
JOHDATUS TEKOÄLYYN
TEEMU ROOS

PELIPUU

ACTIVATOR	1	
ACTIVATOR	2

PELIPUU

ACTIVATOR	1	
ACTIVATOR	2

PELIPUU

-1 0 1

PELIPUU
104 6 Search, Games and Problem Solving

Fig. 6.18 A minimax game tree with look-ahead of four half-moves

Fig. 6.19 An alpha-beta game tree with look-ahead of four half-moves. The dotted portions of the
tree are not traversed because they have no effect on the end result

to right. Like in minimax search, in the minimum nodes the minimum is generated
from the minimum value of the successor nodes and in the maximum nodes likewise
the maximum. In Fig. 6.19 this process is depicted for the tree from Fig. 6.18. At the
node marked a, all other successors can be ignored after the first child is evaluated as
the value 1 because the minimum is sure to be ≤1. It could even become smaller still,
but that is irrelevant since the maximum is already ≥3 one level above. Regardless
of how the evaluation of the remaining successors turns out, the maximum will
keep the value 3. Analogously the tree will be trimmed at node b. Since the first
child of b has the value 2, the minimum to be generated for b can only be less
than or equal to 2. But the maximum at the root node is already sure to be ≥3.
This cannot be changed by values ≤2. Thus the remaining subtrees of b can be
pruned.

The same reasoning applies for the node c. However, the relevant maximum node
is not the direct parent, but the root node. This can be generalized.
• At every leaf node the evaluation is calculated.
• For every maximum node the current largest child value is saved in α.
• For every minimum node the current smallest child value is saved in β .
• If at a minimum node k the current value β ≤ α, then the search under k can end.

Here α is the largest value of a maximum node in the path from the root to k.
• If at a maximum node l the current value α ≥ β , then the search under l can end.

Here β is the smallest value of a minimum node in the path from the root to l.

MAX

MIN

MAX

MIN

PELIPUU
104 6 Search, Games and Problem Solving

Fig. 6.18 A minimax game tree with look-ahead of four half-moves

Fig. 6.19 An alpha-beta game tree with look-ahead of four half-moves. The dotted portions of the
tree are not traversed because they have no effect on the end result

to right. Like in minimax search, in the minimum nodes the minimum is generated
from the minimum value of the successor nodes and in the maximum nodes likewise
the maximum. In Fig. 6.19 this process is depicted for the tree from Fig. 6.18. At the
node marked a, all other successors can be ignored after the first child is evaluated as
the value 1 because the minimum is sure to be ≤1. It could even become smaller still,
but that is irrelevant since the maximum is already ≥3 one level above. Regardless
of how the evaluation of the remaining successors turns out, the maximum will
keep the value 3. Analogously the tree will be trimmed at node b. Since the first
child of b has the value 2, the minimum to be generated for b can only be less
than or equal to 2. But the maximum at the root node is already sure to be ≥3.
This cannot be changed by values ≤2. Thus the remaining subtrees of b can be
pruned.

The same reasoning applies for the node c. However, the relevant maximum node
is not the direct parent, but the root node. This can be generalized.
• At every leaf node the evaluation is calculated.
• For every maximum node the current largest child value is saved in α.
• For every minimum node the current smallest child value is saved in β .
• If at a minimum node k the current value β ≤ α, then the search under k can end.

Here α is the largest value of a maximum node in the path from the root to k.
• If at a maximum node l the current value α ≥ β , then the search under l can end.

Here β is the smallest value of a minimum node in the path from the root to l.

MAX

MIN

MAX

MIN

MINIMAX

MAX-ARVO(Solmu)  

if LOPPUTILA(Solmu) return(ARVO(Solmu))
v = −∞
for each Lapsi in LAPSET(Solmu)

v = MAX(v, MIN-ARVO(Lapsi))
return(v)

MINIMAX

MAX-ARVO(Solmu)  

if LOPPUTILA(Solmu) return(ARVO(Solmu))
v = −∞
for each Lapsi in LAPSET(Solmu)

v = MAX(v, MIN-ARVO(Lapsi))
return(v)

MIN-ARVO(Solmu)  

if LOPPUTILA(Solmu) return(ARVO(Solmu))
v = +∞
for each Lapsi in LAPSET(Solmu)

v = MIN(v, MAX-ARVO(Lapsi))
return(v)

SHAKKI

SHAKKI

SHAKKI

SHAKKI

1769 Wolfgang von Kempelen rakentaa “Turkin”
1912 L. Torres y Quevedo rakentaa koneen kuningas&torni  
 vs kuningas -loppupeleihin
1948 Norbert Wiener esittää syvyysrajoitetun minimax- 
 algoritmin heuristisella arviontifunktiolla
1950 Claude Shannon julkaisee artikkelin “Programming a  
 Computer for Playing Chess”
1951 Alan Turing kehittää ensimmäisen algoritmin, joka pystyy  
 pelaamaan kokonaisen shakkiottelun
1956 Los Alamos chess: ensimmäinen tietokoneohjelma, joka  
 pelaa (yksinkertaistettua) shakkia
1956 John McCarthy keksii alpha-beta-karsinnan
1957 Ensimmäiset oikeaa shakkia pelaavat ohjelmat
1966-67 Ensimmäiset tietokoneohjelmien väliset ottelut  
 (Moskova voittaa.)

(NICE TO KNOW: EI TARVITSE OPETELLA)

SHAKKI

1967 Ensimmäinen tietokoneohjelman voitto turnauksessa.
1981 Cray Blitz voittaa Mississippin osavaltion mestaruuden  
 ja saa ensimmäisenä tietokoneena mestarin statuksen.
1988 Deep Thought voittaa ensimmäistä kertaa suurmestarin 
 turnauksessa.
1989 Garry Kasparov voittaa kaksi näytösottelua Deep 
 Thoughtia vastaan.
1996 Garry Kasparov voittaa Deep Bluen kuuden pelin ottelussa.
1997 Deep Blue voittaa Garry Kasparovin kuuden pelin ottelussa.
2006 Deep Fritz voittaa maailmanmestari Vladimir Kramnikin.

