
115.11.1999 Copyright Teemu Kerola 1999

CPU Structure and Function
Ch 11

General Organisation

Registers

Instruction Cycle

Pipelining

Branch Prediction

Interrupts

215.11.1999 Copyright Teemu Kerola 1999

General CPU Organization (4)

• ALU
– does all real work

• Registers
– data stored here

• Internal CPU Bus

• Control
– determines who does what when

– driven by clock

– uses control signals (wires) to control what
every circuit is doing at any given clock cycle

Fig. 11.1

Fig. 11.2

More in Chapters 14-15

315.11.1999 Copyright Teemu Kerola 1999

Register Organisation (2)

• Registers make up CPU work space
– User visible registers

• accessible directly via instructions

– Control and status registers
• may be accessible indirectly via instructions

• may be accessible only internally

• Internal latches for temporary storage
during instruction execution
– E.g., ALU operand either from constant in

instruction or from machine register

ADD R1,R2,R3

BNeq Loop

HW exception

415.11.1999 Copyright Teemu Kerola 1999

User Visible Registers

• Varies from one architecture to another

• General purpose
– Data, address, index, PC, condition, ….

• Data
– Int, FP, Double, Index

• Address

• Segment and stack pointers
– only privileged instruction can write?

• Condition codes
– result of some previous ALU operation

515.11.1999 Copyright Teemu Kerola 1999

Control and Status Registers (5)

• PC
– next instruction (not current!)

– part of process state

• IR, Instruction (Decoding) Register
– current instruction

• MAR, Memory Address Register
– current memory address

• MBR, Memory Buffer Register
– current data to/from memory

• PSW, Program Status Word
– what is allowed? What is going on?

– part of process state

Fig. 11.7

615.11.1999 Copyright Teemu Kerola 1999

PSW - Program Status Word (8)

• Sign, zero?

• Carry (for multiword ALU ops)?

• Overflow?

• Interrupts that are enabled/disabled?

• Pending interrupts?

• Cpu execution mode (supervisor, user)?

• Stack pointer, page table pointer?

• I/O registers?

715.11.1999 Copyright Teemu Kerola 1999

Instruction Cycle

• Basic cycle with interrupt handling

• Indirect cycle

• Data Flow
– CPU, Bus, Memory

• Data Path
– inside CPU

Fig. 11.4

Figs 11.5-6

Figs 11.7-9

Fig 14.5

815.11.1999

Pipeline Example
• Laundry Example (David A. Patterson)

• Ann, Brian, Cathy, Dave
each have one load of clothes
to wash, dry, and fold

• Washer takes 30 minutes

• Dryer takes 40 minutes

• “Folder” takes 20 minutes

A B C D

(liukuhihna)

915.11.1999

Sequential Laundry (6)

• Sequential laundry takes 6 hours for 4 loads

• If they learned pipelining, how long would laundry take?

A

B

C

D

30 40 20 30 40 20 30 40 20 30 40 20

6 PM 7 8 9 10 11
Mid-
night

T
a
s
k

O
r
d
e
r

Time

Throughput

0.67 loads per hour

1.5 hours per load

Time for one load
Latency (viive?)

1015.11.1999

Pipelined Laundry (8)

• Pipelined laundry takes 3.5 hours for 4 loads

A

B

C

D

6 PM 7 8 9 10

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

90 minutes per load

1.15 loads per hour

Throughput

Time for one load
Latency

1115.11.1999

Pipelining Lessons (4)

• Pipelining doesn’t help
latency
of single task, it helps
throughput of entire
workload

• Pipeline rate limited by
slowest pipeline stage

• Multiple tasks operating
simultaneously

• Potential speedup
= Number pipe stages

A

B

C

D

6 PM 7 8 9

Time

30 40 40 40 40 20

(nopeutus)

1215.11.1999

Pipelining Lessons (3)

• Unbalanced lengths of pipe
stages reduces speedup

• May need more resources
– Enough electrical current

to run both washer and
dryer simultaneously?

– Need to have at least
2 people present all
the time?

