer locates a block that contains pointers to data blocks. The 14th
pointer is a doubly indirect pointer. The doubly indirect pointer locates a block of
indirect pointers. The 15th pointer is a triply indirect pointer—a pointer to a block
of doubly indirect pointers.

Consider an ext2 file system that uses 32-bit block addresses and a block size of
4,096 bytes. If a file is less than 48KB in size (i.e., it consumes 12 blocks of data or
fewer), the file system can locate the file’s data using pointers directly from the file’s
inode. The block of singly indirect pointers locates up to 1,024 data blocks (4MB of
file data). Thus, the file system need load only two blocks (the inode and the block of
indirect pointers) to locate over 4MB of file data. Similarly, the doubly indirect block
of pointers locates up to 1,0242, or 1,048,576, data blocks (4GB of file data).

40 Case Study: Linux

©1981–2004, Deitel & Associates, Inc. All rights reserved.

In this case, the file system must load one doubly indirect block, 1,025 singly
indirect blocks and the file’s inode (containing 12 direct pointers to data blocks) to
access files of 4GB. Finally, the triply indirect block of pointers locates up to 1,0243,

Figure 20.14 | Ext2 inode contents.

Ext2 inode

Permission info

Time stamps

Owner info

Data block pointers

Data blocks
1

Data blocks

Data blocks

Data blocks

Data block pointers

Data block pointers

Data block pointers

Data block pointers

Data block
pointers

Data block
pointers

… … …

…
…

Data block
pointers

Data block
pointers

Indirect pointer

Indirect pointers

Indirect pointers

Doubly indirect pointer

Doubly indirect pointers

Triply indirect pointer

Indirect pointers

2 3 4 5 6 7 8 13

20.7 File Systems 41

©1981–2004, Deitel & Associates, Inc. All rights reserved.

or 1,073,741,824, data blocks (4,096GB of file data). In this case, the file system
must load one triply indirect block, 1,025 doubly indirect blocks, 1,149,601 singly
indirect blocks and the file’s inode (containing 12 direct pointers to data blocks) to
access files of approximately 4,100GB. This design provides fast access to small files,
while supporting larger files (maximum file sizes range from 16GB to 4,096GB,
depending on the file system’s block size).116

Block Groups

Blocks in an ext2fs partition are divided into clusters of contiguous blocks called
block groups. The file system attempts to store related data in the same block
group. This arrangement reduces the seek time for accessing large groups of related
data (e.g., directory inodes, file inodes and file data) because blocks inside each
block group are located in a contiguous region of disk. Figure 20.15 illustrates the
structure of a block group. The first block is the superblock. The superblock con-
tains critical information about the entire file system, not just a particular block
group. This information includes the total number of blocks and inodes in the file
system, the size of the block groups, the time at which the file system was mounted
and other housekeeping data. Because the contents of the superblock are critical to
the integrity of the file system, a redundant copy of the superblock is maintained in
some block groups. As a result, if any copy is corrupted, the file system can be
restored from one of the redundant copies.117

The block group contains several data structures to facilitate file operations
on that group. One such structure is the inode table, which contains an entry for
each inode in the block group. When the file system is formatted, it assigns a fixed
number of ext2 inodes to each block group. The number of inodes in the system
depends on the ratio of bytes to inodes in the file system, specified when the parti-
tion is formatted. Because the size of the inode table is fixed, the only way to
increase the number of inodes in a formatted ext2 file system is to increase the size
of the file system. The inodes in each group’s inode table typically point to file and
directory data located in that group, reducing the time necessary to load files from
disk due to the phenomenon of locality.

The block group also maintains a block containing an inode allocation bitmap
that tracks inode use within a block group. Each bit in the allocation bitmap corre-
sponds to an entry in the group’s inode table. When a file is allocated, an available

Figure 20.15 | Block group.

Superblock
Group
descriptors

Block
allocation
bitmap

Inode
allocation
bitmap

Data blocks

Block group

Inode
table

42 Case Study: Linux

©1981–2004, Deitel & Associates, Inc. All rights reserved.

inode is selected from the inode table to represent the file. The bit in the allocation
bitmap corresponding to the inode’s index in the inode table is turned on to indi-
cate that the inode is in use. For example, if inode table entry 45 is assigned to a file,
the 45th bit in the inode allocation bitmap is turned on. When an inode is no longer
needed, the corresponding bit in the inode allocation bitmap is cleared to indicate
that the inode can be reused. This same strategy is employed to maintain the block
allocation bitmaps, which track each group’s block usage.118

Another element of metadata in each block group, called the group descriptor,
contains the block numbers corresponding to the location of the inode allocation bit-
map, block allocation bitmap and inode table (Fig. 20.16). It also contains accounting
information, such as the number of free blocks and inodes in the group. Each block
group contains a redundant copy of its group descriptor for recovery purposes.119

The remaining blocks in each block group store file and directory data. Direc-
tories are variable-length objects that associate file names with inode numbers
using directory entries. Each directory entry is composed of an inode number,
directory entry length, file name length, file type and file name (Fig. 20.17). Typical
file types include data files, directories and symbolic links; however, ext2fs also can
use files to represent other objects, such as devices and sockets.120

Ext2fs supports both hard and symbolic links (recall from Section 13.4.2,
Metadata, that symbolic links specify a pathname, not an inode number). When the

Figure 20.16 | Group descriptor.

Group descriptor Inode table

– Inode

Ext2 file system

Inode allocation bitmap

Block allocation bitmap

Inode table

Number of free blocks

Number of free inodes

Block group

20.7 File Systems 43

©1981–2004, Deitel & Associates, Inc. All rights reserved.

file system encounters a symbolic link while translating a pathname to an inode, the
pathname being translated is replaced by the contents of the symbolic link, and the
conversion is restarted. Because hard links specify an inode number, they do not
require pathname-to-inode conversion. The file system maintains a count of the
number of directory entries referencing an inode to ensure an inode is not deleted
while it is still being referenced.121

File Security

Each file’s inode stores information that the kernel uses to enforce its access con-
trol policies. In the ext2 file system, inodes contain two fields related to security: file
permissions and file attributes. File permissions specify read, write and execute
privileges for three categories of users: the owner of the file (initially the user that
created the file), a group of users allowed to access the file (initially the group to
which the user that created the file belongs), and all other users in the system.

File attributes control how file data can be modified. For example, the
append-only file attribute specifies that users may append data to the file, but not
modify data that already exists in the file. Ext2 file attributes can be extended to
support other security features. For example, ext2 stores access control metadata in
its extended file attributes to implement POSIX access control lists.122

Locating Data Using a Pathname

To locate a file in a file system, a pathname-to-inode conversion must be per-
formed. Consider the example of finding the file given by the pathname /home/
admin/policydoc. The pathname is composed of a series of directory names sepa-
rated by slashes (/home/admin) that specify the path to the file policydoc. The
conversion begins by locating the inode representing the root directory of the file
system. The inode number of the root directory (/) is stored in the file system
superblock (and is always 2).123 This inode number specifies the root directory
inode in the appropriate block group. The data blocks referenced by the latter
inode contain the directory entries for the root directory. Next, the file system
searches these directory entries for the inode number of the home directory. This

Figure 20.17 | Directory structure.

Directory
entry 1

Directory
entry 2

Directory
entry 3

Directory
entry 4

Directory
entry n

Directory

Directory
entry Inode number

Directory
entry length File name length File type File name

44 Case Study: Linux

©1981–2004, Deitel & Associates, Inc. All rights reserved.

process is repeated until the inode representing the file policydoc is located. As
each inode is accessed, the file system checks the permission information stored in
it to ensure that the process performing the search is permitted to access the inode.
The file’s data can be directly accessed after the correct inode has been located and
the file data (and metadata) have been cached by the system.124

20.7.4 Proc File System
One strength of the VFS is that it does not impose many restrictions on file system
implementations. The VFS requires only that function calls to an underlying file
system return valid data. This abstraction of a file system permits some intriguing
file system implementations.

One such file system is procfs (the proc file system). Procfs was created to pro-
vide real-time information about the status of the kernel and processes in a system.
Similar to the VFS, the proc file system is created by the kernel at runtime.

The information provided by procfs can be found in the files and subdirectories
within the /proc directory (Fig. 20.18). By examining the contents of /proc, users
can obtain detailed information describing the system, from hardware status infor-
mation to data describing network traffic.125 For example, each number in Fig. 20.18
corresponds to a process in the system, identified by its process ID. By examining the
contents of a process’s directory in the proc file system, users can obtain information
such as a process’s memory usage or the location of its executable file. Other directo-
ries include devices (which contains information about devices in the system),
mounts (which contains information regarding each mounted file system) and

root> ls /proc

1 20535 20656 751 978 interrupts pci

10 20538 20657 792 acpi iomem self

137 20539 20658 8 asound ioports slabinfo

19902 20540 20696 811 buddyinfo irq stat

2 20572 20697 829 bus kcore swaps

20473 20576 20750 883 cmdline kmsg sys

20484 20577 3 9 cpuinfo ksyms sysvipc

20485 20578 4 919 crypto loadavg tty

20489 20579 469 940 devices locks uptime

20505 20581 5 960 dma meminfo version

20507 20583 536 961 dri misc vmstat

20522 20586 541 962 driver modules

20525 20587 561 963 execdomains mounts

20527 20591 589 964 filesystems mtrr

20529 20621 6 965 fs net

20534 20624 7 966 ide partitions

root>

Figure 20.18 | Sample contents of the /proc directory.

20.8 Input/Output Management 45

©1981–2004, Deitel & Associates, Inc. All rights reserved.

uptime (which displays the amount of time the system has been running). Data pro-
vided by procfs is particularly useful for driver developers and system administrators
who require detailed information about system usage. In this section, we limit our
discussion to the implementation of procfs. A detailed explanation of the /proc
directory’s contents can be found in the Linux source code under Documentation/
filesystems/proc.txt.

Procfs is a file system that exists only in main memory. The contents of files in
the proc file system are not stored persistently on any physical medium—procfs files
provide users an access point to kernel information, which is generated on demand.
When a file or directory is registered with the proc file system, a proc directory entry
is created. Proc directory entries, unlike VFS directory entries, allow each directory
to implement its own read function. This enables a proc directory to generate its
contents each time the directory entry is accessed. When a process accesses a partic-
ular procfs file, the kernel calls the corresponding file operation specified by the file.
These functions allow each file to respond differently to read and write opera-
tions.126 The kernel creates many procfs entries by default. Additional files and
directories can be created using loadable kernel modules.

When a user attempts to read data from a procfs file, the VFS calls the procfs
read function, which accesses a proc directory entry. To complete a read request,
procfs calls the read function defined for the requested file. Procfs read functions
typically gather status information from a resource, such as the amount of time the
system has been running. Once information has been retrieved by a read function,
procfs passes the output to the process that requested it.127

Procfs files can be used to send data to the kernel. Some system variables,
such as the network host name of a machine, can be modified at runtime by writing
to procfs files. When a process writes to a procfs file, the data provided by the pro-
cess may be used to update the appropriate kernel data structures.128

20.8 Input/Output Management
This section explains how the kernel accesses system devices using the I/O inter-
face. The kernel abstracts the details of the hardware in a system, providing a com-
mon interface for I/O system calls. The kernel groups devices into classes; members
of each device class perform similar functions. This allows the kernel to address the
performance needs of certain devices (or classes of devices) individually.

20.8.1 Device Drivers
Support for devices such as graphics cards, printers, keyboards and other such hard-
ware is a necessary part of any operating system. A device driver is the software
interface between system calls and a hardware device. Independent Linux develop-
ers, not device manufacturers, have written most of the drivers that operate devices
commonly found in Linux systems. This generally limits the number of devices that
are compatible with the Linux operating system. As the popularity of Linux
increases, so does the number of vendors that ship Linux drivers with their devices.

46 Case Study: Linux

©1981–2004, Deitel & Associates, Inc. All rights reserved.

Typically, device drivers are implemented as loadable kernel modules. Drivers
implemented as modules can be loaded and unloaded as they are needed, avoiding
the need to have them permanently loaded in the kernel.129

Most devices in a system are represented by device special files. A device spe-
cial file is an entry in the /dev directory that provides access to a particular device.
Each file in the /dev directory corresponds to a block device or a character
device.130 A list of block and character device drivers that are currently loaded on a
particular system can be found in the file /proc/devices (Fig. 20.19).

Devices that perform similar functions are grouped into device classes. For
example, each brand of mouse that connects to the computer may belong to the
input device class. To uniquely identify devices in the system, the kernel assigns
each device a 32-bit device identification number. Device drivers identify their
devices using a major identification number and a minor identification number.
Major and minor identification numbers for all devices supported by Linux are
located in the Linux Device List, which is publicly available online.132 Driver devel-
opers must use the numbers allocated to devices in the Linux Device List to ensure
that devices in a system are properly identified.

Devices that are assigned the same major identification number are con-
trolled by the same driver. Minor identification numbers allow the system to distin-

Figure 20.19 | /proc/devices file contents.
131

root> cat /proc/devices

Character devices:

 1 mem

 2 pty

 3 ttyp

 4 vc/%d

 5 ptmx

 6 lp

 7 vcs

 10 misc

 13 input

 14 sound

116 alsa

128 ptm

136 pts

180 usb

226 drm

Block devices:

 2 fd

 3 ide0

 22 ide1

root>

Physical memory access

BSD-style terminal (TTY) devices

Virtual console

Multiplexor for AT&T-style terminal (TTY) devices

Parallel printer
Virtual console capture devices

Non-serial mice, other devices

Input core (typically contains a mouse)

Audio device

Advanced Linux Sound Driver

USB device

Direct Rendering Manager (video card)

AT&T-style terminal (TTY) devices

Floppy disk drive

Primary IDE channel

Secondary IDE channel

20.8 Input/Output Management 47

©1981–2004, Deitel & Associates, Inc. All rights reserved.

guish individual devices that are assigned the same major identification number
(i.e., belong to the same device class).133 For example, a hard disk is assigned a
major identification number, and each partition on the hard disk is assigned a
device minor number.

Device special files are accessed via the virtual file system. System calls pass to
the VFS, which in turn issues calls to device drivers. Figure 20.20 illustrates the
interaction between system calls, the VFS, device drivers and devices. Drivers
implement generic virtual file system functions so that the processes may access /
dev files using standard library calls. For example, standard library calls for access-
ing files (such as printing to a file using the standard C library function fprintf)
are implemented on top of lower-level system calls (such as read and write).134

Individual device characteristics determine the drivers and their corresponding sys-
tem calls necessary to support the device. Most devices that Linux supports belong
to three primary categories: character devices, block devices and network devices.

Each class of device requires its corresponding device drivers to implement a
set of functions common to the class. For example, a character device driver must
implement a write function to transfer data to its device.135 Further, if a device is
attached to a kernel subsystem (e.g., the SCSI subsystem), the device’s drivers must
interface with the subsystem to control the device. For example, a SCSI device driver
passes I/O requests to the SCSI subsystem, which then interacts directly with devices
attached to the SCSI interface.136 Subsystem interfaces exist to reduce redundant
code; for example, each SCSI device driver need only provide access to a particular

Figure 20.20 | I/O interface layers.

read open write

Bus mouse
driver

Generic
CD-ROM
driver

Console
driver

/dev/mouse /dev/cdrom

System call
interface

Device drivers

Hardware

I/O subsystem overview

Virtual file system/dev/console

Processes

48 Case Study: Linux

©1981–2004, Deitel & Associates, Inc. All rights reserved.

SCSI device, not to the SCSI controller to which it is attached. The SCSI subsystem
provides access to common SCSI components, such as the SCSI controller.

Most drivers implement common file operations such as read, write and
seek. These operations allow drivers to transfer data to and from devices, but do
not allow them to issue hardware-specific commands. To support tasks such as
ejecting a CD-ROM tray or retrieving status information from a printer, Linux pro-
vides the ioctl system call. ioctl allows developers to send control messages to
any device in the /dev directory. The kernel defines several default control mes-
sages and allows a driver to implement its own messages for hardware-specific
operations.137 The set of messages supported by a device driver is dependent on the
driver’s device and implementation.

20.8.2 Character Device I/O
A character device transmits data as a stream of bytes. Devices that fall under this
category include printers, consoles, mice, keyboards and modems. Because they
transfer data as streams of bytes, most character devices support only sequential
access to data.138

Most character device drivers implement basic operations such as opening,
closing, reading from and writing to a character device. Each device in the system is
represented by a device_struct structure that contains the driver name and a
pointer to the driver’s file_operations structure, which maintains the operations
supported by the device driver. To initialize a character device, a device driver must
register its operations with the virtual file system, which appends a device_struct
structure to the array of registered drivers stored in chrdevs.139 Figure 20.21

Figure 20.21 | chrdevs vector.

Driver 2Driver 1

chrdevs vector

Driver 1
file operations

read

write

open

close

seek

Driver 255…

Driver 2
file operations

Driver 255
file operations

20.8 Input/Output Management 49

©1981–2004, Deitel & Associates, Inc. All rights reserved.

describes the contents of vector chrdevs. Each entry in chrdevs corresponds to a
device driver major identification number. For example, the fifth entry in chrdevs
is the device_struct for the driver with major number five.140

When a system call accesses a device special file, the VFS calls the appropriate
function in the device’s file_operations structure. This structure includes func-
tions that perform read, write and other operations on the device. The inode repre-
senting the file stores a device special file’s file_operations structure.141

After a device’s file operations have been loaded into its inode, the VFS will
use those operations whenever system calls access the device. The system can access
this inode until a system call closes the device special file. However, once a system
call closes the file, the inode must be recreated and initialized the next time the file
is opened.142

20.8.3 Block Device I/O
Unlike character devices, block devices allow data stored in fixed-sized blocks of
bytes to be accessed at any time, regardless of where those blocks are stored on the
device. To facilitate nonsequential (i.e., random) access to a large amount of data
(e.g., a file on a hard drive), the kernel must employ a more sophisticated system for
handling block device I/O than it does for handling character device I/O. For exam-
ple, the kernel provides algorithms that attempt to optimize moving-head storage
(i.e., hard disks).

Like character devices, block devices are identified by major and minor num-
bers. The kernel’s block I/O subsystem contains a number of layers to modularize
block I/O operations by placing common code in each layer. Figure 20.22 depicts
the layers through which block I/O requests pass. To minimize the amount of time
spent accessing block devices, the kernel uses two primary strategies: caching data
and clustering I/O operations.

Buffering and Caching

To reduce the number of block I/O operations for disk devices, the kernel buffers
and caches I/O requests. When a process requests data from a block device (typi-

Figure 20.22 | Block I/O subsystem layers.

Virtual file system

File systems

Page cache

Block layer, bios

Drivers

Hardware

50 Case Study: Linux

©1981–2004, Deitel & Associates, Inc. All rights reserved.

cally a hard disk), the kernel searches the page cache for the requested blocks. (Recall
from Section 20.6.3, Page Replacement, that the page cache is a region of main mem-
ory that stores buffered and cached data from I/O requests.) If the page cache con-
tains an entry for the requested block, the kernel will copy that page to the user’s
virtual space, provided there are no errors (e.g., improper permission). When a pro-
cess attempts to write data to a block device, the request is typically placed on a list of
pending requests that is sorted according to the kernel’s disk scheduling strategy.

