Computer Organization | 22.4.2010

Lecture 12 Goals

Summary * To understand basic features of a computer
system, from the point of view of the
executing program

Main topics
P ¢ To understand, how a computer systems
5 ,
What use is this for’ executes the program given to it
What next? e Tounderstand the execution time program
Next Courses? representation in system
p Y

To understand the role and basic
functionalities of the operating system

Next topics?

N Main Topics
What USE 1S th|S course for? « System as a whole, speed differences

— Example machineand its use

« Program execution at machine language level
— Processor, registers, bus, memory
— Fetch-execute cycle, interrupts

« Program execution speed is based on machine
instructions executed by the processor (CPU), and not

in the program representation format in hlgh level — Activation record stack, subroutine implementation
language « Data representation formats (program vs. hardware)
— High level language representation is still important « 1/0 devices and 1/0 implementation
« Understanding higher level topics is easier, once one ~ Device drivers, I/O interrupts, disk drive
first understands what happens at lower levels of the * Operating system fundamentals
— Processand its implementation (PCB)
system — Execution of programs in the system

— Compilation, linking, loading
— Interpretation, emulation, simulation
Examples on the following slides

22.4.2010 TeemuKerola, Copyright 2010 3 22.4.2010 TeemuKerola, Copyright 2010 4
Example architecture: Speed differences: Teemu’s Cheese Cake
TTK-91 co mputer memory The speed of registers, cache, disk drive and web as
compared to finding cheese for cheese cake. Eyropa

rocessor - CPL (libraries) Refridge- (Jupiter)
¥

‘ALU Hregisters |

ssem)

(operating

((cache) | [MmU |

| b | 0.5Sec (cache) 10sec Tpgays 4 years
(register) (memory) (disk) (web, human)
[| | | | | device controllers 2008: 0.5ns? %%S» 10ns? 3;%; ?5?2?) s
ays’ (65 yrs?)

22.4.2010 TeemuKerola, Copyright 2010 6

22.4.2010 TeemuKerola, Copyright 2010 5

Lecture 12, Summary

Computer Organization | 22.4.2010

Assemb|y |anguage | DC 0 ACtIV&tIOI’] reCOI‘d
programming e — (Activation record stack)
{ IS_TSEE RRi T int funcA (int x,y);
: e Subroutine implementation (ttk-91)
for (int i=20; i < 50; ++i) Loop LOAD R2, =0 — function return value
T[i] = 0; { LOAD R1, I (or all return values) \
R STORE R2, T(R1) T |8 all (input and output) return val
types? parameter values \,{ param X
:> variables, constants, LOAD R1, I - retunaddress —— | baramy
arrays (2D), records ADD R1 =1 call-by-value, . o oldPC |[-»
) o e R1’ | callby- I previous activation record ~ ——»{ old FP 1+1
in memory, in registers? : reference, I all local variables and —»{ 7:822: x:: :%
selection, loops, call-by-name | data structures o RT
subroutines, SVC’s, LOAD R3, | ; /'{ oldR1
arameters, COMP R3, =50 — saved registers values for old R2
ocal variables JLES Loop recovering them at return
22.4.2010 TeemuKerola, Copyright 2010 7 22.4.2010 TeemuKerola, Copyright 2010 8

) Processor ;
Instruction fetch-execute cycle execution mode

pushr e User mode [(normal mode)

M= N o .

7 write to — Can use only ordinary instructions x\/he” I
read from AR , ow
memory i y — Can reference only user’s own mode

M>o/' . "g"Js'}]e \ memory areas (MMU controls) changes?
get instr decode M=0 exec. pushr check for * Privileged or kernel mode

PCTs instr, calc instr T Ineerrupts — Can use only all instructions, including

N\ effectaddr J privileged instructions (e.g., clear_cache, iret)

— Can reference all memory areas, including
Fetch Execute kernel memory

 Can (also) use direct (physical) memory addresses

22.4.2010 TeemuKerola, Copyright 2010 9 22.4.2010 TeemuKerola, Copyright 2010 10
Data representation formats Process, prosess States and Life
1/8 =0.1250 1
C\ 1/16=0.0625 TI me
[+ 15" [“0.1875"="0.00i1’ 01875

0__oxnonent _mantissa arsignificand
integers ko that ... ready-to-run \
floating points - /
character . Ely mantissa exponent completed
character strings 0.0011 “15” _ or killed
pictures, sounds

When will state change?

1000 “12”
which data is (not) - - ; i 2
understood by the $ What happens in state change (at instr. level)*

1000 “12”
Who or what causes the state change?
processor?

non-standard data?

