
Table 7.1 Memory Management Techniques

Technique Description Strengths Weaknesses

Fixed Partitioning

Main memory is divided into a

number of static partitions at

system generation time. A process

may be loaded into a partition of

equal or greater size.

Simple to implement;

little operating system

overhead.

Inefficient use of

memory due to internal

fragmentation;

maximum number of

active processes is

fixed.

Dynamic Partitioning

Partitions are created dynamically,

so that each process is loaded into a

partition of exactly the same size as

that process.

No internal

fragmentation; more

efficient use of main

memory.

Inefficient use of

processor due to the

need for compaction to

counter external

fragmentation.

Simple Paging

Main memory is divided into a

number of equal-size frames. Each

process is divided into a number of

equal-size pages of the same length

as frames. A process is loaded by

loading all of its pages into

available, not necessarily

contiguous, frames.

No external

fragmentation.

A small amount of

internal fragmentation.

Simple Segmentation

Each process is divided into a

number of segments. A process is

loaded by loading all of its

segments into dynamic partitions

that need not be contiguous.

No internal

fragmentation.

Improved memory

utilization and reduced

overhead compared to

dynamic partitioning.

Virtual-Memory
Paging

As with simple paging, except that

it is not necessary to load all of the

pages of a process. Nonresident

pages that are needed are brought in

later automatically.

No external

fragmentation; higher

degree of

multiprogramming;

large virtual address

space.

Overhead of complex

memory management.

Virtual-Memory
Segmentation

As with simple segmentation,

except that it is not necessary to

load all of the segments of a

process. Nonresident segments that

are needed are brought in later

automatically.

No internal

fragmentation, higher

degree of

multiprogramming;

large virtual address

space; protection and

sharing support.

Overhead of complex

memory management.

Table 7.2 Address Binding

(a) Loader

Binding Time Function

Programming time All actual physical addresses are directly specified by the programmer in the

program itself.

Compile or assembly time The program contains symbolic address references, and these are converted to

actual physical addresses by the compiler or assembler.

Load time The compiler or assembler produces relative addresses. The loader translates

these to absolute addresses at the time of program loading.

Run time The loaded program retains relative addresses. These are converted

dynamically to absolute addresses by processor hardware.

(b) Linker

Linkage Time Function

Programming time No external program or data references are allowed. The programmer must

place into the program the source code for all subprograms that are

referenced.

Compile or assembly time The assembler must fetch the source code of every subroutine that is

referenced and assemble them as a unit.

Load module creation All object modules have been assembled using relative addresses. These

modules are linked together and all references are restated relative to the

origin of the final load module.

Load time External references are not resolved until the load module is to be loaded into

main memory. At that time, referenced dynamic link modules are appended

to the load module, and the entire package is loaded into main or virtual

memory.

Run time External references are not resolved until the external call is executed by the

processor. At that time, the process is interrupted and the desired module is

linked to the calling program.