By performing direct I/O, a driver can bypass kernel caches when reading
from (or writing to) devices. Some applications, such as high-end database applica-
tions, implement their own caching mechanisms; as a result, it would be wasteful for
the kernel to maintain its own cache of the application’s data.158 When direct I/O is
enabled, the kernel performs I/O directly between a process’s user address space
and the device, eliminating the overhead caused by copying data from a user
address space to the kernel caches, then to the device.

Request Lists
If an I/O request corresponds to data that is not cached or data that must be written
to secondary storage, the kernel must perform an I/O operation. Instead of submit-
ting I/O requests to devices in the order in which they are received, the kernel adds a
request to a request list. A request list, which contains pending I/O operations, is cre-
ated for each block device in the system. The list allows the kernel to order requests
to take into account factors such as the location of the disk head if the block device is
a hard disk. As discussed in Chapter 12, the kernel can improve the performance of
all block I/O operations by sorting requests for I/O on each block device.

To associate entries in the request list with page frames, each request contains
a bio structure, which maps to a number of pages in memory corresponding to the
request. The kernel maintains at least one request list per driver; each request cor-
responds to a read or write operation.143, 144 Block drivers do not define read and
write operations, but rather must implement a request function that the kernel calls,
once it has queued requests.145 This allows the kernel to improve I/O performance
by sorting the list of requests according to its disk scheduling algorithm (discussed
in the next section) before submitting requests to a block device. When the kernel
calls a request function, the block device must perform all I/O operations in the list
of I/O requests the kernel provides.

Although the kernel often reduces seek time by sorting block device requests,
in some cases the request list is detrimental to performance. For example, certain
device drivers, such as RAID drivers, implement their own methods for managing
requests (see Section 12.10, Redundant Arrays of Independent Disks (RAID)).
Such device drivers operate on bios, unlike traditional block device drivers (e.g.,
IDE), which are passed a list of requests via a request function.157

Elevator Disk Scheduling Algorithm

Linux provides several disk scheduling algorithms to allow users to customize I/O
performance to meet the individual needs of each system. The default disk schedul-

20.8 Input/Output Management 51

©1981–2004, Deitel & Associates, Inc. All rights reserved.

ing algorithm is a variation of the elevator algorithm (i.e., the LOOK variation of
the SCAN strategy presented in Section 12.5.6, LOOK and C-LOOK Disk Schedul-
ing). To minimize disk seek time, the kernel arranges the entries in the list accord-
ing to their location on disk. The request at the head of the list is closest to the disk
head, which reduces the amount of time the disk spends seeking and increases I/O
throughput. When an I/O request is submitted to a disk’s request list, the kernel
determines the location on disk corresponding to the request. The kernel then
attempts to merge requests to adjacent locations on disk by combining two I/O
requests into a single, larger request. Merging requests improves performance by
reducing the number of I/O requests issued to a block device. If a request cannot be
merged, the kernel attempts to insert that request in the sorted list in the position
that maintains the list’s least-seek-time-first ordering.146

Although the elevator algorithm provides high throughput by reducing disk
seek latency, the algorithm allows requests at the end of the queue to be indefinitely
postponed.147 For example, consider two processes: process P1 writes 200MB of
data to a file and process P2 recursively reads the contents of a directory on disk
and prints the result to the terminal. Assume that the system is using an ext2 file
system and the request list is initially empty. As P1 executes, it may submit several
write requests without blocking during its time slice—processes rarely block as
result of write requests because they do not rely on the completion of write opera-
tions to execute subsequent instructions. P1 is eventually preempted, at which point
the request list contains several write requests. Many of the write requests will have
been merged by the kernel because the ext2 file system attempts to locate file data
within block groups, as discussed in Section 20.7.3, Second Extended File System
(ext2fs). Process P1’s requests are then submitted to the block device, which moves
the disk head to the location of the data blocks to be written.

When P2 executes, it submits a request to read the contents of a directory. This
request is a synchronous read operation because P2 cannot print the directory con-
tents until the read operation completes. Consequently, P2 will submit a single I/O
request and block. Unless the read request corresponds to a location adjacent to the
disk head (which is now servicing P1’s write requests), the read request is placed
after the pending write requests in the request list. Because P2 has blocked, process
P1 may eventually regain control of the processor and submit additional write
requests. Each subsequent write request will likely be merged with the previous
requests at the front of the request list. As a result, process P2’s read request is
pushed further back in the request list while P2 remains blocked—meaning that P2
cannot submit additional I/O requests. As long as process P1 continues to submit
write requests, process P2’s read request is indefinitely postponed.

Deadline and Anticipatory Disk Scheduling Algorithms

To eliminate indefinite postponement, the kernel provides two LOOK disk sched-
uling algorithms: deadline scheduling and anticipatory scheduling. The deadline
scheduler prevents read requests from being indefinitely postponed by assigning
each request a deadline—the scheduler attempts to service each request before its

52 Case Study: Linux

©1981–2004, Deitel & Associates, Inc. All rights reserved.

deadline passes. When the request has been waiting for the longest time permitted
by the deadline, the request expires. The deadline scheduler processes requests
from the head of the request list unless a request expires. At this point, the deadline
scheduler services any requests that have expired and some that will soon expire.
Servicing requests that will soon expire reduces the number of times the scheduler
will be interrupted from servicing requests at the head of the list, which improves
throughput. After all expired requests have been serviced, the scheduler continues
by servicing requests from the front of the request list.148

To meet its deadlines, the scheduler must be able to quickly determine if any
requests have expired. Using a single request list, the deadline scheduler would
need to perform a linear search of requests to determine if any had expired. If the
number of requests in the request list is large, this could require a significant
amount of time, leading to poor performance and missed deadlines. Consequently,
the deadline scheduler maintains two FIFO queues, one each for read and write
requests. When a request is added to the request list, a reference to the request is
added to the appropriate FIFO queue. Therefore, the request that has waited for
the longest time is always located at the front of the FIFO queue. This means that
the deadline I/O scheduler can quickly determine if a request is near its deadline by
accessing the pointer to the front of each of the FIFO queues.149, 150

Because the deadline scheduler is designed to prevent read starvation, the
deadline for read requests is shorter than the deadline for write requests. By
default, read requests must be serviced 500ms after insertion into the request list,
whereas write requests must be serviced after 5 seconds. These values were chosen
because they provide good performance in general, but they can be modified by a
system administrator at run time.151

Consider how the deadline scheduler performs given processes P1 and P2
from the previous section (process P1 writes 200MB of data to a file and process P2
recursively reads the contents of a directory on disk and prints the result to the
screen). Recall from the previous section that process P1’s write requests are typi-
cally performed before read requests because its requests are merged. As a result,
the disk will most likely be servicing a write request when P2’s read request’s dead-
line expires. This means that the disk will likely perform a seek operation to per-
form the read request. Also, because synchronous read requests require process P2
to block, the number of read requests in the request list is small. Consequently, the
next request in the request list following the read operation will likely be a write
operation that requires another seek operation. If several processes issue read
requests while one or more processes submit write requests, several such pairs of
seek operations (due to expired read requests) may occur within a short period of
time. Thus, to reduce the number of seeks, the deadline I/O scheduler attempts to
group several expired requests so that they will be serviced together before expired
write requests are serviced, and vice versa.152, 153

The anticipatory scheduler eliminates read request starvation by preventing
excessive seek activity and further improves performance by anticipating future

20.8 Input/Output Management 53

©1981–2004, Deitel & Associates, Inc. All rights reserved.

requests. Recall that synchronous read requests often occur once per time slice
because they require processes to block. However, similar to process P2’s requests
for directory entries, many processes issue a series of synchronous read requests for
contiguous data (or data on a single track). Consequently, if the disk scheduler
paused briefly after completing a process’s read request, that process may issue an
additional read request that does not require a seek operation.154 Even when there
are several other requests in the request list, this read request would be placed at
the head of request list and serviced without causing excessive seek activity.

By default, the amount of time during which the anticipatory I/O scheduler
waits for a new request is 6ms—a pause that occurs only after completing a read
request.155 The 6ms pause (the value of the pause can be modified at run time) cor-
responds to the seek latency for many of today’s hard disks, or roughly half the
amount of time required to perform a request located on another track and return
to the location of the previous read. If a read request is issued during the 6ms pause,
the anticipatory scheduler can perform the request before seeking to another loca-
tion on disk to perform requests for other processes. In this case, a traditional eleva-
tor scheduler would have performed two seek operations: one to perform the next
request from another process and one to service the next read request. Therefore,
the anticipatory I/O scheduler improves overall I/O throughput if it receives a read
request within the 6ms pause more than 50 percent of the time.

The anticipatory scheduler has been shown to perform 5 to 100 times better
than the traditional elevator algorithm when performing synchronous reads in the
presence of write requests. However, the anticipatory I/O scheduler can introduce
significant overhead due to its 6ms pause, leading to reduced I/O throughput. This
occurs when the I/O scheduler does not receive a request for data near the disk’s
read/write head during the 6ms that it waits for a read request. To minimize this
overhead, the scheduler maintains a history of process behavior that it uses to pre-
dict whether a process will benefit from the 6ms pause.156

20.8.4 Network Device I/O
The kernel’s networking subsystem provides an interface for exchanging data with
other hosts. This interface, however, cannot be accessed directly by user processes,
which must send and receive data via the IPC subsystem’s socket interface (dis-
cussed in Section 20.10.3, Sockets). When processes submit network data to the
socket interface, they specify the network address of the destination, not the net-
work device through which to deliver the data. The networking subsystem then
determines which network device will deliver the packet. An important difference
between network devices and block or character devices is that the kernel does not
request data from a network device. Instead, network devices use interrupts to
notify the kernel as they receive packets.

Because network traffic travels in packets, which can arrive at any time, the
read and write operations of a device special file are not sufficient to access data
from network devices. Instead, the kernel uses net_device structures to describe

54 Case Study: Linux

©1981–2004, Deitel & Associates, Inc. All rights reserved.

the network devices.159 These objects are similar to the device_struct objects that
represent block and character devices; however, because network devices are not
represented as files, the net_device structure does not include a file_operations
structure. Instead, it contains a number of functions defined by drivers that allow the
kernel to perform actions such as starting a device, stopping a device and sending
packets to a device.160

Once the kernel has prepared packets to transmit to another host, it passes
them to the device driver for the appropriate network interface card (NIC). To
determine which NIC will send the packet, the kernel examines an internal routing
table that lists the destination addresses each network interface card can access.
Once the kernel matches the packet’s destination address to the appropriate inter-
face in the routing table, the kernel passes the packet to the device driver. Each
driver processes packets according to a queuing discipline, which specifies the order
in which its device processes packets, such as the default FIFO policy, or other,
more sophisticated, priority-based policies. By enabling priority queuing disciplines,
the system can deliver higher-priority content, such as streaming media, more
quickly than other network traffic.161

After passing packets to a network device’s queue, the kernel wakes the
device so that the driver may begin removing packets from the device’s queue
according to its queuing discipline. As packets are removed from the queue, they
are passed to a packet transmission function specified by the device’s driver.162

When a network interface receives a packet from an external source, it issues
an interrupt. The interrupt causes processor control to pass to the appropriate
interrupt handler for packet processing. The interrupt handler allocates memory for
the packet, then passes the packet to the kernel’s networking subsystem. In
Section 20.11, Networking, we discuss the path taken by packets as they travel
through the networking subsystem.

20.8.5 Unified Device Model
The unified device model is an attempt to simplify device management in the ker-
nel. At the physical level, devices are attached to an interface (e.g., a PCI slot or a
USB port) that is connected to the rest of the system via a bus. As discussed in the
previous sections, Linux represents devices as members of device classes. For exam-
ple, a mouse connected to a USB port and a keyboard connected to a PS/2 port
both belong to the input device class, but each device connects to the computer via
a different bus. Whereas a description of device interfaces and buses is a physical
view of the system, a device class is a software (i.e., abstract) view of the system that
simplifies device management by grouping devices of a similar type.

Before the unified device model, device classes were not related to system
buses, meaning that it was difficult for the system to determine where in the system a
device was physically located. This was not a problem when computers did not sup-
port hot swappable devices (i.e., devices that can be added and removed while the
computer is running). In the absence of hot swappable devices, it is sufficient for the

20.8 Input/Output Management 55

©1981–2004, Deitel & Associates, Inc. All rights reserved.

system to detect devices exactly once (at boot time). Once the kernel loads a driver
corresponding to each device, the kernel rarely needs to access a device’s physical
location in the system. However, in the presence of hot swappable devices, the ker-
nel must be aware of the physical layout of the system so it can detect when a device
has been added or removed. Once it has located a new device, the kernel must be
able to identify its class so the kernel can load the appropriate device driver.163

For example, devices are commonly added and removed from the USB bus.
To detect such changes, the kernel must periodically poll the USB interface to
determine which devices are attached to it.164 If a new device is found, the kernel
should identify it and load a device driver that supports it so that processes may use
the device. If a device has been removed, the system should unregister the driver so
that attempts to access the device are denied. Thus, the kernel must maintain a lay-
out of the physical location of devices in the system so that it knows when the set of
devices in the system changes. To support hot swappable devices, the kernel uses
the unified device model to access the physical location of a device in addition to its
device class representation.165

The unified device model defines data structures to represent devices, device
drivers, buses, and device classes. The relationship between these structures is
shown in Fig. 20.23. Each bus data structure represents a particular bus (e.g., PCI)
and contains pointers to a list of devices attached to the bus and drivers that oper-
ate devices on the bus. Each class data structure represents a device class and con-
tains pointers to a list of devices and device drivers that belong to that class. The
unified device model associates each device and device driver with a bus and class.
As a result, the kernel can access a bus, determine a list of devices and drivers on
that bus and then determine the class to which each device and device driver
belongs. Similarly, the kernel can access a device class, follow the pointers to its list
of devices and device drivers and determine the bus to which each device is
attached. As Fig. 20.23 demonstrates, the kernel requires a reference only to a sin-
gle data structure to access all other data structures in the unified device model.
This simplifies device management for the kernel as devices are added to and
removed from the system.

When devices are registered with the system, these data structures are initial-
ized and corresponding entries are placed in the system file system, sysfs. Sysfs pro-
vides an interface to devices described by the unified device model. Sysfs allows user
applications to view the relationship between entities (devices, device drivers, buses
and classes) in the unified device model.166, 167, 168, 169

Sysfs, typically mounted at /sys, organizes devices according to both the bus to
which they are attached and the class to which they belong. The /sys/bus directory
contains entries for each bus in the system (e.g., /sys/bus/pci). Within each bus
subdirectory is a list of devices and device drivers that use the bus. Sysfs also orga-
nizes devices by class in the directory /sys/class. For example, the /sys/class/
input contains input devices, such as a mouse or keyboard. Within each class subdi-
rectory is a list of devices and device drivers that belong to that class.170, 171

56 Case Study: Linux

©1981–2004, Deitel & Associates, Inc. All rights reserved.

Power Management

The unified device model has also simplified how the kernel performs power man-
agement, an important consideration for battery-powered systems. As the number
and power of mobile computers increases, a system’s ability to manage power to
increase battery life has become more important. Power management standards
such as the Advanced Configuration and Power Interface (ACPI) specify several
device power states, each of which results in different power consumption. For
example, the ACPI defines four power states from fully on (D0) to fully off (D3).
When a device transitions from fully on to fully off, the system does not provide any
power to the device and any volatile data stored in the device, known as the device
context, is lost.172 The unified device model simplifies power management for the

Figure 20.23 | Unified device model organization.

Name

Bus

Devices

Drivers

Name

Number

Class

Devices

Drivers

List of
drivers

List of
devices

List of
drivers

List of
devices

Name

Class

Class
Driver

Bus Bus

List of drivers

List of devices

List of drivers

List of devices
Device(s)

List of devices
controlled by driver

Name

Driver

Driver
Device

Parent and
sibling
devices

Bus

Bus

List of devices

Class

Class
List of drivers

List of devices

List of devices
List of devices

Parent device

List of drivers
Bus

Class

Power state

20.8 Input/Output Management 57

©1981–2004, Deitel & Associates, Inc. All rights reserved.

kernel by providing a data structure to store the context for each device when its
power state changes.

There are several devices that provide powered connections to other devices.
For example, a PCI card that contains USB ports may contain connections to USB
devices. Because some USB devices are powered through the USB cable, if power
is removed from the PCI card, then power is removed from each of its attached
devices. Consequently, the PCI card should not enter the fully off state until each of
its attached devices has entered the fully off state. The unified device model allows
the kernel to detect such power dependencies by exposing the physical structure of
devices in the system. As a result, the kernel can prevent a device from transition-
ing to a different power state if the transition will prevent other devices from prop-
erly functioning.173

20.8.6 Interrupts
The kernel requires that each device driver register interrupt handlers when the
driver is loaded. As a result, when the kernel receives an interrupt from a particular
device, the kernel passes control to its corresponding interrupt handler. Interrupt
handlers do not belong to any single process context because they are not them-
selves programs. Because an interrupt handler is not identified as any task_struct
object’s executable code, the scheduler cannot place it in any run queues. This char-
acteristic places some restrictions on interrupt handlers; lacking its own execution
context, an interrupt handler cannot sleep or call the scheduler. If an interrupt han-
dler were permitted to sleep or call the scheduler, it never would regain control of
the processor.

Similarly, interrupt handlers cannot be preempted, as doing so would invoke
the scheduler.174 Any preemption requests received during interrupt handling are
honored when the interrupt handler completes execution. Finally, interrupt han-
dlers cannot cause exceptions or faults while executing. In many architectures, the
system aborts when an exception is raised during an interrupt handler.175

To improve kernel performance, most drivers attempt to minimize the proces-
sor cycles required to handle hardware interrupts. This is another reason why ker-
nel memory is never swapped to disk—loading a nonresident page while an
interrupt handler is executing takes substantial time. In Linux, a driver handling
one interrupt cannot be preempted by other interrupts that use the same interrupt
line. If this were not the case, any device driver containing nonreentrant code might
perform operations that leave a device in an inconsistent state. As a result, when
one driver is processing an interrupt, the kernel queues or drops any other inter-
rupts it receives that use the same interrupt line.176 Therefore, driver developers are
encouraged to write code that processes interrupts as quickly as possible.

The kernel helps improve interrupt-handling efficiency by dividing interrupt-
handling routines into two parts—the top half and the bottom half. When the kernel
receives an interrupt from a hardware device, it passes control to the top half of the
driver’s interrupt handler. The top half of an interrupt handler performs the mini-

58 Case Study: Linux

©1981–2004, Deitel & Associates, Inc. All rights reserved.

mum work required to acknowledge the interrupt. Other work (such as manipulat-
ing data structures)—which should be located in the bottom half of the interrupt
handler—is scheduled to be performed later by a software interrupt handler. Top
halves of interrupt routines cannot be interrupted by software interrupt handlers.