(NICE TO KNOW: EI TARVITSE OPETELLA)

SHAKKI

TILA: (LAUDAN TILANNE)

SIIRTYMÄT: (SALLITUT SIIRROT)

MENETELMÄ: SYVYYSRAJOITETTU ALPHA-BETA-
KARSINTA

PELIPUU
104 6 Search, Games and Problem Solving

Fig. 6.18 A minimax game tree with look-ahead of four half-moves

Fig. 6.19 An alpha-beta game tree with look-ahead of four half-moves. The dotted portions of the
tree are not traversed because they have no effect on the end result

to right. Like in minimax search, in the minimum nodes the minimum is generated
from the minimum value of the successor nodes and in the maximum nodes likewise
the maximum. In Fig. 6.19 this process is depicted for the tree from Fig. 6.18. At the
node marked a, all other successors can be ignored after the first child is evaluated as
the value 1 because the minimum is sure to be ≤1. It could even become smaller still,
but that is irrelevant since the maximum is already ≥3 one level above. Regardless
of how the evaluation of the remaining successors turns out, the maximum will
keep the value 3. Analogously the tree will be trimmed at node b. Since the first
child of b has the value 2, the minimum to be generated for b can only be less
than or equal to 2. But the maximum at the root node is already sure to be ≥3.
This cannot be changed by values ≤2. Thus the remaining subtrees of b can be
pruned.

The same reasoning applies for the node c. However, the relevant maximum node
is not the direct parent, but the root node. This can be generalized.
• At every leaf node the evaluation is calculated.
• For every maximum node the current largest child value is saved in α.
• For every minimum node the current smallest child value is saved in β .
• If at a minimum node k the current value β ≤ α, then the search under k can end.

Here α is the largest value of a maximum node in the path from the root to k.
• If at a maximum node l the current value α ≥ β , then the search under l can end.

Here β is the smallest value of a minimum node in the path from the root to l.

MAX

MIN

MAX

MIN

 ARVIOITA TILANTEEN HYVYYDESTÄ

SHAKKI

TILA: (LAUDAN TILANNE)

SIIRTYMÄT: (SALLITUT SIIRROT)

MENETELMÄ: SYVYYSRAJOITETTU ALPHA-BETA-
KARSINTA

TEHTÄVÄ: SUUNNITTELE HEURISTINEN
ARVIOINTIFUNKTIO

HEURISTIIKKOJEN VALINNASTA

HEURISTIIKAN HYVYYS VAIKUTTAA PELIN TULOKSEEN:
HYVÄ HEURISTIIKKA –> HYVÄ TULOS

VASTAAVASTI HEURISTIIKAN HYVYYTTÄ VOI MITATA
TARKKAILEMALLA PELIEN TULOKSIA: 
HYVÄ TULOS –> HYVÄ HEURISTIIKKA

JOSKUS HYVÄKIN PELAAJA VOI SILTI HÄVITÄ
HUONOMMALLEEN JA TOISINPÄIN, JOTEN ARVIOINTI EI
OLE HELPPOA

YLEINEN MENETELMÄ HYVYYDEN ARVIONTIIN: 
ELO-RATING

HEURISTIIKKOJEN VALINNASTA
(NICE TO KNOW: EI TARVITSE OPETELLA)

ELO RATING – “I NEED THE ALGORITHM”

© Columbia Pictures, Inc.

The Social
Network

104 6 Search, Games and Problem Solving

Fig. 6.18 A minimax game tree with look-ahead of four half-moves

Fig. 6.19 An alpha-beta game tree with look-ahead of four half-moves. The dotted portions of the
tree are not traversed because they have no effect on the end result

to right. Like in minimax search, in the minimum nodes the minimum is generated
from the minimum value of the successor nodes and in the maximum nodes likewise
the maximum. In Fig. 6.19 this process is depicted for the tree from Fig. 6.18. At the
node marked a, all other successors can be ignored after the first child is evaluated as
the value 1 because the minimum is sure to be ≤1. It could even become smaller still,
but that is irrelevant since the maximum is already ≥3 one level above. Regardless
of how the evaluation of the remaining successors turns out, the maximum will
keep the value 3. Analogously the tree will be trimmed at node b. Since the first
child of b has the value 2, the minimum to be generated for b can only be less
than or equal to 2. But the maximum at the root node is already sure to be ≥3.
This cannot be changed by values ≤2. Thus the remaining subtrees of b can be
pruned.

The same reasoning applies for the node c. However, the relevant maximum node
is not the direct parent, but the root node. This can be generalized.
• At every leaf node the evaluation is calculated.
• For every maximum node the current largest child value is saved in α.
• For every minimum node the current smallest child value is saved in β .
• If at a minimum node k the current value β ≤ α, then the search under k can end.

Here α is the largest value of a maximum node in the path from the root to k.
• If at a maximum node l the current value α ≥ β , then the search under l can end.

Here β is the smallest value of a minimum node in the path from the root to l.

MAX

MIN

MAX

MIN

MIN-ARVO ≤ 1

ALPHA-BETA-KARSINTA

AKTIVATOR!

104 6 Search, Games and Problem Solving

Fig. 6.18 A minimax game tree with look-ahead of four half-moves

Fig. 6.19 An alpha-beta game tree with look-ahead of four half-moves. The dotted portions of the
tree are not traversed because they have no effect on the end result

to right. Like in minimax search, in the minimum nodes the minimum is generated
from the minimum value of the successor nodes and in the maximum nodes likewise
the maximum. In Fig. 6.19 this process is depicted for the tree from Fig. 6.18. At the
node marked a, all other successors can be ignored after the first child is evaluated as
the value 1 because the minimum is sure to be ≤1. It could even become smaller still,
but that is irrelevant since the maximum is already ≥3 one level above. Regardless
of how the evaluation of the remaining successors turns out, the maximum will
keep the value 3. Analogously the tree will be trimmed at node b. Since the first
child of b has the value 2, the minimum to be generated for b can only be less
than or equal to 2. But the maximum at the root node is already sure to be ≥3.
This cannot be changed by values ≤2. Thus the remaining subtrees of b can be
pruned.

