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Lecture 12 Goals

Summary * To understand basic features of a computer
system, from the point of view of the
executing program

Main topics
P ¢ To understand, how a computer systems
5 ,
What use is this for’ executes the program given to it
What next? e Tounderstand the execution time program
Next Courses? representation in system
p Y

To understand the role and basic
functionalities of the operating system

Next topics?

N Main Topics
What USE 1S th|S course for? « System as a whole, speed differences

— Example machineand its use

« Program execution at machine language level
— Processor, registers, bus, memory
— Fetch-execute cycle, interrupts

« Program execution speed is based on machine
instructions executed by the processor (CPU), and not

in the program representation format in hlgh level — Activation record stack, subroutine implementation
language « Data representation formats (program vs. hardware)
— High level language representation is still important « 1/0 devices and 1/0 implementation
« Understanding higher level topics is easier, once one ~ Device drivers, I/O interrupts, disk drive
first understands what happens at lower levels of the * Operating system fundamentals
— Processand its implementation (PCB)
system — Execution of programs in the system

— Compilation, linking, loading
— Interpretation, emulation, simulation
Examples on the following slides
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Example architecture: Speed differences: Teemu’s Cheese Cake
TTK-91 co mputer memory The speed of registers, cache, disk drive and web as
compared to finding cheese for cheese cake.  Eyropa

rocessor - CPL (libraries) Refridge- (Jupiter)
¥

‘ALU Hregisters |

ssem)

(operating

((cache) | [MmU |

| b | 0.5Sec (cache) 10sec Tpgays 4 years
(register) (memory) (disk) (web, human)
[ | | | | | device controllers 2008: 0.5ns? %%S» 10ns? 3;%; ?5?2? ) s
ays’ (65 yrs?)
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Assemb|y |anguage | DC 0 ACtIV&tIOI’] reCOI‘d
programming e — (Activation record stack)
{ IS_TSEE RRi T int funcA (int x,y);
: e Subroutine implementation (ttk-91)
for (int i=20; i < 50; ++i) Loop LOAD R2, =0 — function return value
T[i] = 0; { LOAD R1, I (or all return values) \
R STORE R2, T(R1) T |8 all (input and output) return val
types? parameter values \,{ param X
:> variables, constants, LOAD R1, I - retunaddress —— | baramy
arrays (2D), records ADD R1 =1 call-by-value, . o oldPC |[-»
) o e R1’ | callby- I previous activation record ~ ——»{ old FP 1+1
in memory, in registers? : reference, I all local variables and —»{ 7:822: x:: :%
selection, loops, call-by-name | data structures o RT
subroutines, SVC’s, LOAD R3, | ; /'{ oldR1
arameters, COMP R3, =50 — saved registers values for old R2
ocal variables JLES Loop recovering them at return
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) Processor ;
Instruction fetch-execute cycle execution mode

pushr e User mode [(normal mode)

M= N o .

7 write to — Can use only ordinary instructions x\/he” I
read from AR , ow
memory i y — Can reference only user’s own mode

M>o/' . "g"Js'}]e \ memory areas (MMU controls) changes?
get instr decode  M=0 exec. pushr check for * Privileged or kernel mode

PCTs instr, calc instr T Ineerrupts — Can use only all instructions, including

N\ effectaddr  J privileged instructions (e.g., clear_cache, iret)

— Can reference all memory areas, including
Fetch Execute kernel memory

 Can (also) use direct (physical) memory addresses
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Data representation formats Process, prosess States and Life
1/8 =0.1250 1
C\ 1/16=0.0625 TI me
[+ 15" [“0.1875"="0.00i1’ 01875

0__oxnonent _mantissa arsignificand
integers ko that ... ready-to-run \
floating points - /
character . Ely mantissa exponent completed
character strings 0.0011 “15” \_ or killed
pictures, sounds

When will state change?

1000 “12”
which data is (not) - - ; i 2
understood by the $ What happens in state change (at instr. level)*

1000 “12”
Who or what causes the state change?
processor?

non-standard data?