Two primary software interrupt-handler types are softirqs and tasklets. Soft-
irqs can be executed concurrently on multiple processors (up to one per processor),
making them ideal for SMP systems.177 When a device driver allocates a softirq, it
specifies the action to be performed each time the softirq is scheduled. Because
multiple copies of a softirq can run simultaneously, softirq actions must be reen-
trant to perform reliably. Network devices on Web servers, which constantly receive
packets of data from external sources, benefit from softirqs because multiple pack-
ets can be processed simultaneously on different processors.178

However, softirqs do not improve performance for several types of interrupt
handlers. For example, a driver that requires exclusive access to data would need to
enforce mutual exclusion if its code were executed simultaneously on multiple pro-
cessors. In some cases, the overhead due to enforcing mutual exclusion can out-
weigh the benefits of multiprocessing. Other devices transfer data as a series of bits,
requiring device drivers to sequentialize access to such data. Such devices cannot
benefit from parallel processing and consequently use tasklets to perform bottom-
half interrupt-handling routines.179

Tasklets are similar to softirqs but cannot run simultaneously on multiple pro-
cessors and therefore cannot take advantage of parallel processing. As a result,
most drivers use tasklets instead of softirqs to schedule bottom halves. Although
multiple instances of a single tasklet cannot execute simultaneously, several differ-
ent tasklets can execute simultaneously in SMP systems.180

Softirqs and tasklets normally are handled in interrupt context or in a pro-
cess’s context immediately after the top-half interrupt handler completes, executing
with higher priority than user processes. If the system experiences a large number
of softirqs that reschedule themselves, user processes might be indefinitely post-
poned. Thus, when user processes have not executed for a significant period of time,
the kernel assigns softirqs and tasklets to be executed by the kernel thread ksoft-
irqd, which executes with low-priority (+19). When the kernel is loaded, the Linux
kernel creates an instance of the kernel thread ksoftirqd for each processor. These
threads remain sleeping until the kernel wakes them. Once scheduled, ksoftirqd
enters a loop in which it processes pending tasklets and softirqs sequentially. ksoft-
irqd continues processing tasklets and softirqs until the tasklets and/or softirqs have
completed execution or until ksoftirqd is preempted by the scheduler.181

Partitioning interrupt handling into top and bottom halves minimizes the
amount of time that hardware interrupts are disabled. Once a driver handles a
hardware interrupt (the top half), the kernel can run the software interrupt handler
(the bottom half), during which incoming interrupts can preempt the software
interrupt handler.182 This division of driver code improves the response time of a
system by reducing the amount of time during which interrupts are disabled.

20.9 Kernel Synchronization 59

©1981–2004, Deitel & Associates, Inc. All rights reserved.

20.9 Kernel Synchronization
A process executing in user mode cannot directly access kernel data, hardware, or
other critical system resources—such processes must rely on the kernel to execute
privileged instructions on their behalf. These operations are called kernel control
paths. If two kernel control paths were to access the same data concurrently, a race
condition could result.183 To prevent this, the kernel provides two basic mechanisms
for providing mutually exclusive access to critical sections: locks and semaphores.

20.9.1 Spin Locks
Spin locks allow the kernel to protect critical sections in kernel code executing on
SMP-enabled systems. Before entering its critical section, a kernel control path
acquires a spin lock. The region remains protected by the spin lock until the kernel
control path releases the spin lock. If a second kernel control path attempts to
acquire the same spin lock to enter its critical section, it will enter a loop in which it
busy waits, or “spins,” until the first kernel control path releases the spin lock. Once
the spin lock becomes available, the second kernel control path can acquire it.184

Proper use of spin locks prevents race conditions among multiple kernel con-
trol paths executing concurrently in an SMP system, but serves no purpose in a uni-
processor system in which two kernel control paths cannot simultaneously execute.
Consequently, kernels configured for uniprocessor systems exclude the locking por-
tion of spin lock calls.185 This improves performance by eliminating the costly
instructions executed to acquire mutually exclusive access to a critical section in
multiprocessor systems.

The kernel provides a set of spin lock functions for use in interrupt handlers.
Because a hardware interrupt can preempt any execution context, any data shared
between a hardware interrupt handler and a software interrupt handler must be
protected using a spin lock. To address this issue, the kernel provides spin locks that
disable interrupts on the local processor while still allowing concurrent execution
on SMP systems. On uniprocessor systems, the spin lock code is removed when the
kernel is compiled, but the code for enabling and disabling interrupts remains
intact.186 To protect data shared between user contexts and software interrupt han-
dlers, the kernel uses bottom-half spin locks. These functions disable software inter-
rupt handlers in addition to acquiring the requested spin lock.187

All spin lock variations disable preemption in both single and multiprocessor
systems. Although disabling preemption could lead to indefinite postponement or
even deadlock, allowing code protected by spin locks to be preempted introduces
the same race conditions spin locks are designed to avoid. The kernel uses a pre-
emption lock counter to determine if a kernel control path can be preempted.
When a kernel control path acquires a spin lock, the preemption lock counter is
incremented; the counter is decremented when the kernel control path releases the
spin lock. Code executing in kernel mode can be preempted only when the preemp-
tion lock counter is reduced to zero. When a spin lock is released and its associated

60 Case Study: Linux

©1981–2004, Deitel & Associates, Inc. All rights reserved.

counter becomes zero, the kernel honors any pending preemption requests by
invoking the scheduler.

Kernel developers must abide by certain rules to avoid deadlock when using
any spin lock variant. First, if a kernel control path has already acquired a spin lock,
the kernel control path must not attempt to acquire the spin lock again before
releasing it. Attempting to acquire the spin lock a second time will cause the kernel
control path to busy wait for the lock it controls to be released, causing deadlock.
Similarly, a kernel control path must not sleep while holding a spin lock. If the next
task that is scheduled attempts to acquire the spin lock, deadlock will occur.188

20.9.2 Reader/Writer Locks
In some cases, multiple kernel control paths need only to read (not write) the data
accessed inside a critical section. When no kernel control path is modifying that
data, there is no need to prevent concurrent read access to the data (see
Section 6.2.4, Monitor Example: Readers and Writers). To optimize concurrency in
such a situation, the kernel provides reader/writer locks. Reader/writer spin locks
and kernel semaphores (Section 20.9.4, Kernel Semaphores) allow multiple kernel
control paths to hold a read lock, but permit only one kernel control path to hold a
write lock with no concurrent readers. A kernel control path that holds a read lock
on a critical section must release its read lock and acquire a write lock if it wishes to
modify data.189 An attempt to acquire a write lock succeeds only if there are no
other readers or writers concurrently executing inside their critical sections.
Reader/writer locks effect a higher level of concurrency by limiting access to a criti-
cal section only when writes occur. Depending on the kernel control paths accessing
the lock, this can lead to improved performance. If readers do not release their read
locks, it is possible for writers to be indefinitely postponed. To prevent indefinite
postponement and provide writers with fast access to critical sections, kernel con-
trol paths use the seqlock.

20.9.3 Seqlocks
In some situations, the kernel employs another locking mechanism designed to
allow writers to access data immediately without waiting for readers to release the
lock. This locking primitive, called a seqlock, represents the combination of a spin
lock and a sequence counter. Writing to data protected by a seqlock is initiated by
calling function write_seqlock. This function acquires the spin lock component of
the seqlock (so that no other writers can enter their critical section) and it incre-
ments the sequence counter. After writing, function write_sequnlock is called,
which once again increments the sequence counter, then releases the spin lock.190

To enable writers to access data protected by a seqlock immediately, the ker-
nel does not allow readers to acquire mutually exclusive access to that data. Thus, a
reader executing its critical section can be preempted, enabling a writer to modify
the data protected by a seqlock. The reader can detect if a writer has modified the
value of the data protected by the seqlock by examining the value of the seqlock’s

20.9 Kernel Synchronization 61

©1981–2004, Deitel & Associates, Inc. All rights reserved.

sequence counter as shown in the following pseudocode. The value of the seqlock’s
sequence counter is initialized to zero.

Do
Store value of seqlock’s sequence counter in local variable seqTemp
Execute instructions that read the value of the data protected by the seqlock

While seqTemp is odd or not equal to the value of the seqlock’s sequence counter

After entering its critical section, the reader stores the value of the seqlock’s
sequence counter. Let us assume that this value is stored in variable seqTemp. The
reader then accesses the data protected by the sequence counter. Consider what
occurs if the system preempts the reader and a writer enters its critical section to
modify the protected data. Before modifying the protected data, the writer must
acquire the seqlock, which increments the value of the sequence counter. When the
reader next executes, it compares the value stored in seqTemp to the current value
of the sequence counter. If the two values are not equal, a writer must have entered
its critical section. In this case, the value read by the reader may not be valid. There-
fore, the loop continuation condition in the preceding pseudocode determines if the
value of the sequence counter has changed since the reader accessed the protected
data. If so, the reader continues the loop until it has read a valid copy of the pro-
tected data. Because the value of the seqlock’s sequence counter is initialized to
zero, a write is being performed when that value is odd. Thus, if seqTemp is odd, the
reader will read the protected data while a writer is in the process of modifying it.
In this case, the loop continuation condition ensures that the reader continues the
loop to ensure that it reads valid data. When no writers have attempted to modify
the data while the reader executes inside its critical section, the reader exits the
do...while loop.

Because writers need not wait for readers to release a lock, seqlocks are
appropriate for interrupt handling and other instances when writers must execute
quickly to improve performance. In most cases, readers successfully read data on
the first try. However, it is possible for readers to be indefinitely postponed while
multiple writers modify shared data, so seqlocks should be used in situations where
protected data is read more often than it is written.191

20.9.4 Kernel Semaphores
Spin locks and seqlocks perform well when the critical sections they protect contain
few instructions. However, as the size of the critical section increases, the amount of
time spent busy waiting increases, leading to significant overhead and performance
degradation. Also, spin locks can lead to deadlock if a process sleeps while holding
the lock. When a critical section must be protected for a long time, kernel sema-
phores are a better choice for implementing mutual exclusion. For example, only
one process at a time should be able to read an image from a scanner. Because scan-
ners may take several seconds to scan an image, a scanner device driver typically
enforces mutually exclusive access to its scanner using semaphores.

62 Case Study: Linux

©1981–2004, Deitel & Associates, Inc. All rights reserved.

Kernel semaphores are counting semaphores (see Section 5.6.3, Counting
Semaphores) represented by a wait queue and a counter. The wait queue stores pro-
cesses that are waiting on the kernel semaphore. The value of the counter deter-
mines how many processes may simultaneously access their critical sections. When a
kernel semaphore is created, the counter is initialized to the number of processes
allowed to access the semaphore concurrently. For example, if a semaphore protects
access to three identical resources, then the initial counter value would be set to 3.192

When a process attempts to execute its critical section, it calls function down
on the kernel semaphore. Function down, which corresponds to the P operation
(see Section 5.6, Semaphores), checks the current value of the counter and
responds according to the following rules:

• If the value of the counter is greater than 0, down decrements the counter
and allows the process to execute.

• If the value of the counter is less than or equal to 0, down decrements the
counter, and the process is added to the wait queue and enters the sleeping
state. By putting a process to sleep, the kernel reduces the overhead due to
busy waiting because sleeping processes are not dispatched to a processor.

When a process exits its critical section, it releases the kernel semaphore by
calling function up. This function inspects the value of the counter and responds
according to the following rules:

• If the value of the counter is greater than or equal to 0, up increments the
counter.

• If the value of the counter is less than 0, up increments the counter, and a
process from the wait queue is awakened so that it can execute its critical
section.193

Kernel semaphores cause processes to sleep if placed in the semaphore’s wait
queue, so they cannot be used in interrupt handlers or when a spin lock is held. How-
ever, the kernel provides an alternative solution that allows interrupt handlers to
access semaphores using function down_trylock. If the interrupt handler cannot
enter the critical section protected by the kernel semaphore, function down_trylock
will return to the caller instead of causing the interrupt handler to sleep.194 Kernel
semaphores should be used only for process that need to sleep while holding the
semaphore; processes that sleep while holding a spin lock can lead to deadlock.

20.10 Interprocess Communication
Many of the interprocess communication (IPC) mechanisms available in Linux are
derived from traditional UNIX IPC mechanisms, and they all have a common goal:
to allow processes to exchange information. Although all IPC mechanisms accom-
plish this goal, some are better suited for particular applications, such as those that
communicate over a network or exchange short messages with other local applica-
tions. In this section, we discuss how IPC mechanisms are implemented in the Linux
kernel and how they are employed in Linux systems.

20.10 Interprocess Communication 63

©1981–2004, Deitel & Associates, Inc. All rights reserved.

20.10.1 Signals
Signals were one of the first interprocess communication mechanisms available in
UNIX systems—the kernel uses them to notify processes when certain events
occur. In contrast to the other Linux IPC mechanisms we discuss, signals do not
allow processes to specify more than a word of data to exchange with other pro-
cesses; signals are primarily intended to alert a process that an event has
occurred.195 The signals a Linux system supports depend on the processor architec-
ture. Figure 20.24 lists the first 20 signals identified by the POSIX specification (all
of today’s architectures support these signals).196

Signals, which are created by the kernel in response to interrupts and excep-
tions, are sent to a process or thread either as a result of executing an instruction
(such as a segmentation fault, SIGSEGV), from another process (such as when one
process terminates another, SIGKILL) or from an asynchronous event (e.g., an I/O
completion signal). The kernel delivers a signal to a process by pausing its execu-

Signal Type
Default
Action Description

1 SIGHUP Abort Hang-up detected on terminal or death of
controlling process

2 SIGINT Abort Interrupt from keyboard

3 SIGQUIT Dump Quit from keyboard

4 SIGILL Dump Illegal instruction

5 SIGTRAP Dump Trace/breakpoint trap

6 SIGABRT Dump Abort signal from abort function

7 SIGBUS Dump Bus error

8 SIGFPE Dump Floating point exception

9 SIGKILL Abort Kill signal

10 SIGUSR1 Abort User-defined signal 1

11 SIGSEGV Dump Invalid memory reference

12 SIGUSR2 Abort User-defined signal 2

13 SIGPIPE Abort Broken pipe: write to pipe with no readers

14 SIGALRM Abort Timer signal from alarm function

15 SIGTERM Abort Termination signal

16 SIGSTKFLT Abort Stack fault on coprocessor

17 SIGCHLD Ignore Child stopped or terminated

18 SIGCONT Continue Continue if stopped

19 SIGSTOP Stop Stop process

20 SIGTSTP Stop Stop typed at terminal device

Figure 20.24 | POSIX signals.
197

64 Case Study: Linux

©1981–2004, Deitel & Associates, Inc. All rights reserved.

tion and invoking the process’s corresponding signal handler. Once the signal han-
dler completes execution, the process resumes execution.198

A process or thread can handle a signal in one of three ways. (1) Ignore the
signal—processes can ignore all but the SIGSTOP and SIGKILL signals. (2) Catch the
signal—when a process catches a signal, it invokes its signal handler to respond to
the signal. (3) Execute the default action that the kernel defines for that signal—by
default, the kernel defines one of five actions that is performed when a process
receives a signal.199

The first default action is to abort, which causes the process to terminate
immediately. The second is to perform a memory dump. A memory dump is similar
to an abort; it causes a process to terminate, but before it does so, the process gener-
ates a core file that contains the process’s execution context, which includes the
process’s stack, registers and other information useful for debugging. The third
default action is simply to ignore the signal. The fourth is to stop (i.e., suspend) the
process—often used to debug a process. The fifth is continue, which reverses the
fourth by switching a process from the suspended state to the ready state.200

Processes can choose not to handle signals by blocking them. If a process
blocks a specific signal type, the kernel does not deliver the signal until the process
stops blocking it. Processes block a signal type by default while handling another
signal of the same type. As a result, signal handlers need not be reentrant (unless
the default behavior is not used), because multiple instances of the process’s signal
handler cannot be executed concurrently. It is, however, possible for a signal han-
dler to interrupt a signal handler of a different type.201

Common signals, such as those shown in Fig. 20.24, are not queued by the ker-
nel. If a signal is currently being handled by a process and a second signal of the same
type is generated for that process, the kernel discards the latter signal. If two signals
are generated simultaneously by an SMP system, the kernel simply drops one as a
result of the race condition. In certain circumstances, dropped signals do not affect
system behavior. For example, a single SIGKILL signal is sufficient for the system to
terminate a process. In mission-critical systems, however, dropped signals could be
disastrous. For example, a user-defined signal may be used to monitor safety systems
that protect human life. If such signals were dropped, people’s lives could be at risk.
To ensure that such systems do not miss a signal, Linux supports real-time signals.
These are queued by the kernel; therefore, multiple instances of the same signal can
be generated simultaneously and not be discarded.202 By default the kernel queues
up to 1,024 real-time signals of the same type; any further signals are dropped.

20.10.2 Pipes
Pipes enable two processes to communicate using the producer/consumer model.
The producer process writes data to the pipe, after which the consumer process
reads data from the pipe in first-in-first-out order.

When a pipe is created, an inode is allocated and assigned to the pipe. Similar
to procfs inodes (see Section 20.7.4, Proc File System), pipe inodes do not point to

20.10 Interprocess Communication 65

©1981–2004, Deitel & Associates, Inc. All rights reserved.

disk blocks. Rather, they point to one page of data called a pipe buffer that the ker-
nel uses as a circular buffer. Each pipe maintains a unique pipe buffer that stores
data that is transferred between two processes.204

When pipes are created, the kernel allocates two file descriptors (see
Section 20.7.1, Virtual File System) to allow access to the pipe: one for reading from
the pipe and one for writing to the pipe. Pipes are represented by files and accessed
via the virtual file system. To initiate communication using a pipe, one process must
create the pipe, then fork a child process with which to communicate via the pipe.
The fork system call enables pipe communication because it allows the child pro-
cess to inherit the parent process’s file descriptors. Alternatively, two processes can
share a file descriptor using sockets, discuss in the section that follows. Although
the kernel represents pipes as files, pipes cannot be accessed from the directory
tree. This prevents a process from accessing a pipe unless it has obtained the pipe’s
file descriptor from the process that created it.205

One limitation of pipes is that they support communication only between pro-
cesses that share file descriptors. Linux supports a variation of a pipe, called a
named pipe or FIFO, that can be accessed via the directory tree. When a FIFO is
created, its name is added to the directory tree. Processes can access the FIFO by
pathname as they would any other file in the directory tree (the location and name
of the file are typically known before the processes execute). Therefore, processes
can communicate using a named pipe the same way they access data in a file sys-
tem—by supplying the correct pathname and appropriate file permissions. How-
ever, unlike data files, FIFOs point to a buffer located in memory, not on disk.
Therefore, FIFOs provide the simplicity of sharing data in files without the latency
overhead created by disk access.206 Another limitation of pipes that the fixed-size
buffer can result in suboptimal performance if a producer and consumer work at
different speeds, as discussed in Section 6.2.3, Monitor Example: Circular Buffer,

20.10.3 Sockets
The Linux socket IPC mechanism allows pairs of processes to exchange data by
establishing direct bidirectional communication channels. Each process can use its
socket to transfer data to and from another process. One limitation of pipes is that
communication occurs in a single direction (from producer to consumer); however,
many cooperating processes require bidirectional communication. In distributed
systems, for example, processes may need to be able to send and receive remote
procedure calls. In this case, pipes are insufficient, because they are limited to com-
munication in one direction and are identified by file descriptors, which are not
unique among multiple systems. To address this issue, sockets are designed allow
communication between unrelated processes so that such processes can exchange
information both locally and across a network. Because sockets allow such flexibil-
ity, they may perform worse than pipes in some situations. For example, if an appli-
cation requires unidirectional communication between two processes in one system

66 Case Study: Linux

©1981–2004, Deitel & Associates, Inc. All rights reserved.

(i.e., sending the output of a decompression program to a file on disk), pipes should
be used instead of sockets.