The same reasoning applies for the node c. However, the relevant maximum node
is not the direct parent, but the root node. This can be generalized.
• At every leaf node the evaluation is calculated.
• For every maximum node the current largest child value is saved in α.
• For every minimum node the current smallest child value is saved in β .
• If at a minimum node k the current value β ≤ α, then the search under k can end.

Here α is the largest value of a maximum node in the path from the root to k.
• If at a maximum node l the current value α ≥ β , then the search under l can end.

Here β is the smallest value of a minimum node in the path from the root to l.

MAX

MIN

MAX

MIN

MIN-ARVO ≤ 1 
⇒ MAX-ARVO = 3

ALPHA-BETA-KARSINTA

AKTIVATOR!

ALPHA-BETA-KARSINTA

MAX-ARVO(Solmu, α, β)  

if LOPPUTILA(Solmu) return(ARVO(Solmu))
v = −∞
for each Lapsi in LAPSET(Solmu)

v = MAX(v, MIN-ARVO(Lapsi, α, β))
if v ≥ β return(v)
α = MAX(α, v)

return(v)

MIN-PELAAJAN 
TOISTAISEKSI
PARAS ARVO

MAX-PELAAJAN 
TOISTAISEKSI
PARAS ARVO

ALPHA-BETA-KARSINTA

MAX-ARVO(Solmu, α, β)  

if LOPPUTILA(Solmu) return(ARVO(Solmu))
v = −∞
for each Lapsi in LAPSET(Solmu)

v = MAX(v, MIN-ARVO(Lapsi, α, β))
if v ≥ β return(v)
α = MAX(α, v)

return(v)

MIN-ARVO(Solmu, α, β)  

if LOPPUTILA(Solmu) return(ARVO(Solmu))
v = +∞
for each Lapsi in LAPSET(Solmu)

v = MIN(v, MAX-ARVO(Lapsi, α, β))
if v ≤ α return(v)
β = MIN(β, v)

return(v)

104 6 Search, Games and Problem Solving

Fig. 6.18 A minimax game tree with look-ahead of four half-moves

Fig. 6.19 An alpha-beta game tree with look-ahead of four half-moves. The dotted portions of the
tree are not traversed because they have no effect on the end result

to right. Like in minimax search, in the minimum nodes the minimum is generated
from the minimum value of the successor nodes and in the maximum nodes likewise
the maximum. In Fig. 6.19 this process is depicted for the tree from Fig. 6.18. At the
node marked a, all other successors can be ignored after the first child is evaluated as
the value 1 because the minimum is sure to be ≤1. It could even become smaller still,
but that is irrelevant since the maximum is already ≥3 one level above. Regardless
of how the evaluation of the remaining successors turns out, the maximum will
keep the value 3. Analogously the tree will be trimmed at node b. Since the first
child of b has the value 2, the minimum to be generated for b can only be less
than or equal to 2. But the maximum at the root node is already sure to be ≥3.
This cannot be changed by values ≤2. Thus the remaining subtrees of b can be
pruned.

The same reasoning applies for the node c. However, the relevant maximum node
is not the direct parent, but the root node. This can be generalized.
• At every leaf node the evaluation is calculated.
• For every maximum node the current largest child value is saved in α.
• For every minimum node the current smallest child value is saved in β .
• If at a minimum node k the current value β ≤ α, then the search under k can end.

Here α is the largest value of a maximum node in the path from the root to k.
• If at a maximum node l the current value α ≥ β , then the search under l can end.

Here β is the smallest value of a minimum node in the path from the root to l.

MAX

MIN

MAX

MIN

ALPHA-BETA-KARSINTA

104 6 Search, Games and Problem Solving

Fig. 6.18 A minimax game tree with look-ahead of four half-moves

Fig. 6.19 An alpha-beta game tree with look-ahead of four half-moves. The dotted portions of the
tree are not traversed because they have no effect on the end result

to right. Like in minimax search, in the minimum nodes the minimum is generated
from the minimum value of the successor nodes and in the maximum nodes likewise
the maximum. In Fig. 6.19 this process is depicted for the tree from Fig. 6.18. At the
node marked a, all other successors can be ignored after the first child is evaluated as
the value 1 because the minimum is sure to be ≤1. It could even become smaller still,
but that is irrelevant since the maximum is already ≥3 one level above. Regardless
of how the evaluation of the remaining successors turns out, the maximum will
keep the value 3. Analogously the tree will be trimmed at node b. Since the first
child of b has the value 2, the minimum to be generated for b can only be less
than or equal to 2. But the maximum at the root node is already sure to be ≥3.
This cannot be changed by values ≤2. Thus the remaining subtrees of b can be
pruned.

The same reasoning applies for the node c. However, the relevant maximum node
is not the direct parent, but the root node. This can be generalized.
• At every leaf node the evaluation is calculated.
• For every maximum node the current largest child value is saved in α.
• For every minimum node the current smallest child value is saved in β .
• If at a minimum node k the current value β ≤ α, then the search under k can end.

Here α is the largest value of a maximum node in the path from the root to k.
• If at a maximum node l the current value α ≥ β , then the search under l can end.

Here β is the smallest value of a minimum node in the path from the root to l.

