
Concurrent Programming (RIO) 16.10.2009

Lecture 2 summary: Concurrency at
Programming Language Level 1

Concurrency at Programming
Language Level

Lesson 2

g g
Ch 2 [BenA 06]

Abstraction
Pseudo-language

BACIBACI
Ada, Java, etc.

116.10.2009 Copyright Teemu Kerola 2009

Levels of Abstraction
• Granularity of operations

– Invoke a library module

S i hi h l l i l– Statement in high level programming language

– Instruction in machine language

• Atomic statement
– Anything that we can guarantee to be atomic

• Executed completely “at once”

• Always the same correct atomic resultAlways the same correct atomic result

• Result does not depend on anybody else

– Can be at any granularity

– Can trust on that atomicity

216.10.2009 Copyright Teemu Kerola 2009

Concurrent Programming (RIO) 16.10.2009

Lecture 2 summary: Concurrency at
Programming Language Level 2

Atomic Statement
• Atomicity guaranteed somehow

– Machine instruction: HW
• Memory bus transaction

Load R1, Y

Read mem(0x35FA8300)

– Programming language statement, set of statements, or
set of machine instructions

• SW
– Manually coded

– Disable interrupts

– OS synchronization primitives

Lib d l

-- start atomic
Load R1, Y
Sub R1, =1
Jpos R1, Here
-- end atomic

?

– Library module
• SW

– Manually coded inside

– Provided automatically to the user
by programming environment

316.10.2009 Copyright Teemu Kerola 2009

Monitors
Ch 7 [BenA 06]

Concurrent
Program

• Sequential process
– Successive atomic

statements

3 processes
(P, R, Q)
interleaved
execution

statements

– Control pointer
(= program counter)

• Concurrent program
– Finite set of sequential

P: p1 → p2

Q: q1 → q2

P: p1 → p2 → p3 → p4 …

processes working for
same goal

– Arbitrary interleaving
of atomic statements in
different processes

416.10.2009 Copyright Teemu Kerola 2009

Q: q1 → q2

p1 → q2 → p2 → q1

?

Concurrent Programming (RIO) 16.10.2009

Lecture 2 summary: Concurrency at
Programming Language Level 3

Program State, Pseudo-language
• Sequential program

pseudo-kieli

• State
– next statement to execute (cp, i.e., PC)

– variable values

cp state

516.10.2009 Copyright Teemu Kerola 2009

atomic
statement

initial state state stateatomic
statement

(Global) Program State
• Concurrent program

• Local state for each
process:

– cp
– Variable values

• Local & global

Gl b l t t

execute p1 execute q1

t 1 1

p1:
q1:

• Global state
for program

– All cp’s
– All local variables
– All global variables

616.10.2009 Copyright Teemu Kerola 2009

execute q1 execute p1

Concurrent Programming (RIO) 16.10.2009

Lecture 2 summary: Concurrency at
Programming Language Level 4

Possible Program States
• List of processes in program

– List of values for each process

• cpp

• value of each local/global/shared variable

{ { p1: n ← k1 – process p
k1 = 1 }

{ q1: n ← k2 – process q
k2 = 2 }
n = 0 – shared variable

}

state:

• Nr of possible states
can be (very) large
– Not all states are reachable states!

716.10.2009 Copyright Teemu Kerola 2009

{ { p1: n ← k1
k1 = 2 }

{ q1: n ← k2
k2 = 1 }

n = 3
}

(saavutettavissa, saavutettava tila)

unreachable
state:

State
Diagram

and
Scenarios

transition: exec. p1

State diagram

exec. q1

Scenario 1 (left side)

transition: exec. q1 exec. p1

• Transitions from one possible state to another
– Executed statement must be one of those in the 1st state

• State diagram for concurrent program
– Contains all reachable states and transitions
– All possible executions are included, they are all correct!

816.10.2009 Copyright Teemu Kerola 2009

Concurrent Programming (RIO) 16.10.2009

Lecture 2 summary: Concurrency at
Programming Language Level 5

Atomic
Statements

• Two scenarios
B th t– Both correct

– Different result!

NO need to have the
same result!
Statements do the
same, but overall result
may be different.
(see p. 19 [BenA 06])

• Atomic?
– Assignment?
– Boolean evaluation?
– Increment?

