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Virtual Memory (VM)
Ch 7.3
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Address Translation

Paging

Hardware Support
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Virtual Memory
Ch 7.3

• Problem: How can I make my (main)
memory as big as my disk drive?

• Answer: Virtual memory
– keep only most probably referenced data in

memory, and rest of it in disk
• disk is much bigger and slower than memory

• address in machine instruction may be different
than memory address

• need to have efficient address mapping

• most of data references are for data in memory

(virtuaalimuisti)
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Other Problems Often Solved
with VM (3)

• If you must want to have many processes in
memory at the same time, how do you keep
track of memory usage?

• How do you prevent one process from
touching another process’ memory areas?

• What if a process needs more memory than
there is?
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Memory Management Problem (4)

• How much memory for each process?
– is it fixed amount during the process run time

or can it vary during the run time?

• Where should that memory be?
– in a continuous or discontinuous area?

– is the location the same during the run time
or can it vary during the run time?

• How is that memory managed?

• How is that memory referenced?
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Partitioning (3)

• How much physical memory for each
process?

• Static (fixed) partitioning
– amount of physical memory determined at

process creation time

• Dynamic partitioning
– amount of physical memory given to a process

varies in time
• due to process requirements (of this process)

• due to system (I.e., other processes) requirements

(staattiset partitiot)

(dynaamiset partitiot)
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Static Partitioning

• Equal size - give everybody the same
amount
– fixed size - big enough for everybody

– need more? Can not run!

– internal fragmentation

• Unequal size
– external fragmentation

(sisäinen pirstoutuminen)

(ulkoinen pirstoutuminen)

Fig. 7.15

Fig. 7.14
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Dynamic Partitioning (3)

• Process must be able to run with different
amounts of main memory
– all of memory space is not in physical memory

• New process?
– reduce amount of memory for some (lower

priority) processes

• Not enough memory for some process?
– reduce amount of memory for some (lower

priority) processes

– kick (swap) out some (lower priority) process
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Address Mapping (4)

Pascal, Java:

while (....)
X := Y+Z;

Symbolic Assembler:

loop: LOAD R1, Y
ADD R1, Z
STORE R1, XTextual machine language:

1312: LOAD R1, 2510
ADD R1, 2514
STORE R1, 2600

(addresses relative to 0)

Execution time:

101312:  LOAD    R1,102510
   ADD      R1,102514
   ADD      R1,102600

(real, actual!)

(osoitteen muunnos)
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Address Mapping
Textual machine language:

1312: LOAD R1, 2510

Execution time:

101312: LOAD R1,102510             or

101312: LOAD R1, 2510       ??

+100000?

- Who makes the mapping?    When?
- Want:   R1       Mem[102510]     or       Mem[2510] ?

physical address (constant?)

logical address
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Address Mapping (2)

• At program load time
– loader

– static address binding

• At program execution time
– cpu

– with every instruction

– dynamic address binding

– swapping

– virtual memory

(staattinen 
osoitteiden sidonta)

(lataaja)

(dynaaminen 
osoitteiden sidonta)
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Swapping (4)

• Keep all memory areas for all running and
ready-to-run processes in memory

• New process
– find continuous memory partition and swap the

process in

• Not enough memory?
– Swap some (lower priority) process out

• Some times can swap in only (runnable)
portions of one process

• Address map: add base address

(heittovaihto)
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VM Implementation (2)

• Methods
– base and limit registers

– segmentation

– paging

– segmented paging

• Hardware support
– MMU - Memory Management Unit

• varies with different methods
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Base and Limit Registers (2)

• Continuous memory partitions
– one or more (4?) per process

– may have separate base and limit registers
code, data, shared data, etc

• BASE and LIMIT registers in MMU
– all addresses logical in machine instructions

– address mapping for address (x):
• check:  x < LIMIT

• physical address:  BASE+x
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Segmentation (5)

• Process address space divided into
(relatively large) logical segments
– code, data, shared data, large table, etc

• Each logical segment is allocated its own
continuous physical memory segment

• External fragmentation

• Memory address have two fields
011001 1010110000

segment byte offset (lisäys)
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Segmentation Address Mapping

• Segment table
– maps segment id to physical segment base

address and to segment size

• Physical address:
– find entry in segment table

– check: byte offset < segment size

– physical address: base + byte offset
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Paging
• Process address space divided into

(relatively small) equal size pages
– no logical entities, only physical

• Each page is allocated its own physical
page frame in memory
– any page frame will do!

• Internal fragmentation

• Memory addresses have two fields

01100110 10110000
page byte offset (lisäys)
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Paged Address Mapping

• Page table
– maps page nr to physical page frame

• Physical address:
– find entry in page table

– physical address: page address + byte offset
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Paged Address Translation (4)

1   30

0  rwx  65
1  rw    14
1  rw    55
…..

Virtual address

Page table

r

Access type

Page table 
register

Access rights
Valid entry

Page frame

Check access 
rights
r ∈ {rw}

Physical address

14  30

Check for
valid entry

0:
1:
2:
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Page Fault (12)

1   30

0  rwx  65
0  w     33
1  rw    55
…..