There are two primary socket types that processes can employ. Stream sockets
transfer information as streams of bytes. Datagram sockets transfer information in
independent units called datagrams, discussed in Section 16.6.2, User Datagram
Protocol (UDP).207

Stream Sockets

Processes that communicate via stream sockets follow the traditional client/server
model. The server process creates a stream socket and listens for connection
requests. A client process can then connect to the server process and begin
exchanging information. Because data is transferred as a stream of bytes, processes
communicating with stream sockets can read or write variable amounts of data.
One useful property of stream sockets is that, unlike datagram sockets, they use
TCP to communicate, which guarantees that all data transmitted will eventually
arrive and will be delivered in the correct order. Because stream sockets inherently
provide data integrity, they are typically the better choice when communication
must be reliable.208

Datagram Sockets

Although stream sockets provide powerful IPC features, they are not always neces-
sary or practical. Enabling reliable stream sockets creates more overhead than
some applications can afford. Faster, but less reliable communication can be accom-
plished using datagram sockets. For example, in some distributed systems, a server
with many clients periodically broadcasts status information to all of its clients. In
this case, datagram sockets are preferable to stream sockets, because they require
only a single message to be sent from the server socket and do not require any
responses from clients. Datagrams may also be sent periodically to update client
information, such as for clock synchronization purposes. In this case, each subse-
quent datagram is intended to replace the information contained in previous data-
grams. Therefore, the clients can afford not to receive certain datagram packets,
provided that future datagram packets arrive eventually. In such situations, where
data loss is either unlikely or unimportant, applications can use datagram sockets in
lieu of stream sockets to increase performance.

Socketpairs

Although sockets are most often used for Internet communication, Linux enables
bidirectional communication between multiple processes on the same system using
sockets. When a process creates a socket in the local system, it specifies a file name
that is used as the socket’s address. Other sockets on that system can use the file
name to communicate with that socket by reading from, and writing to, a buffer.
Like many data structures in the Linux kernel, sockets are stored internally as files,
and therefore can be accessed via the virtual file system using the read and write
system calls.209

20.10 Interprocess Communication 67

©1981–2004, Deitel & Associates, Inc. All rights reserved.

Linux provides another IPC mechanism that is implemented using sockets,
called a socketpair. A socketpair is a pair of connected, unnamed sockets. When a
process creates a socketpair, the kernel creates two sockets, connects them, and
returns a file descriptor for each socket.210 Similar to pipes, unnamed sockets are
limited to use by processes that share file descriptors. Socketpairs are traditionally
employed when related processes require bidirectional communication.

20.10.4 Message Queues
Messages are an IPC mechanism to allow processes to transmit information that is
composed of a message type and a variable-length data area. Message types are not
defined by the kernel; when processes exchange information, they specify their own
message types to distinguish between messages.

Messages are stored in message queues, where they remain until a process is
ready to receive them. Message queues, unlike pipes, can be shared by processes
that are not parent and child. When the kernel creates a message queue, it assigns it
a unique identifier. Related processes can search for a message queue identifier in a
global array of message queue descriptors. Each descriptor contains a queue of
pending messages, a queue of processes waiting for messages (message receivers), a
queue of processes waiting to send messages (message senders), and data describ-
ing the size and contents of the message queue.211

When a process adds a message to a message queue, the kernel checks the
queue’s list of receivers for a process waiting for messages of that type. If it finds
any such processes, the kernel delivers the message each of them. If no receiver is
waiting for a message of the specified type and enough space is available in the mes-
sage queue, the kernel adds the message to a queue of pending messages of that
type. If insufficient space is available, the message sender adds itself to the queue of
message senders. Senders wait in this queue until space becomes available (i.e.,
when a message is removed from the queue of pending messages).212

When a process attempts to receive a message, the kernel searches for mes-
sages of a specified type in the appropriate message queue. If it finds such a mes-
sage, the kernel removes the message from the queue and copies it to a buffer
located in the address space of the process receiving the message. If no messages of
the requested type are found, the process is added to the queue of message receiv-
ers where it waits until the requested type of message becomes available.213

20.10.5 Shared Memory
The primary advantage of shared memory over other forms of IPC is that, once a
region of shared memory is established, access to memory is processed in user space
and does not require the kernel to access the shared data. Thus, because processes
do not invoke the kernel for each access to shared data, this type of IPC improves
performance for processes that frequently access shared data. Another advantage
of shared memory is that processes can share as much data as they can address,
potentially eliminating the time spent waiting when a producer and consumer work

68 Case Study: Linux

©1981–2004, Deitel & Associates, Inc. All rights reserved.

at different speeds using fixed-size buffers, as discussed in Section 6.2.3. Linux sup-
ports two standard interfaces to shared memory that are managed via tmpfs: Sys-
tem V and POSIX shared memory. [Note: Processes can also share memory using
memory-mapped files.]

The Linux implementation of System V shared memory employs four stan-
dard system calls (Fig. 20.25). When a process has successfully allocated and
attached a region of shared memory, it can reference data in that region as it would
reference data using a pointer. The kernel maintains a unique identifier that
describes the physical region of memory to which each shared memory segment
belongs, deleting the shared memory region only when a process requests its dele-
tion and when the number of processes to which it is attached is zero.214

POSIX shared memory requires the use of the system call shm_open to create
a pointer to the region of shared memory and the system call shm_unlink to close
the region. The shared memory region is stored as a file in the system’s shared
memory file system, which must be mounted at /dev/shm; in Linux, a tmpfs file sys-
tem is typically mounted there (tmpfs is described in the next section). The
shm_open call is analogous to opening a file, whereas the shm_unlink call is analo-
gous to closing a link to a file. The file that represents the shared region is deleted
when it is no longer attached to any processes.

Both System V and POSIX shared memory allow processes to share regions
of memory and map that memory to each process’s virtual address space. However,
because POSIX shared memory does not allow processes to change privileges for
shared segments, it is slightly less flexible than System V shared memory.215 Nei-
ther POSIX nor System V shared memory provides any synchronization mecha-
nisms to protect access to memory. If synchronization is required, processes
typically employ semaphores.

Shared Memory Implementation

The goal of shared memory in an operating system is to provide access to shared
data with low overhead while rigidly enforcing memory protection. Linux imple-
ments shared memory as a virtual memory area that is mapped to a region of physi-
cal memory. When a process attempts to access a shared memory region, the kernel

System V Shared Memory System Call Purpose

shmget Allocates a shared memory segment.

shmat Attaches a shared memory segment to a
process.

shmctl Changes the shared memory segment’s
properties (e.g., permissions).

shmdt Detaches (i.e., removes) a shared memory
segment from a process.

Figure 20.25 | System V shared memory system calls.

20.10 Interprocess Communication 69

©1981–2004, Deitel & Associates, Inc. All rights reserved.

first determines if the process has permission to access it. If so, the kernel allocates a
virtual memory area that is mapped to the region of shared memory, then attaches
the virtual memory area to the process’s virtual address space. The process may then
access shared memory as it would any other memory in its virtual address space.

The kernel keeps track of shared memory usage by treating the region as a file
in tmpfs, the temporary file system. Tmpfs has been designed to simplify shared
memory management while maintaining good performance for the POSIX and Sys-
tem V shared memory specifications. As its name suggests, tmpfs is temporary,
meaning that shared memory pages are not persistent. When a file in tmpfs is
deleted, its page frames are freed. Tmpfs is also swappable; that is, data stored in
the tmpfs can be swapped to the backing store when available memory becomes
scarce. The page(s) containing the file can then be loaded from the backing store
when referenced. This allows the system to fairly allocate page frames to all pro-
cesses in the system. Tmpfs also reduces shared memory overhead because it does
not require mounting or formatting for use. Finally, the kernel can set permissions
of tmpfs files, which enables the kernel to implement the shmctl system call in Sys-
tem V shared memory.216

When the kernel is loaded, an instance of tmpfs is created. If the user wishes
to mount a tmpfs file system to the local directory tree (which, as previously dis-
cussed, is required for POSIX shared memory), the user can mount a new instance
of the file system and access it immediately. To further improve shared memory
performance, tmpfs interfaces directly with the memory manager—it has minimal
interaction with the virtual file system. Although tmpfs creates dentries, inodes and
file structures that represent shared memory regions, generic VFS file operations
are ignored in favor of tmpfs-specific routines that bypass the VFS layer. This
relieves tmpfs of certain constraints typically imposed by the VFS (e.g., the VFS
does not allow a file system to grow and shrink while it is mounted).217

20.10.6 System V Semaphores
Linux implements two types of semaphores: kernel semaphores (discussed in
Section 20.9.4, Kernel Semaphores) and System V semaphores. Kernel semaphores
are synchronization mechanisms employed throughout the kernel to protect critical
sections. System V semaphores also protect critical sections and are implemented
using similar mechanisms; however, they are designed for user processes to access
via the system call interface. For the remainder of this discussion, we refer to Sys-
tem V semaphores simply as semaphores.

Because processes often need to protect a number of related resources, the
kernel stores semaphores in semaphore arrays. Each semaphore in an array pro-
tects a particular resource.218, 219

Before a process can access resources protected by a semaphore array, the
kernel requires that there be sufficient available resources to satisfy the process’s
request. Thus, semaphore arrays can be implemented as a deadlock prevention
mechanism by denying Havender’s “wait-for” condition (see Section 7.7.1, Denying

70 Case Study: Linux

©1981–2004, Deitel & Associates, Inc. All rights reserved.

the “Wait-For” Condition). If a requested resource in semaphore array has been
allocated to another process, the kernel blocks the requesting process and places its
resource request in a queue of pending operations for that semaphore array. When
a resource is returned to the semaphore array, the kernel examines the semaphore
array’s queue of pending operations for processes, and if a process can proceed, it is
unblocked.220

To prevent deadlock from occurring if a process terminates prematurely while
it holds resources controlled by a semaphore, the kernel tracks the operations each
process performs on a semaphore. When a process exits, the kernel reverses all the
semaphore operations it performed to allocate its resources. Finally, note that sema-
phore arrays offer no protection against indefinite postponement caused by poor
programming in the user processes that access them.

20.11 Networking
The networking subsystem performs operations on network packets, each of which
is stored in a contiguous physical memory area described by an sk_buff structure.
As a packet traverses layers of the network subsystem, network protocols add and
remove headers and trailers containing protocol-specific information (see
Chapter 16, Introduction to Networking).221

20.11.1 Packet Processing
Figure 20.26 illustrates the path taken by network packets as they travel from a net-
work interface card (NIC) through the kernel. When a NIC receives a packet, it
issues an interrupt, which causes the NIC’s interrupt handler to execute. The inter-
rupt handler calls the network device’s driver routine that allocates an sk_buff for
the packet, then copies the packet from the network interface into the sk_buff and
adds the packet to a queue of packets pending processing. A queue of pending
packets is assigned to each processor; the interrupt handler assigns a packet to the
queue belonging to the processor on which it executes.222

At this point, the packet resides in memory where it awaits further processing.
Because interrupts are disabled while the top half of the interrupt handler executes,
the kernel delays processing the packet. Instead, the interrupt handler raises a soft-
irq to continue processing the packet. (Section 20.8.6, Interrupts, discussed soft-
irqs.) After raising the softirq, the device driver routine returns and the interrupt
handler exits.223

A single softirq processes all packets that the kernel receives on that proces-
sor. Because the kernel uses softirqs to process packets, network routines can exe-
cute concurrently on multiple processors in SMP systems, resulting in increased
performance. When the scheduler dispatches the network softirq, the softirq pro-
cesses packets in the processor’s queue until either the queue is empty, a predefined
maximum number of packets are processed or a time limit is reached. If one of the
latter two conditions is met, the softirq is rescheduled and returns control of the
processor to the scheduler.224

20.11 Networking 71

©1981–2004, Deitel & Associates, Inc. All rights reserved.

To process a packet, the network device softirq (called NET_RX_SOFTIRQ)
removes the packet from the current processor’s queue and passes it to the appro-
priate network layer protocol handler—typically the IP protocol handler. Although
Linux supports other network layer protocols, they are rarely used. Therefore, we
limit our discussion to the IP protocol handler.

When the IP protocol handler receives a packet, it first determines its destina-
tion. If the packet destination is another host, the handler forwards the packet to
the appropriate host. If the packet is destined for the local machine, the IP protocol
handler strips the IP protocol-specific header from the sk_buff and passes the
packet to the appropriate transport layer packet handler. The transport layer
packet handler supports the Transmission Control Protocol (TCP), User Datagram
Protocol (UDP) and Internet Control Message Protocol (ICMP).225

The transport layer packet handler determines the port specified by the TCP
header and delivers the packet data to the socket that is bound to that port. The
packet data is then transmitted to the process via the socket interface.

Figure 20.26 | Path followed by network packets received by the networking

subsystem.

Packet
transmission

Transport layer
protocol
handler

Socket
interface

Processes

Local
destination

Remote destination

Incoming
network

traffic

Outgoing
network

traffic

Net device
driver

Packet
reception
softirq

Network layer
protocol
handler

Network
interface
card

72 Case Study: Linux

©1981–2004, Deitel & Associates, Inc. All rights reserved.

20.11.2 Netfilter Framework and Hooks
As packets traverse the networking subsystem they encounter elements of the net-
filter framework. Netfilter is a mechanism designed to allow kernel modules to
directly inspect and modify packets. At various stages of the IP protocol handler,
software constructs called hooks enable modules to register to examine, alter and/
or discard packets. At each hook, modules can pass packets to user processes.226

Figure 20.27 lists the netfilter hooks and the packets that pass through each
hook. The first hook packets encounter is NF_IP_PRE_ROUTING. All incoming pack-
ets pass it as they enter the IP protocol handler. One possible use for this hook is to
enable a system that multiplexes network traffic (e.g., a load balancer). For exam-
ple, a load balancer attempts to evenly distribute requests to a cluster of Web serv-
ers to improve average response times. Thus, the load balancer can register the
NF_IP_PRE_ROUTING hook to intercept packets and reroute them according to the
load on each Web server.

After a packet passes the NF_IP_PRE_ROUTING hook, the next hook it encoun-
ters depends on its destination. If the packet destination is the current network inter-
face, it passes through the NF_IP_LOCAL_IN hook. Otherwise, if a packet needs to be
passed to another network interface, it passes through the NF_IP_FORWARD hook.
One possible use for these two hooks is to limit the amount of incoming traffic from
a particular host by discarding packets once a certain threshold is reached.

All locally generated packets pass through the NF_IP_LOCAL_OUT hook,
which, similar to the NF_IP_LOCAL_IN and NF_IP_FORWARD hooks, can be used to
filter packets before they are sent across a network. Finally, immediately before
leaving the system, all packets pass through the NF_IP_POST_ROUTING hook. A
firewall can use this hook to modify the outgoing traffic to make it appear to have
come from the firewall instead of from the original source.

20.12 Scalability
The early development of the Linux kernel focused on desktop systems and low-
end servers. As additional features were implemented, Linux’s popularity
increased. This led to new interest in scaling Linux to larger systems (even main-
frame computers) at large computer companies, such as IBM (www.ibm.com) and

Hook Packets handled
NF_IP_PRE_ROUTING All incoming packets.

NF_IP_LOCAL_IN Packets sent to the local host.

NF_IP_LOCAL_OUT Locally generated packets.

NF_IP_FORWARD Packets forwarded to other hosts.

NF_IP_POST_ROUTING All packets sent from the system.

Figure 20.27 | Netfilter hooks.

20.12 Scalability 73

©1981–2004, Deitel & Associates, Inc. All rights reserved.

Hewlitt-Packard (www.hp.com), which cooperated with independent developers to
scale Linux to be competitive in the high-end server market.

As Linux’s scalability improves, designers must decide how far to enable the
standard Linux kernel to scale. Increasing its scalability might negatively affect its
performance on desktop systems and low-end servers. With this in mind, companies
such as Red Hat (www.redhat.com), SuSE (www.suse.com) and Conectiva
(www.conectiva.com) provide Linux distributions designed for high-performance
servers and sell support services tailored to those distributions. By providing kernel
modifications in a distribution, companies can tailor the Linux kernel to high-end
servers without affecting users in other environments.

High-end servers are not the only reason to improve Linux’s scalability—
embedded-device manufacturers also use Linux to manage their systems. To satisfy
the lesser needs of these limited-capability systems, software companies and indepen-
dent developers create modified Linux kernels and applications designed for embed-
ded devices. In addition to “home grown” embedded Linux kernels, companies such
as Red Hat and projects such as uCLinux (www.uclinux.org) have developed Linux
solutions for embedded systems. These modifications allow the kernel to execute in
systems that do not support virtual memory, in addition to reducing resource con-
sumption and enabling real-time execution. As developers continue to address these
issues, Linux is becoming a viable choice for use in many embedded systems.

20.12.1 Symmetric Multiprocessing (SMP)
Much of the effort to increase Linux’s performance on servers focuses on improved
support for SMP systems. Version 2.0 was the first stable kernel release to support
SMP systems.227 Adding a global spin lock—called the big kernel lock (BKL)—was
an early attempt at SMP support. When a process acquired the BKL in version 2.0,
no process on any other processor could execute in kernel mode. Other processes
were, however, free to execute in user mode.228 The BKL enabled developers to
serialize access to kernel data structures, which allowed the kernel to execute multi-
ple processes concurrently in SMP systems. As one study showed, serializing access
to the entire kernel meant that the system could not scale effectively to more than
four processors per system.229

 Locking the entire kernel is usually not required, because multiple processes
can execute concurrently in kernel mode, provided they do not modify the same
data structures. Linux kernel version 2.4 replaced most uses of the BKL with fine-
grained locking mechanisms. This change allows SMP systems running Linux to
scale effectively to 16 processors.230

Fine-grained locks, although a performance enhancement, tend to make devel-
oping and debugging the kernel more difficult. These locks force developers to care-
fully code the acquisition of the appropriate locks at the appropriate times to avoid
causing deadlock (for example, by writing code that attempts to acquire the same spin
lock twice). As a result, the use of fine-grained locks has slowed kernel development
in many subsystems, as would be expected with the increased software complexity.231

74 Case Study: Linux

©1981–2004, Deitel & Associates, Inc. All rights reserved.

Performance gains similar to those of large SMP systems have been achieved
using alternative solutions, such as clustering (see Section 18.4, Clustering). Recall
that a cluster of computer systems consists of several computers that cooperate to
perform a common set of tasks. Such clusters of computers are typically connected
by a dedicated, high-speed network. To perform work cooperatively using Linux sys-
tems, each system must run a modified kernel. Examples of features such a kernel
might include are routines to balance workloads within the cluster and data struc-
tures to simplify remote interprocess communication, such as global process identifi-
ers. If each machine in the Linux cluster contains a single processor, the complexity
of fine-grained locks can be avoided, because only one kernel control path can exe-
cute at a time on each machine. Clusters can equal or outperform SMP systems,
often at a lower cost of development and hardware.232 For example, Beowulf clus-
ters, a popular form of Linux clusters, have been used by NASA and the Department
of Energy (DoE) to build high-performance systems at relatively low cost when
compared to proprietary, multiprocessor supercomputer architectures.233

20.12.2 Nonuniform Memory Access (NUMA)
As the number of processors in high-end systems increases, buses that connect each
processor to components such as memory become increasingly congested. Conse-
quently, many system designers have implemented nonuniform memory access
(NUMA) architectures to reduce the amount of bandwidth necessary to maintain
high levels of performance in large multiprocessor systems. Recall from
Section 15.4.2, Nonuniform Memory Access, that NUMA architectures divide a
system into nodes, each of which provides high-performance interconnections
between a set of processors, memory and/or I/O devices. The devices within a node
are called local resources, while resources outside the node are called remote
resources. Connections to remote resources are typically significantly slower than
connections to local devices. To achieve high performance, the kernel must be
aware of the layout of the NUMA system (i.e., the location and contents of each
node) to reduce unnecessary internode access.

