
115.11.1999 Copyright Teemu Kerola 1999

Instruction Sets
Ch 9-10

Characteristics

Operands

Operations

Addressing

Instruction Formats

215.11.1999 Copyright Teemu Kerola 1999

Instruction Set

• Collection of instructions that CPU
understands

• Only interface to CPU from outside

• CPU executes a program ⇔ CPU executes
given instructions “one at a time”
– fetch-execute cycle

(käskykanta)

Fig. 9.1

315.11.1999 Copyright Teemu Kerola 1999

Machine Instruction

• Opcode
– What should I do? Math? Move? Jump?

• Source operand references
– Where is the data to work on? Reg? Memory?

• Result operand reference
– Where should I put the result? Reg? Memory?

• Next instruction reference
– Where is the next instruction? Default? Jump?

Fig. 9.1

415.11.1999 Copyright Teemu Kerola 1999

Instruction Representation

• Bit presentation:
– binary program

• Assembly language
– symbolic program

• Symbolic assembly language

0x2465A080

LOAD R1,=0x6678

LOAD R1,TotalSum

Virtual or
physical
address?

Fig. 9.11

Symbolic value?

Symbolic opcode

Opcode, operands

515.11.1999 Copyright Teemu Kerola 1999

Instruction Set Design (5)

• Operation types
– How many? What type? Simple? Complex?

• Data types
– Just a few? Many?

• Instruction format
– fixed length? Varying length? Nr of operands?

• Number of addressable registers

– too many ⇒⇒ long instructions

• Addressing
– What modes to use to address data and when?

(operaatiotyyppi)

(tietotyyppi)

(käskyn muoto)

(tiedon osoitus)

615.11.1999 Copyright Teemu Kerola 1999

Good Instruction Set (2)

• Good target to compiler
– Easy to compile?

– Easy to compile code that runs fast?

– Possible to compile code that runs fast?

• Allows fast execution of programs
– How many meaningless instructions per

second?

– How fast does my program run?
• Solve linear system of 1000 variables?

• Set of data base queries?

715.11.1999 Copyright Teemu Kerola 1999

Good Instruction Set (contd) (5)

• Beautiful & Aesthetic
– Orthogonal

• Simple, no special registers, no special cases, any
data type or addressing mode can be used with any
instruction

– Complete
• Lots of operations, good for all applications

– Regular
• Specific instruction field has always same meaning

– Streamlined
• Easy to define what resources are used

(ortogonaalinen)

(täydellinen)

(säännöllinen)

(virtaviivainen)

815.11.1999 Copyright Teemu Kerola 1999

Good Instruction Set (contd) (2)

• Easy to implement
– 18 months vs. 36 months?

– Who will be 1st in market? Who will get
development monies back and who will not?

• Scalability
– Speed up clock speed 10X, does it work?

– Double address length, does design extend?
• E.g., 32 bits ⇒ 64 bits ⇒ 128 bits?

(skaalautuva)

915.11.1999 Copyright Teemu Kerola 1999

Number of Operands?

• 3?
– Normal case now

• 2?
– 1 operand and result the same

• 1?
– 1 operand and result in implicit accumulator

• 0?
– All operands and

result in implicit stack

ADD A,B,C

ADD R1,R2,R3 r1 ← r2+r3

Mem(A) ← mem(B) + mem(C)

ADD R1,R2 r1 ← r1+r2

ADD A acc ← acc+mem(A)

ADD

54
33
22
...

87
22
...

1015.11.1999 Copyright Teemu Kerola 1999

Instruction Set Architecture (ISA)
Basic Classes

• Accumulator

• Stack

• General Purpose Register
– only one type of registers, good for all

– 2 or 3 operands

• Load/Store
– only load/store instructions

access memory

– 3 operand ALU instructions

LOAD R3, C
LOAD R2,B
ADD R1,R2,R3
STORE R1,A

1115.11.1999 Copyright Teemu Kerola 1999

Big vs. Little Endian (3)

• How are multi-byte values stored

0x1200:

0x1200 0x1201 0x1202 0x1203
Word address

Byte addressesStore 0x11223344 ??