916.10.2009 Copyright Teemu Kerola 2009

(see p. 19 [BenA 06])

• Two scenarios for execution• Two scenarios for execution
• Both correct
• Both have the same result

P first, and then Q Q first, and then P

1016.10.2009 Copyright Teemu Kerola 2009

Concurrent Programming (RIO) 16.10.2009

Lecture 2 summary: Concurrency at
Programming Language Level 6

Same statements with smaller atomic granularity:

1116.10.2009 Copyright Teemu Kerola 2009

Too Small Atomic Granularity

• Scenario 1
– OK

• Scenario 2
– Bad result

• From now on
– Assignments

and Boolean
evaluations
are atomic!

1216.10.2009 Copyright Teemu Kerola 2009

Concurrent Programming (RIO) 16.10.2009

Lecture 2 summary: Concurrency at
Programming Language Level 7

Correctness
• What is the correct answer?
• Usually clear for sequential programs
• Can be fuzzy for concurrent programsCan be fuzzy for concurrent programs

– Many correct answers?
– What is intended semantics of the program?
– Run programs 100 times, each time get different

answer?
• Each answer is correct, if program is correct!
• Does not make debugging easier!Does not make debugging easier!
• Usually can not test all possible scenarios (too many!)

– How to define correctness for concurrent programs?
• Safety properties = properties that are always true
• Liveness properties = properties that eventually become true

1316.10.2009 Copyright Teemu Kerola 2009

“turvallisuus”

“elävyys”

Safety and Liveness
• Safety property

– property must be true all the time
• “Identity”

– memFree + memAllocated = memTotal

• Mouse cursor is displayed

identiteetti,
invariantti

safety-ominaisuus, turvallisuus

• Mouse cursor is displayed
• System responds to new commands

• Liveness property
– Property must eventually become true

• Variable n value = 2
• System prompt for next command is shown
• Control will resume to calling program
• Philosopher will get his turn to eat

elävyys, liveness-ominaisuus

Philosopher will get his turn to eat
• Eventually the mouse cursor is not displayed
• Program will terminate

• Duality of safety and liveness properties
– { Pi will get his turn to eat } ≡ not { Pi will never get his turn to eat }
– { n value will become 2 } ≡ not { n value is always ≠ 2 }

1416.10.2009 Copyright Teemu Kerola 2009

Concurrent Programming (RIO) 16.10.2009

Lecture 2 summary: Concurrency at
Programming Language Level 8

Linear Temporal Logic (LTL)

• Define safety and liveness properties for
certain state in some (arbitrary) scenario
– Example of Modal Temporal Logic (MDL) logic on

(lineaarinen) temporaalilogiikka

– Example of Modal Temporal Logic (MDL), logic on
concepts like possibility, impossibility, and necessity

• Alternative: Branching Temporal Logic (BTL)
– Properties true in some or all states starting from the

given state
• More complex, because all future states must be covered

C l i (C)– Common Temporal Logic (CTL)
• Can be checked automatically

– Every time computation reaches given state
• SMV model checker
• NuSMV model checker

1516.10.2009 Copyright Teemu Kerola 2009

Fairness
• (Weakly) fair scenario

– Wanted condition eventually occurs
• Nobody is locked out forever

reiluus

• Will a philosopher ever get his turn to eat?
• Will an algorithm eventually stop?

• All scenarios should be fair
– One requirement in correct solution

1616.10.2009 Copyright Teemu Kerola 2009

Concurrent Programming (RIO) 16.10.2009

Lecture 2 summary: Concurrency at
Programming Language Level 9

Machine Language Code
• What is atomic and what is not?

– Assignment? X = Y;

– Increment? X = X+1;

1716.10.2009 Copyright Teemu Kerola 2009

Critical Reference
• Reference to variable v is critical reference, if …

– Assigned value in P and read in Q

• Read directly or in a statement

• Program satisfies limited critical reference (LCR)

vP Q

kriittinen viite

• Program satisfies limited-critical-reference (LCR)
– Each statement has at most one critical reference

– Easier to analyze than without this property

– Each program is easy to transform into similar program with LCR

n = n+1; n = n+1Not LCR:

P Q

Bad

rajoitettu
kriittinen viite

1816.10.2009 Copyright Teemu Kerola 2009

tempP = n+1;
n = tempP;

tempQ = n+1;
n = tempQ;

LCR: Good

LCR vs. atomicity?
(ouch)

n = m+1; m = n+1Not LCR: Bad

Concurrent Programming (RIO) 16.10.2009

Lecture 2 summary: Concurrency at
Programming Language Level 10

Volatile and non-atomic variables
• Volatile variable

– Can be modified by many processes (must be in shared memory)
– Advice for compiler (pragma)

• Keep something in memory, not in register
P d d d d

riskialtis

• Pseudocode – does not generate code

• Non-atomic variables
– Multiword data structures: long ints, arrays, records, …
– Force access to be indivisible in given order

What if compiler/hw
decides to keep
value of n in a

1916.10.2009 Copyright Teemu Kerola 2009

which n?

exec.
order?

store n?

value of n in a
register/cache?
When is it stored
back to memory?
What if local1 &
local2 were volatile?

