
126/09/2001 Copyright Teemu Kerola 2001

CPU Structure and Function
Ch 11

General Organisation
Registers

Instruction Cycle
Pipelining

Branch Prediction
Interrupts

226/09/2001 Copyright Teemu Kerola 2001

General CPU Organization (4)

• ALU
– does all real work

• Registers
– data stored here

• Internal CPU Bus
• Control

– determines who does what when
– driven by clock
– uses control signals (wires) to control what

every circuit is doing at any given clock cycle

Fig. 11.1

Fig. 11.2

More in Chapters 14-15

326/09/2001 Copyright Teemu Kerola 2001

Register Organisation (4)

• Registers make up CPU work space
• User visible registers

– accessible directly via instructions
• Control and status registers

– may be accessible indirectly via instructions
– may be accessible only internally

• Internal latches for temporary storage
during instruction execution
– E.g., ALU operand either from constant in

instruction or from machine register

ADD R1,R2,R3

BNeq Loop

HW exception

426/09/2001 Copyright Teemu Kerola 2001

User Visible Registers
• Varies from one architecture to another
• General purpose register (GPR)

– Data, address, index, PC, condition, ….
• Data register

– Int, FP, Double, Index
• Address register
• Segment and stack pointers

– only privileged instruction can write?
• Condition codes

– result of some previous ALU operation

526/09/2001 Copyright Teemu Kerola 2001

Control and Status Registers (5)

• PC
– next instruction (not current!)
– part of process state

• IR, Instruction (Decoding) Register
– current instruction

• MAR, Memory Address Register
– current memory address

• MBR, Memory Buffer Register
– current data to/from memory

• PSW, Program Status Word
– what is allowed? What is going on?
– part of process state

Fig. 11.7

626/09/2001 Copyright Teemu Kerola 2001

PSW - Program Status Word (6)

• State info from latest ALU-op
– Sign, zero?
– Carry (for multiword ALU ops)?
– Overflow?

• Interrupts that are enabled/disabled?
• Pending interrupts?
• CPU execution mode (supervisor, user)?
• Stack pointer, page table pointer?
• I/O registers?

726/09/2001 Copyright Teemu Kerola 2001

Instruction Cycle (4)

• Basic cycle with interrupt handling
• Indirect cycle
• Data Flow

– CPU, Bus, Memory
• Data Path

– CPU’s “internal data bus” or “data mesh”
– All computation is data transformations

occurring on the data path
– Control signals determine data flow & action

for each clock cycle

Fig. 11.4

Figs 11.5-6

Figs 11.7-9

Fig 14.5

826/09/2001 Copyright Teemu Kerola 2001

Pipeline Example
• Laundry Example (David A. Patterson)
• Ann, Brian, Cathy, Dave

each have one load of clothes
to wash, dry, and fold

• Washer takes 30 minutes

• Dryer takes 40 minutes

• “Folder” takes 20 minutes

A B C D

(liukuhihna)

926/09/2001 Copyright Teemu Kerola 2001

Sequential Laundry (6)

• Sequential laundry takes 6 hours for 4 loads
• If they learned pipelining, how long would laundry take?

A

B

C

D

30 40 20 30 40 20 30 40 20 30 40 20

6 PM 7 8 9 10 11
Mid-
night

T
a
s
k

O
r
d
e
r

Time

Throughput
0.67 loads per hour

1.5 hours per load

Time for one load
Latency (viive?)

1026/09/2001 Copyright Teemu Kerola 2001

Pipelined Laundry (11)

• Pipelined laundry takes 3.5 hours for 4 loads

A

B

C

D

6 PM 7 8 9 10

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

90 minutes per load

1.15 loads per hour
Throughput

Time for one load
Latency

Average speed
Max speed?
1.5 load per hour

• At best case, laundry is completed every 40 minutes

1126/09/2001 Copyright Teemu Kerola 2001

Pipelining Lessons (4)

• Pipelining doesn’t help
latency of single task, but
it helps throughput of
the entire workload

• Pipeline rate limited by
slowest pipeline stage

• Multiple tasks operating
simultaneously

• Potential speedup
= maximum possible speedup
= Number pipe stages

A

B

C
D

6 PM 7 8 9
Time

30 40 40 40 40 20

(nopeutus)

1226/09/2001 Copyright Teemu Kerola 2001

Pipelining Lessons (3)

• Unbalanced lengths of pipe
stages reduces speedup

• May need more resources
– Enough electrical current

to run both washer and
dryer simultaneously?

