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General CPU Organization (4)

• ALU
– does all real work

• Registers
– data stored here

• Internal CPU Bus

• Control
– determines who does what when

– driven by clock

– uses control signals (wires) to control what
every circuit is doing at any given clock cycle

Fig. 11.1

Fig. 11.2

More in Chapters 14-15
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Register Organisation (2)

• Registers make up CPU work space
– User visible registers

• accessible directly via instructions

– Control and status registers
• may be accessible indirectly via instructions

• may be accessible only internally

• Internal latches for temporary storage
during instruction execution
– E.g., ALU operand either from constant in

instruction or from machine register

ADD   R1,R2,R3

BNeq   Loop

HW exception
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User Visible Registers

• Varies from one architecture to another

• General purpose
– Data, address, index, PC, condition, ….

• Data
– Int, FP, Double, Index

• Address

• Segment and stack pointers
– only privileged instruction can write?

• Condition codes
– result of some previous ALU operation
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Control and Status Registers (5)

• PC
– next instruction (not current!)

– part of process state

• IR, Instruction (Decoding) Register
– current instruction

• MAR, Memory Address Register
– current memory address

• MBR, Memory Buffer Register
– current data to/from memory

• PSW, Program Status Word
– what is allowed? What is going on?

– part of process state

Fig. 11.7
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PSW - Program Status Word (8)

• Sign, zero?

• Carry (for multiword ALU ops)?

• Overflow?

• Interrupts that are enabled/disabled?

• Pending interrupts?

• Cpu execution mode (supervisor, user)?

• Stack pointer, page table pointer?

• I/O registers?
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Instruction Cycle

• Basic cycle with interrupt handling

• Indirect cycle

• Data Flow
– CPU, Bus, Memory

• Data Path
– inside CPU

Fig. 11.4

Figs 11.5-6

Figs 11.7-9

Fig 14.5
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Pipeline Example
• Laundry Example (David A. Patterson)

• Ann, Brian, Cathy, Dave
each have one load of clothes
to wash, dry, and fold

• Washer takes 30 minutes

• Dryer takes 40 minutes

• “Folder” takes 20 minutes

A B C D

(liukuhihna)
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Sequential Laundry (6)

• Sequential laundry takes 6 hours for 4 loads

• If they learned pipelining, how long would  laundry take?

A

B

C

D

30 40 20 30 40 20 30 40 20 30 40 20

6 PM 7 8 9 10 11
Mid-
night

T
a
s
k

O
r
d
e
r

Time

Throughput

0.67 loads per hour

1.5 hours per load

Time for one load
Latency (viive?)
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Pipelined Laundry (8)

• Pipelined laundry takes 3.5 hours for 4 loads

A

B

C

D

6 PM 7 8 9 10

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

90 minutes per load

1.15 loads per hour

Throughput

Time for one load
Latency
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Pipelining Lessons (4)

• Pipelining doesn’t help
latency
of single task, it helps
throughput of entire
workload

• Pipeline rate limited by
slowest pipeline stage

• Multiple tasks operating
simultaneously

• Potential speedup
= Number pipe stages

A

B

C

D

6 PM 7 8 9

Time

30 40 40 40 40 20

(nopeutus)
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Pipelining Lessons (3)

• Unbalanced lengths of pipe
stages reduces speedup

• May need more resources
– Enough electrical current

to run both washer and
dryer simultaneously?

– Need to have at least
2 people present all
the time?

• Time to “fill” pipeline and
time to “drain” it reduces
speedup

fill

drain

A

B

C

D

6 PM 7 8 9

Time

30 40 40 40 40 20
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2-stage Instruction Execution
Pipeline

• Good: instruction pre-fetch at the same time
as execution of previous instruction

• Bad: execution time is longer, I.e., fetch
stage is sometimes idle

• Bad: Sometimes (jump, branch) wrong
instruction is fetched
– every 6th instruction?

• Not enough parallelism ⇒ more stages?

Fig. 11.10
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Another Possible
Instruction Execution Pipeline

• FE - Fetch instruction

• DI - Decode instruction

• CO - Calculate operand effective addresses

• FO - Fetch operands from memory

• EI - Execute Instruction

• WO - Write operand (result) to memory
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Pipeline Speedup (3)

• Not every instruction uses every stage
– serial execution actually even faster

– speedup even smaller

– will not affect pipeline speed

– unused stage ⇒ CPU idle (execution “bubble”)

No pipeline, 9 instructions 54 time units

6 stage pipeline, 9 instructions 14 time units
Fig. 11.11

Speedup = 
Timeold

Timenew

= 54/14 = 3.86  < 6 ! 
(nopeutus)

9 * 6
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Pipeline Execution Time (3)

• Time to execute one instruction (latency, seconds)
may be longer than for non-pipelined machine
– extra latches to store intermediate results

• Time to execute 1000 instructions (seconds) is
shorter than that for non-pipelined machine,
I.e.,
Throughput (instructions per second) for pipelined
machine is better (bigger) than that for non-
pipelined machine

• Is this good or bad? Why?
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Pipeline Speedup Problems

• Some stages are shorter than the others

• Dependencies between instructions
– Control dependency

• E.g., conditional branch decision know only after EI
stage

Fig. 11.12

Fig. 11.13
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Pipeline Speedup Problems