• Time to “fill” pipeline and
time to “drain” it reduces
speedup

fill

drain

A

B

C

D

6 PM 7 8 9

Time

30 40 40 40 40 20

1315.11.1999 Copyright Teemu Kerola 1999

2-stage Instruction Execution
Pipeline

• Good: instruction pre-fetch at the same time
as execution of previous instruction

• Bad: execution time is longer, I.e., fetch
stage is sometimes idle

• Bad: Sometimes (jump, branch) wrong
instruction is fetched
– every 6th instruction?

• Not enough parallelism ⇒ more stages?

Fig. 11.10

1415.11.1999 Copyright Teemu Kerola 1999

Another Possible
Instruction Execution Pipeline

• FE - Fetch instruction

• DI - Decode instruction

• CO - Calculate operand effective addresses

• FO - Fetch operands from memory

• EI - Execute Instruction

• WO - Write operand (result) to memory

1515.11.1999 Copyright Teemu Kerola 1999

Pipeline Speedup (3)

• Not every instruction uses every stage
– serial execution actually even faster

– speedup even smaller

– will not affect pipeline speed

– unused stage ⇒ CPU idle (execution “bubble”)

No pipeline, 9 instructions 54 time units

6 stage pipeline, 9 instructions 14 time units
Fig. 11.11

Speedup =
Timeold

Timenew

= 54/14 = 3.86 < 6 !
(nopeutus)

9 * 6

1615.11.1999 Copyright Teemu Kerola 1999

Pipeline Execution Time (3)

• Time to execute one instruction (latency, seconds)
may be longer than for non-pipelined machine
– extra latches to store intermediate results

• Time to execute 1000 instructions (seconds) is
shorter than that for non-pipelined machine,
I.e.,
Throughput (instructions per second) for pipelined
machine is better (bigger) than that for non-
pipelined machine

• Is this good or bad? Why?

1715.11.1999 Copyright Teemu Kerola 1999

Pipeline Speedup Problems

• Some stages are shorter than the others

• Dependencies between instructions
– Control dependency

• E.g., conditional branch decision know only after EI
stage

Fig. 11.12

Fig. 11.13

1815.11.1999 Copyright Teemu Kerola 1999

Pipeline Speedup Problems

• Dependencies between
instructions
– data dependency

• E.g., one instruction
depends on some earlier
instruction

– structural dependency
• E.g., many instructions

need the same resource
at the same time

– e.g., memory bus

Fig. 11.12

MUL R1,R2,R3

LOAD R6,ArrB(R1)

Known
after EI
stage

Needed
in CO stage

STORE R1,VarX
ADD R2,R3,VarY
MUL R3,R4,R5

FI FO

WO

1915.11.1999 Copyright Teemu Kerola 1999

Cycle Time

• Cycle time is the same for all stages
– time (in clock pulses) to execute the cycle

• Each stage executed in one cycle time

• Longest stage determines cycle time

[] ddd mi >>+=+= τττ max

gate delay in stage i

max gate delay in stage

delay in latches between stages
(= clock pulse, or clock cycle time)

(min) cycle time

overhead?

2015.11.1999 Copyright Teemu Kerola 1999

Pipeline Speedup

n instructions, k stages

Time
not pipelined:

(pessimistic because of
assuming, that each stage
would still have τ cycle time)

τnkT =1

Time
pipelined:

[]τ)1(−+= nkTk

n instructions, k stages
τ = stage delay = cycle time

k cycles until
1st instruction
completes

1 cycle for
each of the rest
(n-1) instructions

2115.11.1999 Copyright Teemu Kerola 1999

Pipeline Speedup (2)

n instructions, k stages

Time
not pipelined:

(pessimistic because of
assuming, that each stage
would still have τ cycle time)

τnkT =1

Time
pipelined:

[]τ)1(−+= nkTk

[] [])1()1(
1

−+
=

−+
==

nk

nk

nk

nk

T

T
S

k
k τ

τ

Fig. 11.14

Speedup
with
k stages:

n instructions, k stages
τ = stage delay = cycle time

2215.11.1999 Copyright Teemu Kerola 1999

Branch Problem Solutions

• Delayed Branch
– compiler places some useful instructions

(1 or more!) after branch (or jump) instructions

– these instructions are almost completely
executed when branch decision is known

– less actual work lost

– can be difficult to do

– conditional branches tricky, must be able to
stop changes (by instruction in delay slot) in
case there is no branch

Fig. 12.7

2315.11.1999 Copyright Teemu Kerola 1999

Branch Problem Solutions (contd)
• Multiple instruction streams

– execute speculatively in both directions
• Problem: we do not know the branch target

address early!