0x1200 0x1201 0x1202 0x1203

0x11 0x22 0x33 0x44Big-Endian: most sign.
byte has smallest address

0x44 0x33 0x22 0x11Little-Endian: least sign.
byte has smallest address

1215.11.1999 Copyright Teemu Kerola 1999

Big vs. Little Endian
• Address of multi-byte data items is the same

in both representations

• Only internal byte order varies

• Must decide one way or the other
– Math circuits must know which presentation

used

– Must consider when moving data via network

• Power-PC: bi-endian - both modes at use
– can change it per process basis

– kernel mode selected separately

1315.11.1999 Copyright Teemu Kerola 1999

Data (Operands, Result) Location
• Register

– close, fast

– limited number of them

– need to load/store values from/to memory
sometimes (often)

• Big problem! 50% of compiler time to decide

• register allocation problem

• Memory
– far away

– only possibility for large data sets
• vectors, arrays, sets, tables, objects, ...

acc r2, r8

f4, f15

0x345670

register stack

memory stack
(hw regs have
 mem addresses)

1415.11.1999 Copyright Teemu Kerola 1999

Aligned Data (4)

• Aligned data
– faster memory access

• 32-bit data loaded as one memory load

• Non-aligned data
– saves mem, more bus traffic!

• 32-bit non-aligned data requires 2 memory loads
(each 4 bytes) and combining data into one 32-bit
data item

2 byte (16-bit) half-word has byte address: 0010…10010

4 byte (32-bit) word has byte address: 0010…10100

8 byte (64-bit) doubleword has byte address: 0010…11000

11 22 33 44

11 22

33 44

1515.11.1999 Copyright Teemu Kerola 1999

Data Types (8)

• Address

• Integer

• Floating point

• Decimal

• Character

• String

• Logical data

• Vector, array, record, ….

16b, 32b, 64b, 128b?

16b, 32b, 64b?

32b, 64b, 80b?

18 digits (9 bytes) packed decimal?

1 byte = 8b IRA = ASCII, EBCDIC?

finite, arbitrary length?

1 bit (Boolean value, bit field)?

1615.11.1999 Copyright Teemu Kerola 1999

Size of Operand

• 1 word, 32 bits

• 2 words, 64 bits

• 4 words, 128 bits

• 1 byte (8 bits)

• 2 bytes

• 1 bit

int, float, addr

double float, addr

addr

char

short int

logical values

1715.11.1999 Copyright Teemu Kerola 1999

Pentium II Data Types
• General data types

– 8-bit byte

– 16-bit word

– 32-bit doubleword

– 64-bit quadword

• Not aligned

• Big Endian

• Specific data types

• Numerical data types
Table 9.2

Figure 9.4

1815.11.1999 Copyright Teemu Kerola 1999

Operation Types
• Data transfer

– CPU ↔ memory

• ALU operations
– INT, FLOAT, BOOLEAN, SHIFT, CONVERSION

• I/O
– read from device, start I/O operation

• Transfer of control
– jump, branch, call, return, IRET, NOP

• System control

– HALT, SYSENTER, SYSEXIT, …
– CPUID returns current HW configuration

• size of L1 & L2 caches, etc

Table 9.3

Table 9.4

1915.11.1999 Copyright Teemu Kerola 1999

Data References
• Where is data?

– in memory

– in registers

– in instruction itself

• How to refer to data?
– various addressing modes

– multi-phase data access
• how is data location determined (addressing mode)

• compute data address (register? effective address?)

• access data

2015.11.1999 Copyright Teemu Kerola 1999

2115.11.1999 Copyright Teemu Kerola 1999

Addressing Modes (Ch 10)

• Immediate

• Direct

• Indirect

• Register

• Register Indirect

• Displacement

• Stack

Fig. 10.1

Data in instruction
Memory address of data in instruction

Address of memory address of data
in instruction (pointer)

Register has memory
 address (pointer)

Addr = reg value + constant

Data in register (best case?)

Data is stack pointed by some register

Table. 10.1

2215.11.1999 Copyright Teemu Kerola 1999

Displacement Address

• Effective address = (R1) + A

• Constant is often small (8 bits, 16 bits?)