MAX

MIN

MAX

MIN

 α = 0

ALPHA-BETA-KARSINTA

104 6 Search, Games and Problem Solving

Fig. 6.18 A minimax game tree with look-ahead of four half-moves

Fig. 6.19 An alpha-beta game tree with look-ahead of four half-moves. The dotted portions of the
tree are not traversed because they have no effect on the end result

to right. Like in minimax search, in the minimum nodes the minimum is generated
from the minimum value of the successor nodes and in the maximum nodes likewise
the maximum. In Fig. 6.19 this process is depicted for the tree from Fig. 6.18. At the
node marked a, all other successors can be ignored after the first child is evaluated as
the value 1 because the minimum is sure to be ≤1. It could even become smaller still,
but that is irrelevant since the maximum is already ≥3 one level above. Regardless
of how the evaluation of the remaining successors turns out, the maximum will
keep the value 3. Analogously the tree will be trimmed at node b. Since the first
child of b has the value 2, the minimum to be generated for b can only be less
than or equal to 2. But the maximum at the root node is already sure to be ≥3.
This cannot be changed by values ≤2. Thus the remaining subtrees of b can be
pruned.

The same reasoning applies for the node c. However, the relevant maximum node
is not the direct parent, but the root node. This can be generalized.
• At every leaf node the evaluation is calculated.
• For every maximum node the current largest child value is saved in α.
• For every minimum node the current smallest child value is saved in β .
• If at a minimum node k the current value β ≤ α, then the search under k can end.

Here α is the largest value of a maximum node in the path from the root to k.
• If at a maximum node l the current value α ≥ β , then the search under l can end.

Here β is the smallest value of a minimum node in the path from the root to l.

MAX

MIN

MAX

MIN

 α = 1

ALPHA-BETA-KARSINTA

104 6 Search, Games and Problem Solving

Fig. 6.18 A minimax game tree with look-ahead of four half-moves

Fig. 6.19 An alpha-beta game tree with look-ahead of four half-moves. The dotted portions of the
tree are not traversed because they have no effect on the end result

to right. Like in minimax search, in the minimum nodes the minimum is generated
from the minimum value of the successor nodes and in the maximum nodes likewise
the maximum. In Fig. 6.19 this process is depicted for the tree from Fig. 6.18. At the
node marked a, all other successors can be ignored after the first child is evaluated as
the value 1 because the minimum is sure to be ≤1. It could even become smaller still,
but that is irrelevant since the maximum is already ≥3 one level above. Regardless
of how the evaluation of the remaining successors turns out, the maximum will
keep the value 3. Analogously the tree will be trimmed at node b. Since the first
child of b has the value 2, the minimum to be generated for b can only be less
than or equal to 2. But the maximum at the root node is already sure to be ≥3.
This cannot be changed by values ≤2. Thus the remaining subtrees of b can be
pruned.

The same reasoning applies for the node c. However, the relevant maximum node
is not the direct parent, but the root node. This can be generalized.
• At every leaf node the evaluation is calculated.
• For every maximum node the current largest child value is saved in α.
• For every minimum node the current smallest child value is saved in β .
• If at a minimum node k the current value β ≤ α, then the search under k can end.

Here α is the largest value of a maximum node in the path from the root to k.
• If at a maximum node l the current value α ≥ β , then the search under l can end.

Here β is the smallest value of a minimum node in the path from the root to l.

MAX

MIN

MAX

MIN

 α = 6

ALPHA-BETA-KARSINTA

104 6 Search, Games and Problem Solving

Fig. 6.18 A minimax game tree with look-ahead of four half-moves

Fig. 6.19 An alpha-beta game tree with look-ahead of four half-moves. The dotted portions of the
tree are not traversed because they have no effect on the end result

to right. Like in minimax search, in the minimum nodes the minimum is generated
from the minimum value of the successor nodes and in the maximum nodes likewise
the maximum. In Fig. 6.19 this process is depicted for the tree from Fig. 6.18. At the
node marked a, all other successors can be ignored after the first child is evaluated as
the value 1 because the minimum is sure to be ≤1. It could even become smaller still,
but that is irrelevant since the maximum is already ≥3 one level above. Regardless
of how the evaluation of the remaining successors turns out, the maximum will
keep the value 3. Analogously the tree will be trimmed at node b. Since the first
child of b has the value 2, the minimum to be generated for b can only be less
than or equal to 2. But the maximum at the root node is already sure to be ≥3.
This cannot be changed by values ≤2. Thus the remaining subtrees of b can be
pruned.

The same reasoning applies for the node c. However, the relevant maximum node
is not the direct parent, but the root node. This can be generalized.
• At every leaf node the evaluation is calculated.
• For every maximum node the current largest child value is saved in α.
• For every minimum node the current smallest child value is saved in β .
• If at a minimum node k the current value β ≤ α, then the search under k can end.

Here α is the largest value of a maximum node in the path from the root to k.
• If at a maximum node l the current value α ≥ β , then the search under l can end.

Here β is the smallest value of a minimum node in the path from the root to l.

MAX

MIN

MAX

MIN

 α = 6

ALPHA-BETA-KARSINTA

104 6 Search, Games and Problem Solving

Fig. 6.18 A minimax game tree with look-ahead of four half-moves

Fig. 6.19 An alpha-beta game tree with look-ahead of four half-moves. The dotted portions of the
tree are not traversed because they have no effect on the end result

to right. Like in minimax search, in the minimum nodes the minimum is generated
from the minimum value of the successor nodes and in the maximum nodes likewise
the maximum. In Fig. 6.19 this process is depicted for the tree from Fig. 6.18. At the
node marked a, all other successors can be ignored after the first child is evaluated as
the value 1 because the minimum is sure to be ≤1. It could even become smaller still,
but that is irrelevant since the maximum is already ≥3 one level above. Regardless
of how the evaluation of the remaining successors turns out, the maximum will
keep the value 3. Analogously the tree will be trimmed at node b. Since the first
child of b has the value 2, the minimum to be generated for b can only be less
than or equal to 2. But the maximum at the root node is already sure to be ≥3.
This cannot be changed by values ≤2. Thus the remaining subtrees of b can be
pruned.