Example Program
with Volatile Variables

• Can implement it in any concurrent programming language
– (Extended) Pascal and (Extended) C(Extended) Pascal and (Extended) C

– BACI (Ben-Ari Concurrency Interpreter)
• Code automatically compiled (from Extended Pascal or C)

– Ada

– Java

2016.10.2009 Copyright Teemu Kerola 2009

Concurrent Programming (RIO) 16.10.2009

Lecture 2 summary: Concurrency at
Programming Language Level 11

possibly volatile
(Ben-Ari Concurrent Pascal)

2116.10.2009 Copyright Teemu Kerola 2009

{ main program }

n is volatile, because… it is
assigned in one thread, and
read in the other

possibly volatile, use carefully

(Ben-Ari Concurrent C, C--)

(volatile, if critically referenced)

2216.10.2009 Copyright Teemu Kerola 2009

What if compiler optimized and
kept n in a register?
Lets hope not!
(in ExtPascal or C--
global (volatile) variables are seemingly kept in memory by default)

Concurrent Programming (RIO) 16.10.2009

Lecture 2 summary: Concurrency at
Programming Language Level 12

advice compiler to keep N in memory

2316.10.2009 Copyright Teemu Kerola 2009

How many threads
really in parallel?

Thread.yield(); // force?

really in parallel?
• how to control it?

2416.10.2009 Copyright Teemu Kerola 2009

> javac Adder8.java
> java Adder8

Execute on 8-processor vera.cs.helsinki.fi?
http://www.cs.helsinki.fi/u/kerola/rio/Java/examples/Adder8.java

http://www.cs.helsinki.fi/u/kerola/rio/Java/examples/Adder8b.java

Concurrent Programming (RIO) 16.10.2009

Lecture 2 summary: Concurrency at
Programming Language Level 13

BACI
• Ben-Ari Concurrency Interpreter

– Write concurrent programs with
• C-- or Ben-Ari Concurrent Pascal (.cm and .pm suffixes)
• Compile and run in BACI

http://www.mines.edu/fs_home/tcamp/baci/

Compile and run in BACI

– GUI for Unix/Linux

• jBACI
– Just like BACI
– GUI for Windows

• Installation

http://stwww.weizmann.ac.il/g-cs/benari/jbaci/

http://stwww.weizmann.ac.il/g-cs/benari/jbaci/jbaci1-4-5.zip

– load version 1.4.5 jBACI executable files and example
programs, unzip, edit config.cfg to have correct paths to
bin/bacc.exe and bin/bapas.exe translators, click run.bat

• Use in class, homeworks and in project
2516.10.2009 Copyright Teemu Kerola 2009

BACI Overall
Structure

C-- to PCODE
Compiler

bacc.exe

…
void main() {
cobegin { add10();

add10(); }
….

add.cm C- -
(Concurrent C)

add.pco
…
17 24 void main() {
18 25 cobegin {add10(); add10(); }
….

add.lst

PCODE

(many tables)

2616.10.2009 Copyright Teemu Kerola 2009

Interpreter

bainterp.exe

http://www.cs.helsinki.fi/u/kerola/rio/BACI/baci-c.pdf

Concurrent Programming (RIO) 16.10.2009

Lecture 2 summary: Concurrency at
Programming Language Level 14

jBACI
• Just like

BACI, but
with Java
– requires

Java v. 1.4
(SDK or
JRE)

– Built-in
compiler
andand
interpreter

– edit state
– run state

2716.10.2009 Copyright Teemu Kerola 2009

http://www.cs.helsinki.fi/u/kerola/rio/BACI/jbaci.pdf

jBACI IDE (integrated development environment)

2816.10.2009 Copyright Teemu Kerola 2009

Concurrent Programming (RIO) 16.10.2009

Lecture 2 summary: Concurrency at
Programming Language Level 15

jBACI IDE (integrated development environment)

Add a breakpoint
to selected
(PCode) line

2916.10.2009 Copyright Teemu Kerola 2009

Summary

• Abstraction, atomicity

C• Concurrent program, program state

• Pseudo-language algorithms

• High level language algorithms

• BACI

3016.10.2009 Copyright Teemu Kerola 2009

