
13.11.1999 Copyright Teemu Kerola 1999

Virtual Memory (VM)
Ch 7.3

Memory Management

Address Translation

Paging

Hardware Support

VM and Cache

23.11.1999 Copyright Teemu Kerola 1999

Virtual Memory
Ch 7.3

• Problem: How can I make my (main)
memory as big as my disk drive?

• Answer: Virtual memory
– keep only most probably referenced data in

memory, and rest of it in disk
• disk is much bigger and slower than memory

• address in machine instruction may be different
than memory address

• need to have efficient address mapping

• most of data references are for data in memory

(virtuaalimuisti)

33.11.1999 Copyright Teemu Kerola 1999

Other Problems Often Solved
with VM (3)

• If you must want to have many processes in
memory at the same time, how do you keep
track of memory usage?

• How do you prevent one process from
touching another process’ memory areas?

• What if a process needs more memory than
there is?

43.11.1999 Copyright Teemu Kerola 1999

Memory Management Problem (4)

• How much memory for each process?
– is it fixed amount during the process run time

or can it vary during the run time?

• Where should that memory be?
– in a continuous or discontinuous area?

– is the location the same during the run time
or can it vary during the run time?

• How is that memory managed?

• How is that memory referenced?

53.11.1999 Copyright Teemu Kerola 1999

Partitioning (3)

• How much physical memory for each
process?

• Static (fixed) partitioning
– amount of physical memory determined at

process creation time

• Dynamic partitioning
– amount of physical memory given to a process

varies in time
• due to process requirements (of this process)

• due to system (I.e., other processes) requirements

(staattiset partitiot)

(dynaamiset partitiot)

63.11.1999 Copyright Teemu Kerola 1999

Static Partitioning

• Equal size - give everybody the same
amount
– fixed size - big enough for everybody

– need more? Can not run!

– internal fragmentation

• Unequal size
– external fragmentation

(sisäinen pirstoutuminen)

(ulkoinen pirstoutuminen)

Fig. 7.15

Fig. 7.14

73.11.1999 Copyright Teemu Kerola 1999

Dynamic Partitioning (3)

• Process must be able to run with different
amounts of main memory
– all of memory space is not in physical memory

• New process?
– reduce amount of memory for some (lower

priority) processes

• Not enough memory for some process?
– reduce amount of memory for some (lower

priority) processes

– kick (swap) out some (lower priority) process

83.11.1999 Copyright Teemu Kerola 1999

Address Mapping (4)

Pascal, Java:

while (....)
X := Y+Z;

Symbolic Assembler:

loop: LOAD R1, Y
ADD R1, Z
STORE R1, XTextual machine language:

1312: LOAD R1, 2510
ADD R1, 2514
STORE R1, 2600

(addresses relative to 0)

Execution time:

101312: LOAD R1,102510
 ADD R1,102514
 ADD R1,102600

(real, actual!)

(osoitteen muunnos)

93.11.1999 Copyright Teemu Kerola 1999

Address Mapping
Textual machine language:

1312: LOAD R1, 2510

Execution time:

101312: LOAD R1,102510 or

101312: LOAD R1, 2510 ??

+100000?

- Who makes the mapping? When?
- Want: R1 Mem[102510] or Mem[2510] ?

physical address (constant?)

logical address

103.11.1999 Copyright Teemu Kerola 1999

Address Mapping (2)

• At program load time
– loader

– static address binding

• At program execution time
– cpu

– with every instruction

– dynamic address binding

– swapping

– virtual memory

(staattinen
osoitteiden sidonta)

(lataaja)

(dynaaminen
osoitteiden sidonta)

113.11.1999 Copyright Teemu Kerola 1999

Swapping (4)

• Keep all memory areas for all running and
ready-to-run processes in memory

• New process
– find continuous memory partition and swap the

process in

• Not enough memory?
– Swap some (lower priority) process out

• Some times can swap in only (runnable)
portions of one process

• Address map: add base address

(heittovaihto)

123.11.1999 Copyright Teemu Kerola 1999

VM Implementation (2)

• Methods
– base and limit registers

– segmentation

– paging

– segmented paging

• Hardware support
– MMU - Memory Management Unit

• varies with different methods

133.11.1999 Copyright Teemu Kerola 1999

Base and Limit Registers (2)