Virtual address

Page table

r

Access type

Page table 
register

Check for
valid entry:
not valid

Page fault interrupt

Stop execution

Initiate reading 
page 1 from disk

0:
1:
2:

Schedule next 
process to run

I/O interrupt

Page 1 read,
update page table

1  rw    14

Check access 
rights
r ∈ {rw}

Physical address

14  30Make orig. 
process 
ready-to-run Schedule orig. process again, 

at the same instruction

Check for
valid entry:
      valid!
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Paging
• Physical memory partitioning

– discontinuos areas

• Page tables
– each process has its own

– located in memory

– can be very big
• entry for each page in address space

• Inverted page table
– entry for each page in memory

Fig. 7.16

Fig. 7.18
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Address Translation (3)

• MMU does it for every memory access
– code, data

– more than once per machine instruction!

• Can not access page tables in memory every
time - it would be too slow!
– too high cost to pay for virtual memory?

• MMU has a cache of most recent address
translations
– TLB - Translation Lookaside Buffer

– 99.9% hit ratio?

(osoitteen-
muunnos-
taulukko)
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Translation Lookaside Buffer (3)

• “Hit” on TLB?
– address translation is in TLB - real fast

• “Miss” on TLB?
– must read page table entry from memory

– takes time

– cpu waits idle until it is done

• Just like normal cache, but for address
mapping
– implemented just like cache

– instead of cache line data have physical address

Fig. 7.19
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Memory Organisation (3)
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AB00C7D

TLB Example (6)

28 32
0000:

….

….

0111:

1000:

1001:

1010:

….

ReadW  I2, 0xAB00C7DA 046

Match

tag page frame

28
  AB00C7D   A

tag index
4

00B6C8E6?
=

Correct 
address
mapping 
found

 

page offset
0x00B6C8E6 046

Physical address
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TLB and Cache (3)

• Usually address translation first
and then cache lookup

• Cache can be based on virtual addresses
– can do TLB and cache lookup simultaneously

– faster

• Implementations are very similar
– TLB often fully

associative
• optimised for temporal locality

Fig. 7.20
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TLB vs. Cache

• CPU waits idling

• HW implementation

• Invisible to process

• Data is copied from
memory to TLB
– from page table data

• Delay 4 (or 2 or 8?)
clock cycles

TLB Miss
• CPU waits idling

• HW implementation

• Invisible to process

• Data is copied from
memory to cache
– from page data

• Delay 4 (or 2 or 8?)
clock cycles

Cache Miss
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TLB Misses vs. Page Faults

• CPU waits idling

• HW implementation

• Data is copied from
memory to TLB

• Delay 4 (?)
clock cycles

• Process is suspended
and cpu executes
some other process

• SW implementation

• Data is copied from
disk to memory

• Delay
30 ms (?)

TLB Miss Page Fault
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(likaiset,
muutetut)

Virtual Memory Policies (3)

• Fetch policy
– demand paging: only when needed 1st time

– working set: keep those needed in memory

– prefetch: guess and start fetch early

• Placement policy
– any frame for paged VM

• Replacement policy
– local, consider pages just for this process

– global, consider pages for all processes

– dirty pages must be written to disk

(noutopolitiikka)

(sijoituspolitiikka)

(poistopolitiikka)
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Page Replacement Policy (2)

• Implemented in SW

• HW support
– extra bits in each page frame

– M = Modified

– R = Referenced
• set (to 1) with each reference to frame

• reset (to 0) every now and then

– special (privileged) instruction from OS

– automatically (E.g., every 10 ms)

– Other counters?
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Page Replacement Policies
• OPT - optimal

• NRU - not recently used

• FIFO - first in first out
– 2nd chance

– clock

• Random

• LRU - least recently used
– complex counter needed

• NFU - not frequently used

OS 
Virtual Memory
Management

(sivunpoisto-
  algoritmit)
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Trashing (3)

mpl (multiprogramming level)

(käyttösuhde)

1.0

4 8 12

- How much memory per process?
- How much memory is needed?

CPU
utilization

(ruuhkautuminen)

(moniajoaste)

CPU 100% busy
swapping processes!
No real work is done!Higher mpl

⇒ less physical
     memory 
     per process!
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Thrashing

• Too high mpl

• Too few page frames per process
– E.g., only 1000? 2000?

– Less than its working set

• Once a process is scheduled, it will
very soon reference a page not in memory
– page fault

– process switch
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Page Fault Frequency (PFF)
Dynamic Memory Allocation

• Two bounds: L=Lower and U=Upper

• Physical memory split into fixed size pages

• At every page fault
– T=Time since previous page fault

– if T<L then give more memory
• 1 page frame? 4 page frames?

– If T>U then take some memory away
• 1 page frame?

– If L<T<U then keep current allocation
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VM Summary (5)

• How to partition memory?
– Static or dynamic size (amount)

• How to allocate memory
– Static or dynamic location

• Address mapping

• HW help (TLB) for address translation
– before or concurrently with cache access?

• VM policies
– fetch, placement, replacement
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Fig. 5.47 from 
Hennessy-Patterson, 
Computer Architecture

-- End of Chapter 7.3:Virtual Memory --

Alpha AXP 21064
memory hierarchy

Fully assoc,
32 entry 
data TLB

8 KB, 
direct 
mapped, 
256 line
(each 32B)
data cache

Fully assoc, 12 entry
instruction TLB

8 KB, direct mapped, 
256 line (each 32B)
instruction cache

2 MB, 64K line (each 32B)
direct mapped, unified, 
write-back L2 cache

main memory

paging disk (dma)


