
Computer Organization II 26.11.1999

Ch 15, Microprogrammed Control 1

126.11.1999 Copyright Teemu Kerola 1999

Micro-programmed Control
Ch 15

Micro-instructions

Micro-programmed Control Unit

Sequencing

Execution

Characteristics

226.11.1999 Copyright Teemu Kerola 1999

Hardwired Control (4)

• Complex

• Fast

• Difficult to design

• Difficult to modify
– Lots of optimization done at implementation

phase

326.11.1999 Copyright Teemu Kerola 1999

Micro-programmed Control (3)

• Implement “execution engine” inside CPU
– execute one micro-instruction at a time

• What to do now?
– micro-instruction

• control signals

– stored in micro-instruction control memory
• micro-program, firmware

• What to do next?
– micro-instruction program counter

• default (?): next micro-instruction

• jumps or branches?
426.11.1999 Copyright Teemu Kerola 1999

Machine Instructions
vs. Micro-instructions

Memory

execution
unit

CPU

LOAD
ADD
MULT

Machine
instructions
define
a program

Micro-
instructions
define
machine
instructions
(processor
architecture!)

Memop R2,A1
ALU-op R1,R2
jump fetch

control
memory

526.11.1999 Copyright Teemu Kerola 1999

Machine Instructions
vs. Micro-instructions (2)

• Machine instruction fetch-execute cycle
produces machine instructions to be
executed at CPU

• Micro-instruction fetch-execute cycle
produces control signals for data path

626.11.1999 Copyright Teemu Kerola 1999

Micro-program (4)

• Stored in control memory

• ROM, PROM, EPROM

• One “subroutine” for each machine
instruction
– one or more micro-instructions

• Defines architecture
– change instruction set?

⇒ reload control memory

Fig. 15.2

Computer Organization II 26.11.1999

Ch 15, Microprogrammed Control 2

726.11.1999 Copyright Teemu Kerola 1999

Hardwired vs. Micro-program
Control

Initial
represent.:

Sequencing
control:

Logic
represent.:

Implem.:

Finite
state

diagram
Explicit
next state
function

Logic
equations

PLA

Micro-
program

Micro-
program
counter

Truth
tables

ROM

Pure hardwired Pure micro-programmed

826.11.1999 Copyright Teemu Kerola 1999

Microcode (3)

• Horizontal micro-code
– control signals directly in micro-code

– all control signals always there

– lots of signals ⇒ many bits in micro-instruction

• Vertical micro-code
– each action encoded densely

– actions need to be decoded to signals at execution time

– takes less space but may be slower

• Each micro-instruction is also a conditional
branch?

Fig. 15.1

926.11.1999 Copyright Teemu Kerola 1999

Micro-programmed
Control Unit (4)

• Control Address Register
– “micro-program PC”

• Control Memory

• Control Buffer Register
– current micro-instruction

• control signals

• next address control

• Sequencing logic
– select next value for Control Address Reg

Fig. 15.4

1026.11.1999 Copyright Teemu Kerola 1999

Micro-programming (3)

• Simple design

• Flexible
–adapt to changes in organization, timing,

technology

–make changes late in design cycle, or even in
the field

• Very powerful instruction sets
–use bigger control memory if needed

–easy to have complex instruction sets

1126.11.1999 Copyright Teemu Kerola 1999

Micro-programming (2)

• Generality
– multiple instruction sets on same machine

– tailor instruction set to application?

• Compatibility
– easy to be backward compatible in one family

– many organizations, same instruction set

1226.11.1999 Copyright Teemu Kerola 1999

Micro-programming (2)

• Costly to implement
– need tools:

• micro-program development environment

• micro-program compiler

• Slow
– micro-instruction interpreted at execution time

Computer Organization II 26.11.1999

Ch 15, Microprogrammed Control 3

1326.11.1999 Copyright Teemu Kerola 1999

RISC vs. Micro-programming (7)

• Simple instructions can execute at very high clock rate

• Compilers can produce micro-instructions

– machine dependent optimization

• Use only simple instructions and addressing mode

• Keep “micro-code” in RAM instead of ROM

• Fast access to “micro-code” in RAM via caching

• Skip instruction interpretation of a micro-program and
simply compile directly into lowest language of machine?

• ⇒ Compile to “micro-code” and use hardwired control
for RISC

1426.11.1999 Copyright Teemu Kerola 1999

Micro-program Sequencing (3)

• Two address format
– default next micro-instruction address

• waste of space most of the time?

– conditional branch address

• One address format
– (Conditional) branch address

• Variable format
– only branch micro-instructions have addresses

– waste of time many times?