• Continuous memory partitions
– one or more (4?) per process

– may have separate base and limit registers
code, data, shared data, etc

• BASE and LIMIT registers in MMU
– all addresses logical in machine instructions

– address mapping for address (x):
• check: x < LIMIT

• physical address: BASE+x

143.11.1999 Copyright Teemu Kerola 1999

Segmentation (5)

• Process address space divided into
(relatively large) logical segments
– code, data, shared data, large table, etc

• Each logical segment is allocated its own
continuous physical memory segment

• External fragmentation

• Memory address have two fields
011001 1010110000

segment byte offset (lisäys)

153.11.1999 Copyright Teemu Kerola 1999

Segmentation Address Mapping

• Segment table
– maps segment id to physical segment base

address and to segment size

• Physical address:
– find entry in segment table

– check: byte offset < segment size

– physical address: base + byte offset

163.11.1999 Copyright Teemu Kerola 1999

Paging
• Process address space divided into

(relatively small) equal size pages
– no logical entities, only physical

• Each page is allocated its own physical
page frame in memory
– any page frame will do!

• Internal fragmentation

• Memory addresses have two fields

01100110 10110000
page byte offset (lisäys)

173.11.1999 Copyright Teemu Kerola 1999

Paged Address Mapping

• Page table
– maps page nr to physical page frame

• Physical address:
– find entry in page table

– physical address: page address + byte offset

183.11.1999 Copyright Teemu Kerola 1999

Paged Address Translation (4)

1 30

0 rwx 65
1 rw 14
1 rw 55
…..

Virtual address

Page table

r

Access type

Page table
register

Access rights
Valid entry

Page frame

Check access
rights
r ∈ {rw}

Physical address

14 30

Check for
valid entry

0:
1:
2:

193.11.1999 Copyright Teemu Kerola 1999

Page Fault (12)

1 30

0 rwx 65
0 w 33
1 rw 55
…..

Virtual address

Page table

r

Access type

Page table
register

Check for
valid entry:
not valid

Page fault interrupt

Stop execution

Initiate reading
page 1 from disk

0:
1:
2:

Schedule next
process to run

I/O interrupt

Page 1 read,
update page table

1 rw 14

Check access
rights
r ∈ {rw}

Physical address

14 30Make orig.
process
ready-to-run Schedule orig. process again,

at the same instruction

Check for
valid entry:
 valid!

203.11.1999 Copyright Teemu Kerola 1999

Paging
• Physical memory partitioning

– discontinuos areas

• Page tables
– each process has its own

– located in memory

– can be very big
• entry for each page in address space

• Inverted page table
– entry for each page in memory

Fig. 7.16

Fig. 7.18

213.11.1999 Copyright Teemu Kerola 1999

Address Translation (3)

• MMU does it for every memory access
– code, data

– more than once per machine instruction!

• Can not access page tables in memory every
time - it would be too slow!
– too high cost to pay for virtual memory?

• MMU has a cache of most recent address
translations
– TLB - Translation Lookaside Buffer

– 99.9% hit ratio?

(osoitteen-
muunnos-
taulukko)

223.11.1999 Copyright Teemu Kerola 1999

Translation Lookaside Buffer (3)

• “Hit” on TLB?
– address translation is in TLB - real fast

• “Miss” on TLB?
– must read page table entry from memory

– takes time

– cpu waits idle until it is done

• Just like normal cache, but for address
mapping
– implemented just like cache

– instead of cache line data have physical address

Fig. 7.19

233.11.1999 Copyright Teemu Kerola 1999

Memory Organisation (3)
MemoryMemory

BusBus

CPUCPU page
table

page

page

page

page

page

page
table

page

page

page

page

page

page

page

page

page

page

DiskDisk

regsinstr

TLB

cache

page

page

page

page

page

page

page

page

page

page

page
table
page
table
page
table
page
table

243.11.1999 Copyright Teemu Kerola 1999

AB00C7D

TLB Example (6)

28 32
0000:

….

….

0111:

1000:

1001:

1010:

….