When the kernel detects a NUMA system, it must initially determine its lay-
out (i.e., which devices correspond to which nodes) so that it can better allocate
resources to processes. Most NUMA systems provide architecture-specific hard-
ware that indicates the contents of each node. The kernel uses this information to
assign each device an integer value indicating the node to which it belongs. Most
NUMA systems partition a single physical memory address space into regions cor-
responding to each node. To support this feature, the kernel uses a data structure to
associate a range of physical memory addresses with a particular node.234

To maximize performance, the kernel uses the layout of the NUMA system to
allocate resources that are local to the node in which a process executes. For exam-
ple, when a process is created on a particular processor, the kernel allocates the
process local memory (i.e., memory that is assigned to the node containing the pro-
cessor) using the data structure we mentioned. If a process were to subsequently

20.12 Scalability 75

©1981–2004, Deitel & Associates, Inc. All rights reserved.

execute on a processor on a different node, its data would be stored in remote
memory, leading to poor performance due to high memory access latency. Recall
from Section 20.5.2, Process Scheduling, that the process scheduler will dispatch a
process to the same processor (to improve cache performance) unless the number
of processes running on each processor becomes unbalanced. To support NUMA
systems, the load balancing routines attempt to migrate a process only to processors
within the process’s current node. In the case that a processor in another node is
idle; however, the process scheduler will migrate a process to another node.
Although this results in high memory access latency for the migrated process, over-
all system throughput increases due to increased resource utilization.235

Several other kernel components support the NUMA architecture. For exam-
ple, when a process requests memory and available local memory is low, the kernel
should swap out pages only in local memory. As a result, the kernel creates a
kswapd thread for each node to perform page replacement.236

Despite the kernel’s broad support for the NUMA architecture, there are lim-
itations to the current implementation. For example, if a process is migrated to a
processor on a remote node, the kernel provides no mechanisms to migrate the pro-
cess’s pages to local memory (i.e., memory in the process’s current node). Only
when pages are swapped from disk does the kernel move the process’s pages to its
processor’s local memory. Several development projects exist to improve kernel
support for NUMA systems, and extensions are expected to be released in future
versions of the kernel.

20.12.3 Other Scalability Features
Developers have increased the size of several fields to accommodate the growing
demands of computer systems. For example, the maximum number of users in a sys-
tem increased from 16-bit field (65,536 users) to a 32-bit field (over four billion
users). This is necessary for institutions such as large universities that have more
than 100,000 users. Similarly, the number of tasks a system can execute increased
from 32,000 to 4 million, which was necessary to support mainframe and other high-
end systems, which often execute tens or hundreds of thousands of threads.237 Also,
the variable that stores time, jiffies, has been increased from a 32-bit to a 64-bit
value. This means that the value, which is incremented at every timer interrupt, will
not overflow at the current timer frequency (1,000Hz) for over 2 billion billion
years. Using a 32-bit number, jiffies would overflow after approximately 50 days
with a timer frequency of 1,000Hz.238, 239, 240

Fields related to storage also increased in size to accommodate large memo-
ries. For example, Linux can reference disk blocks using a 64-bit number, allowing
the system to access 16 quintillion disk blocks—corresponding to exabytes (billions
of gigabytes) of data. Linux also supports Intel’s Physical Address Extension (PAE)
technology, which allows systems to access up to 64GB of data (corresponding to a
36-bit address) using a 32-bit processor.241, 242

76 Case Study: Linux

©1981–2004, Deitel & Associates, Inc. All rights reserved.

Prior to version 2.6, the kernel could not be preempted by a user process. How-
ever, the 2.6 kernel is preemptible, meaning that the kernel will be preempted if an
event causes a high-priority task to be ready, which improves response times for real-
time processes. To ensure mutual exclusion and atomic operations, the kernel dis-
ables preemption while executing a critical section. Finally, Linux includes support
for several high-performance architectures, such as 64-bit processors (both the Intel
Itanium processors, www.intel.com/products/server/processors/server/
itanium2/, and AMD Opteron processors, www.amd.com/us-en/Processors/
ProductInformation/0,,30_118_8825,00.html) and Intel’s HyperThreading
technology (see www.intel.com/info/hyperthreading/).243, 244

20.12.4 Embedded Linux
Porting Linux to embedded devices introduces design challenges much different
from those in SMP and NUMA systems. Embedded systems provide architectures
with limited instruction sets, small memory and secondary storage sizes and devices
that are not commonly found in desktops and workstations (e.g., touch-sensitive
displays and device-specific input buttons). A variety of Linux distributions are tai-
lored to meet the needs of embedded systems.

Often, providers of embedded Linux distributions must implement hard real-
time process scheduling. Examples of systems requiring real-time embedded device
management include cell phones, digital video recorders (e.g., TiVO; www.tivo.com)
and network gateways.245 To provide real-time execution in the Linux kernel, compa-
nies such as MontaVista Software (www.mvista.com) modify a few key components
of the kernel. For example, developers must reduce scheduling overhead so that real-
time process scheduling occurs quickly enough that the kernel meets real-time pro-
cesses’ timing constraints. The standard kernel’s policy, although somewhat appropri-
ate for real-time processes, is not sufficient for providing hard real-time guarantees
(see Section 8.9, Real-Time Scheduling). This is because the Linux scheduler by
default does not support deadlines. Embedded-device developers modify the sched-
uler to support additional priority levels, deadlines and lower scheduling latency.246

Other concerns specific to embedded systems also require modification to the
Linux kernel. For example, some systems may include a relatively small amount of
memory compared to desktop systems, so developers must reduce the size of the
kernel footprint. Also, some embedded devices do not support virtual memory. As
a result, the kernel must be modified to perform additional memory management
operations (e.g., protection) in software.247

20.13 Security
The kernel provides a minimal set of security features, such as discretionary access
control. Authentication is performed outside the kernel by user-level applications
such as login. This simple security infrastructure has been designed to allow sys-
tem administrators to redefine access control policies, customize the way Linux
authenticates users and specify encryption algorithms that protect system resources.

20.13 Security 77

©1981–2004, Deitel & Associates, Inc. All rights reserved.

20.13.1 Authentication
By default, Linux authenticates its users by requiring them to provide a username and
password via the login process. Each username is linked to an integer user ID. Pass-
words are hashed using the MD5 or DES algorithms, then stored in entries corre-
sponding to user IDs in either the /etc/passwd or /etc/shadow file. [Note:
Although DES was originally developed as an encryption algorithm, it can be used as
a hash algorithm.] The choice of encryption algorithm and location of the password
file can be modified by a system administrator. Unlike encryption algorithms, which
can reverse the encryption operation using a decryption key, hash algorithms are not
reversible. Consequently, Linux verifies a password entered at the login prompt by
passing it through the hash algorithm and comparing it to the entry that corresponds
to the user’s ID number in the /etc/passwd or /etc/shadow file.248, 249

As discussed in Section 19.3.1, Basic Authentication, username and password
authentication is susceptible to brute-force cracking, such as dictionary attacks.
Linux addresses such problems by allowing system administrators to load pluggable
authentication modules (PAMs). These modules can reconfigure the system at run
time to include enhanced authentication techniques. For example, the password sys-
tem can be strengthened to disallow terms found in a dictionary and require users
to choose new passwords regularly. PAM also supports smart card, Kerberos and
voice authentication systems.250 System administrators can use PAMs to select an
authentication system that is most suitable for their environment without modifying
the kernel or utility programs such as login.251

20.13.2 Access Control Methods
Linux secures system resources by controlling access to files. As described in
Section 20.3, Linux Overview, the root user is given access to all resources in the
system. To control how other users access resources, each file in the system is
assigned access control attributes that specify file permissions and file attributes, as
discussed in Section 20.7.3. In Linux, file permissions consist of a combination of
read, write and/or execute permissions specified for three categories: user, group
and other. The user file permissions are granted to the owner of the file. By default,
a Linux file’s owner is initially the user that created the file. Group permissions are
applied if the user requesting the file is not the owner of the file, but is a member of
group. Finally, other permissions are applied to users that are members of user nei-
ther nor group.252

File attributes are an additional security mechanism that is supported by some
file systems (e.g., the ext2 file system). File attributes allow users to specify con-
straints on file access beyond read, write and execute. For example, the append-
only file attribute specifies that any changes to the file must be appended to the end
of the file. The immutable file attribute specifies that a file cannot be modified
(including renaming and deletion) or linked (i.e., referenced using symbolic or hard
links).253, 254

78 Case Study: Linux

©1981–2004, Deitel & Associates, Inc. All rights reserved.

Linux Security Modules (LSM) Framework

In many environments, security provided by the default access control policy (i.e.,
discretionary access control) is insufficient. Thus, the kernel supports the Linux
security modules (LSM) framework to allow a system administrator to customize
the access control policy for a particular system using loadable kernel modules. To
choose a different access control mechanism, system administrators need only
install the kernel module that implements that mechanism. The kernel uses hooks
inside the access control verification code to allow an LSM to enforce its access
control policy. As a result, an LSM is invoked only if a process has been granted
access to a resource via the default access control policy. If a process is denied
access by the default access control policy, the registered LSM does not execute,
reducing the overhead caused by an LSM.255

 One popular LSM is SELinux, developed by the National Security Agency
(NSA). SELinux replaces Linux’s default discretionary access control policy with a
mandatory access control (MAC) policy (see Section 19.4.2, Access Control Models
and Policies). Such a policy allows the system administrator to set the security rules
for all files; these rules cannot be overridden by malicious or inexperienced users.
The disadvantages of MAC policies result from the need for a greater number of
complex rules. More information about the LSM framework and modules such as
SELinux can be found at the official LSM Web site (lsm.immunix.org).256

Privilege Inheritance and Capabilities

When a process is launched by a user, normally it executes with the same privileges
as the user who launched it. It is sometimes necessary for users to execute applica-
tions with privileges other than those defined by their username and group. For
example, many systems allow users to change their passwords using the passwd
program. This program modifies the /etc/passwd or /etc/shadow file, which can
be read by everyone, but written only with root privileges. To allow users to execute
such programs, Linux provides the setuid and setgid permission bits. If the set-
uid permission bit for an executable file is set, the process that executes that file is
assigned the same privileges as the owner of the file. Similarly, if the setgid per-
mission bit for an executable file is set, the process that executes that file is assigned
the same privileges as the group specified in the file attributes. Thus, users can mod-
ify the /etc/password file if the passwd program is owned by a user with root priv-
ileges and its setuid permission bit is set.257

Poorly written programs that modify the setuid or setgid bits can allow
users access to sensitive data and system resources. To reduce the possibility of such
a situation occurring, Linux provides the LSM Capabilities module to implement
capabilities (see Section 19.4.3, Access Control Mechanisms). This allows Linux
administrators greater flexibility in assigning access control privileges, such as the
ability to assign privileges to applications rather than to users, which promotes fine-
grained security.258

20.13 Security 79

©1981–2004, Deitel & Associates, Inc. All rights reserved.

20.13.3 Cryptography
Although PAM and the LSM framework allow system administrators to create
secure authentication systems and customized access control policies, they cannot
protect data that is not controlled by the Linux kernel (e.g., data transmitted over a
network or stored on disk). To enable users to access several forms of encryption to
protect their data, Linux provides the Cryptographic API. Using this interface, pro-
cesses can encrypt information using powerful algorithms such as DES, AES and
MD5 (see Section 19.2, Cryptography). The kernel uses the Cryptographic API to
implement secure network protocols such as IPSec (see Section 19.10, Secure Net-
work Protocols).259

The Cryptographic API also allows users to create secure file systems without
modifying the existing file system’s code. To implement such a file system, encryp-
tion is implemented using a loopback device (Fig. 20.28), which is a layer between
the virtual file system and the existing file system (e.g., ext2). When the virtual file
system issues a read or write call, control passes to the loopback device. If the VFS
issues a read call, the loopback device reads the requested (encrypted) data from
the underlying file system. The loopback device then uses the Cryptographic API to
decrypt the data and returns that data to the VFS. Similarly, the loopback device

Figure 20.28 | Loopback device providing an encrypted file system using the Cryp-

tographic API.

Kernel returns
decrypted data
to the process

A process issues
read and/or

write requests

Kernel passes
request to the

loopback device

Loopback device
passes encrypted

data to the
file system

File system
driver reads
encrypted data
and passes it to
the loopback
device

Loopback
device uses the
cryptographic
API to encrypt
and decrypt
data

System call interface

Loopback device Cryptographic API

File system driver

Process

Secondary
storage

Data is in
plain text

Data is
encrypted

80 Case Study: Linux

©1981–2004, Deitel & Associates, Inc. All rights reserved.

uses the Cryptographic API to encrypt data before transferring it to the file system.
This technique can be applied to individual directories or the entire file system, so
that data is protected even if an unauthorized user accesses the hard disk using
another operating system.260

Web Resources
www.kernel.org/
Official site for hosting the latest Linux kernel releases. It also
includes a brief description of Linux and contains links to
Linux resources.

lxr.linux.no/
Contains a cross reference to recent releases of the Linux
source code. Users can navigate the source code specific to an
architecture and version number, search the source for identi-
fiers and other text, and compare two different versions of the
source side by side. The /Documentation directory provides
links to files referenced in the chapter.

loll.sourceforge.net/linux/links/
Provides an index of categorized links to a selection of online
Linux resources. Categories include kernel, documentation,
distributions, security and privacy, graphics and software appli-
cations.

www.linux.org/
Provides updated Linux information including news, develop-
ment status and links to documentation, distributions, applica-
tions, source code and other resources.

www.kernelnewbies.org/
Provides information for people new to the Linux kernel. Fea-
tures include a glossary, FAQ, articles, documentation, useful
scripts and mailing lists.

www.spinics.net/linux/
Contains a large number of Linux resources, including links to
information on kernels, security, embedded Linux and more.

www.tldp.org/LDP/lki/index.html
Part of the Linux Documentation Project hosted at
www.tldp.org that discusses Linux kernel internals. The
Linux Documentation Project provides many guides, HOW-
TOs and FAQs for those interested in the kernel, and for users
and administrators.

www.tldp.org/LDP/lkmpg/index.html
Focuses on programming for the Linux environment, including
details on programming kernel modules and adding entries to
the proc file system.

www.tldp.org/HOWTO/Module-HOWTO/
Describes how to program Linux loadable kernel modules
(LKMs) and discusses the use and behavior of LKMs.

www.csn.ul.ie/~mel/projects/vm/
Provides documentation of the Linux version 2.4 virtual mem-
ory system, which remains largely intact in version 2.6. The
documents include a comprehensive discussion of Linux vir-
tual memory and a companion code commentary.

www.linuxjournal.com/search.php?query=&topic=4
The Linux Journal Web site provides numerous articles on
Linux. Be sure to search the “Linux Kernel” category.

www.linuxsymposium.org/2003/
Provides information about the Linux Symposia, annual gather-
ings of the top Linux kernel developers from over 30 countries.

lse.sourceforge.net/
Home to the Linux Scalability Effort, an organization dedi-
cated to porting Linux to larger and more complex computer
systems.

www.linux-mag.com/
Online version of Linux Magazine, which provides articles,
guides and tutorials for Linux systems.

www.linuxdevices.com/
Provides articles and resources on Linux for embedded sys-
tems and discusses how Linux scales to devices such as cell
phones and PDAs.

www.linuxsecurity.com/
Contains articles, documentation and other links to informa-
tion regarding Linux security for both users and developers.

kernelnewbies.org/documents/kdoc/kernel-locking/
lklockingguide.html
Contains information written by a kernel developer about ker-
nel locks and semaphores.

www.plig.org/xwinman/index.html
Describes the window managers available for the X Window
Manager as well as some of the desktop environments that run
on X.

user-mode-linux.sourceforge.net/
Explains how to download, install and use User-Mode Linux
(UML).

lsm.immunix.org
Provides links to documentation, downloads and mailing lists
for the Linux Security Modules project.

Key Terms 81

©1981–2004, Deitel & Associates, Inc. All rights reserved.

Key Terms
access control attribute (Linux)—Specifies the access rights

for processes attempting to access a particular resource.

active list (Linux)—Scheduler structure that contains pro-
cesses that will control the processor at least once during
the current epoch.

active page (Linux)—Page of memory that will not be replaced
the next time pages are selected for replacement.

active state (Linux)—Task state describing tasks that can com-
pete for execution on a processor during the current epoch.

append-only file attribute (Linux)—File attribute that limits
users to appending data to existing file contents.

architecture-specific code—Code that specifies instructions
unique to a particular architecture.

Beowulf cluster (Linux)—High-performance parallel-process-
ing system consisting of a cluster of computers each run-
ning the Beowulf modification to the Linux kernel.

big kernel lock (BKL) (Linux)—Global spin lock that served
as an early implementation of SMP support in the Linux
kernel.

binary buddy algorithm (Linux)—Algorithm that Linux uses
to allocate physical page frames. The algorithm maintains
a list of groups of contiguous pages; the number in each
group is a power of two. This facilitates memory alloca-
tion for processes and devices that require access to con-
tiguous physical memory.

bio structure (Linux)—Structure that simplifies block I/O
operations by mapping I/O requests to pages.

block allocation bitmap (Linux)—Bitmap that tracks the usage
of blocks in each block group.

block group (Linux)—Collection of contiguous blocks man-
aged by groupwide data structures so that related data
blocks, inodes and other file system metadata are contigu-
ous on disk.

bottom half of an interrupt handler (Linux)—Portion of inter-
rupt-handling code that can be preempted.

bounce buffer (Linux)—Region of memory that allows the
kernel to map data from the high memory zone into mem-
ory that it can directly reference. This is necessary when
the system’s physical address space is larger than kernel’s
virtual address space.

cache-cold process—Process that contains little, if any, of its
data or instructions in the cache of the processor to which
it will be dispatched.

cache-hot process—Process that contains most, if not all, of its
data and instructions in the cache of the processor to
which it will be dispatched.

capability—Security mechanism that assigns access rights to a
subject (e.g., a process) by granting it a token for an object
(i.e., a resource). This enables administrators to specify
and enforce fine-grained access control.

code freeze (Linux)—Point at which no new code should be
added to the kernel unless the code fixes a known bug.

core file (Linux)—File that contains the execution state of a
process, typically used for debugging purposes after a pro-
cess encounters a fatal exception.