The same reasoning applies for the node c. However, the relevant maximum node
is not the direct parent, but the root node. This can be generalized.
• At every leaf node the evaluation is calculated.
• For every maximum node the current largest child value is saved in α.
• For every minimum node the current smallest child value is saved in β .
• If at a minimum node k the current value β ≤ α, then the search under k can end.

Here α is the largest value of a maximum node in the path from the root to k.
• If at a maximum node l the current value α ≥ β , then the search under l can end.

Here β is the smallest value of a minimum node in the path from the root to l.

MAX

MIN

MAX

MIN

 β = 6

ALPHA-BETA-KARSINTA

104 6 Search, Games and Problem Solving

Fig. 6.18 A minimax game tree with look-ahead of four half-moves

Fig. 6.19 An alpha-beta game tree with look-ahead of four half-moves. The dotted portions of the
tree are not traversed because they have no effect on the end result

to right. Like in minimax search, in the minimum nodes the minimum is generated
from the minimum value of the successor nodes and in the maximum nodes likewise
the maximum. In Fig. 6.19 this process is depicted for the tree from Fig. 6.18. At the
node marked a, all other successors can be ignored after the first child is evaluated as
the value 1 because the minimum is sure to be ≤1. It could even become smaller still,
but that is irrelevant since the maximum is already ≥3 one level above. Regardless
of how the evaluation of the remaining successors turns out, the maximum will
keep the value 3. Analogously the tree will be trimmed at node b. Since the first
child of b has the value 2, the minimum to be generated for b can only be less
than or equal to 2. But the maximum at the root node is already sure to be ≥3.
This cannot be changed by values ≤2. Thus the remaining subtrees of b can be
pruned.

The same reasoning applies for the node c. However, the relevant maximum node
is not the direct parent, but the root node. This can be generalized.
• At every leaf node the evaluation is calculated.
• For every maximum node the current largest child value is saved in α.
• For every minimum node the current smallest child value is saved in β .
• If at a minimum node k the current value β ≤ α, then the search under k can end.

Here α is the largest value of a maximum node in the path from the root to k.
• If at a maximum node l the current value α ≥ β , then the search under l can end.

Here β is the smallest value of a minimum node in the path from the root to l.

MAX

MIN

MAX

MIN

 β = 6

ALPHA-BETA-KARSINTA

 α = 3

104 6 Search, Games and Problem Solving

Fig. 6.18 A minimax game tree with look-ahead of four half-moves

Fig. 6.19 An alpha-beta game tree with look-ahead of four half-moves. The dotted portions of the
tree are not traversed because they have no effect on the end result

to right. Like in minimax search, in the minimum nodes the minimum is generated
from the minimum value of the successor nodes and in the maximum nodes likewise
the maximum. In Fig. 6.19 this process is depicted for the tree from Fig. 6.18. At the
node marked a, all other successors can be ignored after the first child is evaluated as
the value 1 because the minimum is sure to be ≤1. It could even become smaller still,
but that is irrelevant since the maximum is already ≥3 one level above. Regardless
of how the evaluation of the remaining successors turns out, the maximum will
keep the value 3. Analogously the tree will be trimmed at node b. Since the first
child of b has the value 2, the minimum to be generated for b can only be less
than or equal to 2. But the maximum at the root node is already sure to be ≥3.
This cannot be changed by values ≤2. Thus the remaining subtrees of b can be
pruned.

The same reasoning applies for the node c. However, the relevant maximum node
is not the direct parent, but the root node. This can be generalized.
• At every leaf node the evaluation is calculated.
• For every maximum node the current largest child value is saved in α.
• For every minimum node the current smallest child value is saved in β .
• If at a minimum node k the current value β ≤ α, then the search under k can end.

Here α is the largest value of a maximum node in the path from the root to k.
• If at a maximum node l the current value α ≥ β , then the search under l can end.

Here β is the smallest value of a minimum node in the path from the root to l.

MAX

MIN

MAX

MIN

 β = 6

ALPHA-BETA-KARSINTA

 α = 3

 α = 3

MIN-ARVO(Solmu, α, β)  

if LOPPUTILA(Solmu) return(ARVO(Solmu))
v = +∞
for each Lapsi in LAPSET(Solmu)

v = MIN(v, MAX-ARVO(Lapsi, α, β))
if v ≤ α return(v)
β = MIN(β, v)

return(v)

104 6 Search, Games and Problem Solving

Fig. 6.18 A minimax game tree with look-ahead of four half-moves

Fig. 6.19 An alpha-beta game tree with look-ahead of four half-moves. The dotted portions of the
tree are not traversed because they have no effect on the end result

to right. Like in minimax search, in the minimum nodes the minimum is generated
from the minimum value of the successor nodes and in the maximum nodes likewise
the maximum. In Fig. 6.19 this process is depicted for the tree from Fig. 6.18. At the
node marked a, all other successors can be ignored after the first child is evaluated as
the value 1 because the minimum is sure to be ≤1. It could even become smaller still,
but that is irrelevant since the maximum is already ≥3 one level above. Regardless
of how the evaluation of the remaining successors turns out, the maximum will
keep the value 3. Analogously the tree will be trimmed at node b. Since the first
child of b has the value 2, the minimum to be generated for b can only be less
than or equal to 2. But the maximum at the root node is already sure to be ≥3.
This cannot be changed by values ≤2. Thus the remaining subtrees of b can be
pruned.

The same reasoning applies for the node c. However, the relevant maximum node
is not the direct parent, but the root node. This can be generalized.
• At every leaf node the evaluation is calculated.
• For every maximum node the current largest child value is saved in α.
• For every minimum node the current smallest child value is saved in β .
• If at a minimum node k the current value β ≤ α, then the search under k can end.

Here α is the largest value of a maximum node in the path from the root to k.
• If at a maximum node l the current value α ≥ β , then the search under l can end.