– if one direction splits, continue each way

– lots of hardware
• speculative results, control

– speculative instructions may delay real work
• bus & register contention?

– need to be able to cancel not-taken instruction
streams in pipeline

2415.11.1999 Copyright Teemu Kerola 1999

Branch Problem Solutions (contd)

• Prefetch Branch Target
– prefetch just branch target instruction

– do not execute it, I.e., do only FI stage

– if branch take, no need to wait for memory

• Loop Buffer
– keep n most recently fetched instructions in

high speed buffer inside CPU

– works for small loops (at most n instructions)

IBM 360/91 (1967)

2515.11.1999 Copyright Teemu Kerola 1999

Branch Problem Solutions (contd)
• Branch Prediction

– guess (intelligently) which way branch will go

– fixed prediction: take it, do not take it

– based on opcode
• E.g., BLE instruction usually at the end of loop?

– taken/not taken prediction
• based on previous time this instruction was executed

• need space (1 bit) in CPU for each (?) branch

• end of loop always wrong twice!

• Extension based on two previous times

– need more space (2 bits) Fig. 11.16

2615.11.1999 Copyright Teemu Kerola 1999

Branch Address Prediction

• It is not enough to know whether branch is
taken or not

• Must know also branch address to fetch
target instruction

• Branch History Table
– state information to guess whether branch will

be taken or not

– previous branch target address

– stored in CPU for each (?) branch

2715.11.1999 Copyright Teemu Kerola 1999

Branch History Table
• Cached

– entries only for most recent branches
• Branch instruction address, or tag bits for it

• Branch taken prediction bits (2?)

• Target address (from previous time) or complete
target instruction?

• Why cached
– expensive hardware, not enough space for all

possible branches

– at lookup time check first whether entry for
correct branch instruction

PowerPC 620

2815.11.1999 Copyright Teemu Kerola 1999

CPU Example: PowerPC
• User Visible Registers

– 32 general purpose regs, each 64 bits
• Exception reg (XER), 32 bits

– 32 FP regs, each 64 bits
• FP status & control (FPSCR), 32 bits

– branch processing unit registers
• Condition, 32 bits

– 8 fields, each 4 bits

– identity given in instructions

• Link reg, 64 bits
– E.g., return address

• Count regs, 64 bits
– E.g., loop counter

Fig. 11.22

Fig. 11.23a

Table 11.3

Fig. 11.23b

Table 11.4

2915.11.1999 Copyright Teemu Kerola 1999

CPU Example: PowerPC
• Interrupts

– cause
• system condition or event

• instruction

Table 11.5

3015.11.1999 Copyright Teemu Kerola 1999

CPU Example: PowerPC

• Machine State Register, 64 bits
– bit 48: external (I/O) interrupts enabled?

– bit 49: privileged state or not

– bits 52&55: which FP interrupts enabled?

– bit 59: data address translation on/off

– bit 63: big/little endian mode

• Save/Restore Regs SRR0 and SRR1
– temporary data needed for interrupt handling

Table 11.6

3115.11.1999 Copyright Teemu Kerola 1999

Power PC Interrupt Invocation

• Save return PC to SRR0
– current or next instruction at the time of interrupt

• Copy relevant areas of MSR to SRR1

• Copy additional interrupt info to SRR1

• Copy fixed new value into MSR
– different for each interrupt

– address translation off, disable interrupts

• Copy interrupt handler entry point to PC
– two possible handlers, selection based on bit 57 of

original MSR

Table 11.6

3215.11.1999 Copyright Teemu Kerola 1999

Power PC Interrupt Return

• Return From Interrupt (rfi) instruction
– privileged

• Rebuild original MSR from SRR1

• Copy return address from SRR0 to PC

Table 11.6

3315.11.1999 Copyright Teemu Kerola 1999

-- End of Chapter 11: CPU Structure --

(Patterson-Hennessy, Computer Org & Design, 2nd Ed, 1998)

(Fig. 6.12)5 stage pipelined version of datapath