Cryptographic API (Linux)—Kernel interface through which
applications and services (e.g., file systems) can encrypt
and decrypt data.

datagram socket—Socket that uses the UDP protocol to trans-
mit data.

deadline scheduler (Linux)—Disk scheduling algorithm that
eliminates indefinite postponement by assigning dead-
lines by which I/O requests are serviced.

daemon (Linux)—Process that runs periodically to perform
system services.

deactivated process (Linux)—Process that has been removed
from the run queues and can therefore no longer contend
for processor time.

dcache (directory entry cache) (Linux)—Cache that stores
directory entries (dentries), which enables the kernel to
quickly map file descriptors to their corresponding inodes.

default action for a signal handler (Linux)—Predefined signal
handler that is executed in response to a signal when a
process does not specify a corresponding signal handler.

dentry (directory entry) (Linux)—Structure that maps a file to
an inode.

desktop environment—GUI layer above a window manager
that provides tools, applications and other software to
improve system usability.

device class—Group of devices that perform similar functions.

device special file (Linux)—Entry in the /dev directory that
provides access to a particular device.

direct I/O—Technique that performs I/O without using the
kernel’s buffer cache. This leads to more efficient memory
utilization in database applications, which typically main-
tain their own buffer cache.

discretionary access control—Access control policy that speci-
fies the owner of a file as the user that can assign access
rights to that file.

distribution (Linux)—Software package containing the Linux
kernel, user applications and/or tools that simplify the
installation process.

82 Case Study: Linux

©1981–2004, Deitel & Associates, Inc. All rights reserved.

DMA memory (Linux)—Region of physical memory between
zero and 16MB that is typically reserved for kernel boot-
strapping code and legacy DMA devices.

doubly indirect pointer—Inode pointer that locates a block of
(singly) indirect pointers.

effective priority (Linux)—Priority assigned to a process by
adding its static priority to its priority boost or penalty.

epoch (Linux)—Time during which all processes move from
the scheduler’s active list to its expired list. This ensures
that processes are not indefinitely postponed.

expired list (Linux)—Structure containing processes that can-
not contend for the processor until the next epoch. Pro-
cesses are placed in this list to prevent others from being
indefinitely postponed. To quickly begin a new epoch, this
list becomes the active list.

expired state (Linux)—Task state that prevents a task from
being dispatched until the next epoch.

ext2 inode (Linux)—Structure that stores information such as
file size, the location of a file’s data blocks and permis-
sions for a single file or directory in an ext2 file system.

ext2fs (Linux)—Popular inode-based Linux file system that
enables fast access to small files and supports large file
sizes.

feature freeze (Linux)—State of kernel development during
which no new features should be added to the kernel, in
preparation for a new kernel release.

FIFO (Linux)—Named pipe that enables two unrelated pro-
cesses to communicate via the producer/consumer rela-
tionship using a page-size buffer.

file attribute—File metadata that implements access control
information, such as whether a file is append-only or
immutable, that cannot be specified using standard Linux
file permissions.

file permission—Structure that determines whether a user may
read, write and or execute a file.

group descriptor (Linux)—Structure that records information
regarding a block group, such as the locations of the inode
allocation bitmap, block allocation bitmap and inode table.

high memory (Linux)—Region of physical memory (which
begins at 896MB on the IA-32 architecture) beginning at
the largest physical address that is permanently mapped
to the kernel’s virtual address space and extending to the
limit of physical memory (64GB on Intel Pentium 4 pro-
cessors). Because the kernel must perform expensive
operations to map pages in its virtual address space to
page frames in high memory, most kernel data structures
are not stored in high memory.

hot swappable device—Device that can be added to, or
removed from, a computer while it is running.

hook—Software feature that enables developers to add fea-
tures to an existing application without modifying its
source file. An application uses a hook to call a procedure
that can be defined by another application.

immutable attribute (Linux)—Attribute specifying that a file
can be read and executed, but cannot be copied, modified
or deleted.

inactive list (Linux)—See expired list.

inactive page (Linux)—Page in main memory that can be
replaced by an incoming page.

indirect pointer—Inode pointer that points to a block of inode
pointers.

inode (Linux)—Structure that describes the location of data
blocks corresponding to a file, directory or link in a file sys-
tem. In the VFS, this structure represents any file in the sys-
tem. An ext2 inode represents a file in the ext2 file system.

inode allocation bitmap (Linux)—Bitmap that records a block
group’s inode usage.

inode cache (Linux)—Cache that improves inode lookup per-
formance.

inode table (Linux)—Structure that contains an entry for each
allocated inode in a block group.

kernel control path (Linux)—A kernel execution context that
may perform operations requiring mutual exclusive access
to kernel data structures.

kernel semaphore (Linux)—Semaphore implemented by the
kernel to provide mutual exclusion.

kernel thread (Linux)—Thread that executes kernel code.

ksoftirqd (Linux)—Daemon that schedules software interrupt
handlers when softirq load is high.

kswapd (Linux)—Daemon that swaps pages to disk.

Linux security modules (LSM) framework (Linux)—Frame-
work that allows system administrators to specify the
access control mechanism employed by the system.

Linux Standard Base (Linux)—Project that aims to specify a
standard Linux interface to improve application portabil-
ity between kernel versions (and distributions).

loadable kernel module (Linux)—Software that can be inte-
grated into the kernel at runtime.

load balancing—Operation that attempts to evenly distribute
system load between processors in the system.

loopback device (Linux)—Virtual device that enables opera-
tions to be performed on data between layers of a system
service (e.g., the file system).

Key Terms 83

©1981–2004, Deitel & Associates, Inc. All rights reserved.

mandatory access control—Access control policy that relegates
assignment of access rights to the system administrator.

major device identification number (Linux)—Value that
uniquely identifies a device in a particular device class.
The kernel uses this value to determine a device’s driver.

major version number (Linux)—Value that uniquely identifies
a significant Linux release.

memory dump (Linux)—Action that generates a core file
before terminating a process.

memory footprint (Linux)—Size of unswappable memory con-
sumed by the kernel.

memory pool (Linux)—Region of memory reserved by the
kernel for a process to ensure that the process’s future
requests for memory are not denied.

merge I/O requests (Linux)—To combine two I/O requests to
adjacent locations on disk into a single request.

message queue (Linux)—Structure that stores messages that
have yet to be delivered to processes.

message queue descriptor (Linux)—Structure that stores data
regarding a message queue.

message—IPC mechanism that allows data to be transmitted by
specifying a message type and variable-length field of data.

minor device identification number (Linux)—Value that
uniquely identifies devices that are assigned the same
major number (e.g., a hard drive partition).

minor version number (Linux)—Value that identifies succes-
sive stable (even) and development (odd) versions of the
Linux kernel.

mount—Insert a file system into a local directory structure.

named pipe (Linux)—Pipe that can be accessed via the direc-
tory tree, enabling processes that are not parent and child
to communicate using pipes. See also pipe.

netfilter framework (Linux)—Mechanism that allows kernel
modules to directly inspect and modify packets. This is use-
ful for applications such as firewalls, which modify each
packet’s source address before the packet is transmitted.

nice value (Linux)—Measure of a process’s scheduling prior-
ity. Processes with a low nice value receive a greater share
of processor time than other processes in the system and
are therefore “less nice” to other processes in the system.

normal memory (Linux)—Physical memory locations beyond
16MB that the kernel can directly map to its virtual
address space. This region is used to store kernel data and
user pages.

package (Linux)—Portion of a distribution containing an
application or service. Users can customize their Linux
systems by adding and removing packages.

page cache (Linux)—Cache storing pages of data from disk.
When a process requests data from disk, the kernel first
determines if it exists in the page cache, which can elimi-
nate an expensive disk I/O operation.

page global directory (Linux)—Virtual memory structure that
stores addresses of second-level page-mapping tables.

page middle directory (Linux)—Virtual memory structure that
stores addresses of third-level page-mapping tables (also
called page tables).

page table (Linux)—Virtual memory structure that contains
direct mappings between virtual page numbers and physi-
cal page numbers.

PID (process identifier)—Integer that uniquely identifies a
process.

pipe—Interprocess communication mechanism that uses a
page of memory as a first-in-first-out buffer to transfer
information between processes.

pipe buffer (Linux)—Page of data that is used to buffer data
written to a pipe.

pluggable authentication module (PAM) (Linux)—Module
that can be installed at runtime to incorporate enhanced
authentication techniques in the Linux system.

port of Linux—Version of the Linux kernel that is modified to
support execution in a different environment.

preemption lock counter (Linux)—Integer that is used to
determine whether code executing in kernel mode may be
preempted. The value of the counter is incremented each
time a kernel control path enters a critical section during
which it cannot be preempted.

priority array (Linux)—Structure within a run queue that
stores processes of the same priority.

procfs (proc file system) (Linux)—File system built directly
into the kernel that provides real-time information about
the status of the kernel and processes, such as memory
utilization and system execution time.

ramfs (Linux)—Region of main memory treated as a block
device. The ramfs file system must be formatted before use.

reader/writer lock (Linux)—Lock that allows multiple threads
to concurrently hold a lock when reading from a resource,
but only one thread to hold a lock when writing to that
resource.

real-time signal (Linux)—Signal implementation that helps to
implement a real-time system by ensuring that no signals
are dropped.

request list (Linux)—Structure that stores pending I/O
requests. This list is sorted to improve throughput by
reducing seek times.

84 Case Study: Linux

©1981–2004, Deitel & Associates, Inc. All rights reserved.

reverse mapping (Linux)—Linked list of page table entries
that reference a page of memory. This facilitates updating
all PTEs corresponding to a shared page that is about to
be replaced.

root user (Linux)—See superuser.

run queue (Linux)—List of processes waiting to execute on a
particular processor.

second extended file system (ext2fs) (Linux)—See ext2fs.

semaphore array (Linux)—Linked list of semaphores that pro-
tect access to related resources.

seqlock (Linux)—Mutual exclusion structure that combines a
spin lock with a sequence counter. Seqlocks are used by
interrupt handlers, which require immediate exclusive
access to data.

Single UNIX Specification—Specification (created by The
Open Group) to which an operating system must conform
to earn the right to display the UNIX trademark (see
www.unix.org/version3/overview.html).

slab (Linux)—Page of memory that reduces internal fragmen-
tation due to small structures by storing multiple struc-
tures smaller than one page.

slab allocator (Linux)—Kernel entity that allocates memory
for objects placed in the slab cache.

slab cache (Linux)—Cache that stores recently used slabs.

socket—Interprocess communication mechanism that allows
processes to exchange data by establishing direct commu-
nication channels. Enables processes to communicate
over a network using read and write calls.

socketpair (Linux)—Pair of connected, unnamed sockets that
can be used for bidirectional communication between
processes on a single system.

socket address—Unique identifier for a socket.

software interrupt handler (Linux)—Interrupt-handling code
that can be performed without masking interrupts and can
therefore be preempted.

softirq (Linux)—Software interrupt handler that is reentrant
and not serialized, so it can be executed on multiple pro-
cessors simultaneously.

source tree (Linux)—Structure that contains source code files
and directories. Provides a logical organization to the
monolithic Linux kernel.

spin lock—Lock that provides mutually exclusive access to
critical sections. When a process holding the lock is exe-
cuting inside its critical section, any process concurrently
executing on a different processor that attempts to
acquire the lock before entering its critical section is made
to busy wait.

starvation limit (Linux)—Time at which high-priority pro-
cesses are placed in the expired list to prevent low-priority
processes from being indefinitely postponed.

static priority level (Linux)—Integer value assigned to a pro-
cess when it is created that determines its scheduling pri-
ority.

stream socket—Socket that transfers data using the TCP pro-
tocol.

superblock (Linux)—Block containing information regarding
a mounted file system, such as the root inode and other
information that protects the file system’s integrity.

superuser (root user) (Linux)—User that may perform
restricted operations (i.e., those that may damage the ker-
nel and/or the system).

swap cache (Linux)—Cache of page table entries that
describes whether a particular page exists in the system
swap file on secondary storage. If a page table entry is
present in the swap cache, then its corresponding page
exists in the swap file and does not need to be written to
the swap file.

system file system (sysfs) (Linux)—File system that allows
processes to access structures defined by the unified
device model.

task (Linux)—User execution context (i.e., process or thread)
in Linux.

tasklet (Linux)—Software interrupt handler that cannot be
executed simultaneously on multiple processors. Tasklets
are used to execute nonreentrant bottom halves of inter-
rupt handlers.

time slice (Linux)—Another term for quantum.

tmpfs (temporary file system) (Linux)—Similar to ramfs, but
does not require formatting before use, meaning that the
system can store files in the tmpfs without the organiza-
tional overhead typical of most file systems.

top half of an interrupt handler (Linux)—Nonpreemptible
portion of interrupt-handling code that performs the min-
imum work required to acknowledge an interrupt before
transferring execution to the preemptible bottom-half
handler.

triply indirect pointer—Pointer in an inode that locates a block
of doubly indirect pointers.

unified device model (Linux)—Internal device representation
that relates devices to device drivers, device classes and
system buses. The unified device model simplifies power
management and hot swappable device management.

unmap a page (Linux)—To update page table entries to indi-
cate that the corresponding page is no longer resident.

Exercises 85

©1981–2004, Deitel & Associates, Inc. All rights reserved.

User-Mode Linux (UML) (Linux)—Linux kernel that exe-
cutes as a user process within a host Linux system.

virtual file system (Linux)—Interface that provides users with
a common view of files and directories stored across mul-
tiple heterogeneous file systems.

virtual memory area (Linux)—Structure that describes a con-
tiguous region of a process’s virtual address space so that
the kernel can perform operations on this region as a
unit.

window manager (Linux)—Application that controls the
placement, appearance, size and other attributes of win-
dows in a GUI.

zone (memory) (Linux)—Region of physical memory. Linux
divides main memory in the low, normal and high zones to
allocate memory according to the architectural limitations
of a system.

zone allocator—Memory subsystem that allocates pages from
the zone to which it is assigned.

Exercises
20.1 [Section 20.4.1, Hardware Platforms] Describe several
applications of User-Mode Linux (UML).

20.2 [Section 20.4.2, Loadable Kernel Modules] Why is it gen-
erally unsafe to load a kernel module written for kernel versions
other than the current one?

20.3 [Section 20.5.1, Process and Thread Organization] Which
threading model (see Section 4.6, Threading Models) can
threads created using the clone system call implement? How
do Linux threads differ from traditional threads? Discuss the
benefits and drawbacks of this implementation.

20.4 [Section 20.5.2, Process Scheduling] How are the Linux
process scheduler’s run queues similar to multilevel feedback
queues (see Section 8.7.6, Multilevel Feedback Queues)? How
are they different?

20.5 [Section 20.5.2, Process Scheduling] Why should the
Linux process scheduler penalize processor-bound processes?

20.6 [Section 20.5.2, Process Scheduling] Why does Linux pre-
vent users without root privileges from creating real-time pro-
cesses?

20.7 [Section 20.6.1, Memory Organization] Why does the ker-
nel allocate page frames to processes from normal and high
memory before allocating pages from DMA memory?

20.8 [Section 20.6.1, Memory Organization] What are the ben-
efits and drawbacks of embedding the kernel virtual address
space in each process’s virtual address space?

20.9 [Section 20.6.1, Memory Organization] The x86-64 archi-
tecture uses four levels of page tables; each level contains 512
entries (using 64-bit PTEs). However, the kernel provides only
three levels of page tables. Assuming that each PTE points to a
4KB page, what is the largest address space the kernel can allo-
cate to processes in this architecture?

20.10 [Section 20.6.2, Physical Memory Allocation and Deallo-
cation] How does the kernel reduce the amount of internal frag-
mentation caused by allocating memory to structures that are
much smaller than a page?

20.11 [Section 20.6.3, Page Replacement] When is the kernel
unable to immediately free a page frame to make room for an
incoming page?

20.12 [Section 20.6.4, Swapping] When nonresident pages are
retrieved from the backing store in Linux, the memory manager
retrieves not only the requested page but also up to eight pages
contiguous to it in the running process’s virtual address space.
Identify the type of prepaging implemented and describe the
benefits and disadvantages of such a policy.

20.13 [Section 20.7.1, Virtual File System] List at least four dif-
ferent objects a VFS file can represent and describe the usage of
each object.

20.14 [Section 20.7.1, Virtual File System] What role does the
dentry object serve in the Linux VFS?

20.15 [Section 20.7.2, Virtual File System Caches] Is it possible
for a file’s inode to exist in the inode cache if its dentry is not
located in the dentry cache?

20.16 [Section 20.7.3, Second Extended File System (ext2fs)]
Compare and contrast the VFS and ext2 representation of an
inode.

20.17 [Section 20.7.3, Second Extended File System (ext2fs)]
Why do most file systems maintain redundant copies of their
superblock throughout the disk?

20.18 [Section 20.7.3, Second Extended File System (ext2fs)]
What are the primary contents of a block group and what pur-
pose do they serve?

20.19 [Section 20.7.4, Proc File System] In what ways does the
proc file system differ from a file system such as ext2fs?

20.20 [Section 20.8.1, Device Drivers] Explain the concept and
usage of device special files.

20.21 [Section 20.8.3, Block Device I/O] Identify two mecha-
nisms employed by the Linux block I/O subsystem that improve
performance. Discuss how they improve performance and how
they may, if ever, degrade performance.

86 Case Study: Linux

©1981–2004, Deitel & Associates, Inc. All rights reserved.

20.22 [Section 20.8.4, Network Device I/O] Compare and con-
trast networking I/O operations and block/character I/O opera-
tions.

20.23 [Section 20.8.5, Unified Device Model] How does the uni-
fied device model facilitate kernel support for hot swappable
devices?

20.24 [Section 20.8.6, Interrupts] Why does the networking sub-
system employ softirqs to process packets?

20.25 [Section 20.9.1, Spin Locks] What occurs if multiple ker-
nel control paths concurrently attempt to acquire the same spin
lock?

20.26 [Section 20.10.1, Signals] What problems can result from
dropping a signal while a process handles a signal of the same
type?

20.27 [Section 20.10.4, Message Queues] What could happen if a
message’s size is greater than a message queue’s buffer?

20.28 [Section 20.10.6, System V Semaphores] Name a potential
problem that occurs when processes are made to wait on a
semaphore array.

20.29 [Section 20.11.2, Netfilter Framework and Hooks] What
purpose does the netfilter framework serve?

20.30 [Section 20.12.2, Nonuniform Memory Access (NUMA)]
Which kernel subsystems were modified to support NUMA?

20.31 [Section 20.13.1, Authentication] How does Linux protect
user passwords from attackers, even if the attacker acquires the
password file? How can this be circumvented?

20.32 [Section 20.13.2, Access Control Methods] Why might it
be dangerous to set the setuid or setgid bits for an executable
file?

Recommended Reading
Linux development is an ongoing process that includes contri-
butions from developers worldwide. Because Torvalds fre-
quently releases new kernel versions, some documentation can
be outdated as soon as it is published. Hence, the most current
information is usually found on the Web.

Useful resources include the magazines Linux Journal
and Linux Magazine. Monthly issues cover a variety of Linux
topics such as desktop and server applications, programming
and, of course, the kernel. Selected articles and information
about subscribing can be found at www.linuxjournal.com
and www.linux-mag.com, respectively.

Readers looking to dig deeper into the Linux kernel
should consider the book Understanding the Linux Kernel, 2nd

ed., by Bovet and Cesati.261 This book includes in-depth dis-
cussions of nearly all kernel subsystems. It explains kernel ver-
sion 2.4—and, while some material has changed in kernel 2.6,
much of the book’s content is still relevant.

Another notable book is Linux Device Drivers, 2nd ed.,
by Rubini and Corbet.262 The title can be misleading, as the
book also explains a number of kernel subsystems of concern
to device driver developers. It provides an in-depth explana-
tion of the I/O subsystem as well as information about syn-
chronization, memory management and networking. Like
most Linux-related literature, the book is somewhat outdated
compared to the most recent release of the kernel. The second
edition discusses kernel version 2.4.