7 e mﬂ =1
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Prosesses in Queues, PCB Sevi CI:/O Imlgl)lemegtgtion, o
evice Controller and Device Driver
Q#ff— User process

Q Memory CPU ol bevice ari
Diskl 0036 7654 |1 9878 T Device driver

- % H H T ‘ <ﬂ | | (OS process)
waiting < | Timer {0555 : ‘ bus |

‘brosess 9878

Msg from 1345 _J2222|  descriptor (PCB — jQaallcls ]
device

LQ troller
scheduling: device controller Direct I/O

select next process in Ready-to-Run queue and process

move it to CPU for execution :;lsllf I(;E)I/O
(copy processor state for this process into processor registers)
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Disk Use From High Level Language (HLL) to
Execution
* Afile is composed of multiple blocks Compilation unit myprog.c |
— block per disk sector (2-4 sectors?) Compile JHLL program or module prog.c
. . L . From symbolic address |
» Disk directory contains information on all HLL
blocks used by each file Object module myprog.obj ‘ prog.o
) Link Compiled program (machine code) hi
— blocks are read in correct order with other Linear addresses (per module) math.
Director and with AP
entry Y library Executable myprog.exﬂ
[FileA (] modules Linear addresses (one addr space)
. some missing (?) prog
(unix) Load
Into Process PCB
memory Executable program (prog)
as process | Linear addresses (virt. addr space)
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- k= i+j;
Interpretation JiiJava program
A I Java k;ytej code
and Emulation compifation
iloadi  Java
!I%a:jd ] byte-code
IVM @~ %
Java virtual machine > 'St(,)re K %
load >
— / (1T
Java iload i compiler
interpreter iloadj O
iadd
: dl load
istore k i ©
Pentium 11 Java :
/‘processor processor Pentium 11
processor
-
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Topic Dependencies

Programming Languages | ‘Applications ‘

1

Computer
Organization

7 ~
Operating Systems / Computer

Course Dependencies

bca?s?::paw;ory Computer Advanced studies
intermediate Organization | (in distr syst and
studies / 1 \ data comm)
y/4 PN
Concurrent Introd. to Comp
/ Programming | | Data Comm. || [Org !l

Lo~ N
N\

Architecture M / \ \
‘ Data Communication | Introd Oper. Distributed | |Introd to Internet
. Concurrency Data Sec. | | Systems | | Systems Spes. & verif | | Protocols
Computational Control
Theory
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Computer Organization 11, 4 cr oL Lele L oLl Lugngepngug
Instruction 1 b i Gigtyidt g
e 2nd year students CO-Il ... rnaions | Lboricolzol g e

— Elective course in BSc or MSc studies
 Prerequisites: CO-I
¢ In most universities combined with CO-I
¢ One level down from CO-I in implementation
hierarchy

— "How will hardware clock cycle make the processor to
execute instructions ?”

— "How is processor arithmetic implemented?”

Fii D col po ol

Instruction 3

L ion 4 FLiouicolrol piwg:

FLL DLl ol Fol kLol

Instruction §

Not Taken
" oL col Fo e wo!
Instruction 6

" FIjDLLCOLFOL ELIWQ
Instruction 7

FLL DL} COJ FO L ELL WO

Instruction §

F1 DI col¥o) ELL WO

Instruction 9

Not Taken

Figure 1111 Timing Diagram for Instrution Pipeline Operation

- Many instructions in execution concurrently Nt /T NN |[512199]
(inmany ways!) e [rortaten
* How is this implemented, what problems does it
cause, and how are those problems solved?
Figure 11.16 Branch Prediction State Diagram
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Operating Systems (OS), 4 cr 0S...
e 4™ year students
— Compulsory for graduate (M.Sc.) students of the distributed
systems and telecommunication specialisation area
° PrereqUiSites Layer Iri;c:)\,- VO functions
- go-l . ) w | User processes { Make O call, format 0, spocling
— Concurrent Programming request t
~ Introduction to Data Communication Y O ahwaa "y | Namina. prtecton,biocking, bforing aocation
T
« OSrole as process and resource controller ¥ Devcadivers y | Setupdecs sters check sttos
« Concurrent processes using shared resources Inorupt handiors "‘ Wake up driver whon /0 completed
* USe Of SyStem resources Hardware ' Parform L0 oparation
« Process scheduling
« More? Figure 3-6. Layers of the 1/O system and the main functions of each layer.
— Distributed Systems, 4 cr
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Intro to Data Communication, 4 cr