• Many uses
– PC relative

– Base register address

– Array index

– Record field

– Stack references

Contents of R1 Constant from instruction

JUMP -40(PC)

CALL Summation(BX)

ADDF F2, F2, Table(R5)

MUL F4, F6, Salary(R8)

STORE F2, -4(FP)

2315.11.1999 Copyright Teemu Kerola 1999

More Addressing Modes

• Autoincrement
– E.g., R pointer to an array

• Autodecrement
– E.g., R pointer to an array

• Autoincrement deferred

– E.g., R pointer to an array of pointers

• Scaled
– E.g., item (Ri, Rj) in 2-dimensional array A[i,j]

EA = (R), R ← (R) + S

EA = Mem(R), R ← (R) + S

R ← (R) - S, EA = (R)

size of
operand

EA = A + (Rj) + (Ri) * S

2415.11.1999 Copyright Teemu Kerola 1999

Pentium II Addressing Modes
• Immediate

– 1, 2, 4 bytes

• Register operand
– 1, 2, 4, 8 byte registers

– not all registers with every instruction

• Operands in Memory
– compute effective address and combine with

segment register to get linear address (virtual
address)

Fig. 10.2

Table 10.2

2515.11.1999 Copyright Teemu Kerola 1999

Instruction Format (4)

• How to represent instructions in memory?

• How long instruction
– Descriptive or dense? Code size?

• Fast to load?
– In many parts?

– One operand description at a time?

• Fast to parse?
– All instruction same size & same format?

– Very few formats?

2615.11.1999 Copyright Teemu Kerola 1999

Instruction Format (contd) (3)

• How many addressing modes?
– Fewer is better, but harder to compile to

• How many operands?
– 3 gives you more flexibility, but takes more

space

• How many registers?
– 16 regs → need 4 bits to name it

– 256 regs → need 8 bits to name it

– need at least 16-32 for easy register allocation

2715.11.1999 Copyright Teemu Kerola 1999

Instruction Format (contd) (3)

• How many register sets?
– A way to use more registers without forcing

long instructions for naming them

– One register set for each subroutine call?

– One for indexing, one for data?

• Address range, number of bits in
displacement
– more is better, but it takes space

• Address granularity
– byte is better, but word address is shorter

2815.11.1999 Copyright Teemu Kerola 1999

Pentium II Instruction Set (5)

• CISC - Complex Instruction Set Computer

• At most one memory address

• “Everything” is optional

• “Nothing” is fixed

• Difficult to parse
– all latter fields and their interpretation depends

on earlier fields
Fig. 10.8

2915.11.1999 Copyright Teemu Kerola 1999

Pentium II Instruction
Prefix Bytes (4)

• Instruction prefix (optional)
– LOCK - exclusive use of shared memory

– REP - repeat instruction for string characters

• Segment override (optional)
– override default segment register

– default is implicit, no need to store it every instruction

• Address size (optional)
– use the other (16 or 32 bit) address size

• Operand size (optional)
– use the other (16 or 32 bit) operand size

Fig. 10.8 (a)

3015.11.1999 Copyright Teemu Kerola 1999

Pentium II Instruction Fields (3)

• Opcode
– specific bit for byte size data

• Mod r/m (optional)
– data in reg (8) or in mem?

– which addressing mode of 24?

– can also specify opcode further for some opcodes

• SIB (optional)
– extra field needed for some addressing modes

– scale for scaled indexing

– index register

– base register

Fig. 10.8 (b)

3115.11.1999 Copyright Teemu Kerola 1999

Pentium II Instruction Fields
(contd) (2)

• Displacement (optional)
– for certain addressing modes

– 1, 2, or 4 bytes

• Immediate (optional)
– for certain addressing modes

– 1, 2, or 4 bytes

Fig. 10.8 (b)

3215.11.1999 Copyright Teemu Kerola 1999

PowerPC Instruction Format (7)

• RISC - Reduced Instruction Set Computer

• Fixed length, just a few formats

• Only load/store instructions access memory

• Only 2 addressing modes for data

• 32 general purpose registers can be used
everywhere

• Fixed data size
– no string ops

• Simple branches
– CR-field determines which register to compare

– L-bit determines whether a subroutine call

– A-bit determines if branch is absolute or PC-relative

Fig. 10.9

3315.11.1999 Copyright Teemu Kerola 1999

-- End of Chapters 9-10: Instruction Sets --

(Hennnessy-Patterson, Computer Architecture, 2nd Ed, 1996)