Works Cited
1. Kuwabara, K., “Linux: A Bazaar at the Edge of Chaos,” First

Monday, Vol. 5, No. 3, March 2000.

2. “Linux History,” viewed July 8, 2003, <www.li.org/linuxhis-
tory.php>.

3. “Linux History,” viewed July 8, 2003, <www.li.org/linuxhis-
tory.php>.

4. Torvalds, L., <www2.educ.umu.se/~bjorn/linux/misc/linux-
history.html>.

5. Quinlan, D., “The Past and Future of Linux Standards,” Linux
Journal, Issue 62, June 1999.

6. Linux README, <lxr.linux.no/source/README? v=1.0.9>.

7. Wilburn, G., “Which Linux OS Is Best for You,” Computing Can-
ada, August 1999, p. 26.

8. Wheeler, D., “More Than a Gigabuck: Estimating GNU/Linux’s
Size,” June 30, 2001 (updated July 29, 2002), version 1.07,
<www.dwheeler.com/sloc/>.

9. McHugh, J., “Linux: The Making of a Global Hack,” Forbes Mag-
azine, August 1998.

10. Pranevich, J., “The Wonderful World of Linux 2.2,” January 26,
1999, <linuxtoday.com/news_story.php3?ltsn=1999-01-26-
015-05-NW-SM>.

11. McCarty, B., and P. McCarty, “Linux 2.4,” January 2001,
<www.linux-mag.com/2001-01/linux24_01.html>.

12. McCarty, B., and P. McCarty, “Linux 2.4,” January 2001,
<www.linux-mag.com/2001-01/linux24_01.html>.

13. “Whatever Happened to the Feature Freeze?” December 18,
2002, <lwn.net/Articles/18454/>.

Works Cited 87

©1981–2004, Deitel & Associates, Inc. All rights reserved.

14. Index, <www.gnu.org>.

15. “LWN Distributions List,” updated May 2003, <old.lwn.net/
Distributions>.

16. <www.linux-mandrake.com>.

17. <www.redhat.com>.

18. <www.suse.com>.

19. <www.debian.org>.

20. <www.slackware.org>.

21. <www.uclinux.org>.

22. <www.zauruszone.com/wiki/index.php?OpenZaurus.org>.

23. <www.tldp.org/LDP/lfs/LFS/>.

24. slashdot.org/askslashdot/99/03/07/1357235.shtml.

25. Casha, R., “The Linux Terminal—A Beginners’ Bash,” Novem-
ber 8, 2001, <linux.org.mt/article/terminal>.

26. “CG252-502 X Windows: History of X,” modified June 19, 1996,
<nestroy.wi-inf.uni-essen.de/Lv/gui/cg252/course/
lect4c1.html>.

27. Manrique, D., “X Window System Architecture Overview
HOWTO,” 2001, <www.linux.org/docs/ldp/howto/XWindow-
Overview-HOWTO/>.

28. “The Single UNIX Specification, Version 3—Overview,” modified
January 27, 2002, <www.unix.org/version3/overview.html>.

29. “The Unix System Specification,” <unix.org/what_is_unix/
single_unix_specification.html>.

30. Linux Standard Base Specification 1.3, (c) 2000-2002 Free Stan-
dards Group, October 27, 2002.

31. Liedtke, J., “Toward Real Microkernels,” Communications of the
ACM, Vol. 39, No. 9, September 1996, p. 75.

32. “The Linux Kernel Archives,” <www.kernel.org>.

33. Linux kernel source code, version 2.5.56, <www.kernel.org>.

34. “LinuxHQ: Distribution Links,” <www.linuxhq.com/dist.html>.

35. Rusling, D., “The Linux Kernel,” 1999, <www.tldp.org/LDP/
tlk/tlk.html>.

36. Welsh, M., “Implementing Loadable Kernel Modules for Linux,”
Dr. Dobb's Journal, May 1995, <www.ddj.com/articles/1995/
9505/>.

37. Henderson, B., “Linux Loadable Kernel Module HOWTO,” May
2002, <www.tldp.org/HOWTO/Module-HOWTO/>.

38. Henderson, B., “Linux Loadable Kernel Module HOWTO,” May
2002, <www.tldp.org/HOWTO/Module-HOWTO/>.

39. Petersen, K., “Kmod: The Kernel Module Loader,” Linux kernel
source file, Linux/Documentation/kmod.txt <www.kernel.org>.

40. “The User-Mode Linux Kernel Home Page,” July 23, 2003,
<user-mode-linux.sourceforge.net>.

41. Dike, J., “A User-Mode Port of the Linux Kernel,” August 25,
2000, <user-mode-linux.sourceforge.net/als2000/
index.html>.

42. Aivazian, T., “Linux Kernel 2.4 Internals,” August 23, 2001,
<www.tldp.org/LDP/lki/lki.html>.

43. Rusling, D., “The Linux Kernel,” 1999, <www.tldp.org/LDP/tlk/
tlk.html>.

44. SchlapBach, A., “Linux Process Scheduling,” May 2, 2000,
<iamexwiwww.unibe.ch/studenten/schlpbch/linuxSchedul-
ing/LinuxScheduling.htm>.

45. Aivazian, T., “Linux Kernel 2.4 Internals,” August 23, 2001,
<www.tldp.org/LDP/lki/lki.html>.

46. Walton, S., “Linux Threads Frequently Asked Questions,” Janu-
ary 21, 1997, <www.tldp.org/FAQ/Threads-FAQ/>.

47. McCracken, D., “POSIX threads and the Linux Kernel,” Pro-
ceedings of the Ottawa Linux Symposium, 2002, p. 332.

48. Arcomano, R., “KernelAnalysis-HOWTO,” June 2, 2002,
<www.tldp.org/HOWTO/KernelAnalysis-HOWTO.html>.

49. Walton, S., “Linux Threads Frequently Asked Questions”
<linas.org/linux/threads-faq.html>.

50. Drepper, U., and I. Molnar, “The Native POSIX Thread Library
for Linux,” January 30, 2003, <people.redhat.com/drepper/
nptl-design.pdf>.

51. Molnar, I., Announcement to Linux mailing list, <lwn.net/
2002/0110/a/scheduler.php3>.

52. Cross-Referencing Linux, <lxr.linux.no/source/include/
asm-i386/param.h?v=2.6.0-test7#L5> and <lxr.linux.no/
source/kernel/sched.c?v=2.6.0-test7#L1336>.

53. Cross-Referencing Linux, <lxr.linux.no/source/kernel/
sched.c?v=2.5.56>.

54. Cross-Referencing Linux, <lxr.linux.no/source/kernel/
sched.c?v=2.5.56>.

55. Linux kernel source code, version 2.6.0-test2, /kernel/sched.c,
lines 80–106, <lxr.linux.no/source/kernel/sched.c?v=
2.6.0-test2>.

56. Linux kernel source code, version 2.5.75, <lxr.linux.no/
source/kernel/sched.c?v=2.5.75>.

57. Linux kernel source code, version 2.5.75, <lxr.linux.no/
source/kernel/sched.c?v=2.5.75>.

58. Linux kernel source code, version 2.5.75, <lxr.linux.no/
source/kernel/sched.c?v=2.5.75>.

59. Linux kernel source code, version 2.6.0-test2, <lxr.linux.no/
source/arch/i386/mm/pageattr.c?v=2.6.0-test2>.

60. Linux kernel source code, version 2.5.75, <miller.cs.wm.edu/
lxr3.linux/http/source/include/linux/mm.h?v= 2.5.75>.

61. Eranian, S., and David Mosberger, “Virtual Memory in the IA-64
Linux Kernel,” informIT.com, November 8, 2002, <www.infor-
mit.com/isapi/product_id~%7B79EC75E3-7AE9-4596-AF39-
283490FAFCBD%7D/element_id~%7BCE3A6550-B6B6-44BA-B496-
673E8337B5F4%7D/st~%7BBAC7BB78-22CD-4E1E-9387-
19EEB5B71759%7D/session_id~%7B9E8FCA0D-31BA-42DD-AEBB-
EC1617DE0EC7%7D/content/articlex.asp>.

62. Linux source code, <lxr.linux.no/source/include/asm-
i386/page.h?v=2.5.56>.

63. Van Riel, R., “Page Replacement in Linux 2.4 Memory Manage-
ment” <www.surriel.com/lectures/linux24-vm.html>.

64. Gorman, M., “Understanding the Linux Virtual Memory Man-
ager,” <www.csn.ul.ie/~mel/projects/vm/guide/html/
understand/>.

88 Case Study: Linux

©1981–2004, Deitel & Associates, Inc. All rights reserved.

65. Van Riel, R., “Page Replacement in Linux 2.4 Memory Manage-
ment” <www.surriel.com/lectures/linux24-vm.html>.

66. Linux kernel source code, version 2.5.56, <lxr.linux.no/
source/include/linux/mmzone.h?v=2.5.56>.

67. Linux kernel source code, version 2.5.75, /Documentation/
block/biodoc.txt.

68. Bovet, D., and M. Cesati, Understanding the Linux Kernel,
O’Reilly, 2001.

69. Rusling, D., “The Linux Kernel,” 1999, <www.tldp.org/LDP/
tlk/tlk.html>.

70. Gorman, M., “Understanding the Linux Virtual Memory Man-
ager,” <www.csn.ul.ie/~mel/projects/vm/guide/html/
understand/>.

71. Linux kernel source code, version 2.5.75, <miller.cs.wm.edu/
lxr3.linux/http/source/mm/page_alloc.c?v=2.5.75>.

72. Linux kernel source code, version 2.6.0-test2,
<miller.cs.wm.edu/lxr3.linux/http/source/include/
linux/mm.h?v=2.6.0-test2>.

73. Gorman, M., “Understanding the Linux Virtual Memory Man-
ager,” <www.csn.ul.ie/~mel/projects/vm/guide/html/
understand/>.

74. Rusling, D., “The Linux Kernel,” 1999 <www.tldp.org/LDP/
tlk/tlk.html>.

75. Knowlton, K. C., “A Fast Storage Allocator,” Communications of
the ACM, Vol. 8, No. 10, October 1965, pp. 623–625.

76. Knuth, D. E., The Art of Computer Programming, Vol. 1, Funda-
mental Algorithms, Addison-Wesley, Reading, MA, 1968, pp.
435-455.

77. Rusling, D., “The Linux Kernel,” 1999, <www.tldp.org/LDP/
tlk/tlk.html>.

78. Rusling, D., “The Linux Kernel,” 1999, <www.tldp.org/LDP/
tlk/tlk.html>.

79. Nayani, A.; M. Gorman; and R. S. de Castro, “Memory Manage-
ment in Linux: Desktop Companion to the Linux Source Code,”
May 25, 2002, <www.symonds.net/~abhi/files/mm/
index.html>.

80. Gorman, M., “Slab Allocator,” <www.csn.ul.ie/~mel/
projects/vm/docs/slab.html>.

81. “Driver Porting: Low-Level Memory Allocation,” LWN.net, Feb-
ruary 2003, <lwn.net/Articles/22909/>.

82. Knapka, J., “Outline of the Linux Memory Management System,”
<home.earthlink.net/~jknapka/linux-mm/vmoutline.html>.

83. Knapka, J., “Outline of the Linux Memory Management System,”
<home.earthlink.net/~jknapka/linux-mm/vmoutline.html>.

84. Arcangeli, A., “Le novita' nel Kernel Linux,” December 7, 2001,
<old.lwn.net/2001/1213/aa-vm-talk/mgp00001.html>.

85. Arcangeli, A., “Le novita' nel Kernel Linux,” December 7, 2001,
<old.lwn.net/2001/1213/aa-vm-talk/mgp00001.html>.

86. Linux kernel source code, version 2.5.75, <www.kernel.org>.

87. Arcangeli, A., “Le novita' nel Kernel Linux,” December 7, 2001,
<old.lwn.net/2001/1213/aa-vm-talk/mgp00001.html>.

88. Linux kernel source code, version 2.5.75, <www.kernel.org>.

89. Arcangeli, A., “Le novita' nel Kernel Linux,” December 7, 2001,
<old.lwn.net/2001/1213/aa-vm-talk/mgp00001.html>.

90. Rusling, D., “The Linux Kernel,” 1999, <www.tldp.org/LDP/
tlk/tlk.html>.

91. Arcangeli, A., “Le novita' nel Kernel Linux,” December 7, 2001,
<old.lwn.net/2001/1213/aa-vm-talk/mgp00001.html>.

92. Corbet, J., “What Rik van Riel Is Up To,” Linux Weekly News, Jan-
uary 24, 2002, <http//php.lwn.net/2002/0124/kernel.php3>.

93. Arcangeli, A., “Le novita' nel Kernel Linux,” December 7, 2001,
<old.lwn.net/2001/1213/aa-vm-talk/mgp00001.html>.

94. Linux source code, version 2.5.75, <miller.cs.wm.edu/
lxr3.linux/http/source/mm/page-writeback.c?v=2.5.75>.

95. Arcangeli, A., “Le novita' nel Kernel Linux,” December 7, 2001,
<old.lwn.net/2001/1213/aa-vm-talk/mgp00001.html>.

96. Linux kernel source code, version 2.5.56, <www.kernel.org>.

97. Rusling, D., “The Linux Kernel,” 1999, <www.tldp.org/LDP/
tlk/tlk.html>.

98. Brown, N., “The Linux Virtual File-System Layer,” December 29,
1999, <www.cse.unsw.edu.au/~neilb/oss/linux-commentary/
vfs.html>.

99. Rubini, A., “The Virtual File System in Linux,” Linux Journal,
May 1997, <www.linuxjournal.com/print.php?side=2108>.

100. Brown, N., “The Linux Virtual File-System Layer,” December 29,
1999, <www.cse.unsw.edu.au/~neilb/oss/linux-commentary/
vfs.html>.

101. Rusling, D., “The Linux Kernel,” 1999, <www.tldp.org/LDP/
tlk/tlk.html>.

102. Linux source code, version 2.5.75, <miller.cs.wm.edu/
lxr3.linux/http/source/include/linux/fs.h?v=2.5.75>.

103. Rusling, D., “The Linux Kernel,” 1999, <www.tldp.org/LDP/
tlk/tlk.html>.

104. Linux kernel source code, version 2.5.75, <miller.cs.wm.edu/
lxr3.linux/http/source/fs/dcache.c?v=2.5.75>.

105. Gooch, R., “Overview of the Virtual File System,” July 1999,
<www.atnf.csiro.au/people/rgooch/linux/vfs.txt>.

106. Linux kernel source code, version 2.5.56, <www.kernel.org>.

107. Brown, N., “The Linux Virtual File-System Layer,” December 29,
1999, <www.cse.unsw.edu.au/~neilb/oss/linux-commentary/
vfs.html>.

108. Linux kernel source code, version 2.5.75, <http://
miller.cs.wm.edu/lxr3.linux/http/source/fs/
dcache.c?v=2.5.75>.

109. Rusling, D., “The Linux Kernel,” 1999, <www.tldp.org/LDP/
tlk/tlk.html>.

110. Linux kernel source code, version 2.5.75, <miller.cs.wm.edu/
lxr3.linux/http/source/fs/namei.c?v=2.5.75>.

111. Brown, N., “The Linux Virtual File-System Layer,” December 29,
1999, <www.cse.unsw.edu.au/~neilb/oss/linux-commentary/
vfs.html>.

112. Linux kernel source code, version 2.5.75, <miller.cs.wm.edu/
lxr3.linux/http/source/fs/namei.c?v=2.5.75>.

Works Cited 89

©1981–2004, Deitel & Associates, Inc. All rights reserved.

113. Card, R.; T. Ts’O; and S. Tweedie, “Design and Implementation
of the Second Extended Filesystem,” <e2fsprogs.source-
forge.net/ext2intro.html>.

114. /Linux/Documentation/filesystems/ext2.txt, Linux kernel
source, version 2.4.18, <www.kernel.org>.

115. Card, R.; T. Ts'O; and S. Tweedie, “Design and Implementation
of the Second Extended Filesystem,” <e2fsprogs.source-
forge.net/ext2intro.html>.

116. /Linux/Documentation/filesystems/ext2.txt, Linux kernel
source, version 2.5.75, <www.kernel.org>.

117. Card, R.; T. Ts'O; and S. Tweedie, “Design and Implementation
of the Second Extended Filesystem,” <e2fsprogs.source-
forge.net/ext2intro.html>.

118. Appleton, R., “A Non-Technical Look Inside the Ext2 File Sys-
tem,” Linux Journal, August 1997, <www.linuxjournal.com/
print.php?sid=2151>.

119. Rusling, D., “The Linux Kernel,” 1999, <www.tldp.org/LDP/
tlk/tlk.html>.

120. Linux kernel source code, version 2.5.75, <www.kernel.org>.

121. Card, R.; T. Ts’O; and S. Tweedie, “Design and Implementation
of the Second Extended Filesystem,” <e2fsprogs.source-
forge.net/ext2intro.html>.

122. Pranevich, J., “The Wonderful World of Linux 2.6,” July 13, 2003,
<www.kniggit.net/wwol26.html>.

123. Linux kernel source code, version 2.6.0-test2, /include/linux/
ext2_fs.h, line 60, <lxr.linux.no/source/include/linux/
ext2_fs.h?v=2.6.0-test2>.

124. Appleton, R., “A Non-Technical Look Inside the Ext2 File Sys-
tem,” Linux Journal, August 1997, <www.linuxjournal.com/
print.php?sid=2151>.

125. Bowden, T.; B. Bauer; and J. Nerin, “The /proc Filesystem,”
Linux kernel source file, Linux/Documentation/filesystems/
proc.txt <www.kernel.org>.

126. Rubini, A., “The Virtual File System in Linux,” Linux Journal,
May 1997, <www.linuxjournal.com/print.php?side=2108>.

127. Linux kernel source code, version 2.5.75, <www.kernel.org>.

128. Mouw, E., “Linux Kernel Procfs Guide,” June 2001, <www.ker-
nelnewbies.org/documents/kdoc/procfs-guide/lkprocfs-
guide.html>.

129. Rusling, D., “The Linux Kernel,” 1999, <www.tldp.org/LDP/
tlk/tlk.html>.

130. Rusling, D., “The Linux Kernel,” 1999, <www.tldp.org/LDP/
tlk/tlk.html>.

131. <www.lanana.org/docs/device-list/devices.txt>.

132. “Linux Allocated Devices,” <www.lanana.org/docs/device-
list/devices.txt>.

133. Rubini, A., and J. Corbet, Linux Device Drivers, O'Reilly, 2001,
pp. 55–57.

134. Matia, F., “Kernel Korner: Writing a Linux Driver,” Linux Journal,
April 1998, <www.linuxjournal.com/print.php?sid=2476>.

135. “The HyperNews Linux KHG Discussion Pages, Device Driver
Basics,” December 30, 1997, <users.evtek.fi/~tk/rt_html/
ASICS.HTM>.

136. Rusling, D., “The Linux Kernel,” 1999, <www.tldp.org/LDP/tlk/
tlk.html>.

137. Zezschwitz, G., and A. Rubini, “Kernel Korner: The Devil's in
the Details,” Linux Journal, May 1996, <www.linuxjour-
nal.com/article.php?sid=1221>.