ReadW I2, 0xAB00C7DA 046

Match

tag page frame

28
 AB00C7D A

tag index
4

00B6C8E6?
=

Correct
address
mapping
found

page offset
0x00B6C8E6 046

Physical address

253.11.1999 Copyright Teemu Kerola 1999

TLB and Cache (3)

• Usually address translation first
and then cache lookup

• Cache can be based on virtual addresses
– can do TLB and cache lookup simultaneously

– faster

• Implementations are very similar
– TLB often fully

associative
• optimised for temporal locality

Fig. 7.20

263.11.1999 Copyright Teemu Kerola 1999

TLB vs. Cache

• CPU waits idling

• HW implementation

• Invisible to process

• Data is copied from
memory to TLB
– from page table data

• Delay 4 (or 2 or 8?)
clock cycles

TLB Miss
• CPU waits idling

• HW implementation

• Invisible to process

• Data is copied from
memory to cache
– from page data

• Delay 4 (or 2 or 8?)
clock cycles

Cache Miss

273.11.1999 Copyright Teemu Kerola 1999

TLB Misses vs. Page Faults

• CPU waits idling

• HW implementation

• Data is copied from
memory to TLB

• Delay 4 (?)
clock cycles

• Process is suspended
and cpu executes
some other process

• SW implementation

• Data is copied from
disk to memory

• Delay
30 ms (?)

TLB Miss Page Fault

283.11.1999 Copyright Teemu Kerola 1999

(likaiset,
muutetut)

Virtual Memory Policies (3)

• Fetch policy
– demand paging: only when needed 1st time

– working set: keep those needed in memory

– prefetch: guess and start fetch early

• Placement policy
– any frame for paged VM

• Replacement policy
– local, consider pages just for this process

– global, consider pages for all processes

– dirty pages must be written to disk

(noutopolitiikka)

(sijoituspolitiikka)

(poistopolitiikka)

293.11.1999 Copyright Teemu Kerola 1999

Page Replacement Policy (2)

• Implemented in SW

• HW support
– extra bits in each page frame

– M = Modified

– R = Referenced
• set (to 1) with each reference to frame

• reset (to 0) every now and then

– special (privileged) instruction from OS

– automatically (E.g., every 10 ms)

– Other counters?

303.11.1999 Copyright Teemu Kerola 1999

Page Replacement Policies
• OPT - optimal

• NRU - not recently used

• FIFO - first in first out
– 2nd chance

– clock

• Random

• LRU - least recently used
– complex counter needed

• NFU - not frequently used

OS
Virtual Memory
Management

(sivunpoisto-
 algoritmit)

313.11.1999 Copyright Teemu Kerola 1999

Trashing (3)

mpl (multiprogramming level)

(käyttösuhde)

1.0

4 8 12

- How much memory per process?
- How much memory is needed?

CPU
utilization

(ruuhkautuminen)

(moniajoaste)

CPU 100% busy
swapping processes!
No real work is done!Higher mpl

⇒ less physical
 memory
 per process!

323.11.1999 Copyright Teemu Kerola 1999

Thrashing

• Too high mpl

• Too few page frames per process
– E.g., only 1000? 2000?

– Less than its working set

• Once a process is scheduled, it will
very soon reference a page not in memory
– page fault

– process switch

333.11.1999 Copyright Teemu Kerola 1999

Page Fault Frequency (PFF)
Dynamic Memory Allocation

• Two bounds: L=Lower and U=Upper

• Physical memory split into fixed size pages

• At every page fault
– T=Time since previous page fault

– if T<L then give more memory
• 1 page frame? 4 page frames?

– If T>U then take some memory away
• 1 page frame?

– If L<T<U then keep current allocation

343.11.1999 Copyright Teemu Kerola 1999

VM Summary (5)

• How to partition memory?
– Static or dynamic size (amount)

• How to allocate memory
– Static or dynamic location

• Address mapping

• HW help (TLB) for address translation
– before or concurrently with cache access?

• VM policies
– fetch, placement, replacement

353.11.1999 Copyright Teemu Kerola 1999

Fig. 5.47 from
Hennessy-Patterson,
Computer Architecture

-- End of Chapter 7.3:Virtual Memory --

Alpha AXP 21064
memory hierarchy

Fully assoc,
32 entry
data TLB

8 KB,
direct
mapped,
256 line
(each 32B)
data cache

Fully assoc, 12 entry
instruction TLB

8 KB, direct mapped,
256 line (each 32B)
instruction cache

2 MB, 64K line (each 32B)
direct mapped, unified,
write-back L2 cache

main memory

paging disk (dma)

