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Original Ideas Behind CISC
(Complex Instruction Set Comp.)
• Make it easy target for compiler

– small semantic gap between HLL source code
and machine language representation

– good at the time when compiler technology big
problem

– make it easier to design new, more complex
languages

• Do things in HW, not in SW
– addressing mode for 2D array reference?
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Occam's Toothbrush

• The simple case is usually the most
frequent and the easiest to optimize!

• Do simple, fast things in hardware and be
sure the rest can be handled correctly in
software
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RISC Approach (2)

• Optimize for execution speed instead of
ease of compilation
– compilers are good, let them do the hard work

– do most important things very well in HW
(machine instruction), rest in SW (subroutines)

• What are most important things?
– Those that consume most of the time

(in current systems)
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Amdahl’s Law (5)

Speedup due to an enhancement is proportional to the 
fraction of the time that the enhancement can be used

• Floating point instructions improved to
run 2X; but only 10% of actual
instructions are FP?

Speedupoverall = 

ExTimenew = 

ExTimeold

ExTimenew

1

0.95
= 1.053=

    ExTimeold x  ( 0.9 * 1.0 +  .1 * 0.5) 
=  0.95 x ExTimeold

No speedup

<< 2   !!!

2318.11.1999 Copyright Teemu Kerola 1999

Where is Time Spent? (5)

• Dynamic behaviour
– execution time behaviour

• Which operations are most common?

• Which types of operands are most
common?

• Which addressing modes are most
common?

• Which cases are most common?
– E.g., number of subroutine parameters?

Table 12.2

Table 12.3

Table 12.4
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Ideas Behind RISC (3)

• Very large set of registers
– bigger than can be addressed in machine instruction?

– compilers can do good register allocation

• Very simple and small instruction set is faster
– easy to optimize instruction pipeline

• Economics
– Simple to implement

⇒ quickly to market
⇒ beat competition
⇒ recover development costs
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CISC Architecture (5)

• Large and complex instruction sets
– direct implementation of HLL statements

• case statement?

• array or record reference?

• May be targeted to specific high level
language
– may not be so good for others

• Many addressing modes

• Many data
types

char string, float, int, leading separate string, 
numeric string, packed decimal string, string, 
trailing numeric string, variable length bit field

Vax11/780
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Large Register File

• Overlapping register windows
– fixed max nr (6?) of subroutine parameters

– fixed max nr of local variables

– function return values are directly accessible to
calling routine in temporary registers

• no copying needed

Fig. 12.1
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Problems with
Large Register Files (2)

• What if run out of register sets?
– save & restore values from memory

– hopefully not very common
• call stacks are usually not very deep!

• find out from studies what is enough usually

• Global variables
– store them always in memory?

– use another, separate register file?

Fig. 12.2
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Register Files vs. Cache

• Would it be better to use the same
real estate (chip area) as cache?
– register files have better locality

– caches are there anyway

– caches solve global variable problem
naturally

• no compiler help needed

– accessing register files is faster Fig. 12.3

Table 12.5
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Register Allocation (3)

• Goal: Prob(operand in register) = high

• Symbolic register: any quantity that could
be in register

• Allocate symbolic regs to real regs
– if some symbolic regs are not used in same time

intervals, then they can be assigned to the same
real regs

– use graph coloring problem to solve reg
allocation problem
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Graph Coloring Problem

• Given a graph with connected nodes, assign
n colors so that no neighboring node has the
same color
– topology

– NP complete problem

• Application to register allocation
– node = symbolic register

– connecting line = simultaneous usage

– n colors = n registers

Fig. 12.4
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How Many Registers Needed?

• Usually 32 enough
– more ⇒ longer register address in instruction

– more ⇒ no real gain in performance

• Less than 16?
– Register allocation becomes difficult

– not enough registers
⇒ store more symbolic registers in memory
⇒ slower execution
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RISC Architecture
• Complete one instruction per cycle

– read reg operands, do ALU, store reg result

– all simple instructions

• Register to register operations
– load-store architecture

• Simple addressing modes
– easy to compute effective address

• Simple instruction formats
– easy to load and parse instructions

– fixed length
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RISC vs. CISC (8)

• Fixed instruction length (32 bits)

• Very few addressing modes

• No indirect addressing

• Load-store architecture
– only load/store instructions access memory

• At most one operand in memory

• Aligned data

• At least 32 addressable registers

• At least 16 FP registers

Table 12.8
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RISC & CISC United? (4)

• Pentium II, CISC architecture

• Each complex CISC instruction translated
during execution (in CPU) into multiple
fixed length simple micro-operations

• Lower level implementation is RISC,
working with RISC micro-ops

• Could CPU area/time be better spent
without this translation?
– Who wants to try? Transmeta Corporation?

– Why? Why not?
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-- End of Chapter 12: History and RISC --

???

50 years

50 years


