tSequence of Page References	Window Size, Δ			
	2	3	4	5
24	24	24	24	24
15	2415	2415	2415	2415
18	1518	241518	241518	241518
23	1823	151823	24151823	24151823
24	2324	182324	-	-
17	2417	232417	18232417	1518232417
18	1718	241718	-	18232417
24	1824	-	241718	-
18	-	1824	-	241718
17	1817	241817	-	-
17	17	1817	-	-
15	1715	1715	181715	24181715
24	1524	171524	171524	-
17	2417	-	-	171524
24	-	2417	-	-
18	2418	172418	172418	15172418

Figure 8.19 Working Set of Process as Defined by Window Size

Initial value of D_{i} is 0
After an operation, the value of D_{i} is updated as follows
(I) if the next operation is a block allocate request:
if there is any free block, select one to allocate if the selected block is locally free

> then $\mathrm{D}_{i}:=\mathrm{D}_{i}+2$
> else $\mathrm{D}_{i}:=\mathrm{D}_{i}+1$
otherwise
first get two blocks by splitting a larger one into two (recursive operation) allocate one and mark the other locally free
D_{i} remains unchanged (but D may change for other block sizes because of the recursive call)
(II) if the next operation is a block free request

Case $\mathrm{D}_{i} \geq 2$
mark it locally free and free it locally
$\mathrm{D}_{i}:=\mathrm{D}_{i}-2$
Case $\mathrm{D}_{i}=1$
mark it globally free and free it globally; coalesce if possible $\mathrm{D}_{i}:=0$
Case $\mathrm{D}_{i}=0$
mark it globally free and free it globally; coalesce if possible select one locally free block of size 2 i and free it globally; coalesce if possible $\mathrm{D}_{i}:=0$

Figure 8.24 Lazy Buddy System Algorithm