– Need to have at least
2 people present all
the time?

• Time to “fill” pipeline and
time to “drain” it reduces
speedup

fill
drain

A

B

C

D

6 PM 7 8 9
Time

30 40 40 40 40 20

1326/09/2001 Copyright Teemu Kerola 2001

2-stage Instruction Execution
Pipeline (4)

• Good: instruction pre-fetch at the same time
as execution of previous instruction

• Bad: execution phase is longer,
I.e., fetch stage is sometimes idle

• Bad: Sometimes (jump, branch) wrong
instruction is fetched
– every 6th instruction?

• Not enough parallelism ⇒ more stages?

Fig. 11.10

1426/09/2001 Copyright Teemu Kerola 2001

Another Possible
Instruction Execution Pipeline

• FE - Fetch instruction
• DI - Decode instruction
• CO - Calculate operand effective addresses
• FO - Fetch operands from memory
• EI - Execute Instruction
• WO - Write operand (result) to memory

Fig. 11.11

1526/09/2001 Copyright Teemu Kerola 2001

Pipeline Speedup (3)

• Not every instruction uses every stage
– serial execution actually even faster
– speedup even smaller
– will not affect pipeline speed
– unused stage ⇒ CPU idle (execution “bubble”)

No pipeline, 9 instructions 54 time units

6 stage pipeline, 9 instructions 14 time units
Fig. 11.11

Speedup = Timeold

Timenew

= 54/14 = 3.86 < 6 !
(nopeutus)

9 * 6

1626/09/2001 Copyright Teemu Kerola 2001

Pipeline Execution Time (3)

• Time to execute one instruction (latency, seconds)
may be longer than for non-pipelined machine
– extra latches to store intermediate results

• Time to execute 1000 instructions (seconds) is
shorter (better) than that for non-pipelined
machine, I.e.,
Throughput (instructions per second) for pipelined
machine is better (bigger) than that for
non-pipelined machine

• Is this good or bad? Why?

1726/09/2001 Copyright Teemu Kerola 2001

Pipeline Speedup Problems

• Some stages are shorter than the others
• Dependencies between instructions

– control dependency
• E.g., conditional branch decision know only after EI

stage
Fig. 11.12

Fig. 11.13

1826/09/2001 Copyright Teemu Kerola 2001

Pipeline Speedup Problems

• Dependencies between
instructions
– data dependency

• One instruction depends
on data produced by
some earlier instruction

– structural dependency
• Many instructions

need the same resource
at the same time

• memory bus, ALU, …

Fig. 11.12

MUL R1,R2,R3

LOAD R6,ArrB(R1)

Known
after EI
stage

Needed
in CO stage

STORE R1,VarX
ADD R2,R3,VarY
MUL R3,R4,R5

FI FO

WO

1926/09/2001 Copyright Teemu Kerola 2001

Cycle Time

• Cycle time is the same for all stages
– time (in clock pulses) to execute the cycle

• Each stage executed in one cycle time
• Longest stage determines min cycle time

– max MHz rate for system clock

[] ddd mi >>+=+= τττ max

gate delay in stage i

max gate delay in stage

delay in latches between stages
(= clock pulse, or clock cycle time)

(min) cycle time

overhead?

2026/09/2001 Copyright Teemu Kerola 2001

Pipeline Speedup
n instructions, k stages

Time
not pipelined:

(pessimistic because of
assuming that each stage
would still have τ cycle time)

τnkT =1

Time
pipelined: []τ)1(−+= nkTk

n instructions, k stages
τ = stage delay = cycle time

k cycles until
1st instruction
completes

1 cycle for
each of the rest
(n-1) instructions

2126/09/2001 Copyright Teemu Kerola 2001

Pipeline Speedup (1)

n instructions, k stages

Time
not pipelined:

(pessimistic because of
assuming that each stage
would still have τ cycle time)

τnkT =1

Time
pipelined: []τ)1(−+= nkTk

[] [])1()1(
1

−+
=

−+
==

nk
nk

nk
nk

T
TS

k
k τ

τ

Fig. 11.14

Speedup
with
k stages:

n instructions, k stages
τ = stage delay = cycle time

2226/09/2001 Copyright Teemu Kerola 2001

Branch Problem Solutions (5)

• Delayed Branch
– compiler places some useful instructions

(1 or more!) after branch (or jump) instructions
– these instructions are almost completely

executed when branch decision is known
– less actual work lost
– can be difficult to do

Fig. 12.7

2326/09/2001 Copyright Teemu Kerola 2001

Branch Probl. Solutions (contd) (6)

• Multiple instruction streams
– execute speculatively in both directions

• Problem: we do not know the branch target
address early!

