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104 6 Search, Games and Problem Solving

Fig. 6.18 A minimax game tree with look-ahead of four half-moves

Fig. 6.19 An alpha-beta game tree with look-ahead of four half-moves. The dotted portions of the
tree are not traversed because they have no effect on the end result

to right. Like in minimax search, in the minimum nodes the minimum is generated
from the minimum value of the successor nodes and in the maximum nodes likewise
the maximum. In Fig. 6.19 this process is depicted for the tree from Fig. 6.18. At the
node marked a, all other successors can be ignored after the first child is evaluated as
the value 1 because the minimum is sure to be ≤1. It could even become smaller still,
but that is irrelevant since the maximum is already ≥3 one level above. Regardless
of how the evaluation of the remaining successors turns out, the maximum will
keep the value 3. Analogously the tree will be trimmed at node b. Since the first
child of b has the value 2, the minimum to be generated for b can only be less
than or equal to 2. But the maximum at the root node is already sure to be ≥3.
This cannot be changed by values ≤2. Thus the remaining subtrees of b can be
pruned.

The same reasoning applies for the node c. However, the relevant maximum node
is not the direct parent, but the root node. This can be generalized.
• At every leaf node the evaluation is calculated.
• For every maximum node the current largest child value is saved in α.
• For every minimum node the current smallest child value is saved in β .
• If at a minimum node k the current value β ≤ α, then the search under k can end.

Here α is the largest value of a maximum node in the path from the root to k.
• If at a maximum node l the current value α ≥ β , then the search under l can end.

Here β is the smallest value of a minimum node in the path from the root to l.
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the value 1 because the minimum is sure to be ≤1. It could even become smaller still,
but that is irrelevant since the maximum is already ≥3 one level above. Regardless
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child of b has the value 2, the minimum to be generated for b can only be less
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The same reasoning applies for the node c. However, the relevant maximum node
is not the direct parent, but the root node. This can be generalized.
• At every leaf node the evaluation is calculated.
• For every maximum node the current largest child value is saved in α.
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MINIMAX

MAX-ARVO(Solmu)  

if LOPPUTILA(Solmu) return(ARVO(Solmu))
v = −∞
for each Lapsi in LAPSET(Solmu)

v = MAX(v, MIN-ARVO(Lapsi))
return(v)



MINIMAX

MAX-ARVO(Solmu)  

if LOPPUTILA(Solmu) return(ARVO(Solmu))
v = −∞
for each Lapsi in LAPSET(Solmu)

v = MAX(v, MIN-ARVO(Lapsi))
return(v)

MIN-ARVO(Solmu)  

if LOPPUTILA(Solmu) return(ARVO(Solmu))
v = +∞
for each Lapsi in LAPSET(Solmu)

v = MIN(v, MAX-ARVO(Lapsi))
return(v)



SHAKKI



SHAKKI



SHAKKI



SHAKKI

1769    Wolfgang von Kempelen rakentaa “Turkin”
1912    L. Torres y Quevedo rakentaa koneen kuningas&torni  
            vs kuningas -loppupeleihin
1948    Norbert Wiener esittää syvyysrajoitetun minimax- 
            algoritmin heuristisella arviontifunktiolla
1950    Claude Shannon julkaisee artikkelin “Programming a  
            Computer for Playing Chess”
1951    Alan Turing kehittää ensimmäisen algoritmin, joka pystyy  
            pelaamaan kokonaisen shakkiottelun
1956    Los Alamos chess: ensimmäinen tietokoneohjelma, joka  
            pelaa (yksinkertaistettua) shakkia
1956    John McCarthy keksii alpha-beta-karsinnan
1957    Ensimmäiset oikeaa shakkia pelaavat ohjelmat
1966-67   Ensimmäiset tietokoneohjelmien väliset ottelut  
                 (Moskova voittaa.)

