10N
lon

|
Cycle
Ining

Interrupts

Pipel
Branch Prediction

| Nstruction

S e "to'l-:'-._;::-:
ik

iy

aw
A . Pl
e

i

s]

Copyright Teemu Kerola 1999

o

s e

s

&
-
S
LL
&
=
=
o
=
0
D
al
O

P e

g -|1-‘-|:-1--
Lyl o=yl e

15.11.1999

General CPU Organization

ALU
— does all real work

Registers Fig. 11.2
— data stored here

|nternal CPU Bus

Control Morein Chapters 14-15
— determines who does what when
— driven by clock

— uses control signals (wires) to control what
every circuit Is doing at any given clock cycle

Fig. 11.1

_H 15.11.1999 Copyright Teemu Kerola 1999

Register Organisation ()

* Registers make up CPU work space
— User visible registers ADD R1,R2,R3
e accessible directly viainstructions

— Control and status registers BNeq Loop
e may be accessible indirectly viainstructions
« may be accessible only internaly [HVALexception
 Internal latches for temporary storage
during Instruction execution

— E.g., ALU operand either from constant in
Instruction or from machine register

Copyright Teemu Kerola 1999

User Visible Registers

Varies from one architecture to another
General purpose

— Data, address, index, PC, condition,
Data

— Int, FP, Double, Index
Address

Segment and stack pointers

— only privileged instruction can write?

Condition codes
— result of some previous ALU operation

15.11.1999 Copyright Teemu Kerola 1999

A - e i
i Y i D
A el et Ho

Control and Status Registers
PC

— next instruction (not current!)
— part of process state

IR, Instruction (Decoding) Register
— current instruction

MAR, Memory Address Register

— current memory address

MBR, Memory Buffer Register
— current data to/from memory

PSW, Program Status Word
— what is allowed? What Is going on?

— part of process state
_“ 15.11.1999 Copyright Teemu Kerola 1999

Sign, zero?

Carry (for multiword ALU ops)?
Overflow?

Interrupts that are enabled/disabled?

Pending interrupts?

Cpu execution mode (supervisor, user)?
Stack pointer, page table pointer?

1/O registers?

e
4 o
AL

58

gtk ey
g} g SEEE-E e

Sares

g =.--1

15.11.1999 Copyright Teemu Kerola 1999

11.4

ig.

ing |F

Figs11.7-9

Figs11.5-6

Fig 14.5
Copyright Teemu Kerola 1999

o
9
-
O
s
-
-
[
-

le with interrupt handl

t cycle

Irec

de CPU

asiC CyC

e B
e Ind

e Data Flow

— CPU, Bus, Memory
e DataPath

—Ins

15.11.1999

Ap P b B
--\.-r‘.h HFLES

~ita

T e

Pipeline Example [tk

Laundry Example (David A. Patterson)
Ann, Brian, Cathy, Dave

each have one load of clothes ““

to wash, dry, and fold

Washer takes 30 minutes m

Dryer takes 40 minutes

“Folder” takes 20 minutes QI'F

15.11.1999

Sequential Laundry «

8 9 10 11 night

y

Time

2o 70 %'ETO 5030 20 2030 20 20

Time for one load

?
Latency (vilve?)

1.5 hours per load

0.67 loads per hour

Throughput

Sequential laundry takes 6 hours for 4 loads
e |f they learned pipelining, how long would laundry take?

f 15.11.1999

Pipelined Laundry

6 PM 7 3 9 10
|

y

| Time

30| 40 |To |To |To 2%'

Time for one load
7 90 minutes per load

‘ m;[1.15 loads per hour

Throughput
<
& 7

* Pipelined laundry takes 3.5 hoursfor 4 loads

15.11.1999 10

Pipelining Lessons

Pipelining doesn’t help 6 PM 7 8 9
|atency | i

of single task, it helps 30 4o 20 40 40 20

throughput of entire o m;[

workload .
e o B m;f

Pipeline rate limited by
slowest pipeline stage ©
Multiple tasks operating D
simultaneously

Potential speedup (nopeutus)
= Number pipe stages

90 15.11.1999

Pipelining Lessons

» Unbalanced |lengths of pipe
stages reduces speedup

* May need more resources

— Enough electrical current
to run both washer and
dryer smultaneously?