Fig. 15.6

Fig. 15.7

1526.11.1999 Copyright Teemu Kerola 1999

Micro-instruction Explicit
Address Generation

• Addresses explicitly present
– Two-field

• select one of them

– Unconditional branch
• jump to this one

– Conditional branch
• select this one or default

1626.11.1999 Copyright Teemu Kerola 1999

Micro-instruction Implicit
Address Generation

• Addresses not explicitly present
– Mapping

• map opcode in machine instruction into micro-
instruction address

– Addition
• higher order bits directly from machine opcode

• lower order bits based on current status and tag bits

– Residual Control
• return from micro-program subroutine

Fig. 15.9

1726.11.1999 Copyright Teemu Kerola 1999

Micro-instruction Encoding

• Usually a compromise between pure
horizontal and vertical formats
– optimize on space with encoding multiple

signals into a set of fields
• each field defines control signals for certain separate

actions

• mutually exclusive actions are encoded into the
same field

– make design simpler by not using maximum
encoding

Fig. 15.11

1826.11.1999 Copyright Teemu Kerola 1999

Micro-instruction Encoding (2)

• Functional encoding
– each field controls some function

• load accumulator

• load ALU operands

• compute next PC

• Resource encoding
– each field controls some resource

• ALU

• memory

Computer Organization II 26.11.1999

Ch 15, Microprogrammed Control 4

1926.11.1999 Copyright Teemu Kerola 1999

Example Micro-instruction Sets
for a Simple Machine (3)

• Micro-instruction types
– 3 register transfers, 2 mem ops, 5 ALU ops, 3 seq. ops

• Vertical format
– 3 bits for type, 3 bits for operation

– 2 bits for reg select (max 4 regs)

• Horizontal format
– 2 bits for reg transfers (3 ops + “none”)

– 2 bits for mem ops (2 ops + “none”)

– 2 bits for seq. ops (3 ops + “none”)

– 3 bits for ALU ops (5 ops + “none”)

– 2 bits for reg select, 8 bits for constant

Fig. 15.12

type operation reg

Fig. 15.12 (a)

Fig. 15.12 (b)

2026.11.1999 Copyright Teemu Kerola 1999

SLI-11 Single Board Processor

2126.11.1999 Copyright Teemu Kerola 1999

LSI-11 (PDP-11) (4)

• Three-chip single board processor
– data

• 26 8-bit regs

– 8 16-bit general purpose regs,

– PWS, MAR, MBR, ...

• 8-bit ALU

– (at least) 2 passes needed for 16-bit reg ops

– control

– control store
• 22 bit wide control mem for micro-instructions

– connected by micro-instruction bus

Fig. 15.14

Fig. 15.13
2226.11.1999 Copyright Teemu Kerola 1999

LSI-11 Micro-instruction Set (2)

• Implements PDP-11 instruction set
architecture for LSI-11 hardware

• 22 bit wide, extremely vertical set
– 4 bits for special functions

– 1 bit for testing interrupts

– 1 bit for “micro-subroutine return”

– 16 bits for variable format micro-ops
• jump, cond. branch, literal ops, reg ops

• ALU, logical, general, I/O ops

Fig. 15.15

Table 15.5

2326.11.1999 Copyright Teemu Kerola 1999

-- End of Chapter 15 --
-- Micro-programmed Control --

(Fig. 16.10)
http://infopad.EECS.Berkeley.EDU/CIC/die_photos/pentium.gif

2426.11.1999 Copyright Teemu Kerola 1999

Computer Organization II 26.11.1999

Ch 15, Microprogrammed Control 5

2526.11.1999 Copyright Teemu Kerola 1999

Summary
• How does clock signal execute instructions?

• Low level stuff
– gates, basic circuits, registers, memory

• Cache

• Virtual memory & TLB

• ALU, int & FP arithmetic's

• Instruction sets

• CPU structure & pipelining

• Branch prediction, limitations, hazards, issue

• RISC & superscalar processor

• Hardwired & micro-controlled control
2626.11.1999 Copyright Teemu Kerola 1999

Want to Know More?
• Read the text book completely

• 58070-8 Computer Architecture (4 cr)

Computer
Architecture

Comp. Org. II
(TiKRa)

Conc. Systems (Rio)
Data Struct. (TiRa)
Compilers (OKK)
Oper. Systems (KJP)
Data Comm. (TiLi)

...

2726.11.1999 Copyright Teemu Kerola 1999

-- The End --

Cache-coherent
non-uniform
memory access
(CC-NUMA)
machine

(Fig. 16.10)