(NICE TO KNOW: EI TARVITSE OPETELLA)



SHAKKI

1967      Ensimmäinen tietokoneohjelman voitto turnauksessa.
1981      Cray Blitz voittaa Mississippin osavaltion mestaruuden  
              ja saa ensimmäisenä tietokoneena mestarin statuksen.
1988      Deep Thought voittaa ensimmäistä kertaa suurmestarin 
              turnauksessa.
1989      Garry Kasparov voittaa kaksi näytösottelua Deep 
              Thoughtia vastaan.
1996      Garry Kasparov voittaa Deep Bluen kuuden pelin ottelussa.
1997      Deep Blue voittaa Garry Kasparovin kuuden pelin ottelussa.
2006      Deep Fritz voittaa maailmanmestari Vladimir Kramnikin.

(NICE TO KNOW: EI TARVITSE OPETELLA)
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TILA: (LAUDAN TILANNE) 

SIIRTYMÄT: (SALLITUT SIIRROT) 

MENETELMÄ: SYVYYSRAJOITETTU ALPHA-BETA-
KARSINTA
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Fig. 6.18 A minimax game tree with look-ahead of four half-moves

Fig. 6.19 An alpha-beta game tree with look-ahead of four half-moves. The dotted portions of the
tree are not traversed because they have no effect on the end result

to right. Like in minimax search, in the minimum nodes the minimum is generated
from the minimum value of the successor nodes and in the maximum nodes likewise
the maximum. In Fig. 6.19 this process is depicted for the tree from Fig. 6.18. At the
node marked a, all other successors can be ignored after the first child is evaluated as
the value 1 because the minimum is sure to be ≤1. It could even become smaller still,
but that is irrelevant since the maximum is already ≥3 one level above. Regardless
of how the evaluation of the remaining successors turns out, the maximum will
keep the value 3. Analogously the tree will be trimmed at node b. Since the first
child of b has the value 2, the minimum to be generated for b can only be less
than or equal to 2. But the maximum at the root node is already sure to be ≥3.
This cannot be changed by values ≤2. Thus the remaining subtrees of b can be
pruned.

The same reasoning applies for the node c. However, the relevant maximum node
is not the direct parent, but the root node. This can be generalized.
• At every leaf node the evaluation is calculated.
• For every maximum node the current largest child value is saved in α.
• For every minimum node the current smallest child value is saved in β .
• If at a minimum node k the current value β ≤ α, then the search under k can end.

Here α is the largest value of a maximum node in the path from the root to k.
• If at a maximum node l the current value α ≥ β , then the search under l can end.

Here β is the smallest value of a minimum node in the path from the root to l.

MAX

MIN

MAX

MIN

          ARVIOITA TILANTEEN HYVYYDESTÄ



SHAKKI

TILA: (LAUDAN TILANNE) 

SIIRTYMÄT: (SALLITUT SIIRROT) 

MENETELMÄ: SYVYYSRAJOITETTU ALPHA-BETA-
KARSINTA 

TEHTÄVÄ: SUUNNITTELE HEURISTINEN 
ARVIOINTIFUNKTIO



HEURISTIIKKOJEN VALINNASTA

HEURISTIIKAN HYVYYS VAIKUTTAA PELIN TULOKSEEN: 
HYVÄ HEURISTIIKKA –> HYVÄ TULOS 

VASTAAVASTI HEURISTIIKAN HYVYYTTÄ VOI MITATA 
TARKKAILEMALLA PELIEN TULOKSIA: 
HYVÄ TULOS –> HYVÄ HEURISTIIKKA 

JOSKUS HYVÄKIN PELAAJA VOI SILTI HÄVITÄ 
HUONOMMALLEEN JA TOISINPÄIN, JOTEN ARVIOINTI EI 
OLE HELPPOA 

YLEINEN MENETELMÄ HYVYYDEN ARVIONTIIN: 
ELO-RATING



HEURISTIIKKOJEN VALINNASTA
(NICE TO KNOW: EI TARVITSE OPETELLA)

ELO RATING    –    “I NEED THE ALGORITHM”

© Columbia Pictures, Inc.