7 e mﬂ =1

22.4.2010 TeemuKerola, Copyright 2010 11 22.4.2010 TeemuKerola, Copyright 2010 12

Lecture 12, Summary 2

Computer Organization | 22.4.2010

Prosesses in Queues, PCB Sevi CI:/O Imlgl)lemegtgtion, o
evice Controller and Device Driver
Q#ff— User process

Q Memory CPU ol bevice ari
Diskl 0036 7654 |1 9878 T Device driver

- % H H T ‘ <ﬂ | | (OS process)
waiting < | Timer {0555 : ‘ bus |

‘brosess 9878

Msg from 1345 _J2222| descriptor (PCB — jQaallcls]
device

LQ troller
scheduling: device controller Direct I/O

select next process in Ready-to-Run queue and process

move it to CPU for execution :;lsllf I(;E)I/O
(copy processor state for this process into processor registers)
22.4.2010 TeemuKerola, Copyright 2010 13 22.4.2010 TeemuKerola, Copyright 2010 14
Disk Use From High Level Language (HLL) to
Execution
* Afile is composed of multiple blocks Compilation unit myprog.c |
— block per disk sector (2-4 sectors?) Compile JHLL program or module prog.c
. . L . From symbolic address |
» Disk directory contains information on all HLL
blocks used by each file Object module myprog.obj ‘ prog.o
) Link Compiled program (machine code) hi
— blocks are read in correct order with other Linear addresses (per module) math.
Director and with AP
entry Y library Executable myprog.exﬂ
[FileA (] modules Linear addresses (one addr space)
. some missing (?) prog
(unix) Load
Into Process PCB
memory Executable program (prog)
as process | Linear addresses (virt. addr space)
22.4.2010 TeemuKerola, Copyright 2010 15 22.4.2010 TeemuKerola, Copyright 2010 16
- k= i+j;
Interpretation JiiJava program
A I Java k;ytej code
and Emulation compifation
iloadi Java
!I%a:jd] byte-code
IVM @~ %
Java virtual machine > 'St(,)re K %
load >
— / (1T
Java iload i compiler
interpreter iloadj O
iadd
: dl load
istore k i ©
Pentium 11 Java :
/‘processor processor Pentium 11
processor
-
22.4.2010 TeemuKerola, Copyright 2010 17 22.4.2010 TeemuKerola, Copyright 2010 18

Lecture 12, Summary 3

Computer Organization |

22.4.2010

Topic Dependencies

Programming Languages | ‘Applications ‘

1

Computer
Organization

7 ~
Operating Systems / Computer

Course Dependencies

bca?s?::paw;ory Computer Advanced studies
intermediate Organization | (in distr syst and
studies / 1 \ data comm)
y/4 PN
Concurrent Introd. to Comp
/ Programming | | Data Comm. || [Org !l

Lo~ N
N\

Architecture M / \ \
‘ Data Communication | Introd Oper. Distributed | |Introd to Internet
. Concurrency Data Sec. | | Systems | | Systems Spes. & verif | | Protocols
Computational Control
Theory
22.4.2010 TeemuKerola, Copyright 2010 19 22.4.2010 TeemuKerola, Copyright 2010 20
Computer Organization 11, 4 cr oL Lele L oLl Lugngepngug
Instruction 1 b i Gigtyidt g
e 2nd year students CO-Il ... rnaions | Lboricolzol g e

— Elective course in BSc or MSc studies
 Prerequisites: CO-I
¢ In most universities combined with CO-I
¢ One level down from CO-I in implementation
hierarchy

— "How will hardware clock cycle make the processor to
execute instructions ?”

— "How is processor arithmetic implemented?”

Fii D col po ol

Instruction 3

L ion 4 FLiouicolrol piwg:

FLL DLl ol Fol kLol

Instruction §

Not Taken
" oL col Fo e wo!
Instruction 6

" FIjDLLCOLFOL ELIWQ
Instruction 7

FLL DL} COJ FO L ELL WO

Instruction §

F1 DI col¥o) ELL WO

Instruction 9

Not Taken

Figure 1111 Timing Diagram for Instrution Pipeline Operation

- Many instructions in execution concurrently Nt /T NN |[512199]
(inmany ways!) e [rortaten
* How is this implemented, what problems does it
cause, and how are those problems solved?
Figure 11.16 Branch Prediction State Diagram
22.4.2010 TeemuKerola, Copyright 2010 21 22.4.2010 TeemuKerola, Copyright 2010 22
Operating Systems (OS), 4 cr 0S...
e 4™ year students
— Compulsory for graduate (M.Sc.) students of the distributed
systems and telecommunication specialisation area
° PrereqUiSites Layer Iri;c:)\,- VO functions
- go-l .) w | User processes { Make O call, format 0, spocling
— Concurrent Programming request t
~ Introduction to Data Communication Y O ahwaa "y | Namina. prtecton,biocking, bforing aocation
T
« OSrole as process and resource controller ¥ Devcadivers y | Setupdecs sters check sttos
« Concurrent processes using shared resources Inorupt handiors "‘ Wake up driver whon /0 completed
* USe Of SyStem resources Hardware ' Parform L0 oparation
« Process scheduling
« More? Figure 3-6. Layers of the 1/O system and the main functions of each layer.
— Distributed Systems, 4 cr
22.4.2010 TeemuKerola, Copyright 2010 23 22.4.2010 TeemuKerola, Copyright 2010 24