— Need to have at |east
2 people present all
the time?
e Timeto “fill” pipeline and
timeto “dran” it reduces
speedup

7 1511.1999

6 PM 7 38 9

y

30 40 40 40 40 20

d | L
& M8

1
A

I
b LK
e
v ""_'sr-

|\ 2-stage Instruction Execution
Pipeline

Fig. 11.10

Good: instruction pre-fetch at the same time
as execution of previous instruction

Bad: execution timeislonger, |.e., fetch
stage Is sometimes idle

Bad: Sometimes (jump, branch) wrong
Instruction iIs fetched

— every 6 instruction?
Not enough parallelism b more stages?

Copyright Teemu Kerola 1999

Another Possible
Instruction Execution Pipeline

FE - Fetch instruction

DI - Decode instruction

CO - Calculate operand effective addresses
FO - Fetch operands from memory

El - Execute Instruction

WO - Write operand (result) to memory

b iy SRS
5 -
o

._.'-
<8
-1 £

58

- ‘.. e
34

Sares

g =.--1

15.11.1999 Copyright Teemu Kerola 1999

Pipeine Speedup 3

No pipeling, 9 instructions 0 » 54 time units

S— _ : Fig. 11.11 : _
6 stage pipeling, 9 instructions » 14 time units

Tl MEy g

=54/14=3.86 <6!

Speedup = —
TIMenqy (nopeutus)

~ « Not every instruction uses every stage

— serial execution actually even faster

— Speedup even smaller

— will not affect pipeline speed

— unused stage P CPU idle (execution “bubble’)

_H 15.11.1999 Copyright Teemu Kerola 1999 15

Pipeline Execution Time ¢

e Time to execute one instruction (latency, seconds)
may be longer than for non-pipelined machine
— extralatchesto store intermediate results

Time to execute 1000 instructions (seconds) IS
shorter than that for non-pipelined machine,

l.e,

Throughput (instructions per second) for pipelined
machine is better (bigger) than that for non-
pipelined machine

|s this good or bad? Why?

:I 15.11.1999 Copyright Teemu Kerola 1999

Pipeline Speedup Problems

¢ Some stages are shorter than the others

* Dependencies between instructions

— Control dependency
e E.g., conditional branch decision know only after El

Fig. 11.12

Fig. 11.13

15.11.1999 Copyright Teemu Kerola 1999

Pipeline Speedup Problems

_ Known
Flg 1112 "0‘ after EI

* Dependencies between
Instructions

_ data dependency MUL R1,R2,R3

. . \
e E.g., oneinstruction LOAD RG,A”BS'Rl)

depends on some earlier Needed .

Instruction in CO stage
— structural dependency

e E.g., many instructions

need the SAME resource: [y R3R4R5 ¥.
at the same time ¥, ’

F O
—e.g., memory bus

q'flf“ 15.11.1999 Copyright Teemu Kerola 1999 18
A

ADD R2R3\Vay

e
cd g

Cycle Time _ greheat?

A

Tmax gate delay In stage

(min) cycletime
delay in latches between stages

(= clock pulse, or clock cycle time)
gate delay in stage|

Cycletimeisthe samefor all stages

— time (in clock pulses) to execute the cycle
. * Each stage executed in one cycletime
« Longest stage determines cycle time

q'flf“ 15.11.1999 Copyright Teemu Kerola 1999
A

Pipeline Speedup

n instructions, k stages
n instructions, k stages / t = stage delay = cycletime

Time (pessimistic because of
not pipelined: assuming, that each stage
would still havet cycletime)

Time
pipelined:

[

k cycles until 1 cyclefor
1st instruction each of the rest
completes (n-1) instructions

15111999 Copyright Teemu Kerola 1999

Pipeline Speedup

n instructions, k stages
n instructions, k stages / t = stage delay = cycletime

Time (pessimistic because of
not pipelined: assuming, that each stage
would still havet cycletime)

Time
pipelined:

Speedup
with
i K stages:

ok

Fig. 11.14

15.11.1999 Copyright Teemu Kerola 1999

A - e i
i Y i D
A el et Ho

Branch Problem Solutions

 Delayed Branch

— compiler places some useful instructions
(1 or more!) after branch (or jump) instructions

— these instructions are almost completely
executed when branch decision is known

— |ess actual work lost
— can be difficult to do

— conditional branchestricky, must be able to
stop changes (by instruction in delay dlot) In
case there i1s no branch

Fig. 12.7

q”ls“ 15.11.1999 Copyright Teemu Kerola 1999
A

T
TR

Tty
ey
e

' Branch Problem Solutions (contd)
| e Multiple instruction streams

— execute speculatively in both directions

* Problem: we do not know the branch target
address early!

— If one direction splits, continue each way

— |ots of hardware
 gpeculative results, control

— gpeculative instructions may delay real work
e bus & register contention?