The Social 
Network
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Fig. 6.18 A minimax game tree with look-ahead of four half-moves

Fig. 6.19 An alpha-beta game tree with look-ahead of four half-moves. The dotted portions of the
tree are not traversed because they have no effect on the end result

to right. Like in minimax search, in the minimum nodes the minimum is generated
from the minimum value of the successor nodes and in the maximum nodes likewise
the maximum. In Fig. 6.19 this process is depicted for the tree from Fig. 6.18. At the
node marked a, all other successors can be ignored after the first child is evaluated as
the value 1 because the minimum is sure to be ≤1. It could even become smaller still,
but that is irrelevant since the maximum is already ≥3 one level above. Regardless
of how the evaluation of the remaining successors turns out, the maximum will
keep the value 3. Analogously the tree will be trimmed at node b. Since the first
child of b has the value 2, the minimum to be generated for b can only be less
than or equal to 2. But the maximum at the root node is already sure to be ≥3.
This cannot be changed by values ≤2. Thus the remaining subtrees of b can be
pruned.

The same reasoning applies for the node c. However, the relevant maximum node
is not the direct parent, but the root node. This can be generalized.
• At every leaf node the evaluation is calculated.
• For every maximum node the current largest child value is saved in α.
• For every minimum node the current smallest child value is saved in β .
• If at a minimum node k the current value β ≤ α, then the search under k can end.

Here α is the largest value of a maximum node in the path from the root to k.
• If at a maximum node l the current value α ≥ β , then the search under l can end.

Here β is the smallest value of a minimum node in the path from the root to l.
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to right. Like in minimax search, in the minimum nodes the minimum is generated
from the minimum value of the successor nodes and in the maximum nodes likewise
the maximum. In Fig. 6.19 this process is depicted for the tree from Fig. 6.18. At the
node marked a, all other successors can be ignored after the first child is evaluated as
the value 1 because the minimum is sure to be ≤1. It could even become smaller still,
but that is irrelevant since the maximum is already ≥3 one level above. Regardless
of how the evaluation of the remaining successors turns out, the maximum will
keep the value 3. Analogously the tree will be trimmed at node b. Since the first
child of b has the value 2, the minimum to be generated for b can only be less
than or equal to 2. But the maximum at the root node is already sure to be ≥3.
This cannot be changed by values ≤2. Thus the remaining subtrees of b can be
pruned.

The same reasoning applies for the node c. However, the relevant maximum node
is not the direct parent, but the root node. This can be generalized.
• At every leaf node the evaluation is calculated.
• For every maximum node the current largest child value is saved in α.
• For every minimum node the current smallest child value is saved in β .
• If at a minimum node k the current value β ≤ α, then the search under k can end.

Here α is the largest value of a maximum node in the path from the root to k.
• If at a maximum node l the current value α ≥ β , then the search under l can end.

Here β is the smallest value of a minimum node in the path from the root to l.
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ALPHA-BETA-KARSINTA

MAX-ARVO(Solmu, α, β)  

if LOPPUTILA(Solmu) return(ARVO(Solmu))
v = −∞
for each Lapsi in LAPSET(Solmu)

v = MAX(v, MIN-ARVO(Lapsi, α, β))
if v ≥ β return(v)
α = MAX(α, v)

return(v)

MIN-PELAAJAN 
TOISTAISEKSI 
PARAS ARVO

MAX-PELAAJAN 
TOISTAISEKSI 
PARAS ARVO



ALPHA-BETA-KARSINTA

MAX-ARVO(Solmu, α, β)  

if LOPPUTILA(Solmu) return(ARVO(Solmu))
v = −∞
for each Lapsi in LAPSET(Solmu)

v = MAX(v, MIN-ARVO(Lapsi, α, β))
if v ≥ β return(v)
α = MAX(α, v)

return(v)

MIN-ARVO(Solmu, α, β)  

if LOPPUTILA(Solmu) return(ARVO(Solmu))
v = +∞
for each Lapsi in LAPSET(Solmu)

v = MIN(v, MAX-ARVO(Lapsi, α, β))
if v ≤ α return(v)
β = MIN(β, v)

return(v)
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Fig. 6.19 An alpha-beta game tree with look-ahead of four half-moves. The dotted portions of the
tree are not traversed because they have no effect on the end result

to right. Like in minimax search, in the minimum nodes the minimum is generated
from the minimum value of the successor nodes and in the maximum nodes likewise
the maximum. In Fig. 6.19 this process is depicted for the tree from Fig. 6.18. At the
node marked a, all other successors can be ignored after the first child is evaluated as
the value 1 because the minimum is sure to be ≤1. It could even become smaller still,
but that is irrelevant since the maximum is already ≥3 one level above. Regardless
of how the evaluation of the remaining successors turns out, the maximum will
keep the value 3. Analogously the tree will be trimmed at node b. Since the first
child of b has the value 2, the minimum to be generated for b can only be less
than or equal to 2. But the maximum at the root node is already sure to be ≥3.
This cannot be changed by values ≤2. Thus the remaining subtrees of b can be
pruned.