Here β is the smallest value of a minimum node in the path from the root to l.

MAX

MIN

MAX

MIN

 β = 6

ALPHA-BETA-KARSINTA

 α = 3

 α = 3

MIN-ARVO(Solmu, α, β)  

if LOPPUTILA(Solmu) return(ARVO(Solmu))
v = +∞
for each Lapsi in LAPSET(Solmu)

v = MIN(v, MAX-ARVO(Lapsi, α, β))
if v ≤ α return(v)
β = MIN(β, v)

return(v)

1
1 3

104 6 Search, Games and Problem Solving

Fig. 6.18 A minimax game tree with look-ahead of four half-moves

Fig. 6.19 An alpha-beta game tree with look-ahead of four half-moves. The dotted portions of the
tree are not traversed because they have no effect on the end result

to right. Like in minimax search, in the minimum nodes the minimum is generated
from the minimum value of the successor nodes and in the maximum nodes likewise
the maximum. In Fig. 6.19 this process is depicted for the tree from Fig. 6.18. At the
node marked a, all other successors can be ignored after the first child is evaluated as
the value 1 because the minimum is sure to be ≤1. It could even become smaller still,
but that is irrelevant since the maximum is already ≥3 one level above. Regardless
of how the evaluation of the remaining successors turns out, the maximum will
keep the value 3. Analogously the tree will be trimmed at node b. Since the first
child of b has the value 2, the minimum to be generated for b can only be less
than or equal to 2. But the maximum at the root node is already sure to be ≥3.
This cannot be changed by values ≤2. Thus the remaining subtrees of b can be
pruned.

The same reasoning applies for the node c. However, the relevant maximum node
is not the direct parent, but the root node. This can be generalized.
• At every leaf node the evaluation is calculated.
• For every maximum node the current largest child value is saved in α.
• For every minimum node the current smallest child value is saved in β .
• If at a minimum node k the current value β ≤ α, then the search under k can end.

Here α is the largest value of a maximum node in the path from the root to k.
• If at a maximum node l the current value α ≥ β , then the search under l can end.

Here β is the smallest value of a minimum node in the path from the root to l.

MAX

MIN

MAX

MIN

 β = 6

ALPHA-BETA-KARSINTA

 α = 3

 α = 3

MIN-ARVO(Solmu, α, β)  

if LOPPUTILA(Solmu) return(ARVO(Solmu))
v = +∞
for each Lapsi in LAPSET(Solmu)

v = MIN(v, MAX-ARVO(Lapsi, α, β))
if v ≤ α return(v)
β = MIN(β, v)

return(v)

1
1 3

104 6 Search, Games and Problem Solving

Fig. 6.18 A minimax game tree with look-ahead of four half-moves

Fig. 6.19 An alpha-beta game tree with look-ahead of four half-moves. The dotted portions of the
tree are not traversed because they have no effect on the end result

to right. Like in minimax search, in the minimum nodes the minimum is generated
from the minimum value of the successor nodes and in the maximum nodes likewise
the maximum. In Fig. 6.19 this process is depicted for the tree from Fig. 6.18. At the
node marked a, all other successors can be ignored after the first child is evaluated as
the value 1 because the minimum is sure to be ≤1. It could even become smaller still,
but that is irrelevant since the maximum is already ≥3 one level above. Regardless
of how the evaluation of the remaining successors turns out, the maximum will
keep the value 3. Analogously the tree will be trimmed at node b. Since the first
child of b has the value 2, the minimum to be generated for b can only be less
than or equal to 2. But the maximum at the root node is already sure to be ≥3.
This cannot be changed by values ≤2. Thus the remaining subtrees of b can be
pruned.

The same reasoning applies for the node c. However, the relevant maximum node
is not the direct parent, but the root node. This can be generalized.
• At every leaf node the evaluation is calculated.
• For every maximum node the current largest child value is saved in α.
• For every minimum node the current smallest child value is saved in β .
• If at a minimum node k the current value β ≤ α, then the search under k can end.

Here α is the largest value of a maximum node in the path from the root to k.
• If at a maximum node l the current value α ≥ β , then the search under l can end.

Here β is the smallest value of a minimum node in the path from the root to l.

MAX

MIN

MAX

MIN

 β = 6

ALPHA-BETA-KARSINTA

 α = 3

 α = 3

MIN-ARVO(Solmu, α, β)  

if LOPPUTILA(Solmu) return(ARVO(Solmu))
v = +∞
for each Lapsi in LAPSET(Solmu)

v = MIN(v, MAX-ARVO(Lapsi, α, β))
if v ≤ α return(v)
β = MIN(β, v)

return(v)

1
1 3

104 6 Search, Games and Problem Solving

Fig. 6.18 A minimax game tree with look-ahead of four half-moves

Fig. 6.19 An alpha-beta game tree with look-ahead of four half-moves. The dotted portions of the
tree are not traversed because they have no effect on the end result

to right. Like in minimax search, in the minimum nodes the minimum is generated
from the minimum value of the successor nodes and in the maximum nodes likewise
the maximum. In Fig. 6.19 this process is depicted for the tree from Fig. 6.18. At the
node marked a, all other successors can be ignored after the first child is evaluated as
the value 1 because the minimum is sure to be ≤1. It could even become smaller still,
but that is irrelevant since the maximum is already ≥3 one level above. Regardless
of how the evaluation of the remaining successors turns out, the maximum will
keep the value 3. Analogously the tree will be trimmed at node b. Since the first
child of b has the value 2, the minimum to be generated for b can only be less
than or equal to 2. But the maximum at the root node is already sure to be ≥3.
This cannot be changed by values ≤2. Thus the remaining subtrees of b can be
pruned.

The same reasoning applies for the node c. However, the relevant maximum node
is not the direct parent, but the root node. This can be generalized.
• At every leaf node the evaluation is calculated.
• For every maximum node the current largest child value is saved in α.
• For every minimum node the current smallest child value is saved in β .
• If at a minimum node k the current value β ≤ α, then the search under k can end.