138. Rusling, D., “The Linux Kernel,” 1999, <www.tldp.org/LDP/
tlk/tlk.html>.

139. Linux kernel source code, version 2.5.75, <miller.cs.wm.edu/
lxr3.linux/http/source/fs/char_dev.c?v=2.5.7>.

140. Rusling, D., “The Linux Kernel,” 1999, <www.tldp.org/LDP/
tlk/tlk.html>.

141. Linux kernel source code, version 2.5.75, <www.kernel.org>.

142. Linux kernel source code, version 2.5.75, <www.kernel.org>.

143. Rubini, A., and J. Corbet, Linux Device Drivers, O'Reilly, 2001,
323–328, 334–338.

144. Linux kernel source code, version 2.5.75, <miller.cs.wm.edu/
lxr3.linux/http/source/include/linux/bio.h?v=2.5.75>.

145. Linux kernel source code, version 2.5.75, <miller.cs.wm.edu/
lxr3.linux/http/source/include/linux/bio.h?v=2.5.75>.

146. Gopinath, K.; N. Muppalaneni; N. Suresh Kumar; and P. Ris-
bood, “A 3-Tier RAID Storage System with RAID1, RAID5
and Compressed RAID5 for Linux,” Proceedings of the
FREENIX Track: 2000 USENIX Annual Technical Conference,
June 2000, pp. 18–23.

147. Love, R., “Interactive Kernel Performance,” Proceedings of the
Linux Symposium, 2003, pp. 306–307.

148. Linux kernel source code, version 2.5.75, <miller.cs.wm.edu/
lxr3.linux/http/source/drivers/block/deadline-
iosched.c?v=2.5.75>.

149. Linux kernel source code, version 2.5.75, <miller.cs.wm.edu/
lxr3.linux/http/source/drivers/block/deadline-
iosched.c?v=2.5.75>.

150. Axboe, J., “[PATCH] block/elevator updates + deadline i/o
scheduler,” Linux kernel mailing list, July 26, 2002.

151. Linux kernel source code, version 2.5.75, <miller.cs.wm.edu/
lxr3.linux/http/source/drivers/block/deadline-
iosched.c?v=2.5.75>.

152. Linux kernel source code, version 2.5.75, <miller.cs.wm.edu/
lxr3.linux/http/source/drivers/block/deadline-
iosched.c?v=2.5.75>.

153. Love, R., “Interactive Kernel Performance,” Proceedings of the
Linux Symposium, 2003, p. 308.

154. Iyer, S., and P. Druschel, “Anticipatory Scheduling: A Disk
Scheduling Framework to Overcome Deceptive Idleness in Syn-
chronous I/O,” ACM SIGOPS Operating Systems Review, Pro-
ceedings of the Eighteenth ACM Symposium on Operating
Systems Principles, Vol. 35, No. 5, October 2001.

155. Linux kernel source code, version 2.5.75, <miller.cs.wm.edu/
lxr3.linux/http/source/drivers/block/as-iosched.c>.

156. Morton, A., “IO Scheduler Benchmarking,” Linux kernel mail-
ing list, February 20, 2003.

157. Linux kernel source code, version 2.5.75, <www.kernel.org>.

90 Case Study: Linux

©1981–2004, Deitel & Associates, Inc. All rights reserved.

158. Kalev, D., “Raw Disk I/O,” October 2001, <www.itworld.com/nl/
lnx_tip/10122001/pf_index.html>.

159. Rubini, A., and J. Corbet, Linux Device Drivers, O'Reilly, 2001,
pp. 430–433.

160. Linux kernel source code, version 2.5.75, <miller.cs.wm.edu/
lxr3.linux/http/source/include/linux/netdevice.h?v=
2.5.75>.

161. Adel, A., “Differentiated Services on Linux,” <user.cs.tu-
berlin.de/~adelhazm/study/diffserv.pdf>

162. Rubini, A., and J. Corbet, Linux Device Drivers, O’Reilly, 2001,
pp. 445–448.

163. Corbet, J., “Porting Drivers to the 2.5 Kernel,” Proceedings of the
Linux Symposium, 2003, p. 149.

164. “Universal Serial Bus Specification,” Compaq, Hewlitt-Packard,
Intel, Lucent, Microsoft, NEC, Phillips, rev. 2.0, April 27, 2002, p.
18.

165. Corbet, J., “Driver Porting: Device Model Overview,” <lwn.net/
Articles/31185/>, May 2003.

166. Corbet, J., “Driver Porting: Device Model Overview,” <lwn.net/
Articles/31185/>, May 2003.

167. Mochel, P., “Sysfs—The Filesystem for Exporting Kernel
Objects,” Linux kernel source code, version 2.5.75, Documenta-
tion/filesystems/sysfs.txt, January 10, 2003.

168. Linux kernel source code, version 2.5.75, Documentation/
driver-model/overview.txt.

169. Linux kernel source code, version 2.5.75, <miller.cs.wm.edu/
lxr3.linux/http/source/include/linux/device.h>.

170. Linux kernel source code, version 2.5.75, Documentation/
driver-model/bus.txt.

171. Linux kernel source code, version 2.5.75, Documentation/
driver-model/class.txt.

172. Compaq Computer Corporation, Intel Corporation, Microsoft
Corporation, Phoenix Technologies Ltd., Toshiba Corporation,
“Advanced Configuration and Power Management,” rev. 2.0b,
October 11, 2002, <www.acpi.info/spec.htm> p. 26.

173. Mochel, P., “Linux Kernel Power Management,” Proceedings of
the Linux Symposium, 2003, <archive.linuxsymposium.org/
ols2003/Proceedings/All-Reprints/Reprint-Mochel-
OLS2003.pdf>, pp. 344, 347.

174. Russell, P., “Unreliable Guide to Hacking the Linux Kernel,” 2000,
<www.netfilter.org/unreliable-guides/kernel-hacking/
lk-hacking-guide.html>.

175. Intel Corporation, IA-32 Intel Architecture Software Developer’s
Manual, Vol. 3, System Programmer’s Guide, 2002, pp. 5–32

176. Russell, P., “Unreliable Guide to Hacking the Linux Kernel,” 2000,
<www.netfilter.org/unreliable-guides/kernel-hacking/
lk-hacking-guide.html>.

177. Gatliff, W., “The Linux Kernel's Interrupt Controller API,” 2001,
<billgatliff.com/articles/emb-linux/interrupts.pdf>.

178. Linux kernel source code, version 2.5.75, <miller.cs.wm.edu/
lxr3.linux/http/source/include/linux/interrupt.h?v=
2.5.75>.

179. Linux kernel source code, version 2.5.75, <miller.cs.wm.edu/
lxr3.linux/http/source/include/linux/inter-
rupt.h?v=2.5.75>.

180. Gatliff, W., “The Linux Kernel's Interrupt Controller API,” 2001,
<billgatliff.com/articles/emb-linux/interrupts.pdf>.

181. Linux kernel source code, version 2.5.75, <miller.cs.wm.edu/
lxr3.linux/http/source/kernel/softirq.c?v=2.5.75>.

182. Rubini, A., and J. Corbet, Linux Device Drivers, O’Reilly, 2001,
p. 19.

183. Bovet, D., and M. Cesati, Understanding the Linux Kernel,
O’Reilly, 2001, pp. 300–301, 305–306, 523–532, 545.

184. Love, R., “Kernel Korner: Kernel Locking Techniques,” Linux
Journal, August 2002, <www.linuxjournal.com/article.php?
sid=5833>.

185. Love, R., “Kernel Korner: Kernel Locking Techniques,” Linux
Journal, August 2002, <www.linuxjournal.com/article.php?
sid=5833>.

186. Torvalds, L., “/Documentation/spinlocks.txt,” Linux kernel
source code, version 2.5.75, <www.kernel.org>.

187. Russell, P., “Unreliable Guide to Locking,” 2000, <www.kernel-
newbies.org/documents/kdoc/kernel-locking/lklocking-
guide.html>.

188. Russell, P., “Unreliable Guide to Locking,” 2000, <www.kernel-
newbies.org/documents/kdoc/kernel-locking/lklocking-
guide.html>.

189. Torvalds, L., “/Documentation/spinlocks.txt,” Linux kernel
source code, version 2.5.75, <www.kernel.org>.

190. “Driver Porting: Mutual Exclusion with Seqlocks,” <lwn.net/
Articles/22818/>.

191. “Driver Porting: Mutual Exclusion with Seqlocks,” <lwn.net/
Articles/22818/>.

192. Bovet, D., and M. Cesati, Understanding the Linux Kernel,
O’Reilly, 2001, pp. 305–306.

193. Love, R., “Kernel Korner: Kernel Locking Techniques,” Linux
Journal, August 2002, <www.linuxjournal.com/article.php?
sid=5833>.

194. Love, R., “Kernel Korner: Kernel Locking Techniques,” Linux
Journal, August 2002, <www.linuxjournal.com/article.php?
sid=5833>.

195. Bar, M., “Kernel Korner: The Linux Signals Handling Model,”
Linux Journal, May 2000, <www.linuxjournal.com/arti-
cle.php?sid=3985>.

196. Linux kernel source code, version 2.5.75, <miller.cs.wm.edu/
lxr3.linux/http/source/kernel/signal.c?v=2.5.75>.

197. Linux kernel source code, version 2.5.75, <miller.cs.wm.edu/
lxr3.linux/http/source/kernel/signal.c?v=2.5.75>

198. Troan, E., “A Look at the Signal API,” Linux Magazine, January
2000, <www.linux-mag.com/2000-01/compile_01.html>.

199. Bovet, D., and M. Cesati, Understanding the Linux Kernel,
O'Reilly, 2001, p. 253.

200. Bar, M., “Kernel Korner: The Linux Signals Handling Model,”
Linux Journal, May 2000, <www.linuxjournal.com/arti-
cle.php?sid=3985>.

Works Cited 91

©1981–2004, Deitel & Associates, Inc. All rights reserved.

201. Rusling, D., “The Linux Kernel,” 1999, <www.tldp.org/LDP/
tlk/tlk.html>.

202. Bovet, D., and M. Cesati, Understanding the Linux Kernel,
O’Reilly, 2001, p. 253.

203. Linux kernel source code, version 2.6.0-test2, signal.c, line 38
<lxr.linux.no/source/kernel/signal.c?v=2.6.0-test2>

204. Bovet, D., and M. Cesati, Understanding the Linux Kernel,
O’Reilly, 2001, pp. 524–532.

205. Chelf, B., “Pipes and FIFOs,” Linux Magazine, January 2001,
<www.linux-mag.com/2001-01/compile_01.html>.

206. Chelf, B., “Pipes and FIFOs,” Linux Magazine, January 2001,
<www.linux-mag.com/2001-01/compile_01.html>.

207. Free Software Foundation, “The GNU C Library,” 1998,
<www.gnu.org/manual/glibc-2.2.5/index.html>.

208. Sechrest, S., “An Introductory 4.4BSD Interprocess Communica-
tion Tutorial,” <docs.freebsd.org/44doc/psd/20.ipctut/
paper.html>.

209. Free Software Foundation, “The GNU C Library,” 1998,
<www.gnu.org/manual/glibc-2.2.5/index.html>.

210. Sechrest, S., “An Introductory 4.4BSD Interprocess Communica-
tion Tutorial,” <docs.freebsd.org/44doc/psd/20.ipctut/
paper.html>.

211. Aivazian, T., “Linux Kernel 2.4 Internals,” August 23, 2001,
<www.tldp.org/LDP/lki/lki.html>.

212. Bovet, D., and M. Cesati, Understanding the Linux Kernel,
O’Reilly, 2001, p. 545.

213. Aivazian, T., “Linux Kernel 2.4 Internals,” August 23, 2001
<www.tldp.org/LDP/lki/lki.html>.

214. Goldt, S., et al., “Shared Memory,” The Linux Programmer's
Guide, <en.tldp.org/LDP/lpg/node65.html>, version 0.4,
March 1995, and Linux source 2.5.56.

215. Linux man page: shm_open, <www.cwi.nl/~aeb/linux/
man2html/man3/shm_open.3.html>.

216. Linux source, <lxr.linux.no/source/Documentation/file-
systems/tmpfs.txt?v=2.5.56> and <lxr.linux.no/source/
mm/shmem.c?v=2.5.56>

217. Linux source, <lxr.linux.no/source/Documentation/file-
systems/tmpfs.txt? v=2.5.56> and <lxr.linux.no/source/
mm/shmem.c?v=2.5.56>.

218. Aivazian, T., “Linux Kernel 2.4 Internals,” August 23, 2001,
<www.tldp.org/LDP/lki/lki.html>.

219. Linux kernel source code, version 2.5.75, <miller.cs.wm.edu/
lxr3.linux/http/source/ipc/sem.c?v=2.5.75>.

220. Aivazian, T., “Linux Kernel 2.4 Internals,” August 23, 2001,
<www.tldp.org/LDP/lki/lki.html>.

221. Cox, A., “Network Buffers,” <www.linux.org.uk/Documents/
buffers.html>.

222. Linux kernel source code, version 2.5.75, <miller.cs.wm.edu/
lxr3.linux/http/source/net/core/dev.c?v=2.5.75>.

223. Welte, H., “The Journey of a Packet Through the Linux 2.4 Net-
work Stack,” October 14, 2000, <www.gnumonks.org/ftp/pub/
doc/packet-journey-2.4.html>.

224. Linux kernel source code, version 2.5.75, <miller.cs.wm.edu/
lxr3.linux/http/source/net/core/dev.c?v=2.5.75>.

225. Dobbelaere, J., “Linux Kernel Internals: IP Network Layer,”
2001, <www.cs.wm.edu/~jdobbela/papers/ip.pdf>.

226. Welte, H., “The Netfilter Framework in Linux 2.4,” September
24, 2000, <www.gnumonks.org/papers/netfilter-lk2000/
presentation.html>.

227. Schmidt, J., “Symmetrical Multiprocessing with Linux,” 1999,
<www.heise.de/ct/english/98/13/140/>.

228. Tumenbayer, E., et al., “Linux SMP HOWTO,” July 9, 2002,
<www.ibiblio.org/pub/Linux/docs/HOWTO/other-formats/
pdf/SMP-HOWTO.pdf>.

229. Intel Corporation, “Linux Scalability: The Enterprise Question,”
2000, <www.intel.com/internetservices/intelsolution-
services/downloads/linux_scalability.pdf>.

230. Bergmann, K., “Linux for z/Series Performance Overview,” April
3, 2002, <www.linuxvm.org/present/SHARE98/S2561kba.pdf>.

231. McVoy, L., “SMP Scaling Considered Harmful,” July 22, 1999,
<www.bitmover.com/llnl/smp.pdf>.

232. McVoy, L., “SMP Scaling Considered Harmful,” July 22, 1999,
<www.bitmover.com/llnl/smp.pdf>.

233. Merkey, P., “Beowulf History,” <www.beowulf.org/beowulf/
history.html>, viewed July 21, 2003.

234. Linux kernel source code, version 2.5.75, <miller.cs.wm.edu/
lxr3.linux/http/source/include/linux/mmzone.h>.

235. Dobson, M.; P. Gaughen; M. Hohnbaum; and E. Focht, “Linux
Support for NUMA Hardware,” Proceedings of the Linux Sym-
posium, 2003, pp. 181–195.

236. Dobson, M.; P. Gaughen; M. Hohnbaum; and E. Focht, “Linux
Support for NUMA Hardware,” Proceedings of the Linux Sym-
posium, 2003, pp. 181–195.

237. Linux kernel source code, version 2.6.0-test7, <lxr.linux.no/
source/include/linux/threads.h?v=2.6.0-test7#L33>.

238. Pranevich, J., “The Wonderful World of Linux 2.6,” July 13, 2003,
<www.kniggit.net/wwol26.html>.

239. Linux kernel source code, version 2.5.75, <www.kernel.org>.
240. Corbet, J., “Driver Porting: Timekeeping Changes,” February

2003, <lwn.net/Articles/22808/>.

241. Pranevich, J., “The Wonderful World of Linux 2.6,” July 13, 2003,
<www.kniggit.net/wwol26.html>.

242. Linux source kernel version 2.5.75 <www.kernel.org>.

243. J. Pranevich, “The Wonderful World of Linux 2.6,” July 13, 2003,
<www.kniggit.net/wwol26.html>.

244. Linux kernel source code, version 2.5.75, <www.kernel.org>.
245. “The Embedded Linux ‘Cool Devices’ Quick Reference Guide,”

modified March 21, 2002, <http://www.linuxdevices.com/
articles/AT4936596231.html>.

246. “MontaVista Linux—Real-time Performance,” May 2002, Mon-
taVista Software, <http://www.mvista.com/dswp/real-
time.pdf>.

247. Lehrbaum, R., “Using Linux in Embedded Systems and Smart
Devices,” viewed July 21, 2003, <www.linuxdevices.com/arti-
cles/AT3155773172.html>.

92 Case Study: Linux

©1981–2004, Deitel & Associates, Inc. All rights reserved.

248. Hatch, B., and J. Lee, Hacking Linux Exposed, McGraw-Hill:
Osborne, 2003, pp. 384–386.

249. Toxen, B., Real World Linux Security, 2nd ed., Prentice Hall PTR,
2002.

250. “Modules/Applications Available or in Progress,” modified May 31,
2003, <www.kernel.org/pub/linux/libs/pam/modules.html>.

251. Morgan, A., “The Linux-PAM Module Writers’ Guide,” May 9,
2002, <www.kernel.org/pub/linux/libs/pam/Linux-PAM-html/
pam_modules.html>.

252. Hatch, B., and J. Lee, Hacking Linux Exposed, McGraw-Hill:
Osborne, 2003, pp. 15–19.

253. Linux man pages, “CHATTR(1), change file attributes on a
Linux second extended file system,” <nodevice.com/cgi-bin/
searchman?topic=chattr>.

254. Hatch, B., and J. Lee, Hacking Linux Exposed, McGraw-Hill:
Osborne, 2003, p. 24.

255. Smalley, S.; T. Fraser; and C. Vance, “Linux Security Modules:
General Security Hooks for Linux,” <lsm.immunix.org/docs/
overview/linuxsecuritymodule.html>.

256. Jaeger, T.; D. Safford; and H. Franke, “Security Requirements for
the Deployment of the Linux Kernel in Enterprise Systems,”
<oss.software.ibm.com/linux/papers/security/
les_whitepaper.pdf>.

257. Wheeler, D., “Secure Programming for Linux HOWTO,” Febru-
ary 9, 2000, <www.theorygroup.com/Theory/FAQ/Secure-Pro-
grams-HOWTO.html>.

258. Wright, C., et al., “Linux Security Modules: General Security
Support for the Linux Kernel,” 2002, <lsm.immunix.org/docs/
lsm-usenix-2002/html/>.

259. Bryson, D., “The Linux CryptoAPI: A User's Perspective,” May
31, 2002, <www.kerneli.org/howto/index.php>.

260. Bryson, D., “Using CryptoAPI,” May 31, 2002, <www.ker-
neli.org/howto/node3.php>.

261. Bovet, D., and M. Cesati, Understanding the Linux Kernel,
O’Reilly, 2001.

262. Rubini, A., and J. Corbet, Linux Device Drivers, O’Reilly, 2001.

Works Cited 93

©1981–2004, Deitel & Associates, Inc. All rights reserved.