The same reasoning applies for the node c. However, the relevant maximum node
is not the direct parent, but the root node. This can be generalized.
• At every leaf node the evaluation is calculated.
• For every maximum node the current largest child value is saved in α.
• For every minimum node the current smallest child value is saved in β .
• If at a minimum node k the current value β ≤ α, then the search under k can end.

Here α is the largest value of a maximum node in the path from the root to k.
• If at a maximum node l the current value α ≥ β , then the search under l can end.

Here β is the smallest value of a minimum node in the path from the root to l.
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to right. Like in minimax search, in the minimum nodes the minimum is generated
from the minimum value of the successor nodes and in the maximum nodes likewise
the maximum. In Fig. 6.19 this process is depicted for the tree from Fig. 6.18. At the
node marked a, all other successors can be ignored after the first child is evaluated as
the value 1 because the minimum is sure to be ≤1. It could even become smaller still,
but that is irrelevant since the maximum is already ≥3 one level above. Regardless
of how the evaluation of the remaining successors turns out, the maximum will
keep the value 3. Analogously the tree will be trimmed at node b. Since the first
child of b has the value 2, the minimum to be generated for b can only be less
than or equal to 2. But the maximum at the root node is already sure to be ≥3.
This cannot be changed by values ≤2. Thus the remaining subtrees of b can be
pruned.

The same reasoning applies for the node c. However, the relevant maximum node
is not the direct parent, but the root node. This can be generalized.
• At every leaf node the evaluation is calculated.
• For every maximum node the current largest child value is saved in α.
• For every minimum node the current smallest child value is saved in β .
• If at a minimum node k the current value β ≤ α, then the search under k can end.

Here α is the largest value of a maximum node in the path from the root to k.
• If at a maximum node l the current value α ≥ β , then the search under l can end.

Here β is the smallest value of a minimum node in the path from the root to l.
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Fig. 6.19 An alpha-beta game tree with look-ahead of four half-moves. The dotted portions of the
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to right. Like in minimax search, in the minimum nodes the minimum is generated
from the minimum value of the successor nodes and in the maximum nodes likewise
the maximum. In Fig. 6.19 this process is depicted for the tree from Fig. 6.18. At the
node marked a, all other successors can be ignored after the first child is evaluated as
the value 1 because the minimum is sure to be ≤1. It could even become smaller still,
but that is irrelevant since the maximum is already ≥3 one level above. Regardless
of how the evaluation of the remaining successors turns out, the maximum will
keep the value 3. Analogously the tree will be trimmed at node b. Since the first
child of b has the value 2, the minimum to be generated for b can only be less
than or equal to 2. But the maximum at the root node is already sure to be ≥3.
This cannot be changed by values ≤2. Thus the remaining subtrees of b can be
pruned.

The same reasoning applies for the node c. However, the relevant maximum node
is not the direct parent, but the root node. This can be generalized.
• At every leaf node the evaluation is calculated.
• For every maximum node the current largest child value is saved in α.
• For every minimum node the current smallest child value is saved in β .
• If at a minimum node k the current value β ≤ α, then the search under k can end.

Here α is the largest value of a maximum node in the path from the root to k.
• If at a maximum node l the current value α ≥ β , then the search under l can end.

Here β is the smallest value of a minimum node in the path from the root to l.
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to right. Like in minimax search, in the minimum nodes the minimum is generated
from the minimum value of the successor nodes and in the maximum nodes likewise
the maximum. In Fig. 6.19 this process is depicted for the tree from Fig. 6.18. At the
node marked a, all other successors can be ignored after the first child is evaluated as
the value 1 because the minimum is sure to be ≤1. It could even become smaller still,
but that is irrelevant since the maximum is already ≥3 one level above. Regardless
of how the evaluation of the remaining successors turns out, the maximum will
keep the value 3. Analogously the tree will be trimmed at node b. Since the first
child of b has the value 2, the minimum to be generated for b can only be less
than or equal to 2. But the maximum at the root node is already sure to be ≥3.
This cannot be changed by values ≤2. Thus the remaining subtrees of b can be
pruned.