Lecture 12, Summary

Computer Organization |

22.4.2010

Intro to Data Communication, 4 cr

» 2ndyear students
— Obligatory undergraduate course

« Computer network basic services to users and
applications

« Basic tools for data communication

« Network architecture layer structure and services at
each layer

¢ More?
— Internet-protocols, 2 cr

22.4.2010 TeemuKerola, Copyright 2010 25

Introduction to Data Communication

TCP/IP -layers

pplicatiojr S?gtlé%%ﬁlson Applicatipn

Applicfinterphase Applicinterphase
transport
Ti aEsport laygi protocols TCP, UDP
network I

rotocols

]Tlpf
transfer Ethernet;

Transfer layer protocols token.ring, APP
T t

22.4.2010 TeemuKerola, Copyright 2010 26

Concurrent Programming (CP), 4 cr

« 2" year students
— Obligatory undergraduate course
* Prerequisites: CO-l
* Problems caused by concurrency
— System just freezes ... why?
« Concurrency requirements for system
« Process synchronization
— Busy wait or process switch? Why?

¢ Prosess communication semaphores
— Shared memory? Messages? Why? monitors
— Over the network? EREIEEAEIS
guarded statements
« More? rpc, messages

— Distributed Systems, 4 cr Java concurrent progr.

22.4.2010 TeemuKerola, Copyright 2010 27

CP - Synchronization Problem Solution with
Test-and-Set Instruction

i

. rthi

e TAS Ri, L Ri := mem[L] instruction
(ttk-91 if Ri==1 then
extension) {Ri := 0, mem[L] := Ri, jump *+2}

¢ Critical section

LOOP: TAS RI,L ~_ #L: 1(open) O (locked)
() IUMP LOOP) #waituntil lock open
lock is locked for me
critical section: one process at a time

LOAD R1=1 # open lock L
STORE R1,L

< Will it work, if interrupt occurs at "bad spot”?
— What is a “bad spot™?

22.4.2010 TeemuKerola, Copyright 2010 28

An Introduction to Specification and
Verification, 4 cr

4t year students
— Elective graduate level (M.Sc.) course
Prerequisites
— Understandingthe problematics of distribution and concurrency
— Introductionto Data Communication, Concurrent Programming
* Model processes with transitional systems
— step: machine instruction? Method? Transaction? Program?
Principles of automatic verification

Verification of simple protocols

¢ More?

— Semanticsof Programs, 6 cr (lectured 1999)
— Automatic Verification, 6 cr (lectured 2002)

22.4.2010 TeemuKerola, Copyright 2010 29

22.4.2010 TeemuKerola, Copyright 2010 30

Lecture 12, Summary

Computer Organization |

22.4.2010

Foundation for Computational Theory

processor memory
fetch instr 500 million
exec instr numb_ers
410 digits
| bus |
processor memory
C fetch instr Program P
exec instr Data
l]
| bus
22.4.2010 TeemuKerola, Copyright 2010 31

22.4.2010

Computational Theory ... ¢

fetch instr Program P
exec instr Data
! !

| bus |

Memory contents
before P’s execution:

X = very large integer
(500M digits?)

Memory contents
after P’s execution:

Y = some other
very large integer

P is integer valued function P:=—= P:N->N

Program P representation in memory: large integer, Pe=

TeemuKerola, Copyright 2010 PeN 32

Computational Theory ... ¢

« Properties of any programs can be deduced from
properties of integers or integer valued functions

0
computational
Qoe
theory
I

« Proven properties of programs (any programs)
« valid for all computers
« valid always: now and in future

22.4.2010 TeemuKerola, Copyright 2010 33

22.4.2010

Proven theorems in computational
theory and algorithm analysis «

« With any preselected time span or memory size,
there exists a problem such that
— (1) it has a solution, and
— (2) all programs solving it will take more time or space
than those preselected maximum limits
« There exists programs that can never be solved
with any computer

« There exists a large class of know problems such
that we do not yet know how difficult they really

are ?
PZNP

TeemuKerola, Copyright 2010 34

. http://www.retroweb.com/apollo_retrospective.html
End of
Lecture 12
and

End of
Course

ttp:/study.for.exam.edu/intime.html Rea =G ~
22.4.2010 TeemuKerola, Copyright 2010 35

Lecture 12, Summary