• Dependencies between
instructions
– data dependency

• E.g., one instruction
depends on some earlier
instruction

– structural dependency
• E.g., many instructions

need the same resource
at the same time

– e.g., memory bus

Fig. 11.12

MUL R1,R2,R3

LOAD R6,ArrB(R1)

Known
after EI
stage

Needed 
in CO stage

STORE R1,VarX
ADD     R2,R3,VarY
MUL   R3,R4,R5

FI FO

WO
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Cycle Time

• Cycle time is the same for all stages
– time (in clock pulses) to execute the cycle

• Each stage executed in one cycle time

• Longest stage determines cycle time

[ ] ddd mi >>+=+= τττ max

gate delay in stage i

max gate delay in stage

delay in latches between stages
(= clock pulse, or clock cycle time)

(min) cycle time

overhead?
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Pipeline Speedup

n instructions, k stages

Time
not pipelined:

(pessimistic because of
assuming, that each stage
would still have τ cycle time)

τnkT =1

Time
pipelined:

[ ]τ)1( −+= nkTk

n instructions, k stages
τ = stage delay = cycle time

k cycles until 
1st instruction
completes

1 cycle for 
each of the rest
(n-1) instructions
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Pipeline Speedup (2)

n instructions, k stages

Time
not pipelined:

(pessimistic because of
assuming, that each stage
would still have τ cycle time)

τnkT =1

Time
pipelined:

[ ]τ)1( −+= nkTk

[ ] [ ])1()1(
1

−+
=

−+
==

nk

nk

nk

nk

T

T
S

k
k τ

τ

Fig. 11.14

Speedup
with
k stages:

n instructions, k stages
τ = stage delay = cycle time
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Branch Problem Solutions

• Delayed Branch
– compiler places some useful instructions

(1 or more!) after branch (or jump) instructions

– these instructions are almost completely
executed when branch decision is known

– less actual work lost

– can be difficult to do

– conditional branches tricky, must be able to
stop changes (by instruction in delay slot) in
case there is no branch

Fig. 12.7
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Branch Problem Solutions (contd)
• Multiple instruction streams

– execute speculatively in both directions
• Problem: we do not know the branch target

address early!

– if one direction splits, continue each way

– lots of hardware
• speculative results, control

– speculative instructions may delay real work
• bus & register contention?

– need to be able to cancel not-taken instruction
streams in pipeline
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Branch Problem Solutions (contd)

• Prefetch Branch Target
– prefetch just branch target instruction

– do not execute it, I.e., do only FI stage

– if branch take, no need to wait for memory

• Loop Buffer
– keep n most recently fetched instructions in

high speed buffer inside CPU

– works for small loops (at most n instructions)

IBM 360/91 (1967)
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Branch Problem Solutions (contd)
• Branch Prediction

– guess (intelligently) which way branch will go

– fixed prediction:  take it, do not take it

– based on opcode
• E.g., BLE instruction usually at the end of loop?

– taken/not taken prediction
• based on previous time this instruction was executed

• need space (1 bit) in CPU for each (?) branch

• end of loop always wrong twice!

• Extension based on two previous times

– need more space (2 bits) Fig. 11.16
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Branch Address Prediction

• It is not enough to know whether branch is
taken or not

• Must know also branch address to fetch
target instruction

• Branch History Table
– state information to guess whether branch will

be taken or not

– previous branch target address

– stored in CPU for each (?) branch
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Branch History Table
• Cached

– entries only for most recent branches
• Branch instruction address, or tag bits for it

• Branch taken prediction bits (2?)

• Target address (from previous time) or complete
target instruction?

• Why cached
– expensive hardware, not enough space for all

possible branches

– at lookup time check first whether entry for
correct branch instruction

PowerPC 620
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CPU Example: PowerPC
• User Visible Registers

– 32 general purpose regs, each 64 bits
• Exception reg (XER), 32 bits

– 32 FP regs, each 64 bits
• FP status & control (FPSCR), 32 bits

– branch processing unit registers
• Condition, 32 bits

– 8 fields, each 4 bits

– identity given in instructions

• Link reg, 64 bits
– E.g., return address

• Count regs, 64 bits
– E.g., loop counter

Fig. 11.22

Fig. 11.23a

Table 11.3

Fig. 11.23b

Table 11.4
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CPU Example: PowerPC
• Interrupts

– cause
• system condition or event

• instruction

Table 11.5
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CPU Example: PowerPC

• Machine State Register, 64 bits
– bit 48: external (I/O) interrupts enabled?

– bit 49: privileged state or not

– bits 52&55: which FP interrupts enabled?

– bit 59: data address translation on/off

– bit 63: big/little endian mode

• Save/Restore Regs  SRR0 and SRR1
– temporary data needed for interrupt handling

Table 11.6
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Power PC Interrupt Invocation

• Save return PC to SRR0
– current or next instruction at the time of interrupt

• Copy relevant areas of MSR to SRR1

• Copy additional interrupt info to SRR1

• Copy fixed new value into MSR
– different for each interrupt

– address translation off, disable interrupts

• Copy interrupt handler entry point to PC
– two possible handlers, selection based on bit 57 of

original MSR

Table 11.6
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Power PC Interrupt Return

• Return From Interrupt (rfi) instruction
– privileged

• Rebuild original MSR from SRR1

• Copy return address from SRR0 to PC

Table 11.6
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-- End of Chapter 11: CPU Structure --

(Patterson-Hennessy, Computer Org & Design, 2nd Ed, 1998)

(Fig. 6.12)5 stage pipelined version of datapath


