
Computer Organization II 18.11.1999

Chapter 12, RISC Architecture 1

1818.11.1999 Copyright Teemu Kerola 1999

RISC Architecture
Ch 12

Some History

Instruction Usage
Characteristics

Large Register Files

Register Allocation
Optimization

RISC vs. CISC
1918.11.1999 Copyright Teemu Kerola 1999

Original Ideas Behind CISC
(Complex Instruction Set Comp.)
• Make it easy target for compiler

– small semantic gap between HLL source code
and machine language representation

– good at the time when compiler technology big
problem

– make it easier to design new, more complex
languages

• Do things in HW, not in SW
– addressing mode for 2D array reference?

2018.11.1999

Occam's Toothbrush

• The simple case is usually the most
frequent and the easiest to optimize!

• Do simple, fast things in hardware and be
sure the rest can be handled correctly in
software

2118.11.1999 Copyright Teemu Kerola 1999

RISC Approach (2)

• Optimize for execution speed instead of
ease of compilation
– compilers are good, let them do the hard work

– do most important things very well in HW
(machine instruction), rest in SW (subroutines)

• What are most important things?
– Those that consume most of the time

(in current systems)

2218.11.1999 Copyright Teemu Kerola 1999

Amdahl’s Law (5)

Speedup due to an enhancement is proportional to the
fraction of the time that the enhancement can be used

• Floating point instructions improved to
run 2X; but only 10% of actual
instructions are FP?

Speedupoverall =

ExTimenew =

ExTimeold

ExTimenew

1

0.95
= 1.053=

 ExTimeold x (0.9 * 1.0 + .1 * 0.5)
= 0.95 x ExTimeold

No speedup

<< 2 !!!

2318.11.1999 Copyright Teemu Kerola 1999

Where is Time Spent? (5)

• Dynamic behaviour
– execution time behaviour

• Which operations are most common?

• Which types of operands are most
common?

• Which addressing modes are most
common?

• Which cases are most common?
– E.g., number of subroutine parameters?

Table 12.2

Table 12.3

Table 12.4

Computer Organization II 18.11.1999

Chapter 12, RISC Architecture 2

2418.11.1999 Copyright Teemu Kerola 1999

Ideas Behind RISC (3)

• Very large set of registers
– bigger than can be addressed in machine instruction?

– compilers can do good register allocation

• Very simple and small instruction set is faster
– easy to optimize instruction pipeline

• Economics
– Simple to implement

⇒ quickly to market
⇒ beat competition
⇒ recover development costs

2518.11.1999 Copyright Teemu Kerola 1999

CISC Architecture (5)

• Large and complex instruction sets
– direct implementation of HLL statements

• case statement?

• array or record reference?

• May be targeted to specific high level
language
– may not be so good for others

• Many addressing modes

• Many data
types

char string, float, int, leading separate string,
numeric string, packed decimal string, string,
trailing numeric string, variable length bit field

Vax11/780

2618.11.1999 Copyright Teemu Kerola 1999

Large Register File

• Overlapping register windows
– fixed max nr (6?) of subroutine parameters

– fixed max nr of local variables

– function return values are directly accessible to
calling routine in temporary registers

• no copying needed

Fig. 12.1

2718.11.1999 Copyright Teemu Kerola 1999

Problems with
Large Register Files (2)

• What if run out of register sets?
– save & restore values from memory

– hopefully not very common
• call stacks are usually not very deep!

• find out from studies what is enough usually

• Global variables
– store them always in memory?

– use another, separate register file?

Fig. 12.2

2818.11.1999 Copyright Teemu Kerola 1999

Register Files vs. Cache

• Would it be better to use the same
real estate (chip area) as cache?
– register files have better locality

– caches are there anyway

– caches solve global variable problem
naturally

• no compiler help needed

– accessing register files is faster Fig. 12.3

Table 12.5

2918.11.1999 Copyright Teemu Kerola 1999

Register Allocation (3)

• Goal: Prob(operand in register) = high

• Symbolic register: any quantity that could
be in register

• Allocate symbolic regs to real regs
– if some symbolic regs are not used in same time

intervals, then they can be assigned to the same
real regs

– use graph coloring problem to solve reg
allocation problem

Computer Organization II 18.11.1999

Chapter 12, RISC Architecture 3

3018.11.1999 Copyright Teemu Kerola 1999

Graph Coloring Problem

• Given a graph with connected nodes, assign
n colors so that no neighboring node has the
same color
– topology

– NP complete problem

• Application to register allocation
– node = symbolic register

– connecting line = simultaneous usage

– n colors = n registers

Fig. 12.4

3118.11.1999 Copyright Teemu Kerola 1999

How Many Registers Needed?

• Usually 32 enough
– more ⇒ longer register address in instruction

– more ⇒ no real gain in performance

• Less than 16?
– Register allocation becomes difficult

– not enough registers
⇒ store more symbolic registers in memory
⇒ slower execution

3218.11.1999 Copyright Teemu Kerola 1999

RISC Architecture
• Complete one instruction per cycle

– read reg operands, do ALU, store reg result

– all simple instructions

• Register to register operations
– load-store architecture

• Simple addressing modes
– easy to compute effective address

• Simple instruction formats
– easy to load and parse instructions

– fixed length
3318.11.1999 Copyright Teemu Kerola 1999

RISC vs. CISC (8)

• Fixed instruction length (32 bits)

• Very few addressing modes

• No indirect addressing

• Load-store architecture
– only load/store instructions access memory

• At most one operand in memory

• Aligned data

• At least 32 addressable registers

• At least 16 FP registers

Table 12.8

3418.11.1999 Copyright Teemu Kerola 1999

RISC & CISC United? (4)

• Pentium II, CISC architecture

• Each complex CISC instruction translated
during execution (in CPU) into multiple
fixed length simple micro-operations

• Lower level implementation is RISC,
working with RISC micro-ops

• Could CPU area/time be better spent
without this translation?
– Who wants to try? Transmeta Corporation?

– Why? Why not?
3518.11.1999 Copyright Teemu Kerola 1999

-- End of Chapter 12: History and RISC --

???

50 years

50 years