Here α is the largest value of a maximum node in the path from the root to k.
• If at a maximum node l the current value α ≥ β , then the search under l can end.

Here β is the smallest value of a minimum node in the path from the root to l.

MAX

MIN

MAX

MIN

 β = 6

ALPHA-BETA-KARSINTA

 α = 3

 α = 3

104 6 Search, Games and Problem Solving

Fig. 6.18 A minimax game tree with look-ahead of four half-moves

Fig. 6.19 An alpha-beta game tree with look-ahead of four half-moves. The dotted portions of the
tree are not traversed because they have no effect on the end result

to right. Like in minimax search, in the minimum nodes the minimum is generated
from the minimum value of the successor nodes and in the maximum nodes likewise
the maximum. In Fig. 6.19 this process is depicted for the tree from Fig. 6.18. At the
node marked a, all other successors can be ignored after the first child is evaluated as
the value 1 because the minimum is sure to be ≤1. It could even become smaller still,
but that is irrelevant since the maximum is already ≥3 one level above. Regardless
of how the evaluation of the remaining successors turns out, the maximum will
keep the value 3. Analogously the tree will be trimmed at node b. Since the first
child of b has the value 2, the minimum to be generated for b can only be less
than or equal to 2. But the maximum at the root node is already sure to be ≥3.
This cannot be changed by values ≤2. Thus the remaining subtrees of b can be
pruned.

The same reasoning applies for the node c. However, the relevant maximum node
is not the direct parent, but the root node. This can be generalized.
• At every leaf node the evaluation is calculated.
• For every maximum node the current largest child value is saved in α.
• For every minimum node the current smallest child value is saved in β .
• If at a minimum node k the current value β ≤ α, then the search under k can end.

Here α is the largest value of a maximum node in the path from the root to k.
• If at a maximum node l the current value α ≥ β , then the search under l can end.

Here β is the smallest value of a minimum node in the path from the root to l.

MAX

MIN

MAX

MIN

 β = 3

ALPHA-BETA-KARSINTA

104 6 Search, Games and Problem Solving

Fig. 6.18 A minimax game tree with look-ahead of four half-moves

Fig. 6.19 An alpha-beta game tree with look-ahead of four half-moves. The dotted portions of the
tree are not traversed because they have no effect on the end result

to right. Like in minimax search, in the minimum nodes the minimum is generated
from the minimum value of the successor nodes and in the maximum nodes likewise
the maximum. In Fig. 6.19 this process is depicted for the tree from Fig. 6.18. At the
node marked a, all other successors can be ignored after the first child is evaluated as
the value 1 because the minimum is sure to be ≤1. It could even become smaller still,
but that is irrelevant since the maximum is already ≥3 one level above. Regardless
of how the evaluation of the remaining successors turns out, the maximum will
keep the value 3. Analogously the tree will be trimmed at node b. Since the first
child of b has the value 2, the minimum to be generated for b can only be less
than or equal to 2. But the maximum at the root node is already sure to be ≥3.
This cannot be changed by values ≤2. Thus the remaining subtrees of b can be
pruned.

The same reasoning applies for the node c. However, the relevant maximum node
is not the direct parent, but the root node. This can be generalized.
• At every leaf node the evaluation is calculated.
• For every maximum node the current largest child value is saved in α.
• For every minimum node the current smallest child value is saved in β .
• If at a minimum node k the current value β ≤ α, then the search under k can end.

Here α is the largest value of a maximum node in the path from the root to k.
• If at a maximum node l the current value α ≥ β , then the search under l can end.

Here β is the smallest value of a minimum node in the path from the root to l.

MIN

MAX

MIN

MAX

α = 3

ALPHA-BETA-KARSINTA

 α = 3

104 6 Search, Games and Problem Solving

Fig. 6.18 A minimax game tree with look-ahead of four half-moves

Fig. 6.19 An alpha-beta game tree with look-ahead of four half-moves. The dotted portions of the
tree are not traversed because they have no effect on the end result

to right. Like in minimax search, in the minimum nodes the minimum is generated
from the minimum value of the successor nodes and in the maximum nodes likewise
the maximum. In Fig. 6.19 this process is depicted for the tree from Fig. 6.18. At the
node marked a, all other successors can be ignored after the first child is evaluated as
the value 1 because the minimum is sure to be ≤1. It could even become smaller still,
but that is irrelevant since the maximum is already ≥3 one level above. Regardless
of how the evaluation of the remaining successors turns out, the maximum will
keep the value 3. Analogously the tree will be trimmed at node b. Since the first
child of b has the value 2, the minimum to be generated for b can only be less
than or equal to 2. But the maximum at the root node is already sure to be ≥3.
This cannot be changed by values ≤2. Thus the remaining subtrees of b can be
pruned.

The same reasoning applies for the node c. However, the relevant maximum node
is not the direct parent, but the root node. This can be generalized.
• At every leaf node the evaluation is calculated.
• For every maximum node the current largest child value is saved in α.
• For every minimum node the current smallest child value is saved in β .
• If at a minimum node k the current value β ≤ α, then the search under k can end.

Here α is the largest value of a maximum node in the path from the root to k.
• If at a maximum node l the current value α ≥ β , then the search under l can end.

Here β is the smallest value of a minimum node in the path from the root to l.