The same reasoning applies for the node c. However, the relevant maximum node
is not the direct parent, but the root node. This can be generalized.
• At every leaf node the evaluation is calculated.
• For every maximum node the current largest child value is saved in α.
• For every minimum node the current smallest child value is saved in β .
• If at a minimum node k the current value β ≤ α, then the search under k can end.

Here α is the largest value of a maximum node in the path from the root to k.
• If at a maximum node l the current value α ≥ β , then the search under l can end.

Here β is the smallest value of a minimum node in the path from the root to l.
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Fig. 6.18 A minimax game tree with look-ahead of four half-moves

Fig. 6.19 An alpha-beta game tree with look-ahead of four half-moves. The dotted portions of the
tree are not traversed because they have no effect on the end result

to right. Like in minimax search, in the minimum nodes the minimum is generated
from the minimum value of the successor nodes and in the maximum nodes likewise
the maximum. In Fig. 6.19 this process is depicted for the tree from Fig. 6.18. At the
node marked a, all other successors can be ignored after the first child is evaluated as
the value 1 because the minimum is sure to be ≤1. It could even become smaller still,
but that is irrelevant since the maximum is already ≥3 one level above. Regardless
of how the evaluation of the remaining successors turns out, the maximum will
keep the value 3. Analogously the tree will be trimmed at node b. Since the first
child of b has the value 2, the minimum to be generated for b can only be less
than or equal to 2. But the maximum at the root node is already sure to be ≥3.
This cannot be changed by values ≤2. Thus the remaining subtrees of b can be
pruned.

The same reasoning applies for the node c. However, the relevant maximum node
is not the direct parent, but the root node. This can be generalized.
• At every leaf node the evaluation is calculated.
• For every maximum node the current largest child value is saved in α.
• For every minimum node the current smallest child value is saved in β .
• If at a minimum node k the current value β ≤ α, then the search under k can end.

Here α is the largest value of a maximum node in the path from the root to k.
• If at a maximum node l the current value α ≥ β , then the search under l can end.

Here β is the smallest value of a minimum node in the path from the root to l.
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Fig. 6.18 A minimax game tree with look-ahead of four half-moves

Fig. 6.19 An alpha-beta game tree with look-ahead of four half-moves. The dotted portions of the
tree are not traversed because they have no effect on the end result

to right. Like in minimax search, in the minimum nodes the minimum is generated
from the minimum value of the successor nodes and in the maximum nodes likewise
the maximum. In Fig. 6.19 this process is depicted for the tree from Fig. 6.18. At the
node marked a, all other successors can be ignored after the first child is evaluated as
the value 1 because the minimum is sure to be ≤1. It could even become smaller still,
but that is irrelevant since the maximum is already ≥3 one level above. Regardless
of how the evaluation of the remaining successors turns out, the maximum will
keep the value 3. Analogously the tree will be trimmed at node b. Since the first
child of b has the value 2, the minimum to be generated for b can only be less
than or equal to 2. But the maximum at the root node is already sure to be ≥3.
This cannot be changed by values ≤2. Thus the remaining subtrees of b can be
pruned.

The same reasoning applies for the node c. However, the relevant maximum node
is not the direct parent, but the root node. This can be generalized.
• At every leaf node the evaluation is calculated.
• For every maximum node the current largest child value is saved in α.
• For every minimum node the current smallest child value is saved in β .
• If at a minimum node k the current value β ≤ α, then the search under k can end.

Here α is the largest value of a maximum node in the path from the root to k.
• If at a maximum node l the current value α ≥ β , then the search under l can end.