– if one direction splits, continue each way again
– lots of hardware

• speculative results (registers!), control
– speculative instructions may delay real work

• bus & register contention?
– need to be able to cancel not-taken instruction

streams in pipeline

2426/09/2001 Copyright Teemu Kerola 2001

Branch Probl. Solutions (contd) (2)

• Prefetch Branch Target
– prefetch just branch target instruction
– do not execute it, I.e., do only FI stage
– if branch take, no need to wait for memory

• Loop Buffer
– keep n most recently fetched instructions in

high speed buffer inside CPU
– works for small loops (at most n instructions)

IBM 360/91 (1967)

2526/09/2001 Copyright Teemu Kerola 2001

Branch Probl. Solutions (contd) (5)

• Branch Prediction
– guess (intelligently) which way branch will go
– static prediction: all taken or all not taken
– static prediction based on opcode

• E.g., because BLE instruction is usually at the end
of loop, guess “taken”

– dynamic prediction taken/not taken
• based on previous time this instruction was executed
• need space (1 bit) in CPU for each (?) branch
• end of loop always wrong twice!
• extension based on two previous time execution

– need more space (2 bits) Fig. 11.16

2626/09/2001 Copyright Teemu Kerola 2001

Branch Address Prediction (3)

• It is not enough to know whether branch is
taken or not

• Must know also branch address to fetch
target instruction

• Branch History Table
– state information to guess whether branch will

be taken or not
– previous branch target address
– stored in CPU for each (?) branch

2726/09/2001 Copyright Teemu Kerola 2001

Branch History Table
• Cached

– entries only for most recent branches
• Branch instruction address, or tag bits for it
• Branch taken prediction bits (2?)
• Target address (from previous time) or complete

target instruction?

• Why cached
– expensive hardware, not enough space for all

possible branches
– at lookup time check first whether entry for

correct branch instruction

PowerPC 620

2826/09/2001 Copyright Teemu Kerola 2001

CPU Example: PowerPC
• User Visible Registers

– 32 general purpose regs, each 64 bits
• Exception reg (XER), 32 bits

– 32 FP regs, each 64 bits
• FP status & control (FPSCR), 32 bits

– branch processing unit registers
• Condition, 32 bits

– 8 fields, each 4 bits
– identity given in instructions

• Link reg, 64 bits
– E.g., return address

• Count regs, 64 bits
– E.g., loop counter

Fig. 11.22

Fig. 11.23a

Table 11.3

Fig. 11.23b

Table 11.4

2926/09/2001 Copyright Teemu Kerola 2001

CPU Example: PowerPC
• Interrupts

– cause
• system condition or event
• instruction

Table 11.5

3026/09/2001 Copyright Teemu Kerola 2001

CPU Example: PowerPC

• Machine State Register, 64 bits
– bit 48: external (I/O) interrupts enabled?
– bit 49: privileged state or not
– bits 52&55: which FP interrupts enabled?
– bit 59: data address translation on/off
– bit 63: big/little endian mode

• Save/Restore Regs SRR0 and SRR1
– temporary data needed for interrupt handling

Table 11.6

3126/09/2001 Copyright Teemu Kerola 2001

Power PC Interrupt Invocation
• Save return PC to SRR0

– current or next instruction at the time of interrupt

• Copy relevant areas of MSR to SRR1
• Copy additional interrupt info to SRR1
• Copy fixed new value into MSR

– different for each interrupt
– address translation off, disable interrupts

• Copy interrupt handler entry point to PC
– two possible handlers, selection based on bit 57 of

original MSR

Table 11.6

3226/09/2001 Copyright Teemu Kerola 2001

Power PC Interrupt Return

• Return From Interrupt (rfi) instruction
– privileged

• Rebuild original MSR from SRR1
• Copy return address from SRR0 to PC

Table 11.6

3326/09/2001 Copyright Teemu Kerola 2001

-- End of Chapter 11: CPU Structure --

(Patterson-Hennessy, Computer Org & Design, 2nd Ed, 1998)

(Fig. 6.12)5 stage pipelined version of datapath