MIN

MAX

MIN

MAX

α = 3

ALPHA-BETA-KARSINTA

 α = 3

104 6 Search, Games and Problem Solving

Fig. 6.18 A minimax game tree with look-ahead of four half-moves

Fig. 6.19 An alpha-beta game tree with look-ahead of four half-moves. The dotted portions of the
tree are not traversed because they have no effect on the end result

to right. Like in minimax search, in the minimum nodes the minimum is generated
from the minimum value of the successor nodes and in the maximum nodes likewise
the maximum. In Fig. 6.19 this process is depicted for the tree from Fig. 6.18. At the
node marked a, all other successors can be ignored after the first child is evaluated as
the value 1 because the minimum is sure to be ≤1. It could even become smaller still,
but that is irrelevant since the maximum is already ≥3 one level above. Regardless
of how the evaluation of the remaining successors turns out, the maximum will
keep the value 3. Analogously the tree will be trimmed at node b. Since the first
child of b has the value 2, the minimum to be generated for b can only be less
than or equal to 2. But the maximum at the root node is already sure to be ≥3.
This cannot be changed by values ≤2. Thus the remaining subtrees of b can be
pruned.

The same reasoning applies for the node c. However, the relevant maximum node
is not the direct parent, but the root node. This can be generalized.
• At every leaf node the evaluation is calculated.
• For every maximum node the current largest child value is saved in α.
• For every minimum node the current smallest child value is saved in β .
• If at a minimum node k the current value β ≤ α, then the search under k can end.

Here α is the largest value of a maximum node in the path from the root to k.
• If at a maximum node l the current value α ≥ β , then the search under l can end.

Here β is the smallest value of a minimum node in the path from the root to l.

MIN
MIN-ARVO(Solmu, α, β)  

if LOPPUTILA(Solmu) return(ARVO(Solmu))
v = +∞
for each Lapsi in LAPSET(Solmu)

v = MIN(v, MAX-ARVO(Lapsi, α, β))
if v ≤ α return(v)
β = MIN(β, v)

return(v)

MAX

MIN

MAX

α = 3

ALPHA-BETA-KARSINTA

 α = 3

104 6 Search, Games and Problem Solving

Fig. 6.18 A minimax game tree with look-ahead of four half-moves

Fig. 6.19 An alpha-beta game tree with look-ahead of four half-moves. The dotted portions of the
tree are not traversed because they have no effect on the end result

to right. Like in minimax search, in the minimum nodes the minimum is generated
from the minimum value of the successor nodes and in the maximum nodes likewise
the maximum. In Fig. 6.19 this process is depicted for the tree from Fig. 6.18. At the
node marked a, all other successors can be ignored after the first child is evaluated as
the value 1 because the minimum is sure to be ≤1. It could even become smaller still,
but that is irrelevant since the maximum is already ≥3 one level above. Regardless
of how the evaluation of the remaining successors turns out, the maximum will
keep the value 3. Analogously the tree will be trimmed at node b. Since the first
child of b has the value 2, the minimum to be generated for b can only be less
than or equal to 2. But the maximum at the root node is already sure to be ≥3.
This cannot be changed by values ≤2. Thus the remaining subtrees of b can be
pruned.

The same reasoning applies for the node c. However, the relevant maximum node
is not the direct parent, but the root node. This can be generalized.
• At every leaf node the evaluation is calculated.
• For every maximum node the current largest child value is saved in α.
• For every minimum node the current smallest child value is saved in β .
• If at a minimum node k the current value β ≤ α, then the search under k can end.

Here α is the largest value of a maximum node in the path from the root to k.
• If at a maximum node l the current value α ≥ β , then the search under l can end.

Here β is the smallest value of a minimum node in the path from the root to l.

MIN
MIN-ARVO(Solmu, α, β)  

if LOPPUTILA(Solmu) return(ARVO(Solmu))
v = +∞
for each Lapsi in LAPSET(Solmu)

v = MIN(v, MAX-ARVO(Lapsi, α, β))
if v ≤ α return(v)
β = MIN(β, v)

return(v)

MAX

MIN

MAX

α = 3

ALPHA-BETA-KARSINTA

 α = 3

2
2 3

104 6 Search, Games and Problem Solving

Fig. 6.18 A minimax game tree with look-ahead of four half-moves

Fig. 6.19 An alpha-beta game tree with look-ahead of four half-moves. The dotted portions of the
tree are not traversed because they have no effect on the end result

to right. Like in minimax search, in the minimum nodes the minimum is generated
from the minimum value of the successor nodes and in the maximum nodes likewise
the maximum. In Fig. 6.19 this process is depicted for the tree from Fig. 6.18. At the
node marked a, all other successors can be ignored after the first child is evaluated as
the value 1 because the minimum is sure to be ≤1. It could even become smaller still,
but that is irrelevant since the maximum is already ≥3 one level above. Regardless
of how the evaluation of the remaining successors turns out, the maximum will
keep the value 3. Analogously the tree will be trimmed at node b. Since the first
child of b has the value 2, the minimum to be generated for b can only be less
than or equal to 2. But the maximum at the root node is already sure to be ≥3.
This cannot be changed by values ≤2. Thus the remaining subtrees of b can be
pruned.

The same reasoning applies for the node c. However, the relevant maximum node
is not the direct parent, but the root node. This can be generalized.
• At every leaf node the evaluation is calculated.
• For every maximum node the current largest child value is saved in α.
• For every minimum node the current smallest child value is saved in β .
• If at a minimum node k the current value β ≤ α, then the search under k can end.

Here α is the largest value of a maximum node in the path from the root to k.
• If at a maximum node l the current value α ≥ β , then the search under l can end.

Here β is the smallest value of a minimum node in the path from the root to l.

MIN
MIN-ARVO(Solmu, α, β)  

if LOPPUTILA(Solmu) return(ARVO(Solmu))
v = +∞
for each Lapsi in LAPSET(Solmu)

v = MIN(v, MAX-ARVO(Lapsi, α, β))
if v ≤ α return(v)
β = MIN(β, v)

return(v)

MAX

MIN

MAX

α = 3

ALPHA-BETA-KARSINTA

 α = 3

2
2 3

AKTIVATOR!

ARPAPELIT

ARPA

MIN

0.50.5

MAX MAX

ENSI VIIKOLLA

LOGIIKASTA (TEKOÄLYN HISTORIAA)

TODENNÄKÖISYYS