Here β is the smallest value of a minimum node in the path from the root to l.
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Fig. 6.18 A minimax game tree with look-ahead of four half-moves

Fig. 6.19 An alpha-beta game tree with look-ahead of four half-moves. The dotted portions of the
tree are not traversed because they have no effect on the end result

to right. Like in minimax search, in the minimum nodes the minimum is generated
from the minimum value of the successor nodes and in the maximum nodes likewise
the maximum. In Fig. 6.19 this process is depicted for the tree from Fig. 6.18. At the
node marked a, all other successors can be ignored after the first child is evaluated as
the value 1 because the minimum is sure to be ≤1. It could even become smaller still,
but that is irrelevant since the maximum is already ≥3 one level above. Regardless
of how the evaluation of the remaining successors turns out, the maximum will
keep the value 3. Analogously the tree will be trimmed at node b. Since the first
child of b has the value 2, the minimum to be generated for b can only be less
than or equal to 2. But the maximum at the root node is already sure to be ≥3.
This cannot be changed by values ≤2. Thus the remaining subtrees of b can be
pruned.

The same reasoning applies for the node c. However, the relevant maximum node
is not the direct parent, but the root node. This can be generalized.
• At every leaf node the evaluation is calculated.
• For every maximum node the current largest child value is saved in α.
• For every minimum node the current smallest child value is saved in β .
• If at a minimum node k the current value β ≤ α, then the search under k can end.

Here α is the largest value of a maximum node in the path from the root to k.
• If at a maximum node l the current value α ≥ β , then the search under l can end.

Here β is the smallest value of a minimum node in the path from the root to l.
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Fig. 6.18 A minimax game tree with look-ahead of four half-moves

Fig. 6.19 An alpha-beta game tree with look-ahead of four half-moves. The dotted portions of the
tree are not traversed because they have no effect on the end result

to right. Like in minimax search, in the minimum nodes the minimum is generated
from the minimum value of the successor nodes and in the maximum nodes likewise
the maximum. In Fig. 6.19 this process is depicted for the tree from Fig. 6.18. At the
node marked a, all other successors can be ignored after the first child is evaluated as
the value 1 because the minimum is sure to be ≤1. It could even become smaller still,
but that is irrelevant since the maximum is already ≥3 one level above. Regardless
of how the evaluation of the remaining successors turns out, the maximum will
keep the value 3. Analogously the tree will be trimmed at node b. Since the first
child of b has the value 2, the minimum to be generated for b can only be less
than or equal to 2. But the maximum at the root node is already sure to be ≥3.
This cannot be changed by values ≤2. Thus the remaining subtrees of b can be
pruned.

The same reasoning applies for the node c. However, the relevant maximum node
is not the direct parent, but the root node. This can be generalized.
• At every leaf node the evaluation is calculated.
• For every maximum node the current largest child value is saved in α.
• For every minimum node the current smallest child value is saved in β .
• If at a minimum node k the current value β ≤ α, then the search under k can end.

Here α is the largest value of a maximum node in the path from the root to k.
• If at a maximum node l the current value α ≥ β , then the search under l can end.

Here β is the smallest value of a minimum node in the path from the root to l.
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ALPHA-BETA-KARSINTA

  α = 3

  α = 3

MIN-ARVO(Solmu, α, β)  

if LOPPUTILA(Solmu) return(ARVO(Solmu))
v = +∞
for each Lapsi in LAPSET(Solmu)

v = MIN(v, MAX-ARVO(Lapsi, α, β))
if v ≤ α return(v)
β = MIN(β, v)

return(v)



104 6 Search, Games and Problem Solving

Fig. 6.18 A minimax game tree with look-ahead of four half-moves

Fig. 6.19 An alpha-beta game tree with look-ahead of four half-moves. The dotted portions of the
tree are not traversed because they have no effect on the end result

to right. Like in minimax search, in the minimum nodes the minimum is generated
from the minimum value of the successor nodes and in the maximum nodes likewise
the maximum. In Fig. 6.19 this process is depicted for the tree from Fig. 6.18. At the
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child of b has the value 2, the minimum to be generated for b can only be less
than or equal to 2. But the maximum at the root node is already sure to be ≥3.
This cannot be changed by values ≤2. Thus the remaining subtrees of b can be
pruned.

The same reasoning applies for the node c. However, the relevant maximum node
is not the direct parent, but the root node. This can be generalized.
• At every leaf node the evaluation is calculated.
• For every maximum node the current largest child value is saved in α.
• For every minimum node the current smallest child value is saved in β .
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