— heed to be able to cancel not-taken instruction
streams in pipeline

=jr 15.11.1999 Copyright Teemu Kerola 1999

Lt

[s:
g

JrEial

Ziheld

4 ¥

el
"

ryr

' Branch Problem Solutions (contd)

* Prefetch Branch Target IBM 360/91 (1967)
— prefetch just branch target instruction
— do not executeit, |.e., do only Fl stage
— If branch take, no need to wait for memory

~» Loop Buffer

— keep n most recently fetched instructionsin
high speed buffer inside CPU

— works for small loops (at most n instructions)

Copyright Teemu Kerola 1999

e
cd g

| Branch Problem Solutions (contd)

* Branch Prediction
— guess (intelligently) which way branch will go
— fixed prediction: takeit, do not take it

— based on opcode
* E.g., BLE instruction usually at the end of loop?

— taken/not taken prediction
 based on previous time this instruction was executed
 need space (1 bit) in CPU for each (?) branch
 end of loop always wrong twice!

» Extension based on two previous times
— need more space (2 bits) Fig. 11.16

=jr 15.11.1999 Copyright Teemu Kerola 1999

Branch Address Prediction

e It isnot enough to know whether branch is
taken or not

e Must know also branch address to fetch
target instruction

"« Branch History Table

— state information to guess whether branch will
be taken or not

— previous branch target address
— stored in CPU for each (?) branch

:I 15.11.1999 Copyright Teemu Kerola 1999

Branch History Table

e Cached PowerPC 620

— entries only for most recent branches
e Branch instruction address, or tag bits for it
 Branch taken prediction bits (27?)

e Target address (from previous time) or complete
target instruction?

~ « Why cached

— expensive hardware, not enough space for all
possible branches

— at lookup time check first whether entry for
correct branch instruction

=jr 15.11.1999 Copyright Teemu Kerola 1999

CPU Example: PowerPC

e User Visible Registers Fig. 11.22

— 32 genera purpose regs, each 64 bits

o Exception reg (XER), 32 bits Fig. 11.23a

— 32 FP regs, each 64 bits

e FP status & control (FPSCR), 32 bits

Table 11.3

— branch processing unit registers

e Condition, 32 bits Fig. 11.23b

— 8fields, each 4 hits

Table11.4

— Identity given in instructions
e Link reg, 64 bits
— E.g., return address

e Count regs, 64 bits

— E.g., loop counter
_;‘L;f 15.11.1999 Copyright Teemu Kerola 1999

PowerPC
Table11.5

Copyright Teemu Kerola 1999

c
=
O
-
| -
1%2)
c
(]

3
n
-
®

O
o
o
-
O
5
-
@)
o
70~
Q. 17
= 2
mu .
i
-
o

A
S
|

15.11.1999

-

ey
Ldaadas

-

CPU Example: PowerPC

* Machine State Register, 64 bits [Tale11.6
nit 48: external (1/0) interrupts enabled?

oIt 49: privileged state or not

nits 52& 55: which FP interrupts enabled?
nit 59: data address trand ation on/off

nit 63: big/little endian mode

o Save/Restore Regs SRRO and SRR1
| —temporary data needed for interrupt handling

=jr 15.11.1999 Copyright Teemu Kerola 1999

Power PC Interrupt Invocation

Save return PC to SRRO Table11.6
— current or next instruction at the time of interrupt

Copy relevant areas of MSR to SRR1
Copy additional interrupt info to SRR1

Copy fixed new value into MSR
— different for each interrupt
— address trand ation off, disable interrupts

Copy Interrupt handler entry point to PC

— two possible handlers, selection based on bit 57 of
original MSR

2 Copyright Teemu Kerola 1999
Al

Table 11.6

INSstruction

Copyright Teemu Kerola 1999

leged
e Rebuild original MSR from SRR1

— privi

-
-
=
D
ad
[=1
-
-
D
o
-
D
S
al

* Copy return address from SRRO to PC

e Return From Interrupt (rfi

15.11.1999

E
T ST
o N

it

-- End of Chapter 11: CPU Structure --

Acrobat Bea__. _ __._._ _., e

'@ E_iha- Edit Document Wiew

®6|B[0A 2)
»

Read
Address] ragister 1 Fead

Pead data 1

|nstruction registar 2

":E g Registers pagd
pary Write data 2

register

Write
data

oo I (Patterson-Hennessy, Computer Org & Design, 2nd Ed, 1998)

15.11.1999 Copyright Teemu Kerola 1999 33