» 2ndyear students
— Obligatory undergraduate course

« Computer network basic services to users and
applications

« Basic tools for data communication

« Network architecture layer structure and services at
each layer

¢ More?
— Internet-protocols, 2 cr
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Introduction to Data Communication

TCP/IP -layers

pplicatiojr S?gtlé%%ﬁlson Applicatipn

Applicfinterphase Applicinterphase
transport
Ti aEsport laygi protocols TCP, UDP
network I

rotocols

]Tlpf
transfer Ethernet;

Transfer layer protocols token.ring, APP
T t
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Concurrent Programming (CP), 4 cr

« 2" year students
— Obligatory undergraduate course
* Prerequisites: CO-l
* Problems caused by concurrency
— System just freezes ... why?
« Concurrency requirements for system
« Process synchronization
— Busy wait or process switch? Why?

¢ Prosess communication semaphores
— Shared memory? Messages? Why? monitors
— Over the network? EREIEEAEIS
guarded statements
« More? rpc, messages

— Distributed Systems, 4 cr Java concurrent progr.
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CP - Synchronization Problem Solution with
Test-and-Set Instruction

i

. rthi

e TAS Ri, L Ri := mem[L] instruction
(ttk-91 if Ri==1 then
extension) {Ri := 0, mem[L] := Ri, jump *+2}

¢ Critical section

LOOP: TAS  RI,L ~_ #L: 1(open) O (locked)
() IUMP LOOP ) #waituntil lock open
# lock is locked for me
critical section: one process at a time

LOAD R1=1 # open lock L
STORE R1,L

< Will it work, if interrupt occurs at "bad spot”?
— What is a “bad spot™?
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An Introduction to Specification and
Verification, 4 cr

4t year students
— Elective graduate level (M.Sc.) course
Prerequisites
— Understandingthe problematics of distribution and concurrency
— Introductionto Data Communication, Concurrent Programming
* Model processes with transitional systems
— step: machine instruction? Method? Transaction? Program?
Principles of automatic verification

Verification of simple protocols

¢ More?

— Semanticsof Programs, 6 cr (lectured 1999)
— Automatic Verification, 6 cr (lectured 2002)
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Foundation for Computational Theory

processor memory
fetch instr 500 million
exec instr numb_ers
410 digits
| bus |
processor memory
C fetch instr Program P
exec instr Data
l ]
| bus
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Computational Theory ... ¢

fetch instr Program P
exec instr Data
! !

| bus |

Memory contents
before P’s execution:

X = very large integer
(500M digits?)

Memory contents
after P’s execution:

Y = some other
very large integer

P is integer valued function P:=—= P:N->N

Program P representation in memory: large integer, Pe=
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Computational Theory ... ¢

« Properties of any programs can be deduced from
properties of integers or integer valued functions

0
computational
Qoe
theory
I

« Proven properties of programs (any programs)
« valid for all computers
« valid always: now and in future
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Proven theorems in computational
theory and algorithm analysis «

« With any preselected time span or memory size,
there exists a problem such that
— (1) it has a solution, and
— (2) all programs solving it will take more time or space
than those preselected maximum limits
« There exists programs that can never be solved
with any computer

« There exists a large class of know problems such
that we do not yet know how difficult they really

are ?
PZNP
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. http://www.retroweb.com/apollo_retrospective.html
End of
Lecture 12
and

End of
Course

ttp:/study.for.exam.edu/intime.html Rea =G ~
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